From d33f5999516edf18c51ff2cebb952f143690fdf6 Mon Sep 17 00:00:00 2001 From: Rasul Karimov Date: Tue, 19 May 2020 16:10:13 +0300 Subject: [PATCH] remove unnecessary files --- Untitled1.ipynb | 157 ------------------------------------------------ issue_247.pkl | Bin 381961 -> 0 bytes issue_247.tar | Bin 389120 -> 0 bytes 3 files changed, 157 deletions(-) delete mode 100644 Untitled1.ipynb delete mode 100644 issue_247.pkl delete mode 100644 issue_247.tar diff --git a/Untitled1.ipynb b/Untitled1.ipynb deleted file mode 100644 index eadb5b7f..00000000 --- a/Untitled1.ipynb +++ /dev/null @@ -1,157 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "import pymc3 as pm\n", - "import numpy as np" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "import pickle\n", - "data = pickle.load(open(\"issue_247.pkl\", \"rb\"))\n", - "\n", - "pi0 = 0.051366009925488\n", - "mu = 0.783230896500752\n", - "sigma = 0.816999481742865\n", - "lower = -2.94\n", - "upper = 0" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [], - "source": [ - "import math\n", - "def sigmoid(x):\n", - " return 1 / (1 + math.exp(-x))" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [], - "source": [ - "import tensorflow as tf" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Elemwise{mul,no_inplace}.0\n" - ] - }, - { - "ename": "ValueError", - "evalue": "TypeError: object of type 'TensorVariable' has no len()\n", - "output_type": "error", - "traceback": [ - "\u001b[0;31m----------------------------------------\u001b[0m", - "\u001b[0;31mValueError\u001b[0mTraceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0malpha\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpm\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mDeterministic\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"alpha\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlower\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0malpha_offset\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m/\u001b[0m \u001b[0;36m2\u001b[0m \u001b[0;34m*\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mupper\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0mlower\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mxi\u001b[0m \u001b[0;34m*\u001b[0m \u001b[0mbeta\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 8\u001b[0;31m \u001b[0mp\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"X\"\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m@\u001b[0m \u001b[0mtf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconstant\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mxi\u001b[0m \u001b[0;34m*\u001b[0m \u001b[0mbeta\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moutput\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnumpy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 9\u001b[0m \u001b[0my_obs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpm\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mBernoulli\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'y_obs'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msigmoid\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mp\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mobserved\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 10\u001b[0m \u001b[0mpm\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msample\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/miniconda3/envs/py3/lib/python3.7/site-packages/tensorflow/python/framework/constant_op.py\u001b[0m in \u001b[0;36mconstant\u001b[0;34m(value, dtype, shape, name)\u001b[0m\n\u001b[1;32m 260\u001b[0m \"\"\"\n\u001b[1;32m 261\u001b[0m return _constant_impl(value, dtype, shape, name, verify_shape=False,\n\u001b[0;32m--> 262\u001b[0;31m allow_broadcast=True)\n\u001b[0m\u001b[1;32m 263\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 264\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/miniconda3/envs/py3/lib/python3.7/site-packages/tensorflow/python/framework/constant_op.py\u001b[0m in \u001b[0;36m_constant_impl\u001b[0;34m(value, dtype, shape, name, verify_shape, allow_broadcast)\u001b[0m\n\u001b[1;32m 268\u001b[0m \u001b[0mctx\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcontext\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcontext\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 269\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mctx\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mexecuting_eagerly\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 270\u001b[0;31m \u001b[0mt\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mconvert_to_eager_tensor\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mctx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 271\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mshape\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 272\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mt\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/miniconda3/envs/py3/lib/python3.7/site-packages/tensorflow/python/framework/constant_op.py\u001b[0m in \u001b[0;36mconvert_to_eager_tensor\u001b[0;34m(value, ctx, dtype)\u001b[0m\n\u001b[1;32m 94\u001b[0m \u001b[0mdtype\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdtypes\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mas_dtype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdtype\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mas_datatype_enum\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 95\u001b[0m \u001b[0mctx\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mensure_initialized\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 96\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mops\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mEagerTensor\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mctx\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdevice_name\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 97\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 98\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mValueError\u001b[0m: TypeError: object of type 'TensorVariable' has no len()\n" - ] - } - ], - "source": [ - "with pm.Model() as model:\n", - " xi = pm.Bernoulli('xi', pi0, shape=data['X'].shape[1])\n", - " beta_offset = pm.Normal('beta_offset', 0, 1, shape=data['X'].shape[1])\n", - " beta = pm.Deterministic(\"beta\", mu + beta_offset * sigma)\n", - " alpha_offset = pm.Uniform(\"alpha_offset\", -1, 1)\n", - " alpha = pm.Deterministic(\"alpha\", lower + (alpha_offset + 1) / 2 * (upper - lower))\n", - " p = data[\"X\"] @ (xi * beta)\n", - " y_obs = pm.Bernoulli('y_obs', sigmoid(p), observed = y)\n", - " pm.sample()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "\n", - "@pm.model\n", - "def get_model(y, X, pi0=0.5, mu=0, sigma=1, lower=-1, upper=1):\n", - " xi = yield pm.Bernoulli('xi', pi0 * tf.ones(X.shape[1], 'float32'))\n", - " beta_offset = yield pm.Normal('beta_offset', tf.zeros(X.shape[1], 'float32'), tf.ones(X.shape[1], 'float32'))\n", - " beta = yield pm.Deterministic(\"beta\", mu + beta_offset * sigma)\n", - " alpha_offset = yield pm.Uniform(\"alpha_offset\", -1, 1)\n", - " alpha = yield pm.Deterministic(\"alpha\", lower + (alpha_offset + 1) / 2 * (upper - lower))\n", - " \n", - " p = tf.linalg.matvec(X, tf.cast(xi, tf.float32) * beta)\n", - " yield pm.Bernoulli('y_obs', tf.math.sigmoid(p), observed = y)" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "ename": "AttributeError", - "evalue": "module 'numpy' has no attribute 'sigmoid'", - "output_type": "error", - "traceback": [ - "\u001b[0;31m----------------------------------------\u001b[0m", - "\u001b[0;31mAttributeError\u001b[0mTraceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msigmoid\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;31mAttributeError\u001b[0m: module 'numpy' has no attribute 'sigmoid'" - ] - } - ], - "source": [ - "np.sigmoid" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.3" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/issue_247.pkl b/issue_247.pkl deleted file mode 100644 index d6fc89713aff857815502cba2eec623dd336f14d..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 381961 zcmeI(O>ZT~bp~KkV<+(>&i8lzz^nu>ybO@Q*_rSxw3>|*cw_}*AeMb6)Itjb-YA0q zRsNYXS4v?B4%xTa-Boo?)zg67Z5ms{_}^Y z=Qme3*I%Fh_>oexK!D9Dh<15+Fc;009C7 z2<#E?zHyJ9YY7k_K!5-N0t5&UAV7cs0RjXF5Exa!cc-H!Yc2u=2oNAZfB*pk1PBl~ zLZEzZKJRS=2oNAZfB=Cl0_FY0mTO%@fB*pk1PIJ0P~JNn@m)k&Yd%F26Cgl<009C7 z2oNAZfB*pk1PDANFzfe4W$vZ#+}51)kg3NA5FkK+009Cs3V81{W9numK!5-N0t5&U zAV7e?vOxK)xO|qQ1PBlyK!5-N0t5(@_s-|NjQ{}x1PBlyK!Csq0_8pK2(y@h009C7 z2oNAZU`_$=Y3Iz{)C6V|sPSA^W6jxeG4DQsau1&OHUb0)JXOGR$Wz6fPk;ac0t5*3 z6e#aqdiJ0;0RjXF94Ano*L|;boT-%v5FkK+0D(3F<$X+>YN`+*K!Cu^0_8QwXXlyk z0<#k!K!5-N0t5&UAV7cs0RjXF5FkK+009C72oNB!MZmvr-J-Vc8n)}4oJD{Dfe{2e z=Z}!083+&{uutHq*Mg(g**DE`SC@H?ThU6b1xkkJy{)|f|MuobRg~RPlGY(WfB*pk z1PBl~O2B*6Wl28EK8_L~K!5-N0t5&UAV7csff@onkJnJO=1~If&!Z%*Lm;ofQO^TM zt&>+$=QRY}S2a|vNq_(W0tDg+c&(3r|{XATI z{ao6*B|v}xfs6uP%QB{>X99Byc)pr5cT*D}Kwvb1@_M#ru5#{qZzDi}009C72+Sbh z{m+LfGx^ZOBLoN#s3G9_wuY)T2@oJa;I4qzn!6f)CP07y0RjXF5FkK+009C72oNAZ zfB*pk1R@Lg_ZpGY(Hj8*(F8naMoUCL1PII^;JJ5(l+8G*fWO~d$;vBNUb-bvL%{Pu z4OMFrAV7cs0RjXF5FoHtpnN7-d;U!46`S+kMu5P#0{$-g-UD!O{p|8K{1PBlyK!CtD0q)v5#t5FkK+009C72oNAZfB*pk1PBly&_}@c z-hJFvB|v}x0RjXF5Fjvu-ZT>d0t5&UxFk?s<1d}(IDtz7?xjmYjuYrF;O}%f13t?>juIe1 zfB=CaP+l|7dm8})1PBlyK!8Ahf%5*We<$;GQ0%=oo-cb7*B9{jRo_?z0t5&UAV7cs z0RjXF5FkK+009C72oN}4p!WCMwbwsh#EJw65Fl_#Ao6p2{IWn>lt1PBlyK!5-N0t5&U=p#@*Gxw>kDggon2oN|Uhb@ z^utVUp_w&B?*0NUZS*%Zh009C72oNA}j6ivhc+6^6 zAwYlt0RjXF5FkK+z?=d;Tg{ofsR5#+Aw@F~AVA<4f%2Mg-rM2`$R$n|Iw3%S009C7 z2oNAZpq_xwKJ{$Zu3R!$d%p7s5NIn<{zlJx8vz0Y2+S!E<+Y&nF=q<1PBngEKr{NE}!WP0(k}8=XtZ!IROF$2(%R_ubJn)jQ{}x1jZLA&->#~YC-}8 z2oNAZfB*pk1PBlykVl|=Ucdi6?PHJUnM|hy-V3;&-&>TQm=p=`Y@V^yb;k)mNv#eDmF} zPk;5v>91ehT>s<;KmF?TH*dc8>Z5n({NjhFzrDG-x&Hd}cb}a8{>9C+H{XBx^5u_z z|8D!{e{QaBPyg`xcR%{y+v}_Inj`%49xL}xBV=)ZhTMrf-2MF-GyMMWB(WdO;99fC z*y+^ouBL6vwd+f@snF6aQmr<+@v211pm#6v(&^Vx?<}I!@0UQV%2D!&)<>+A;&c-& zr>FE2NAc;MJY~+2&V9Pn7*~vx;hI^-NNxQTYfLhqvtA!G0Rpnjddrqou*Yr(dx8Sj#DjK4oCD8NB6i+ zj&RAg#&LRiR?3!9t$y<)R=3kyzR}jLs~BhXXznfgiKE}HlNPS6YqZmASE;pOrh4sC z$X6*-j$3=pm&(&S-f9#1x~D6|zap}CuioOP*1p4DSwyPaUOisLNO|<`C0;uHI_jN8 z?fU&>+f=UY7h(N2l6|X0aPHAVU-f>~dsrV?v!C2Cm5;QDw$?F1F;|IZeRMxD)sO4y zXs@X29VZrhrKtX``ih-S{q9;hN3By|ICh1oxvcFgw(jNb*3LQGd6(tpJY%-|;5_e) z+l)Eioq5L0@6LSJV&h+L>p(AJ)#i)-dCFYYj4pb}g$c>(+A3vTl}~_V$@2kG*~Fb&7iZUYDrXNA<4RSJW(O_Epm}+uAjqv#p&i zyBhsw%dAGfHC(f-S;I5SnprZc(Px&7YV=vdv(=h4JX)>U%BW|ZR+c^M^z@BXyJrTG zYDdbXM=z1G=+R3L^A|6BG!n9_M7DhE|)U@fbc1^1uYxgjWT(d_8k!wcI>d4+AXK-Y1N18=h z>qws{YeliG(MJ^H8hzC8inwMCyNGK>wBOTHMB_a@?Xie>?H-GW*G4q1)l)?OT0PY= z?6GbwqaN$_@QYHjhj)~kQ8H-NM-=x~eYA4zU8j|2?>fDmv()dMQmh4*g z+0wsPt(Km>YW1>hS+|#M%epN+qtt5Y8>Lnh`y=~^VtZsCNBTru>qx7JYeh8Q+EYZ| ztvziuh<4r9`J-JI&9y~8(K2Y!PYc%`HCov9sL{hRdd(g=M6Ve=v%URA_ut#!UY~5& z@Ab-deYSj#>^EChNA`Q9WA?R6_Q2JVt&f!Xe#WsUKU&X(_E z^NyG7wuv6|@%a1Kk!`YbT{Xk~GDD&>n^zT`#rD@MvJ&hyR z?wLvC+L1Hc+FNArt-Wov$b8*atIXGB&TCKanKRqd`yR7VuifK0>b0Y0eQB;y^Sm_I zC702TU-B63_-Og9nP;>N*UYoVWyEvV*o=5i#4IB^M|6tNQ^c$y^b{eR7Cl6;ZqY*v z%bqn_81}5u)3$Z(p3bdnx3SfBYRP+vw}o@{GQ2^jx;|7u|eI ze_I?zyk?8th}VpmZJBAryvj^v###1d?pgM;354uwrjSyWV&)vzLN2eF9zJ~d+fOgH&;IA^35FV009C72oNAZfB*pk z1PBlyK!5-N0t5&UAV7csfh7X|ed`jndDpO==j1E`1PJsX;5omC6wN?@0D*M^TfG)+ zwa&U}w!1pbv)zhTDlL#Q-0yAW1^AaY->RbQwvx0C0RjXF5FkK+z*Yj@qfSfmnf7s% z009C72oNAZfB*pk1PJ61@OeCksx`L~aDQ$kX&nOX3T*W}u+=*4O6oj^fcq+ksx=7^ zAV7dX909NOak9_}0RjXF5FkK+009C72oNAZfWYHDwkSGFPn0t5&UAV7cs0RjZJ z6G)$3_In!v0t5&UAV7cs0RjXF^e5nRUw@gJhya1M1adzQ=U%@pZQT+eK!8At0$$5n zOij-O#uV^;HD>OnCP08dZvyG{Y|dQi-2L80fB*pk1PBlqLBRW;7gJ{PqKQWc5Fn64 z!1HYmRcjI;K!Cty0k1WeHT+C~009C72oNAZfB*pk1PBlyK!5-N0t5&|7Vz&iBB!G_ z0tBK7c+QNLh<*qV7(u{u?+7WIu~z|qzilNeueS2iErA>Yo(FQMT9W_)0t5&UAV7cs zfw=;Rr?DsYT1U?t=cTx9F;9u8YbpiwktP$`WzD95Twfxr`T7f`mf%JD< zx~_Tzq6zq0h?Yp*e%udr{Z%JGfB*pk1eOVS53|h8RRjpE6G+cJ`@M|-0RjXF5FkK+ z009C72oNAZfB=CP1$>A0qKQWc5FkK+009C72oNAZfB*pk1lkiw-*dIsxsC}CAV7cs z0RjYC6G-np{r?nNOHRK82oUH?!0S<8d76d*0RjY`3wVutZs8{a1PBlyK!5-N0t5&U zAV7csfjk1fgUaJ-RRRPE5FkK+009C72oNAZfB*pk1PBnQBj9`QI_|0xAV7cs0RjXF z5Ew~d>T^drHj;-~35+g~{_gjCTYm!b?JrXk5g$(lH^&3Dg(xcRHN`pJ^XQ2@oJafIt#RubKP3jQ{}x z1PBlyK%l-rdVf~Glkqx8_TC$hm%WMe3;6rWZ>$0V0t5&UAV7cs0RjXF5FkK+009C7 z2y8Eq`}^(O>u)b&MFIo}5I80f`MEuEZ^v96CqRGz0RjXF5FkK+z+3^JedbCzj{pGz z1PBm_ByiLBFgHCv(yV$RK!5-N0t5&UAV8omf%N&Luc=H!fB=D50_nMSzwc@5b*`Q= zG7A9$1PBlyK!5-N0t5)u5lEkz>r_{j009C72y7>iUekK}etSD1D-j?-fB*pk1PBly zK!Ct8f%Mt(*m;faaM%@0RjXFtP${fy++Tq1PBlyK!5-N0t5&UAkd0{&%ZH~Y9*Ie`iz;fu0|H{ zw=;73W+yN$;Q3+N$58?V2oNAZfIuw)@6&3@t4n}DuL7P|`%6})FJ{W*MH7$oC*VHs zFH;i{AV7cs0RjXFyeQy(?~5iLAwYlt0RjXF5FkKcTLGUtw)M0c0RjXF5FkK+009Ey z3Z&0h;|iF3B!P6l@AtX4lC^TrVtoPx2oNAZfB=DQ1k!uNZC0}i0RjXF5FkK+009C7 z#uV_`YRueCO@Kg~0_iz>zqb(}K!5-N0t5&UAV46pz>?1|>6*xM>1`|l_vBc4n|7Xn zzl(WJ&LYr*fWP-1QZxer0tB`ZNUsU|y)BM_T;gP*69NPX5FkK+009C7@(K9tlh1bU z$|-}n=R1!8fwBVWZ*;%65gf{&YH9cBC>xHdAfB=Ex0_nN$ z_?gZi(5`^{yxr_{PJjRb0%Zl#Yvz7$BS3%vf&K;3^M3!6nvehi0t5&UAV7cs0RjXF zv?Gu{uOEI-d)?#hOr}!;&jsAi&n?nVOp=5>0Rl-NJujr+?Fp0?NcZ4=ZzB*{z`Ytd zoie?-2g*3BLVy5)kp;ZgjGVsN2@oJafIwV<^d2Q{hcP-!PW!!$009EE1Uwhjl2`XS zf!6QI*89IMm*p4>V+`DpjuCtv({_q{iE-@kKq`n$Wo z|7iDvCtrQ^(#1LNyt@10*~!`I$GacBvHS6zvs+KT@$lip-+p?refB?RC+EALJpSa@ z|2aQB*{|8dKhLq+{;7v74rgdPk*m8uoUw)9ubw3Kqb<1R>@jva`Mb+$TXOCEQe`TX zG>cTLjBdOtkus>=OT2XIbyPcxDD~?l5UX;OJfigxE2TKyM9b+W{lrncc_%lSv!`=! zF4e~sJ!Lp&mOfIOKgArAmd}|l(dL;gXLD8WZKiO2*H_Kh^JCXb^m(M`Ea%MDXR7n3 znq$=CIrD}3IcnESE;2Om-gCTDmU+V zsZHeTZmtmjipbuzdW)Z0`3`Gk5vgu@^>`H{(`SlQ#rR^g!Riv z)~yo3xke9l)$3KSVZCL|dUD%T-qIr4TH6T4TqT$2zy`rwSomlLZqWYKW zD|R~hyDQ}!wN8HF*cGDYGPkeTy2rblJLhQU9hV#PjM46c{k$V?Bj$X0<`FZ$Jo9CX zk$=8yGV;$O-UB1%Jz~ytXCCo>m^<@a!xqn*YtZ6(E#|Sb=N9u>+VfJQDAz5WJIZxY z93%7*C6fq!M93pT4-vA6&_jeQO7{@Ky>t(yjce8`ZCkTmP3K&-YkKCYoy)3~b#uA4 zvTiFmt?jdwJl6KP)+y@sYh9vVAJsc&Us1Ej*;h`_*4EDH+}hf$WtXGh)-ub{Zw}X1 z*39AA%9^cYl%vm9GRo0s4$o3+=I|)BW+|hZbxK**tW(oBQtg@oVH&AMB>NJ*M6xf@ zO9|7QHA)!etdY~E#@acpYOGzuFmlZr8APrbIjb#ui=4rhy=`e0WvwlJqO29gHb);( zjC1sn!z<#NIqV{?8PR@CPZ5pR^t8qz;KOI9E>*{d4t{%dp0}xr}P8Tf;9( z%^KcOYDUSRR3A~?OZ8F8wRW9Sp0(@Lc5bD9?VMVv-%6e(`)nnbua^1OtxJ#x5M!SEeHTpX`TE5rK+h4NFCc4hY z$obfe$Bafee#~fu*e-}wtjBUXzNGwkKRwT{G#_0 zJ3J7V5Q-+fAsa4C@wVcWdcAgyXRp`xn)R`{dd>6LT*q8`JATZg zx8uF#H)o#SGMqEd9G4!?nPb!AIT5pr=p4~0LQfI1iqKPpY)bSH!Ma2bB`j;!C}CK$ zMort&wQD+;u3g%;rFx~aXsKRHIp*rMrMzM^f0Q<`yhWW4qaGjiemFMwsQ1IMxsSQ^bo`h_Pse-8ZEBXD zGMk!Z%3#!EQ(mJU8{u9UA=?phoSJcjjHhOtvg!5Mlt-_}ddjk=jC#uDaF(8OI-KQj z){%Zcv>564)^lz>tJeLO^xt}BOZs2p6!DrRvq!upqHVOEBIXvYr)Zf)=qFl65&DUc zORXLv_}A*8mU+u{Yh~4P-Invt*?Y^G=IlMEdCP0(G;ewBmNPBcd&?P@?7d_rt<@@- zLu<8K%W_G-t!1*L-z6@sU9-fcwQE|-WUAlR?5FyjnzN;2Q!}=7tR?d`y|$FenqJo! z^?L0Z&t9+XE$iNLYB`^lvuN3U-+Sv@>;7Bz-+Go?_P_h-`R-?rpS`l>n${vffB*pk c1PBlyK!5-N0t5&UAV7cs0RjXF5U3{bU-~2WR{#J2