Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Clarify definition of PyBaMM's SPMe #4274

Open
brosaplanella opened this issue Jul 17, 2024 · 2 comments · May be fixed by #4329
Open

Clarify definition of PyBaMM's SPMe #4274

brosaplanella opened this issue Jul 17, 2024 · 2 comments · May be fixed by #4329
Assignees

Comments

@brosaplanella
Copy link
Member

brosaplanella commented Jul 17, 2024

The definition of the SPMe remains a sticking point in PyBaMM. Even though the cited article for its definition is the Marquis et al (2019) paper, the actual implementation is a bit different (more accurate) as some terms have been "unlinearised"*. As part of improving the Creating Models notebooks (#3844) I wanted to write a BasicSPMe file and document the SPMe definition better. However, I have also noticed that the current approach falls somewhat in the middle: some terms are unlinearised and some are not. The marginal cost of doing the SPMe fully "unlinearised". All this discussion pertains to composite_conductivity.py

*by "unlinearised" I mean that some terms in the asymptotic expansion get later grouped again in their nonlinear form.

Current implementation

$$\phi_\mathrm{e,const} = - \overline{\Delta \phi}_\mathrm{n} + \overline{\phi}_\mathrm{n} - \left[ \chi(\overline{c}_\mathrm{e}) \frac{R T}{F} \frac{1}{L_\mathrm{n}} \int_0^{L_\mathrm{n}} \log \left(\frac{c_\mathrm{e,n}}{\overline c_\mathrm{e}} \right) \mathrm{d} x - i_\mathrm{app} L_\mathrm{n} \left(\frac{1}{3 \kappa_\mathrm{e,eff} (\overline{c}_\mathrm{e,n})} - \frac{1}{\kappa_\mathrm{e,eff} (\overline{c}_\mathrm{e,s})} \right)\right]$$ $$\phi_\mathrm{e,n} = \phi_\mathrm{e,const} + \chi(\overline{c}_\mathrm{e,n}) \frac{R T}{F} \log \left( \frac{c_\mathrm{e,n}}{\overline{c}_\mathrm{e}} \right) - \frac{i_\mathrm{app}}{\kappa_\mathrm{e,eff} (\overline{c}_\mathrm{e,n})} \frac{x_\mathrm{n}^2 - L_\mathrm{n}^2}{2 L_\mathrm{n}} - \frac{i_\mathrm{app} L_\mathrm{n}}{\kappa_\mathrm{e,eff} (\overline{c}_\mathrm{e,s})}$$ $$\phi_\mathrm{e,s} = \phi_\mathrm{e,const} + \chi(\overline{c}_\mathrm{e,s}) \frac{R T}{F} \log \left( \frac{c_\mathrm{e,s}}{\overline{c}_\mathrm{e}} \right) - \frac{i_\mathrm{app} x_\mathrm{s}}{\kappa_\mathrm{e,eff} (\overline{c}_\mathrm{e,s})}$$ $$\phi_\mathrm{e,p} = \phi_\mathrm{e,const} + \chi(\overline{c}_\mathrm{e,p}) \frac{R T}{F} \log \left( \frac{c_\mathrm{e,p}}{\overline{c}_\mathrm{e}} \right) - \frac{i_\mathrm{app} }{\kappa_\mathrm{e,eff} (\overline{c}_\mathrm{e,p})} \frac{x_\mathrm{p} (2 L_x - x_\mathrm{p}) + L_\mathrm{p}^2 - L_x^2}{2 L_\mathrm{p}}$$

Proposed implementation

$$\phi_\mathrm{e,const} = - \overline{\Delta \phi}_\mathrm{n} + \overline{\phi}_\mathrm{n} - \frac{R T}{F} \frac{1}{L_\mathrm{n}} \int_0^{L_\mathrm{n}} \int_0^x \chi(c_\mathrm{e,n}) \frac{\partial \log c_\mathrm{e,n}}{\partial s} \mathrm{d} s \mathrm{d} x + \frac{1}{L_\mathrm{n}} \int_0^{L_\mathrm{n}} \int_0^x \frac{i_\mathrm{e,n}}{\kappa_\mathrm{e,eff}(c_\mathrm{e,n})} \mathrm{d} s \mathrm{d} x$$ $$\phi_\mathrm{e,n} = \phi_\mathrm{e,const} + \frac{R T}{F} \int_0^x \chi(c_\mathrm{e,n}) \frac{\partial \log c_\mathrm{e,n}}{\partial s} \mathrm{d} s - \int_0^x \frac{i_\mathrm{e,n}}{\kappa_\mathrm{e,eff}(c_\mathrm{e,n})} \mathrm{d} s$$ $$\phi_\mathrm{e,s} = \phi_\mathrm{e,n} ( x = L_\mathrm{n}) + \frac{R T}{F} \int_{L_\mathrm{n}}^x \chi(c_\mathrm{e,s}) \frac{\partial \log c_\mathrm{e,s}}{\partial s} \mathrm{d} s - \int_{L_\mathrm{n}}^x \frac{i_\mathrm{e,s}}{\kappa_\mathrm{e,eff}(c_\mathrm{e,s})} \mathrm{d} s$$ $$\phi_\mathrm{e,p} = \phi_\mathrm{e,s} ( x = L_x - L_\mathrm{p}) + \frac{R T}{F} \int_{L_x - L_\mathrm{p}}^x \chi(c_\mathrm{e,p}) \frac{\partial \log c_\mathrm{e,p}}{\partial s} \mathrm{d} s - \int_{L_x - L_\mathrm{p}}^x \frac{i_\mathrm{e,p}}{\kappa_\mathrm{e,eff}(c_\mathrm{e,p})} \mathrm{d} s$$

I suggest moving to this version, which I believe is the most general one (I have dropped T dependence from parameters for simplicity, but will be accounted for). The version is taken from Brosa Planella & Widanage (2022), but the derivation is not explained with a lot of detail as the focus was the side reaction. My older paper Brosa Planella et al (2021) has a lot more detail but still assumes $\chi$ to be constant. This would make the integrated conductivity model redundant so we can get rid of it.

@brosaplanella brosaplanella self-assigned this Jul 17, 2024
@valentinsulzer
Copy link
Member

Sounds good to me

@rtimms
Copy link
Contributor

rtimms commented Jul 26, 2024

Me too, thanks!

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging a pull request may close this issue.

3 participants