-
-
Notifications
You must be signed in to change notification settings - Fork 229
/
setup.py
executable file
·170 lines (131 loc) · 6.92 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Do not add setuptools here; use setupegg.py instead. Nose still has problems running
# tests inside of egg packages, so it is useful to be able to install without eggs as needed.
from __future__ import print_function
from pkg_resources import parse_version
import os, sys
dist = sys.argv[1]
numpy_min_version = '1.8'
def get_numpy_status():
"""
Returns a dictionary containing a boolean specifying whether NumPy
is up-to-date, along with the version string (empty string if
not installed).
"""
numpy_status = {}
try:
import numpy
numpy_version = numpy.__version__
numpy_status['up_to_date'] = parse_version(
numpy_version) >= parse_version(numpy_min_version)
numpy_status['version'] = numpy_version
except ImportError:
numpy_status['up_to_date'] = False
numpy_status['version'] = ""
return numpy_status
def build_ext(config):
# ==============================
# = Compile Fortran extensions =
# ==============================
from numpy.distutils.system_info import get_info
# If optimized lapack/ BLAS libraries are present, compile distributions that involve linear algebra against those.
# Otherwise compile blas and lapack from netlib sources.
lapack_info = get_info('lapack_opt',1)
f_sources = ['pymc/flib.f','pymc/histogram.f', 'pymc/flib_blas.f', 'pymc/blas_wrap.f', 'pymc/math.f', 'pymc/gibbsit.f', 'cephes/i0.c',
'cephes/c2f.c','cephes/chbevl.c']
if lapack_info:
config.add_extension(name='flib',sources=f_sources, extra_info=lapack_info, f2py_options=['skip:ppnd7'])
if not lapack_info or dist in ['bdist', 'sdist']:
##inc_dirs = ['blas/BLAS','lapack/double']
print('No optimized BLAS or Lapack libraries found, building from source. This may take a while...')
for fname in os.listdir('blas/BLAS'):
# Make sure this is a Fortran file, and not one of those weird hidden files that
# pop up sometimes in the tarballs
if fname[-2:]=='.f' and fname[0].find('_')==-1:
f_sources.append('blas/BLAS/'+fname)
for fname in ['dpotrs','dpotrf','dpotf2','ilaenv','dlamch','ilaver','ieeeck','iparmq']:
f_sources.append('lapack/double/'+fname+'.f')
config.add_extension(name='flib',sources=f_sources)
# ============================
# = Compile Pyrex extensions =
# ============================
config.add_extension(name='LazyFunction',sources=['pymc/LazyFunction.c'])
config.add_extension(name='Container_values', sources='pymc/Container_values.c')
config_dict = config.todict()
try:
config_dict.pop('packages')
except:
pass
# ===========================================
# = Compile GP package's Fortran extensions =
# ===========================================
# Compile linear algebra utilities
if lapack_info:
config.add_extension(name='gp.linalg_utils',sources=['pymc/gp/linalg_utils.f','pymc/blas_wrap.f'], extra_info=lapack_info)
config.add_extension(name='gp.incomplete_chol',sources=['pymc/gp/incomplete_chol.f'], extra_info=lapack_info)
if not lapack_info or dist in ['bdist', 'sdist']:
print('No optimized BLAS or Lapack libraries found, building from source. This may take a while...')
f_sources = ['pymc/blas_wrap.f']
for fname in os.listdir('blas/BLAS'):
if fname[-2:]=='.f':
f_sources.append('blas/BLAS/'+fname)
for fname in ['dpotrs','dpotrf','dpotf2','ilaenv','dlamch','ilaver','ieeeck','iparmq']:
f_sources.append('lapack/double/'+fname+'.f')
config.add_extension(name='gp.linalg_utils',sources=['pymc/gp/linalg_utils.f'] + f_sources)
config.add_extension(name='gp.incomplete_chol',sources=['pymc/gp/incomplete_chol.f'] + f_sources)
# Compile covariance functions
config.add_extension(name='gp.cov_funs.isotropic_cov_funs',\
sources=['pymc/gp/cov_funs/isotropic_cov_funs.f','blas/BLAS/dscal.f'],\
extra_info=lapack_info)
config.add_extension(name='gp.cov_funs.distances',sources=['pymc/gp/cov_funs/distances.f'], extra_info=lapack_info)
return config_dict
def setup_pymc():
numpy_status = get_numpy_status()
numpy_req_str = "PyMC requires NumPy >= {0}.\n".format(
numpy_min_version)
if numpy_status['up_to_date'] is False:
if numpy_status['version']:
raise ImportError("Your installation of NumPy"
"{0} is out-of-date.\n{1}"
.format(numpy_status['version'],
numpy_req_str))
else:
raise ImportError("NumPy is not installed.\n{0}"
.format(numpy_req_str))
from numpy.distutils.misc_util import Configuration
from numpy.distutils.core import setup
config_dict = build_ext(Configuration('pymc',parent_package=None,top_path=None))
setup( version="2.3.8",
description="Markov Chain Monte Carlo sampling toolkit.",
author="Christopher Fonnesbeck, Anand Patil and David Huard",
author_email="[email protected] ",
url="http://github.com/pymc-devs/pymc",
license="Academic Free License",
classifiers=[
'Development Status :: 5 - Production/Stable',
'Environment :: Console',
'Operating System :: OS Independent',
'Intended Audience :: Science/Research',
'License :: OSI Approved :: Academic Free License (AFL)',
'Programming Language :: Python',
'Programming Language :: Fortran',
'Topic :: Scientific/Engineering',
],
requires=['NumPy (>=1.8)',],
long_description="""
Bayesian estimation, particularly using Markov chain Monte Carlo (MCMC),
is an increasingly relevant approach to statistical estimation. However,
few statistical software packages implement MCMC samplers, and they are
non-trivial to code by hand. ``pymc`` is a python package that implements the
Metropolis-Hastings algorithm as a python class, and is extremely
flexible and applicable to a large suite of problems. ``pymc`` includes
methods for summarizing output, plotting, goodness-of-fit and convergence
diagnostics.
``pymc`` only requires ``NumPy``. All other dependencies such as ``matplotlib``,
``SciPy``, ``pytables``, ``sqlite`` or ``mysql`` are optional.
""",
packages=["pymc", "pymc/database", "pymc/examples", "pymc/examples/gp", "pymc/tests", "pymc/gp", "pymc/gp/cov_funs"],
**(config_dict))
if __name__ == '__main__':
setup_pymc()