-
Notifications
You must be signed in to change notification settings - Fork 878
/
Copy pathindex.ts
167 lines (141 loc) · 5.49 KB
/
index.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
// Copyright 2016-2025, Pulumi Corporation. All rights reserved.
import * as aws from "@pulumi/aws";
import * as pulumi from "@pulumi/pulumi";
import { S3 } from "aws-sdk";
import { ARN } from "@pulumi/aws";
import { EventRuleEvent } from "@pulumi/aws/cloudwatch";
import * as moment from "moment-timezone";
import { BatchInputTableArgs, ServerlessDataWarehouse, StreamingInputTableArgs, TableArgs } from "./datawarehouse";
import { EventGenerator } from "./testing/eventGenerator";
// app specific config
const config = new pulumi.Config();
const awsConfig = new pulumi.Config("aws");
const region = awsConfig.require("region");
const isDev = config.get("dev") === "true";
// during development we run all of our crons
// at a faster cadence to expedite testing
const cronUnit = isDev ? "minute" : "hour";
const scheduleExpression = `rate(1 ${cronUnit})`;
const fileFlushIntervalSeconds = isDev ? 60 : 900;
// dw w/ streaming input table
const columns = [
{
name: "id",
type: "string",
},
{
name: "session_id",
type: "string",
},
{
name: "event_time",
type: "string",
},
];
const impressionsTableName = "impressions";
const clicksTableName = "clicks";
const genericTableArgs: StreamingInputTableArgs = {
columns,
inputStreamShardCount: 1,
region,
partitionScheduleExpression: scheduleExpression,
fileFlushIntervalSeconds,
};
// create two tables with kinesis input streams, writing data into hourly partitions in S3.
const dataWarehouse = new ServerlessDataWarehouse("analytics_dw", { isDev })
.withStreamingInputTable(impressionsTableName, genericTableArgs)
.withStreamingInputTable(clicksTableName, genericTableArgs);
const impressionsInputStream = dataWarehouse.getInputStream(impressionsTableName);
const clicksInputStream = dataWarehouse.getInputStream(clicksTableName);
// Export a batch of outputs from the first two tables.
export const impressionInputStream = impressionsInputStream.name;
export const clickInputStream = clicksInputStream.name;
export const databaseName = dataWarehouse.database.name;
export const impressionTableName = dataWarehouse.getTable(impressionsTableName).name;
export const clickTableName = dataWarehouse.getTable(clicksTableName).name;
export const athenaResultsBucket = dataWarehouse.queryResultsBucket.bucket;
const dwBucket = dataWarehouse.dataWarehouseBucket.bucket;
// Configure batch input table 'aggregates'
const aggregateTableName = "aggregates";
const aggregateTableColumns = [
{
name: "event_type",
type: "string",
},
{
name: "count",
type: "int",
},
{
name: "time",
type: "string",
},
];
const aggregationFunction = async (event: EventRuleEvent) => {
const athena = require("athena-client");
const bucketUri = `s3://${athenaResultsBucket.get()}`;
const clientConfig = {
bucketUri,
};
const awsConfig = {
region,
};
const athenaClient = athena.createClient(clientConfig, awsConfig);
const date = moment(event.time);
const partitionKey = date.utc().format("YYYY/MM/DD/HH");
const getAggregateQuery = (table: string) => `select count(*) from ${databaseName.get()}.${table} where inserted_at='${partitionKey}'`;
const clicksPromise = athenaClient.execute(getAggregateQuery(clicksTableName)).toPromise();
const impressionsPromise = athenaClient.execute(getAggregateQuery(impressionsTableName)).toPromise();
const clickRows = await clicksPromise;
const impressionRows = await impressionsPromise;
const clickCount = clickRows.records[0]["_col0"];
const impressionsCount = impressionRows.records[0]["_col0"];
const data = `{ "event_type": "${clicksTableName}", "count": ${clickCount}, "time": "${partitionKey}" }\n{ "event_type": "${impressionsTableName}", "count": ${impressionsCount}, "time": "${partitionKey}"}`;
const s3Client = new S3();
await s3Client.putObject({
Bucket: dwBucket.get(),
Key: `${aggregateTableName}/${partitionKey}/results.json`,
Body: data,
}).promise();
};
const policyARNsToAttach: pulumi.Input<ARN>[] = [
aws.iam.ManagedPolicies.AmazonAthenaFullAccess,
aws.iam.ManagedPolicies.AmazonS3FullAccess,
];
const aggregateTableArgs: BatchInputTableArgs = {
columns: aggregateTableColumns,
jobFn: aggregationFunction,
scheduleExpression,
policyARNsToAttach,
dataFormat: "JSON",
};
dataWarehouse.withBatchInputTable(aggregateTableName, aggregateTableArgs);
// create a static fact table
const factTableName = "facts";
const factColumns = [
{
name: "thing",
type: "string",
},
{
name: "color",
type: "string",
},
];
const factTableArgs: TableArgs = {
columns: factColumns,
dataFormat: "JSON",
};
dataWarehouse.withTable("facts", factTableArgs);
// Load a static facts file into the facts table.
const data = `{"thing": "sky", "color": "blue"}\n{ "thing": "seattle sky", "color": "grey"}\n{ "thing": "oranges", "color": "orange"}`;
const factJSON = new aws.s3.BucketObject("factsFile", {
bucket: dataWarehouse.dataWarehouseBucket.bucket,
content: data,
key: `${factTableName}/facts.json`,
});
// conditionally create mock data for development
if (isDev) {
const impressionsGenerator = new EventGenerator("impressions-generator", { inputStreamName: impressionsInputStream.name, eventType: "impressions" });
const clicksGenerator = new EventGenerator("clicks-generator", { inputStreamName: clicksInputStream.name, eventType: "clicks" });
}