diff --git a/CHANGELOG.md b/CHANGELOG.md index 4e6789b9a86d..795e8247bffd 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -23,6 +23,8 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/). - Added the `use_pcst` option to `WebQSPDataset` ([#9722](https://github.com/pyg-team/pytorch_geometric/pull/9722)) - Allowed users to pass `edge_weight` to `GraphUNet` models ([#9737](https://github.com/pyg-team/pytorch_geometric/pull/9737)) - Consolidated `examples/ogbn_{papers_100m,products_gat,products_sage}.py` into `examples/ogbn_train.py` ([#9467](https://github.com/pyg-team/pytorch_geometric/pull/9467)) +- Added `PPRGo` implementation and example ([#9847](https://github.com/pyg-team/pytorch_geometric/pull/9847)) +- Allow top-k sparsification in `utils.get_ppr` and `transforms.GDC` ([#9847](https://github.com/pyg-team/pytorch_geometric/pull/9847)) ### Changed diff --git a/test/nn/models/test_pprgo.py b/test/nn/models/test_pprgo.py index 5229d394d041..bd1959f51bf6 100644 --- a/test/nn/models/test_pprgo.py +++ b/test/nn/models/test_pprgo.py @@ -2,7 +2,7 @@ import torch from torch_geometric.datasets import KarateClub -from torch_geometric.nn.models.pprgo import PPRGo, prune_features +from torch_geometric.nn.models.pprgo import PPRGo, pprgo_prune_features @pytest.mark.parametrize('n_layers', [1, 4]) @@ -22,7 +22,7 @@ def test_pprgo_forward(n_layers, dropout): torch.randint(0, num_nodes, [num_edges]) ], dim=0) - # Mimic the behavior of prune_features manually + # Mimic the behavior of pprgo_prune_features manually # i.e., we expect node_embeds to be |V| x d node_embeds = torch.rand((num_nodes, num_features)) node_embeds = node_embeds[edge_index[1], :] @@ -38,7 +38,7 @@ def test_pprgo_karate(): data = KarateClub()[0] num_nodes = data.num_nodes - data = prune_features(data) + data = pprgo_prune_features(data) data.edge_weight = torch.ones((data.edge_index.shape[1], )) assert data.x.shape[0] == data.edge_index.shape[1] @@ -56,7 +56,7 @@ def test_pprgo_inference(n_power_iters, frac_predict, batch_size): data = KarateClub()[0] num_nodes = data.num_nodes - data = prune_features(data) + data = pprgo_prune_features(data) data.edge_weight = torch.rand(data.edge_index.shape[1]) num_classes = 16