diff --git a/.github/workflows/ci-linux.yaml b/.github/workflows/ci-linux.yaml deleted file mode 100644 index 2f09e347b..000000000 --- a/.github/workflows/ci-linux.yaml +++ /dev/null @@ -1,90 +0,0 @@ -name: CI-linux - -on: - push: - branches: - - main - pull_request: - branches: - - main - schedule: - - cron: "0 5 * * TUE" - -env: - CACHE_NUMBER: 1 # Change this value to manually reset the environment cache - -jobs: - build: - strategy: - fail-fast: false # don't break CI for ubuntu if windows fails before - matrix: - include: - # Matrix required to handle environment caching with Mambaforge - - os: ubuntu-latest - label: ubuntu-latest - prefix: /usr/share/miniconda3/envs/pypsa-earth - - name: ${{ matrix.label }} - runs-on: ${{ matrix.os }} - - defaults: - run: - shell: bash -l {0} - - steps: - - uses: actions/checkout@v2 - - - name: Setup Mambaforge - uses: conda-incubator/setup-miniconda@v2 - with: - miniforge-variant: Mambaforge - miniforge-version: latest - activate-environment: pypsa-earth - use-mamba: true - - - name: Create environment cache - uses: actions/cache@v2 - id: cache - with: - path: ${{ matrix.prefix }} - key: ${{ matrix.label }}-conda-${{ hashFiles('envs/environment.yaml') }}-${{ env.DATE }}-${{ env.CACHE_NUMBER }} - - - name: Update environment due to outdated or unavailable cache - if: steps.cache.outputs.cache-hit != 'true' - run: mamba env update -n pypsa-earth -f envs/environment.yaml - - - name: Conda list - run: | - conda list - - - name: Create test configs - run: | - snakemake --cores all build_test_configs - - - name: Test tutorial workflow - run: | - cp test/tmp/config.tutorial_noprogress_tmp.yaml config.yaml - snakemake --cores all solve_all_networks --forceall - - - name: Test custom workflow - run: | - mkdir -p configs/scenarios - cp test/config.custom.yaml configs/scenarios/config.custom.yaml - snakemake --cores 1 run_all_scenarios --forceall - - - name: Test monte-carlo workflow - run: | - cp test/tmp/config.monte_carlo_tmp.yaml config.yaml - snakemake --cores all solve_all_networks_monte --forceall - - - name: Test landlock workflow - run: | - cp test/tmp/config.landlock_tmp.yaml config.yaml - snakemake --cores all solve_all_networks --forceall - - # - name: Test plotting and summaries - # run: | - # snakemake --cores all plot_all_p_nom - # snakemake --cores all plot_all_summaries - # snakemake --cores all make_all_summaries - # rm -rf resources/*.nc resources/*.geojson resources/*.h5 networks results diff --git a/.github/workflows/ci-mac.yaml b/.github/workflows/ci-mac.yaml deleted file mode 100644 index e766539f7..000000000 --- a/.github/workflows/ci-mac.yaml +++ /dev/null @@ -1,76 +0,0 @@ -name: CI-mac - -on: - push: - branches: - - main - pull_request: - branches: - - main - schedule: - - cron: "0 5 * * TUE" - -env: - CACHE_NUMBER: 1 # Change this value to manually reset the environment cache - -jobs: - build: - strategy: - matrix: - include: - - os: macos-latest - label: macos-latest - prefix: /Users/runner/miniconda3/envs/pypsa-earth - - name: ${{ matrix.label }} - runs-on: ${{ matrix.os }} - - defaults: - run: - shell: bash -l {0} - - steps: - - uses: actions/checkout@v2 - - # - name: Add solver to environment - # run: | - # echo -e "- glpk\n- ipopt<3.13.3" >> envs/environment.yaml - - - name: Setup Mambaforge - uses: conda-incubator/setup-miniconda@v2 - with: - miniforge-variant: Mambaforge - miniforge-version: latest - activate-environment: pypsa-earth - use-mamba: true - - - name: Create environment cache - uses: actions/cache@v2 - id: cache - with: - path: ${{ matrix.prefix }} - key: ${{ matrix.label }}-conda-${{ hashFiles('envs/environment.yaml') }}-${{ env.DATE }}-${{ env.CACHE_NUMBER }} - - - name: Update environment due to outdated or unavailable cache - if: steps.cache.outputs.cache-hit != 'true' - run: mamba env update -n pypsa-earth -f envs/environment.yaml - - - name: Conda list - run: | - conda list - - - name: Create test configs - run: | - snakemake --cores all build_test_configs - - - name: Test tutorial workflow - run: | - cp test/tmp/config.tutorial_noprogress_tmp.yaml config.yaml - snakemake --cores all solve_all_networks - - # - name: Test plotting and summaries - # run: | - # snakemake --cores all plot_all_p_nom - # snakemake --cores all plot_all_summaries - # snakemake --cores all make_all_summaries - # rm -rf resources/*.nc resources/*.geojson resources/*.h5 networks results diff --git a/.github/workflows/ci-windows.yaml b/.github/workflows/ci-windows.yaml deleted file mode 100644 index 5943cb9cb..000000000 --- a/.github/workflows/ci-windows.yaml +++ /dev/null @@ -1,76 +0,0 @@ -name: CI-windows - -on: - push: - branches: - - main - pull_request: - branches: - - main - schedule: - - cron: "0 5 * * TUE" - -env: - CACHE_NUMBER: 1 # Change this value to manually reset the environment cache - -jobs: - build: - strategy: - matrix: - include: - - os: windows-latest - label: windows-latest - prefix: C:\Miniconda3\envs\pypsa-earth - - name: ${{ matrix.label }} - runs-on: ${{ matrix.os }} - - defaults: - run: - shell: bash -l {0} - - steps: - - uses: actions/checkout@v2 - - # - name: Add solver to environment - # run: | - # echo -e "- glpk\n- ipopt<3.13.3" >> envs/environment.yaml - - - name: Setup Mambaforge - uses: conda-incubator/setup-miniconda@v2 - with: - miniforge-variant: Mambaforge - miniforge-version: latest - activate-environment: pypsa-earth - use-mamba: true - - - name: Create environment cache - uses: actions/cache@v2 - id: cache - with: - path: ${{ matrix.prefix }} - key: ${{ matrix.label }}-conda-${{ hashFiles('envs/environment.yaml') }}-${{ env.DATE }}-${{ env.CACHE_NUMBER }} - - - name: Update environment due to outdated or unavailable cache - if: steps.cache.outputs.cache-hit != 'true' - run: mamba env update -n pypsa-earth -f envs/environment.yaml - - - name: Conda list - run: | - conda list - - - name: Create test configs - run: | - snakemake --cores all build_test_configs - - - name: Test tutorial workflow - run: | - cp test/tmp/config.tutorial_noprogress_tmp.yaml config.yaml - snakemake --cores all solve_all_networks - - # - name: Test plotting and summaries - # run: | - # snakemake --cores all plot_all_p_nom - # snakemake --cores all plot_all_summaries - # snakemake --cores all make_all_summaries - # rm -rf resources/*.nc resources/*.geojson resources/*.h5 networks results diff --git a/.github/workflows/ci.yml b/.github/workflows/ci.yml new file mode 100644 index 000000000..5fef9aaae --- /dev/null +++ b/.github/workflows/ci.yml @@ -0,0 +1,72 @@ +name: CI + +on: + push: + branches: + - main + pull_request: + branches: + - main + schedule: + - cron: "0 5 * * TUE" + +env: + CACHE_NUMBER: 2 # Change this value to manually reset the environment cache + +jobs: + build: + strategy: + fail-fast: false + max-parallel: 3 + matrix: + os: + - ubuntu-latest + - macos-latest + # - windows-latest + + runs-on: ${{ matrix.os }} + + defaults: + run: + shell: bash -l {0} + + steps: + - uses: actions/checkout@v2 + + + - name: Setup micromamba + uses: mamba-org/setup-micromamba@v1 + with: + micromamba-version: '1.5.9-1' + environment-file: envs/environment.yaml + log-level: debug + init-shell: bash + cache-environment: true + cache-downloads: true + + + - name: Set cache dates + run: | + echo "WEEK=$(date +'%Y%U')" >> $GITHUB_ENV + + - name: Cache data and cutouts folders + uses: actions/cache@v3 + with: + path: | + data + cutouts + key: data-cutouts-${{ env.WEEK }}-${{ env.CACHE_NUMBER }} + + + - name: Conda list + run: conda list + + - name: Run Test + run: make test + + # - name: Test plotting and summaries + # run: | + # snakemake --cores all plot_all_p_nom + # snakemake --cores all plot_all_summaries + # snakemake --cores all make_all_summaries + # rm -rf resources/*.nc resources/*.geojson resources/*.h5 networks results diff --git a/.gitignore b/.gitignore index 3e2a7d45e..7eeacaad3 100644 --- a/.gitignore +++ b/.gitignore @@ -6,6 +6,8 @@ **/__pycache__ *.py[cod] *$py.class + +# Jupyter-related files .ipynb_checkpoints # General untracked file formats @@ -15,55 +17,58 @@ *.zip *.png *.done +*.tif +*.csv +*.geojson +*.nc +*.xls +*.xlsx +*.org +*~ -# Untracked files +# Specific untracked files config.yaml dag.svg - -# Files appear for tests -configs/scenarios/config.custom.yaml -data/*.csv -data/*.geojson +gurobi.log +gadm_shapes.geojson +doc/*.vscode/settings.json # Untracked folders (and files within) -img/ -.snakemake/ +bak benchmarks/ +backup* cutouts/ data/ -data/osm/ -data/raw/ -data/base_network/ -results/ +dask-worker-space/ +img/ +logs/ networks/ +notebooks +notebooks/ +pypsa/ resources/ -scripts/temp -scripts/test.py +results/ +.snakemake/ +slurm +scripts/old +.tmp +doc/_build +sample_pypsa_eur test/tmp/ +playground/ + +# Specific configuration files configs/scenarios/config.*.yaml !configs/scenarios/config.NG.yaml -dask-worker-space/ -# Untrack some Jupyter changes -.ipynb_checkpoints -notebooks/*.nc -notebooks/*.csv -notebooks/*.zip -notebooks/*.tif -notebooks/old_notebooks/*.nc -notebooks/old_notebooks/*.csv -notebooks/old_notebooks/*.zip -notebooks/old_notebooks/*.tif - -# Untrack test doc builds -doc/_build - -# VS code related -*.vscode -doc/*.vscode/settings.json -*.vscode/settings.json +# VS Code-related files +.vscode *.code-workspace +*.vscode/settings.json # Additional debugging folders backup* screenlog* + +# Exclude specific file paths +!data/demand/unsd/paths/Energy_Statistics_Database.xlsx diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml index 88f3a318f..9fd50966b 100644 --- a/.pre-commit-config.yaml +++ b/.pre-commit-config.yaml @@ -56,6 +56,15 @@ repos: # Format Jupyter Python notebooks - id: black-jupyter +# Find common spelling mistakes in comments and docstrings +- repo: https://github.com/codespell-project/codespell + rev: v2.3.0 + hooks: + - id: codespell + args: ['--ignore-regex="\b[A-Z]+\b"', '--ignore-words-list=fom,appartment,bage,ore,setis,tabacco,berfore,vor'] # Ignore capital case words, e.g. country codes + types_or: [python, rst, markdown] + files: ^(actions|doc)/ + # Do YAML formatting (before the linter checks it for misses) - repo: https://github.com/macisamuele/language-formatters-pre-commit-hooks rev: v2.14.0 diff --git a/.reuse/dep5 b/.reuse/dep5 deleted file mode 100644 index 4a1632b46..000000000 --- a/.reuse/dep5 +++ /dev/null @@ -1,20 +0,0 @@ -Format: https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/ -Upstream-Name: pypsa-earth -Upstream-Contact: The PyPSA-Earth and PyPSA-Eur Authors -Source: https://github.com/pypsa-meets-earth/pypsa-earth - -Files: doc/data.csv -Copyright: The PyPSA-Earth and PyPSA-Eur Authors -License: CC-BY-4.0 - -Files: doc/configtables/* -Copyright: The PyPSA-Earth and PyPSA-Eur Authors -License: CC-BY-4.0 - -Files: data/* -Copyright: The PyPSA-Earth and PyPSA-Eur Authors -License: CC-BY-4.0 - -Files: .github/* -Copyright: The PyPSA-Earth and PyPSA-Eur Authors -License: CC0-1.0 diff --git a/.yamllint b/.yamllint index 66d402399..2fb93d7dc 100644 --- a/.yamllint +++ b/.yamllint @@ -9,14 +9,13 @@ extends: default rules: braces: - # Do not allow flow mappings using curly braces "{" and "}" - forbid: true + forbid: false brackets: max-spaces-inside: 0 max-spaces-inside-empty: 0 comments: - require-starting-space: true - min-spaces-from-content: 2 + require-starting-space: false + min-spaces-from-content: 0 # Force correct indentation of comments # yamllint disable-line rule:braces comments-indentation: {} @@ -35,7 +34,7 @@ rules: key-duplicates: {} line-length: level: warning - max: 88 + max: 350 new-line-at-end-of-file: enable truthy: check-keys: false # Disable truthy check hits on keys like "on": ... diff --git a/Makefile b/Makefile new file mode 100644 index 000000000..b01a61800 --- /dev/null +++ b/Makefile @@ -0,0 +1,28 @@ +# SPDX-FileCopyrightText: PyPSA-Earth and PyPSA-Eur Authors +# +# SPDX-License-Identifier: AGPL-3.0-or-later + +.PHONY: test setup clean + +test: + set -e + snakemake solve_all_networks -call --configfile config.tutorial.yaml # this runs the tutorial config + snakemake solve_all_networks -call --configfile config.tutorial.yaml test/config.custom.yaml # add custom config to tutorial config + snakemake solve_all_networks -call --configfile config.tutorial.yaml configs/scenarios/config.NG.yaml + snakemake solve_all_networks_monte -call --configfile config.tutorial.yaml test/config.monte_carlo.yaml + snakemake solve_all_networks -call --configfile config.tutorial.yaml test/config.landlock.yaml + snakemake -c4 solve_sector_networks --configfile config.tutorial.yaml test/config.test1.yaml + echo "All tests completed successfully." + +setup: + # Add setup commands here + echo "Setup complete." + +clean: + # Add clean-up commands here + snakemake -j1 solve_all_networks --delete-all-output --configfile config.tutorial.yaml test/config.custom.yaml + snakemake -j1 solve_all_networks --delete-all-output --configfile config.tutorial.yaml configs/scenarios/config.NG.yaml + snakemake -j1 solve_all_networks_monte --delete-all-output --configfile test/config.monte_carlo.yaml + snakemake -j1 run_all_scenarios --delete-all-output --configfile test/config.landlock.yaml + snakemake -j1 solve_sector_networks --delete-all-output --configfile test/config.test1.yaml + echo "Clean-up complete." diff --git a/README.md b/README.md index f80424831..df964e28c 100644 --- a/README.md +++ b/README.md @@ -27,9 +27,16 @@ by [![Discord](https://img.shields.io/discord/911692131440148490?logo=discord)](https://discord.gg/AnuJBk23FU) [![Google Drive](https://img.shields.io/badge/Google%20Drive-4285F4?style=flat&logo=googledrive&logoColor=white)](https://drive.google.com/drive/folders/1U7fgktbxlaGzWxT2C0-Xv-_ffWCxAKZz) -**PyPSA-Earth is the first open-source global energy system model with data in high spatial and temporal resolution.** It enables large-scale collaboration by providing a tool that can model the world energy system or any subset of it. This work is derived from the European [PyPSA-Eur](https://pypsa-eur.readthedocs.io/en/latest/) model using new data and functions. It is suitable for operational as well as combined generation, storage and transmission expansion studies. The model provides two main features: (1) customizable data extraction and preparation scripts with global coverage and (2) a [PyPSA](https://pypsa.readthedocs.io/en/latest/) energy modelling framework integration. The data includes electricity demand, generation and medium to high-voltage networks from open sources, yet additional data can be further integrated. A broad range of clustering and grid meshing strategies help adapt the model to computational and practical needs. +**PyPSA-Earth: A Global Sector-Coupled Open-Source Multi-Energy System Model** + +PyPSA-Earth is the first open-source global cross-sectoral energy system model with high spatial and temporal resolution. Originally it was derived from the European [PyPSA-Eur](https://pypsa-eur.readthedocs.io/en/latest/) model using new data and functions which provide capabilities for modelling the world energy system or any subset of it, enabling large-scale collaboration and transparent analysis for a sustainable energy future. It is suitable for operational studies, as well as expansion studies on combined generation, storage and transmission accounting for cross-sectoral interactions. The model provides two main features: (1) customizable data extraction and preparation scripts with global coverage for power and cross-sectoral modelling and (2) a [PyPSA](https://pypsa.readthedocs.io/en/latest/) energy modelling framework integration. In particular, the data includes energy demand, generation and medium to high-voltage networks from open sources, yet additional data can be further integrated. A broad range of clustering and grid meshing strategies help adapt the model to computational and practical needs. + +With the recent integration of PyPSA-Earth and the sector-coupled PyPSA-Earth model, all functionality is now combined into a single, comprehensive tool. This unified model allows for detailed optimization of multi-energy systems, covering electricity, heating, transport, and more. It is designed to adapt to the specific needs of any country or region, offering customizable data extraction, preparation scripts with global coverage, and a broad range of clustering and grid meshing strategies to meet computational and practical requirements. + +PyPSA-Earth is capable to provide the modelling evidence needed to translate implications behind energy scenarios into the regional actions. By making this tool openly available, we aim to foster collaboration, innovation, and informed decision-making that leads to sustainable and efficient energy solutions worldwide. + +For more details, the model is described in the Applied Energy article "PyPSA-Earth: A new global open energy system optimization model demonstrated in Africa," 2023. The preprint describing the sector-coupled functionalities is also available [here](https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4743242). Additional information can be found in the [documentation](https://pypsa-earth.readthedocs.io/en/latest/index.html). -The model is described in the Applied Energy article "PyPSA-Earth. A new global open energy system optimization model demonstrated in Africa", 2023, https://doi.org/10.1016/j.apenergy.2023.121096 [(BibTeX)](https://pypsa-earth.readthedocs.io/en/latest/talks_and_papers.html#publications). The [documentation](https://pypsa-earth.readthedocs.io/en/latest/index.html) provides additional information. **PyPSA meets Earth is a free and open source software initiative aiming to develop a powerful energy system model for Earth.** We work on open data, open source modelling, open source solver support and open communities. Stay tuned and join our mission - We look for users, co-developers and leaders! Check out our [website for results and our projects](https://pypsa-meets-earth.github.io/projects.html). Happy coding! @@ -41,6 +48,11 @@ The model is described in the Applied Energy article "PyPSA-Earth. A new global

Figure: Example power systems build with PyPSA-Earth. See images of ~193 more countries at https://zenodo.org/records/10080766

+ +The diagram below depicts one representative clustered node for the sector-coupled model with its generation, storage and conversion technologies. + +![alt text](doc/SCPE_v0.2.png) + ## Livetracker. Most popular global models:

@@ -128,6 +140,17 @@ There are multiple ways to get involved and learn more about our work. That's ho Java HotSpot(TM) 64-Bit Server VM (build 25.341-b10, mixed mode) ``` +## Running the model in previous versions + +The model can be run in previous versions by checking out the respective tag. For instance, to run the model in version 0.4.1, which is the last version before the repo `pypsa-earth-sec` was merged, the following command can be used: + +```bash +git checkout v0.4.1 +``` +After checking out the tag, the model can be run as usual. Please make sure to install the required packages for the respective version. + + + ## Test run on tutorial - In the folder open a terminal/command window to be located at this path `~/pypsa-earth/` @@ -143,6 +166,10 @@ There are multiple ways to get involved and learn more about our work. That's ho Remove the -n to do a real run. Follow the tutorial of PyPSA-Eur 1 and 2 on [YouTube](https://www.youtube.com/watch?v=ty47YU1_eeQ) to continue with an analysis. + + + + ## Training - We recently updated some [hackathon material](https://github.com/pypsa-meets-earth/documentation) for PyPSA-Earth. The hackathon contains jupyter notebooks with exercises. After going through the 1 day theoretical and practical material you should have a suitable coding setup and feel confident about contributing. diff --git a/REUSE.toml b/REUSE.toml new file mode 100644 index 000000000..79c9a3fb9 --- /dev/null +++ b/REUSE.toml @@ -0,0 +1,33 @@ +# SPDX-FileCopyrightText: PyPSA-Earth and PyPSA-Eur Authors +# +# SPDX-License-Identifier: AGPL-3.0-or-later + +version = 1 +SPDX-PackageName = "pypsa-earth" +SPDX-PackageSupplier = "The PyPSA-Earth and PyPSA-Eur Authors " +SPDX-PackageDownloadLocation = "https://github.com/pypsa-meets-earth/pypsa-earth" + +[[annotations]] +path = "doc/data.csv" +precedence = "aggregate" +SPDX-FileCopyrightText = "The PyPSA-Earth and PyPSA-Eur Authors" +SPDX-License-Identifier = "CC-BY-4.0" + +[[annotations]] +path = "doc/configtables/**" +precedence = "aggregate" +SPDX-FileCopyrightText = "The PyPSA-Earth and PyPSA-Eur Authors" +SPDX-License-Identifier = "CC-BY-4.0" + +[[annotations]] +path = "data/**" +precedence = "aggregate" +SPDX-FileCopyrightText = "The PyPSA-Earth and PyPSA-Eur Authors" +SPDX-License-Identifier = "CC-BY-4.0" + + +[[annotations]] +path = ".github/**" +precedence = "aggregate" +SPDX-FileCopyrightText = "The PyPSA-Earth and PyPSA-Eur Authors" +SPDX-License-Identifier = "CC0-1.0" diff --git a/Snakefile b/Snakefile index c3d68a4f2..2987ea758 100644 --- a/Snakefile +++ b/Snakefile @@ -11,7 +11,12 @@ from shutil import copyfile, move from snakemake.remote.HTTP import RemoteProvider as HTTPRemoteProvider -from _helpers import create_country_list, get_last_commit_message, check_config_version +from _helpers import ( + create_country_list, + get_last_commit_message, + check_config_version, + copy_default_files, +) from build_demand_profiles import get_load_paths_gegis from retrieve_databundle_light import datafiles_retrivedatabundle from pathlib import Path @@ -19,18 +24,16 @@ from pathlib import Path HTTP = HTTPRemoteProvider() -if "config" not in globals() or not config: # skip when used as sub-workflow - if not exists("config.yaml"): - copyfile("config.tutorial.yaml", "config.yaml") - - configfile: "config.yaml" - - -check_config_version(config=config) +copy_default_files() +configfile: "config.default.yaml" configfile: "configs/bundle_config.yaml" +configfile: "configs/powerplantmatching_config.yaml" +configfile: "config.yaml" + +check_config_version(config=config) config.update({"git_commit": get_last_commit_message(".")}) @@ -43,9 +46,13 @@ config["scenario"]["unc"] = [ f"m{i}" for i in range(config["monte_carlo"]["options"]["samples"]) ] + run = config.get("run", {}) RDIR = run["name"] + "/" if run.get("name") else "" CDIR = RDIR if not run.get("shared_cutouts") else "" +SDIR = config["summary_dir"].strip("/") + f"/{RDIR}/" +RESDIR = config["results_dir"].strip("/") + f"/{RDIR}/" +COSTDIR = config["costs_dir"] load_data_paths = get_load_paths_gegis("data", config) @@ -62,6 +69,11 @@ wildcard_constraints: ll="(v|c)([0-9\.]+|opt|all)|all", opts="[-+a-zA-Z0-9\.]*", unc="[-+a-zA-Z0-9\.]*", + sopts="[-+a-zA-Z0-9\.\s]*", + discountrate="[-+a-zA-Z0-9\.\s]*", + demand="[-+a-zA-Z0-9\.\s]*", + h2export="[0-9]+m?|all", + planning_horizons="20[2-9][0-9]|2100", if config["custom_rules"] is not []: @@ -80,32 +92,6 @@ rule clean: shell("snakemake -j 1 run_all_scenarios --delete-all-output") -rule run_tests: - output: - touch("tests.done"), - run: - import os - - shell("snakemake --cores all build_test_configs") - directory = "test/tmp" # assign directory - for filename in os.scandir(directory): # iterate over files in that directory - if filename.is_file(): - print( - f"Running test: config name '{filename.name}'' and path name '{filename.path}'" - ) - if "custom" in filename.name: - shell("mkdir -p configs/scenarios") - shell("cp {filename.path} configs/scenarios/config.custom.yaml") - shell("snakemake --cores 1 run_all_scenarios --forceall") - if "monte" in filename.name: - shell("cp {filename.path} config.yaml") - shell("snakemake --cores all solve_all_networks_monte --forceall") - else: - shell("cp {filename.path} config.yaml") - shell("snakemake --cores all solve_all_networks --forceall") - print("Tests are successful.") - - rule solve_all_networks: input: expand( @@ -375,7 +361,10 @@ if config["enable"].get("build_natura_raster", False): area_crs=config["crs"]["area_crs"], input: shapefiles_land="data/landcover", - cutouts=expand("cutouts/" + CDIR + "{cutouts}.nc", **config["atlite"]), + cutouts=expand( + "cutouts/" + CDIR + "{cutout}.nc", + cutout=[c["cutout"] for _, c in config["renewable"].items()], + ), output: "resources/" + RDIR + "natura.tiff", log: @@ -416,6 +405,20 @@ if config["enable"].get("retrieve_cost_data", True): run: move(input[0], output[0]) + rule retrieve_cost_data_flexible: + input: + HTTP.remote( + f"raw.githubusercontent.com/PyPSA/technology-data/{config['costs']['version']}/outputs/costs" + + "_{planning_horizons}.csv", + keep_local=True, + ), + output: + costs=COSTDIR + "costs_{planning_horizons}.csv", + resources: + mem_mb=5000, + run: + move(input[0], output[0]) + rule build_demand_profiles: params: @@ -817,7 +820,7 @@ if config["monte_carlo"]["options"].get("add_to_snakefile", False) == False: solving=config["solving"], augmented_line_connection=config["augmented_line_connection"], input: - "networks/" + RDIR + "elec_s{simpl}_{clusters}_ec_l{ll}_{opts}.nc", + network="networks/" + RDIR + "elec_s{simpl}_{clusters}_ec_l{ll}_{opts}.nc", output: "results/" + RDIR + "networks/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}.nc", log: @@ -883,7 +886,9 @@ if config["monte_carlo"]["options"].get("add_to_snakefile", False) == True: solving=config["solving"], augmented_line_connection=config["augmented_line_connection"], input: - "networks/" + RDIR + "elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_{unc}.nc", + network="networks/" + + RDIR + + "elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_{unc}.nc", output: "results/" + RDIR @@ -965,6 +970,556 @@ rule make_summary: "scripts/make_summary.py" +rule prepare_sector_networks: + input: + expand( + RESDIR + + "prenetworks/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_{sopts}_{planning_horizons}_{discountrate}_{demand}.nc", + **config["scenario"], + **config["costs"], + ), + + +rule override_res_all_nets: + input: + expand( + RESDIR + + "prenetworks/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_{sopts}_{planning_horizons}_{discountrate}_{demand}_presec.nc", + **config["scenario"], + **config["costs"], + **config["export"], + ), + + +rule solve_sector_networks: + input: + expand( + RESDIR + + "postnetworks/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_{sopts}_{planning_horizons}_{discountrate}_{demand}_{h2export}export.nc", + **config["scenario"], + **config["costs"], + **config["export"], + ), + + +rule prepare_ports: + output: + ports="data/ports.csv", # TODO move from data to resources + script: + "scripts/prepare_ports.py" + + +rule prepare_airports: + params: + airport_sizing_factor=config["sector"]["airport_sizing_factor"], + output: + ports="data/airports.csv", # TODO move from data to resources + script: + "scripts/prepare_airports.py" + + +rule prepare_urban_percent: + output: + urban_percent="data/urban_percent.csv", # TODO move from data to resources + script: + "scripts/prepare_urban_percent.py" + + +rule prepare_transport_data_input: + output: + transport_data_input="resources/transport_data.csv", + script: + "scripts/prepare_transport_data_input.py" + + +if not config["custom_data"]["gas_network"]: + + rule prepare_gas_network: + params: + gas_config=config["sector"]["gas"], + alternative_clustering=config["cluster_options"]["alternative_clustering"], + countries_list=config["countries"], + layer_id=config["build_shape_options"]["gadm_layer_id"], + update=config["build_shape_options"]["update_file"], + out_logging=config["build_shape_options"]["out_logging"], + year=config["build_shape_options"]["year"], + nprocesses=config["build_shape_options"]["nprocesses"], + contended_flag=config["build_shape_options"]["contended_flag"], + geo_crs=config["crs"]["geo_crs"], + custom_gas_network=config["custom_data"]["gas_network"], + input: + regions_onshore="resources/" + + RDIR + + "bus_regions/regions_onshore_elec_s{simpl}_{clusters}.geojson", + output: + clustered_gas_network="resources/gas_networks/gas_network_elec_s{simpl}_{clusters}.csv", + # TODO: Should be a own snakemake rule + # gas_network_fig_1="resources/gas_networks/existing_gas_pipelines_{simpl}_{clusters}.png", + # gas_network_fig_2="resources/gas_networks/clustered_gas_pipelines_{simpl}_{clusters}.png", + script: + "scripts/prepare_gas_network.py" + + +rule prepare_sector_network: + params: + costs=config["costs"], + input: + network=RESDIR + + "prenetworks/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_{sopts}_{planning_horizons}_{discountrate}_{demand}_presec.nc", + costs=COSTDIR + "costs_{planning_horizons}.csv", + h2_cavern="data/hydrogen_salt_cavern_potentials.csv", + nodal_energy_totals="resources/demand/heat/nodal_energy_heat_totals_{demand}_s{simpl}_{clusters}_{planning_horizons}.csv", + transport="resources/demand/transport_{demand}_s{simpl}_{clusters}_{planning_horizons}.csv", + avail_profile="resources/pattern_profiles/avail_profile_{demand}_s{simpl}_{clusters}_{planning_horizons}.csv", + dsm_profile="resources/pattern_profiles/dsm_profile_{demand}_s{simpl}_{clusters}_{planning_horizons}.csv", + nodal_transport_data="resources/demand/nodal_transport_data_{demand}_s{simpl}_{clusters}_{planning_horizons}.csv", + overrides="data/override_component_attrs", + clustered_pop_layout="resources/population_shares/pop_layout_elec_s{simpl}_{clusters}_{planning_horizons}.csv", + industrial_demand="resources/demand/industrial_energy_demand_per_node_elec_s{simpl}_{clusters}_{planning_horizons}_{demand}.csv", + energy_totals="data/energy_totals_{demand}_{planning_horizons}.csv", + airports="data/airports.csv", + ports="data/ports.csv", + heat_demand="resources/demand/heat/heat_demand_{demand}_s{simpl}_{clusters}_{planning_horizons}.csv", + ashp_cop="resources/demand/heat/ashp_cop_{demand}_s{simpl}_{clusters}_{planning_horizons}.csv", + gshp_cop="resources/demand/heat/gshp_cop_{demand}_s{simpl}_{clusters}_{planning_horizons}.csv", + solar_thermal="resources/demand/heat/solar_thermal_{demand}_s{simpl}_{clusters}_{planning_horizons}.csv", + district_heat_share="resources/demand/heat/district_heat_share_{demand}_s{simpl}_{clusters}_{planning_horizons}.csv", + biomass_transport_costs="data/temp_hard_coded/biomass_transport_costs.csv", + shapes_path="resources/" + + RDIR + + "bus_regions/regions_onshore_elec_s{simpl}_{clusters}.geojson", + pipelines=( + "data/custom/pipelines.csv" + if config["custom_data"]["gas_network"] + else "resources/gas_networks/gas_network_elec_s{simpl}_{clusters}.csv" + ), + output: + RESDIR + + "prenetworks/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_{sopts}_{planning_horizons}_{discountrate}_{demand}.nc", + threads: 1 + resources: + mem_mb=2000, + benchmark: + ( + RESDIR + + "benchmarks/prepare_network/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_{sopts}_{planning_horizons}_{discountrate}_{demand}" + ) + script: + "scripts/prepare_sector_network.py" + + +rule build_ship_profile: + params: + snapshots=config["snapshots"], + ship_opts=config["export"]["ship"], + output: + ship_profile="resources/ship_profile_{h2export}TWh.csv", + script: + "scripts/build_ship_profile.py" + + +rule add_export: + params: + gadm_level=config["sector"]["gadm_level"], + alternative_clustering=config["cluster_options"]["alternative_clustering"], + store=config["export"]["store"], + store_capital_costs=config["export"]["store_capital_costs"], + export_profile=config["export"]["export_profile"], + snapshots=config["snapshots"], + costs=config["costs"], + input: + overrides="data/override_component_attrs", + export_ports="data/export_ports.csv", + costs=COSTDIR + "costs_{planning_horizons}.csv", + ship_profile="resources/ship_profile_{h2export}TWh.csv", + network=RESDIR + + "prenetworks/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_{sopts}_{planning_horizons}_{discountrate}_{demand}.nc", + shapes_path="resources/" + + RDIR + + "bus_regions/regions_onshore_elec_s{simpl}_{clusters}.geojson", + output: + RESDIR + + "prenetworks/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_{sopts}_{planning_horizons}_{discountrate}_{demand}_{h2export}export.nc", + script: + "scripts/add_export.py" + + +rule override_respot: + params: + run=run["name"], + custom_data=config["custom_data"], + countries=config["countries"], + input: + **{ + f"custom_res_pot_{tech}_{planning_horizons}_{discountrate}": f"resources/custom_renewables/{tech}_{planning_horizons}_{discountrate}_potential.csv" + for tech in config["custom_data"]["renewables"] + for discountrate in config["costs"]["discountrate"] + for planning_horizons in config["scenario"]["planning_horizons"] + }, + **{ + f"custom_res_ins_{tech}_{planning_horizons}_{discountrate}": f"resources/custom_renewables/{tech}_{planning_horizons}_{discountrate}_installable.csv" + for tech in config["custom_data"]["renewables"] + for discountrate in config["costs"]["discountrate"] + for planning_horizons in config["scenario"]["planning_horizons"] + }, + overrides="data/override_component_attrs", + network="networks/" + RDIR + "elec_s{simpl}_{clusters}_ec_l{ll}_{opts}.nc", + energy_totals="data/energy_totals_{demand}_{planning_horizons}.csv", + output: + RESDIR + + "prenetworks/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_{sopts}_{planning_horizons}_{discountrate}_{demand}_presec.nc", + script: + "scripts/override_respot.py" + + +rule prepare_transport_data: + input: + network="networks/" + RDIR + "elec_s{simpl}_{clusters}.nc", + energy_totals_name="data/energy_totals_{demand}_{planning_horizons}.csv", + traffic_data_KFZ="data/emobility/KFZ__count", + traffic_data_Pkw="data/emobility/Pkw__count", + transport_name="resources/transport_data.csv", + clustered_pop_layout="resources/population_shares/pop_layout_elec_s{simpl}_{clusters}_{planning_horizons}.csv", + temp_air_total="resources/temperatures/temp_air_total_elec_s{simpl}_{clusters}_{planning_horizons}.nc", + output: + # nodal_energy_totals="resources/nodal_energy_totals_s{simpl}_{clusters}.csv", + transport="resources/demand/transport_{demand}_s{simpl}_{clusters}_{planning_horizons}.csv", + avail_profile="resources/pattern_profiles/avail_profile_{demand}_s{simpl}_{clusters}_{planning_horizons}.csv", + dsm_profile="resources/pattern_profiles/dsm_profile_{demand}_s{simpl}_{clusters}_{planning_horizons}.csv", + nodal_transport_data="resources/demand/nodal_transport_data_{demand}_s{simpl}_{clusters}_{planning_horizons}.csv", + script: + "scripts/prepare_transport_data.py" + + +rule build_cop_profiles: + params: + heat_pump_sink_T=config["sector"]["heat_pump_sink_T"], + input: + temp_soil_total="resources/temperatures/temp_soil_total_elec_s{simpl}_{clusters}_{planning_horizons}.nc", + temp_soil_rural="resources/temperatures/temp_soil_rural_elec_s{simpl}_{clusters}_{planning_horizons}.nc", + temp_soil_urban="resources/temperatures/temp_soil_urban_elec_s{simpl}_{clusters}_{planning_horizons}.nc", + temp_air_total="resources/temperatures/temp_air_total_elec_s{simpl}_{clusters}_{planning_horizons}.nc", + temp_air_rural="resources/temperatures/temp_air_rural_elec_s{simpl}_{clusters}_{planning_horizons}.nc", + temp_air_urban="resources/temperatures/temp_air_urban_elec_s{simpl}_{clusters}_{planning_horizons}.nc", + output: + cop_soil_total="resources/cops/cop_soil_total_elec_s{simpl}_{clusters}_{planning_horizons}.nc", + cop_soil_rural="resources/cops/cop_soil_rural_elec_s{simpl}_{clusters}_{planning_horizons}.nc", + cop_soil_urban="resources/cops/cop_soil_urban_elec_s{simpl}_{clusters}_{planning_horizons}.nc", + cop_air_total="resources/cops/cop_air_total_elec_s{simpl}_{clusters}_{planning_horizons}.nc", + cop_air_rural="resources/cops/cop_air_rural_elec_s{simpl}_{clusters}_{planning_horizons}.nc", + cop_air_urban="resources/cops/cop_air_urban_elec_s{simpl}_{clusters}_{planning_horizons}.nc", + resources: + mem_mb=20000, + benchmark: + "benchmarks/build_cop_profiles/s{simpl}_{clusters}_{planning_horizons}" + script: + "scripts/build_cop_profiles.py" + + +rule prepare_heat_data: + input: + network="networks/" + RDIR + "elec_s{simpl}_{clusters}.nc", + energy_totals_name="data/energy_totals_{demand}_{planning_horizons}.csv", + clustered_pop_layout="resources/population_shares/pop_layout_elec_s{simpl}_{clusters}_{planning_horizons}.csv", + temp_air_total="resources/temperatures/temp_air_total_elec_s{simpl}_{clusters}_{planning_horizons}.nc", + cop_soil_total="resources/cops/cop_soil_total_elec_s{simpl}_{clusters}_{planning_horizons}.nc", + cop_air_total="resources/cops/cop_air_total_elec_s{simpl}_{clusters}_{planning_horizons}.nc", + solar_thermal_total="resources/demand/heat/solar_thermal_total_elec_s{simpl}_{clusters}_{planning_horizons}.nc", + heat_demand_total="resources/demand/heat/heat_demand_total_elec_s{simpl}_{clusters}_{planning_horizons}.nc", + heat_profile="data/heat_load_profile_BDEW.csv", + output: + nodal_energy_totals="resources/demand/heat/nodal_energy_heat_totals_{demand}_s{simpl}_{clusters}_{planning_horizons}.csv", + heat_demand="resources/demand/heat/heat_demand_{demand}_s{simpl}_{clusters}_{planning_horizons}.csv", + ashp_cop="resources/demand/heat/ashp_cop_{demand}_s{simpl}_{clusters}_{planning_horizons}.csv", + gshp_cop="resources/demand/heat/gshp_cop_{demand}_s{simpl}_{clusters}_{planning_horizons}.csv", + solar_thermal="resources/demand/heat/solar_thermal_{demand}_s{simpl}_{clusters}_{planning_horizons}.csv", + district_heat_share="resources/demand/heat/district_heat_share_{demand}_s{simpl}_{clusters}_{planning_horizons}.csv", + script: + "scripts/prepare_heat_data.py" + + +rule build_base_energy_totals: + params: + space_heat_share=config["sector"]["space_heat_share"], + update_data=config["demand_data"]["update_data"], + base_year=config["demand_data"]["base_year"], + countries=config["countries"], + shift_coal_to_elec=config["sector"]["coal"]["shift_to_elec"], + input: + unsd_paths="data/demand/unsd/paths/Energy_Statistics_Database.xlsx", + output: + energy_totals_base="data/energy_totals_base.csv", + script: + "scripts/build_base_energy_totals.py" + + +rule prepare_energy_totals: + params: + countries=config["countries"], + base_year=config["demand_data"]["base_year"], + sector_options=config["sector"], + input: + unsd_paths="data/energy_totals_base.csv", + efficiency_gains_cagr="data/demand/efficiency_gains_cagr.csv", + growth_factors_cagr="data/demand/growth_factors_cagr.csv", + district_heating="data/demand/district_heating.csv", + fuel_shares="data/demand/fuel_shares.csv", + output: + energy_totals="data/energy_totals_{demand}_{planning_horizons}.csv", + script: + "scripts/prepare_energy_totals.py" + + +rule build_solar_thermal_profiles: + params: + solar_thermal_config=config["solar_thermal"], + snapshots=config["snapshots"], + input: + pop_layout_total="resources/population_shares/pop_layout_total_{planning_horizons}.nc", + pop_layout_urban="resources/population_shares/pop_layout_urban_{planning_horizons}.nc", + pop_layout_rural="resources/population_shares/pop_layout_rural_{planning_horizons}.nc", + regions_onshore="resources/" + + RDIR + + "bus_regions/regions_onshore_elec_s{simpl}_{clusters}.geojson", + cutout="cutouts/" + + CDIR + + [c["cutout"] for _, c in config["renewable"].items()][0] + + ".nc", + # default to first cutout found + output: + solar_thermal_total="resources/demand/heat/solar_thermal_total_elec_s{simpl}_{clusters}_{planning_horizons}.nc", + solar_thermal_urban="resources/demand/heat/solar_thermal_urban_elec_s{simpl}_{clusters}_{planning_horizons}.nc", + solar_thermal_rural="resources/demand/heat/solar_thermal_rural_elec_s{simpl}_{clusters}_{planning_horizons}.nc", + resources: + mem_mb=20000, + benchmark: + "benchmarks/build_solar_thermal_profiles/s{simpl}_{clusters}_{planning_horizons}" + script: + "scripts/build_solar_thermal_profiles.py" + + +rule build_population_layouts: + params: + planning_horizons=config["scenario"]["planning_horizons"][0], + input: + nuts3_shapes="resources/" + RDIR + "shapes/gadm_shapes.geojson", + urban_percent="data/urban_percent.csv", + cutout="cutouts/" + + CDIR + + [c["cutout"] for _, c in config["renewable"].items()][0] + + ".nc", + # default to first cutout found + output: + pop_layout_total="resources/population_shares/pop_layout_total_{planning_horizons}.nc", + pop_layout_urban="resources/population_shares/pop_layout_urban_{planning_horizons}.nc", + pop_layout_rural="resources/population_shares/pop_layout_rural_{planning_horizons}.nc", + gdp_layout="resources/gdp_shares/gdp_layout_{planning_horizons}.nc", + resources: + mem_mb=20000, + benchmark: + "benchmarks/build_population_layouts_{planning_horizons}" + threads: 8 + script: + "scripts/build_population_layouts.py" + + +rule move_hardcoded_files_temp: + input: + "data/temp_hard_coded/energy_totals.csv", + output: + "resources/energy_totals.csv", + shell: + "cp -a data/temp_hard_coded/. resources" + + +rule build_clustered_population_layouts: + input: + pop_layout_total="resources/population_shares/pop_layout_total_{planning_horizons}.nc", + pop_layout_urban="resources/population_shares/pop_layout_urban_{planning_horizons}.nc", + pop_layout_rural="resources/population_shares/pop_layout_rural_{planning_horizons}.nc", + gdp_layout="resources/gdp_shares/gdp_layout_{planning_horizons}.nc", + regions_onshore="resources/" + + RDIR + + "bus_regions/regions_onshore_elec_s{simpl}_{clusters}.geojson", + cutout="cutouts/" + + CDIR + + [c["cutout"] for _, c in config["renewable"].items()][0] + + ".nc", + # default to first cutout found + output: + clustered_pop_layout="resources/population_shares/pop_layout_elec_s{simpl}_{clusters}_{planning_horizons}.csv", + clustered_gdp_layout="resources/gdp_shares/gdp_layout_elec_s{simpl}_{clusters}_{planning_horizons}.csv", + resources: + mem_mb=10000, + benchmark: + "benchmarks/build_clustered_population_layouts/s{simpl}_{clusters}_{planning_horizons}" + script: + "scripts/build_clustered_population_layouts.py" + + +rule build_heat_demand: + params: + snapshots=config["snapshots"], + input: + pop_layout_total="resources/population_shares/pop_layout_total_{planning_horizons}.nc", + pop_layout_urban="resources/population_shares/pop_layout_urban_{planning_horizons}.nc", + pop_layout_rural="resources/population_shares/pop_layout_rural_{planning_horizons}.nc", + regions_onshore="resources/" + + RDIR + + "bus_regions/regions_onshore_elec_s{simpl}_{clusters}.geojson", + cutout="cutouts/" + + CDIR + + [c["cutout"] for _, c in config["renewable"].items()][0] + + ".nc", + # default to first cutout found + output: + heat_demand_urban="resources/demand/heat/heat_demand_urban_elec_s{simpl}_{clusters}_{planning_horizons}.nc", + heat_demand_rural="resources/demand/heat/heat_demand_rural_elec_s{simpl}_{clusters}_{planning_horizons}.nc", + heat_demand_total="resources/demand/heat/heat_demand_total_elec_s{simpl}_{clusters}_{planning_horizons}.nc", + resources: + mem_mb=20000, + benchmark: + "benchmarks/build_heat_demand/s{simpl}_{clusters}_{planning_horizons}" + script: + "scripts/build_heat_demand.py" + + +rule build_temperature_profiles: + params: + snapshots=config["snapshots"], + input: + pop_layout_total="resources/population_shares/pop_layout_total_{planning_horizons}.nc", + pop_layout_urban="resources/population_shares/pop_layout_urban_{planning_horizons}.nc", + pop_layout_rural="resources/population_shares/pop_layout_rural_{planning_horizons}.nc", + regions_onshore="resources/" + + RDIR + + "bus_regions/regions_onshore_elec_s{simpl}_{clusters}.geojson", + cutout="cutouts/" + + CDIR + + [c["cutout"] for _, c in config["renewable"].items()][0] + + ".nc", + # default to first cutout found + output: + temp_soil_total="resources/temperatures/temp_soil_total_elec_s{simpl}_{clusters}_{planning_horizons}.nc", + temp_soil_rural="resources/temperatures/temp_soil_rural_elec_s{simpl}_{clusters}_{planning_horizons}.nc", + temp_soil_urban="resources/temperatures/temp_soil_urban_elec_s{simpl}_{clusters}_{planning_horizons}.nc", + temp_air_total="resources/temperatures/temp_air_total_elec_s{simpl}_{clusters}_{planning_horizons}.nc", + temp_air_rural="resources/temperatures/temp_air_rural_elec_s{simpl}_{clusters}_{planning_horizons}.nc", + temp_air_urban="resources/temperatures/temp_air_urban_elec_s{simpl}_{clusters}_{planning_horizons}.nc", + resources: + mem_mb=20000, + benchmark: + "benchmarks/build_temperature_profiles/s{simpl}_{clusters}_{planning_horizons}" + script: + "scripts/build_temperature_profiles.py" + + +rule copy_config: + params: + summary_dir=config["summary_dir"], + run=run, + output: + folder=directory(SDIR + "configs"), + config=SDIR + "configs/config.yaml", + threads: 1 + resources: + mem_mb=1000, + benchmark: + SDIR + "benchmarks/copy_config" + script: + "scripts/copy_config.py" + + +if config["foresight"] == "overnight": + + rule solve_sector_network: + params: + solving=config["solving"], + augmented_line_connection=config["augmented_line_connection"], + input: + overrides="data/override_component_attrs", + # network=RESDIR + # + "prenetworks/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_{sopts}_{planning_horizons}_{discountrate}.nc", + network=RESDIR + + "prenetworks/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_{sopts}_{planning_horizons}_{discountrate}_{demand}_{h2export}export.nc", + costs=COSTDIR + "costs_{planning_horizons}.csv", + configs=SDIR + "configs/config.yaml", # included to trigger copy_config rule + output: + RESDIR + + "postnetworks/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_{sopts}_{planning_horizons}_{discountrate}_{demand}_{h2export}export.nc", + shadow: + "shallow" + log: + solver=RESDIR + + "logs/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_{sopts}_{planning_horizons}_{discountrate}_{demand}_{h2export}export_solver.log", + python=RESDIR + + "logs/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_{sopts}_{planning_horizons}_{discountrate}_{demand}_{h2export}export_python.log", + memory=RESDIR + + "logs/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_{sopts}_{planning_horizons}_{discountrate}_{demand}_{h2export}export_memory.log", + threads: 25 + resources: + mem_mb=config["solving"]["mem"], + benchmark: + ( + RESDIR + + "benchmarks/solve_network/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_{sopts}_{planning_horizons}_{discountrate}_{demand}_{h2export}export" + ) + script: + "scripts/solve_network.py" + + +rule make_sector_summary: + params: + planning_horizons=config["scenario"]["planning_horizons"], + results_dir=config["results_dir"], + summary_dir=config["summary_dir"], + run=run["name"], + scenario_config=config["scenario"], + costs_config=config["costs"], + h2export_qty=config["export"]["h2export"], + foresight=config["foresight"], + input: + overrides="data/override_component_attrs", + networks=expand( + RESDIR + + "postnetworks/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_{sopts}_{planning_horizons}_{discountrate}_{demand}_{h2export}export.nc", + **config["scenario"], + **config["costs"], + **config["export"], + ), + costs=COSTDIR + "costs_{planning_horizons}.csv", + plots=expand( + RESDIR + + "maps/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_{sopts}-costs-all_{planning_horizons}_{discountrate}_{demand}_{h2export}export.pdf", + **config["scenario"], + **config["costs"], + **config["export"], + ), + output: + nodal_costs=SDIR + "csvs/nodal_costs.csv", + nodal_capacities=SDIR + "csvs/nodal_capacities.csv", + nodal_cfs=SDIR + "csvs/nodal_cfs.csv", + cfs=SDIR + "csvs/cfs.csv", + costs=SDIR + "csvs/costs.csv", + capacities=SDIR + "csvs/capacities.csv", + curtailment=SDIR + "csvs/curtailment.csv", + energy=SDIR + "csvs/energy.csv", + supply=SDIR + "csvs/supply.csv", + supply_energy=SDIR + "csvs/supply_energy.csv", + prices=SDIR + "csvs/prices.csv", + weighted_prices=SDIR + "csvs/weighted_prices.csv", + market_values=SDIR + "csvs/market_values.csv", + price_statistics=SDIR + "csvs/price_statistics.csv", + metrics=SDIR + "csvs/metrics.csv", + threads: 2 + resources: + mem_mb=10000, + benchmark: + SDIR + "benchmarks/make_summary" + script: + "scripts/make_summary.py" + + rule plot_summary: input: "results/" @@ -1008,26 +1563,6 @@ rule plot_network: "scripts/plot_network.py" -rule build_test_configs: - input: - base_config="config.tutorial.yaml", - update_file_list=[ - "test/config.tutorial_noprogress.yaml", - "test/config.custom.yaml", - "test/config.monte_carlo.yaml", - "test/config.landlock.yaml", - ], - output: - tmp_test_configs=[ - "test/tmp/config.tutorial_noprogress_tmp.yaml", - "test/tmp/config.custom_tmp.yaml", - "test/tmp/config.monte_carlo_tmp.yaml", - "test/tmp/config.landlock_tmp.yaml", - ], - script: - "scripts/build_test_configs.py" - - rule make_statistics: params: countries=config["countries"], @@ -1042,6 +1577,325 @@ rule make_statistics: "scripts/make_statistics.py" +rule plot_sector_network: + input: + overrides="data/override_component_attrs", + network=RESDIR + + "postnetworks/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_{sopts}_{planning_horizons}_{discountrate}_{demand}_{h2export}export.nc", + output: + map=RESDIR + + "maps/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_{sopts}-costs-all_{planning_horizons}_{discountrate}_{demand}_{h2export}export.pdf", + threads: 2 + resources: + mem_mb=10000, + benchmark: + ( + RESDIR + + "benchmarks/plot_network/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_{sopts}_{planning_horizons}_{discountrate}_{demand}_{h2export}export" + ) + script: + "scripts/plot_network.py" + + +rule plot_sector_summary: + input: + costs=SDIR + "csvs/costs.csv", + energy=SDIR + "csvs/energy.csv", + balances=SDIR + "csvs/supply_energy.csv", + output: + costs=SDIR + "graphs/costs.pdf", + energy=SDIR + "graphs/energy.pdf", + balances=SDIR + "graphs/balances-energy.pdf", + threads: 2 + resources: + mem_mb=10000, + benchmark: + SDIR + "benchmarks/plot_summary" + script: + "scripts/plot_summary.py" + + +rule build_industrial_database: + output: + industrial_database="data/industrial_database.csv", + script: + "scripts/build_industrial_database.py" + + +rule prepare_db: + params: + tech_colors=config["plotting"]["tech_colors"], + input: + network=RESDIR + + "postnetworks/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_{sopts}_{planning_horizons}_{discountrate}_{demand}_{h2export}export.nc", + output: + db=RESDIR + + "summaries/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_{sopts}-costs-all_{planning_horizons}_{discountrate}_{demand}_{h2export}export.csv", + threads: 2 + resources: + mem_mb=10000, + benchmark: + ( + RESDIR + + "benchmarks/prepare_db/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_{sopts}_{planning_horizons}_{discountrate}_{demand}_{h2export}export" + ) + script: + "scripts/prepare_db.py" + + +rule build_industrial_distribution_key: #default data + params: + countries=config["countries"], + gadm_level=config["sector"]["gadm_level"], + alternative_clustering=config["cluster_options"]["alternative_clustering"], + industry_database=config["custom_data"]["industry_database"], + input: + regions_onshore="resources/" + + RDIR + + "bus_regions/regions_onshore_elec_s{simpl}_{clusters}.geojson", + clustered_pop_layout="resources/population_shares/pop_layout_elec_s{simpl}_{clusters}_{planning_horizons}.csv", + clustered_gdp_layout="resources/gdp_shares/gdp_layout_elec_s{simpl}_{clusters}_{planning_horizons}.csv", + industrial_database="data/industrial_database.csv", + shapes_path="resources/" + + RDIR + + "bus_regions/regions_onshore_elec_s{simpl}_{clusters}.geojson", + output: + industrial_distribution_key="resources/demand/industrial_distribution_key_elec_s{simpl}_{clusters}_{planning_horizons}.csv", + threads: 1 + resources: + mem_mb=1000, + benchmark: + "benchmarks/build_industrial_distribution_key_elec_s{simpl}_{clusters}_{planning_horizons}" + script: + "scripts/build_industrial_distribution_key.py" + + +rule build_base_industry_totals: #default data + params: + base_year=config["demand_data"]["base_year"], + countries=config["countries"], + other_industries=config["demand_data"]["other_industries"], + input: + #industrial_production_per_country="data/industrial_production_per_country.csv", + #unsd_path="data/demand/unsd/data/", + energy_totals_base="data/energy_totals_base.csv", + transactions_path="data/unsd_transactions.csv", + output: + base_industry_totals="resources/demand/base_industry_totals_{planning_horizons}_{demand}.csv", + threads: 1 + resources: + mem_mb=1000, + benchmark: + "benchmarks/build_base_industry_totals_{planning_horizons}_{demand}" + script: + "scripts/build_base_industry_totals.py" + + +rule build_industry_demand: #default data + params: + countries=config["countries"], + industry_demand=config["custom_data"]["industry_demand"], + base_year=config["demand_data"]["base_year"], + industry_util_factor=config["sector"]["industry_util_factor"], + aluminium_year=config["demand_data"]["aluminium_year"], + input: + industrial_distribution_key="resources/demand/industrial_distribution_key_elec_s{simpl}_{clusters}_{planning_horizons}.csv", + #industrial_production_per_country_tomorrow="resources/demand/industrial_production_per_country_tomorrow_{planning_horizons}_{demand}.csv", + #industrial_production_per_country="data/industrial_production_per_country.csv", + base_industry_totals="resources/demand/base_industry_totals_{planning_horizons}_{demand}.csv", + industrial_database="data/industrial_database.csv", + costs=COSTDIR + "costs_{planning_horizons}.csv", + industry_growth_cagr="data/demand/industry_growth_cagr.csv", + output: + industrial_energy_demand_per_node="resources/demand/industrial_energy_demand_per_node_elec_s{simpl}_{clusters}_{planning_horizons}_{demand}.csv", + threads: 1 + resources: + mem_mb=1000, + benchmark: + "benchmarks/industrial_energy_demand_per_node_elec_s{simpl}_{clusters}_{planning_horizons}_{demand}.csv" + script: + "scripts/build_industry_demand.py" + + +rule build_existing_heating_distribution: + params: + baseyear=config["scenario"]["planning_horizons"][0], + sector=config["sector"], + existing_capacities=config["existing_capacities"], + input: + existing_heating="data/existing_infrastructure/existing_heating_raw.csv", + clustered_pop_layout="resources/population_shares/pop_layout_elec_s{simpl}_{clusters}_{planning_horizons}.csv", + clustered_pop_energy_layout="resources/demand/heat/nodal_energy_heat_totals_{demand}_s{simpl}_{clusters}_{planning_horizons}.csv", #"resources/population_shares/pop_weighted_energy_totals_s{simpl}_{clusters}.csv", + district_heat_share="resources/demand/heat/district_heat_share_{demand}_s{simpl}_{clusters}_{planning_horizons}.csv", + output: + existing_heating_distribution="resources/heating/existing_heating_distribution_{demand}_s{simpl}_{clusters}_{planning_horizons}.csv", + threads: 1 + resources: + mem_mb=2000, + log: + RESDIR + + "logs/build_existing_heating_distribution_{demand}_s{simpl}_{clusters}_{planning_horizons}.log", + benchmark: + RESDIR + +"benchmarks/build_existing_heating_distribution/{demand}_s{simpl}_{clusters}_{planning_horizons}" + script: + "scripts/build_existing_heating_distribution.py" + + +if config["foresight"] == "myopic": + + rule add_existing_baseyear: + params: + baseyear=config["scenario"]["planning_horizons"][0], + sector=config["sector"], + existing_capacities=config["existing_capacities"], + costs=config["costs"], + input: + network=RESDIR + + "prenetworks/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_{sopts}_{planning_horizons}_{discountrate}_{demand}_{h2export}export.nc", + powerplants="resources/" + RDIR + "powerplants.csv", + busmap_s="resources/" + RDIR + "bus_regions/busmap_elec_s{simpl}.csv", + busmap=pypsaearth( + "resources/" + RDIR + "bus_regions/busmap_elec_s{simpl}_{clusters}.csv" + ), + clustered_pop_layout="resources/population_shares/pop_layout_elec_s{simpl}_{clusters}_{planning_horizons}.csv", + costs=CDIR + + "costs_{}.csv".format(config["scenario"]["planning_horizons"][0]), + cop_soil_total="resources/cops/cop_soil_total_elec_s{simpl}_{clusters}_{planning_horizons}.nc", + cop_air_total="resources/cops/cop_air_total_elec_s{simpl}_{clusters}_{planning_horizons}.nc", + existing_heating_distribution="resources/heating/existing_heating_distribution_{demand}_s{simpl}_{clusters}_{planning_horizons}.csv", + output: + RESDIR + + "prenetworks-brownfield/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sopts}_{planning_horizons}_{discountrate}_{demand}_{h2export}export.nc", + wildcard_constraints: + # TODO: The first planning_horizon needs to be aligned across scenarios + # snakemake does not support passing functions to wildcard_constraints + # reference: https://github.com/snakemake/snakemake/issues/2703 + planning_horizons=config["scenario"]["planning_horizons"][0], #only applies to baseyear + threads: 1 + resources: + mem_mb=2000, + log: + RESDIR + + "logs/add_existing_baseyear_elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_{sopts}_{planning_horizons}_{discountrate}_{demand}_{h2export}export.log", + benchmark: + RESDIR + +"benchmarks/add_existing_baseyear/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_{sopts}_{planning_horizons}_{discountrate}_{demand}_{h2export}export" + script: + "scripts/add_existing_baseyear.py" + + def input_profile_tech_brownfield(w): + return { + f"profile_{tech}": f"resources/" + + RDIR + + "renewable_profiles/profile_{tech}.nc" + for tech in config["electricity"]["renewable_carriers"] + if tech != "hydro" + } + + def solved_previous_horizon(w): + planning_horizons = config["scenario"]["planning_horizons"] + i = planning_horizons.index(int(w.planning_horizons)) + planning_horizon_p = str(planning_horizons[i - 1]) + + return ( + RDIR + + "postnetworks/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_{sopts}_" + + planning_horizon_p + + "_{discountrate}_{demand}_{h2export}export.nc" + ) + + rule add_brownfield: + params: + H2_retrofit=config["sector"]["hydrogen"], + H2_retrofit_capacity_per_CH4=config["sector"]["hydrogen"][ + "H2_retrofit_capacity_per_CH4" + ], + threshold_capacity=config["existing_capacities"]["threshold_capacity"], + snapshots=config["snapshots"], + # drop_leap_day=config["enable"]["drop_leap_day"], + carriers=config["electricity"]["renewable_carriers"], + input: + # unpack(input_profile_tech_brownfield), + simplify_busmap="resources/" + RDIR + "bus_regions/busmap_elec_s{simpl}.csv", + cluster_busmap="resources/" + + RDIR + + "bus_regions/busmap_elec_s{simpl}_{clusters}.csv", + network=RESDIR + + "prenetworks/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_{sopts}_{planning_horizons}_{discountrate}_{demand}_{h2export}export.nc", + network_p=solved_previous_horizon, #solved network at previous time step + costs=CDIR + "costs_{planning_horizons}.csv", + cop_soil_total="resources/cops/cop_soil_total_elec_s{simpl}_{clusters}_{planning_horizons}.nc", + cop_air_total="resources/cops/cop_air_total_elec_s{simpl}_{clusters}_{planning_horizons}.nc", + output: + RESDIR + + "prenetworks-brownfield/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sopts}_{planning_horizons}_{discountrate}_{demand}_{h2export}export.nc", + threads: 4 + resources: + mem_mb=10000, + log: + RESDIR + + "logs/add_brownfield_elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_{sopts}_{planning_horizons}_{discountrate}_{demand}_{h2export}export.log", + benchmark: + ( + RESDIR + + "benchmarks/add_brownfield/elec_s{simpl}_ec_{clusters}_l{ll}_{opts}_{sopts}_{planning_horizons}_{discountrate}_{demand}_{h2export}export" + ) + script: + "./scripts/add_brownfield.py" + + ruleorder: add_existing_baseyear > add_brownfield + + rule solve_network_myopic: + params: + solving=config["solving"], + foresight=config["foresight"], + planning_horizons=config["scenario"]["planning_horizons"], + co2_sequestration_potential=config["scenario"].get( + "co2_sequestration_potential", 200 + ), + input: + overrides="data/override_component_attrs", + network=RESDIR + + "prenetworks-brownfield/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sopts}_{planning_horizons}_{discountrate}_{demand}_{h2export}export.nc", + costs=CDIR + "costs_{planning_horizons}.csv", + configs=SDIR + "configs/config.yaml", # included to trigger copy_config rule + output: + network=RESDIR + + "postnetworks/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_{sopts}_{planning_horizons}_{discountrate}_{demand}_{h2export}export.nc", + # config=RESDIR + # + "configs/config.elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_{sopts}_{planning_horizons}_{discountrate}_{demand}_{h2export}export.yaml", + shadow: + "shallow" + log: + solver=RESDIR + + "logs/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_{sopts}_{planning_horizons}_{discountrate}_{demand}_{h2export}export_solver.log", + python=RESDIR + + "logs/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_{sopts}_{planning_horizons}_{discountrate}_{demand}_{h2export}export_python.log", + memory=RESDIR + + "logs/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_{sopts}_{planning_horizons}_{discountrate}_{demand}_{h2export}export_memory.log", + threads: 25 + resources: + mem_mb=config["solving"]["mem"], + benchmark: + ( + RESDIR + + "benchmarks/solve_network/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_{sopts}_{planning_horizons}_{discountrate}_{demand}_{h2export}export" + ) + script: + "./scripts/solve_network.py" + + rule solve_all_networks_myopic: + input: + networks=expand( + RESDIR + + "postnetworks/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_{sopts}_{planning_horizons}_{discountrate}_{demand}_{h2export}export.nc", + **config["scenario"], + **config["costs"], + **config["export"], + ), + + rule run_scenario: input: diff_config="configs/scenarios/config.{scenario_name}.yaml", @@ -1054,6 +1908,7 @@ rule run_scenario: run: from build_test_configs import create_test_config import yaml + from subprocess import run # get base configuration file from diff config with open(input.diff_config) as f: @@ -1071,8 +1926,16 @@ rule run_scenario: ) # merge the default config file with the difference create_test_config(base_config_path, input.diff_config, "config.yaml") - os.system("snakemake -j all solve_all_networks --rerun-incomplete") - os.system("snakemake -j1 make_statistics --force") + run( + "snakemake -j all solve_all_networks --rerun-incomplete", + shell=True, + check=not config["run"]["allow_scenario_failure"], + ) + run( + "snakemake -j1 make_statistics --force", + shell=True, + check=not config["run"]["allow_scenario_failure"], + ) copyfile("config.yaml", output.copyconfig) diff --git a/config.default.yaml b/config.default.yaml index bf276da66..431812b94 100644 --- a/config.default.yaml +++ b/config.default.yaml @@ -9,31 +9,49 @@ logging: level: INFO format: "%(levelname)s:%(name)s:%(message)s" +results_dir: results/ +summary_dir: results/ +costs_dir: data/ # TODO change to the equivalent of technology data + +foresight: overnight + + countries: ["NG", "BJ"] # Can be replaced by country ["NG", "BJ"], continent ["Africa"] or user-specific region, see more at https://pypsa-earth.readthedocs.io/en/latest/configuration.html#top-level-configuration enable: - retrieve_databundle: true # Recommended 'true', for the first run. Otherwise data might be missing. - retrieve_cost_data: true # true: retrieves cost data from technology data and saves in resources/costs.csv, false: uses cost data in data/costs.csv - download_osm_data: true # If 'true', OpenStreetMap data will be downloaded for the above given countries - build_natura_raster: false # If True, then an exclusion raster will be build + retrieve_databundle: true # Recommended 'true', for the first run. Otherwise data might be missing. + retrieve_databundle_sector: true + retrieve_cost_data: true # true: retrieves cost data from technology data and saves in resources/costs.csv, false: uses cost data in data/costs.csv + download_osm_data: true # If 'true', OpenStreetMap data will be downloaded for the above given countries + build_natura_raster: false # If True, then an exclusion raster will be build build_cutout: false # If "build_cutout" : true, then environmental data is extracted according to `snapshots` date range and `countries` # requires cds API key https://cds.climate.copernicus.eu/api-how-to # More information https://atlite.readthedocs.io/en/latest/introduction.html#datasets + progress_bar: true # show progress bar during downloading routines and other long-running tasks + + -custom_rules: [] # Default empty [] or link to custom rule file e.g. ["my_folder/my_rules.smk"] that add rules to Snakefile +custom_rules: [] # Default empty [] or link to custom rule file e.g. ["my_folder/my_rules.smk"] that add rules to Snakefile run: name: "" # use this to keep track of runs with different settings - shared_cutouts: true # set to true to share the default cutout(s) across runs - # Note: value false requires build_cutout to be enabled + shared_cutouts: true # set to true to share the default cutout(s) across runs + # Note: value false requires build_cutout to be enabled + allow_scenario_failure: false # If True, the workflow will continue even if a scenario in run_scnenario fails scenario: - simpl: [''] - ll: ['copt'] + simpl: [""] + ll: ["copt"] clusters: [10] opts: [Co2L-3H] + planning_horizons: # investment years for myopic and perfect; or costs year for overnight + - 2030 + sopts: + - "144H" + demand: + - "AB" snapshots: start: "2013-01-01" @@ -42,18 +60,19 @@ snapshots: # definition of the Coordinate Reference Systems crs: - geo_crs: EPSG:4326 # general geographic projection, not used for metric measures. "EPSG:4326" is the standard used by OSM and google maps - distance_crs: EPSG:3857 # projection for distance measurements only. Possible recommended values are "EPSG:3857" (used by OSM and Google Maps) - area_crs: ESRI:54009 # projection for area measurements only. Possible recommended values are Global Mollweide "ESRI:54009" + geo_crs: EPSG:4326 # general geographic projection, not used for metric measures. "EPSG:4326" is the standard used by OSM and google maps + distance_crs: EPSG:3857 # projection for distance measurements only. Possible recommended values are "EPSG:3857" (used by OSM and Google Maps) + area_crs: ESRI:54009 # projection for area measurements only. Possible recommended values are Global Mollweide "ESRI:54009" # download_osm_data_nprocesses: 10 # (optional) number of threads used to download osm data augmented_line_connection: - add_to_snakefile: false # If True, includes this rule to the workflow - connectivity_upgrade: 2 # Min. lines connection per node, https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.connectivity.edge_augmentation.k_edge_augmentation.html#networkx.algorithms.connectivity.edge_augmentation.k_edge_augmentation - new_line_type: ["HVAC"] # Expanded lines can be either ["HVAC"] or ["HVDC"] or both ["HVAC", "HVDC"] - min_expansion: 1 # [MW] New created line expands by float/int input - min_DC_length: 600 # [km] Minimum line length of DC line + add_to_snakefile: false # If True, includes this rule to the workflow + connectivity_upgrade: 2 # Min. lines connection per node, + # https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.connectivity.edge_augmentation.k_edge_augmentation.html#networkx.algorithms.connectivity.edge_augmentation.k_edge_augmentation + new_line_type: ["HVAC"] # Expanded lines can be either ["HVAC"] or ["HVDC"] or both ["HVAC", "HVDC"] + min_expansion: 1 # [MW] New created line expands by float/int input + min_DC_length: 600 # [km] Minimum line length of DC line cluster_options: simplify_network: @@ -70,11 +89,11 @@ cluster_options: algorithm: kmeans feature: solar+onwind-time exclude_carriers: [] - alternative_clustering: false # "False" use Voronoi shapes, "True" use GADM shapes - distribute_cluster: ['load'] # Distributes cluster nodes per country according to ['load'],['pop'] or ['gdp'] - out_logging: true # When "True", logging is printed to console + alternative_clustering: false # "False" use Voronoi shapes, "True" use GADM shapes + distribute_cluster: ["load"] # Distributes cluster nodes per country according to ['load'],['pop'] or ['gdp'] + out_logging: true # When "True", logging is printed to console aggregation_strategies: - generators: # use "min" for more conservative assumptions + generators: # use "min" for more conservative assumptions p_nom: sum p_nom_max: sum p_nom_min: sum @@ -86,52 +105,53 @@ cluster_options: efficiency: mean build_shape_options: - gadm_layer_id: 1 # GADM level area used for the gadm_shapes. Codes are country-dependent but roughly: 0: country, 1: region/county-like, 2: municipality-like - update_file: false # When true, all the input files are downloaded again and replace the existing files - out_logging: true # When true, logging is printed to console - year: 2020 # reference year used to derive shapes, info on population and info on GDP - nprocesses: 3 # number of processes to be used in build_shapes - worldpop_method: "standard" # "standard" pulls from web 1kmx1km raster, "api" pulls from API 100mx100m raster, false (not "false") no pop addition to shape which is useful when generating only cutout - gdp_method: "standard" # "standard" pulls from web 1x1km raster, false (not "false") no gdp addition to shape which useful when generating only cutout + gadm_layer_id: 1 # GADM level area used for the gadm_shapes. Codes are country-dependent but roughly: 0: country, 1: region/county-like, 2: municipality-like + update_file: false # When true, all the input files are downloaded again and replace the existing files + out_logging: true # When true, logging is printed to console + year: 2020 # reference year used to derive shapes, info on population and info on GDP + nprocesses: 3 # number of processes to be used in build_shapes + worldpop_method: "standard" # "standard" pulls from web 1kmx1km raster, "api" pulls from API 100mx100m raster, + # false (not "false") no pop addition to shape which is useful when generating only cutout + gdp_method: "standard" # "standard" pulls from web 1x1km raster, false (not "false") no gdp addition to shape which useful when generating only cutout contended_flag: "set_by_country" # "set_by_country" assigns the contended areas to the countries according to the GADM database, "drop" drops these contended areas from the model -clean_osm_data_options: # osm = OpenStreetMap - names_by_shapes: true # Set the country name based on the extended country shapes - threshold_voltage: 51000 # [V] assets below that voltage threshold will not be used (cable, line, generator, etc.) - tag_substation: "transmission" # Filters only substations with 'transmission' tag, ('distribution' also available) - add_line_endings: true # When "True", then line endings are added to the dataset of the substations - generator_name_method: OSM # Methodology to specify the name to the generator. Options: OSM (name as by OSM dataset), closest_city (name by the closest city) - use_custom_lines: "OSM_only" # Use OSM (OSM_only), customized (custom_only), or both data sets (add_custom) - path_custom_lines: false # If exists, provide the specific absolute path of the custom file e.g. (...\data\custom_lines.geojson) - use_custom_substations: "OSM_only" # Use OSM (OSM_only), customized (custom_only), or both data sets (add_custom) - path_custom_substations: false # If exists, provide the specific absolute path of the custom file e.g. (...\data\custom_substations.geojson) - use_custom_cables: "OSM_only" # Use OSM (OSM_only), customized (custom_only), or both data sets (add_custom) - path_custom_cables: false # If exists, provide the specific absolute path of the custom file e.g. (...\data\custom_cables.geojson) - -build_osm_network: # Options of the build_osm_network script; osm = OpenStreetMap - group_close_buses: true # When "True", close buses are merged and guarantee the voltage matching among line endings - group_tolerance_buses: 5000 # [m] (default 5000) Tolerance in meters of the close buses to merge - split_overpassing_lines: true # When True, lines overpassing buses are splitted and connected to the bueses - overpassing_lines_tolerance: 1 # [m] (default 1) Tolerance to identify lines overpassing buses - force_ac: false # When true, it forces all components (lines and substation) to be AC-only. To be used if DC assets create problem. +clean_osm_data_options: # osm = OpenStreetMap + names_by_shapes: true # Set the country name based on the extended country shapes + threshold_voltage: 51000 # [V] minimum voltage threshold to keep the asset (cable, line, generator, etc.) [V] + tag_substation: "transmission" # Filters only substations with 'transmission' tag, ('distribution' also available) + add_line_endings: true # When "True", then line endings are added to the dataset of the substations + generator_name_method: OSM # Methodology to specify the name to the generator. Options: OSM (name as by OSM dataset), closest_city (name by the closest city) + use_custom_lines: "OSM_only" # Use OSM (OSM_only), customized (custom_only), or both data sets (add_custom) + path_custom_lines: false # If exists, provide the specific absolute path of the custom file e.g. (...\data\custom_lines.geojson) + use_custom_substations: "OSM_only" # Use OSM (OSM_only), customized (custom_only), or both data sets (add_custom) + path_custom_substations: false # If exists, provide the specific absolute path of the custom file e.g. (...\data\custom_substations.geojson) + use_custom_cables: "OSM_only" # Use OSM (OSM_only), customized (custom_only), or both data sets (add_custom) + path_custom_cables: false # If exists, provide the specific absolute path of the custom file e.g. (...\data\custom_cables.geojson) + +build_osm_network: # Options of the build_osm_network script; osm = OpenStreetMap + group_close_buses: true # When "True", close buses are merged and guarantee the voltage matching among line endings + group_tolerance_buses: 5000 # [m] (default 5000) Tolerance in meters of the close buses to merge + split_overpassing_lines: true # When True, lines overpassing buses are splitted and connected to the bueses + overpassing_lines_tolerance: 1 # [m] (default 1) Tolerance to identify lines overpassing buses + force_ac: false # When true, it forces all components (lines and substation) to be AC-only. To be used if DC assets create problem. base_network: - min_voltage_substation_offshore: 51000 # [V] minimum voltage of the offshore substations - min_voltage_rebase_voltage: 51000 # [V] minimum voltage in base network + min_voltage_substation_offshore: 51000 # [V] minimum voltage of the offshore substations + min_voltage_rebase_voltage: 51000 # [V] minimum voltage in base network load_options: ssp: "ssp2-2.6" # shared socio-economic pathway (GDP and population growth) scenario to consider - weather_year: 2013 # Load scenarios available with different weather year (different renewable potentials) - prediction_year: 2030 # Load scenarios available with different prediction year (GDP, population) - scale: 1 # scales all load time-series, i.e. 2 = doubles load + weather_year: 2013 # Load scenarios available with different weather year (different renewable potentials) + prediction_year: 2030 # Load scenarios available with different prediction year (GDP, population) + scale: 1 # scales all load time-series, i.e. 2 = doubles load electricity: base_voltage: 380. voltages: [132., 220., 300., 380., 500., 750.] - co2limit: 7.75e+7 # European default, 0.05 * 3.1e9*0.5, needs to be adjusted for Africa - co2base: 1.487e+9 # European default, adjustment to Africa necessary + co2limit: 7.75e+7 # European default, 0.05 * 3.1e9*0.5, needs to be adjusted for Africa + co2base: 1.487e+9 # European default, adjustment to Africa necessary agg_p_nom_limits: data/agg_p_nom_minmax.csv - hvdc_as_lines: false # should HVDC lines be modeled as `Line` or as `Link` component? + hvdc_as_lines: false # should HVDC lines be modeled as `Line` or as `Link` component? automatic_emission: false automatic_emission_base_year: 1990 # 1990 is taken as default. Any year from 1970 to 2018 can be selected. @@ -147,21 +167,21 @@ electricity: extendable_carriers: Generator: [solar, onwind, offwind-ac, offwind-dc, OCGT] - StorageUnit: [] # battery, H2 + StorageUnit: [] # battery, H2 Store: [battery, H2] - Link: [] # H2 pipeline + Link: [] # H2 pipeline powerplants_filter: (DateOut >= 2022 or DateOut != DateOut) - custom_powerplants: false # "false" use only powerplantmatching (ppm) data, "merge" combines ppm and custom powerplants, "replace" use only custom powerplants + custom_powerplants: false # "false" use only powerplantmatching (ppm) data, "merge" combines ppm and custom powerplants, "replace" use only custom powerplants conventional_carriers: [nuclear, oil, OCGT, CCGT, coal, lignite, geothermal, biomass] renewable_carriers: [solar, onwind, offwind-ac, offwind-dc, hydro] estimate_renewable_capacities: - stats: "irena" # False, = greenfield expansion, 'irena' uses IRENA stats to add expansion limits - year: 2020 # Reference year, available years for IRENA stats are 2000 to 2020 - p_nom_min: 1 # any float, scales the minimum expansion acquired from stats, i.e. 110% of 's capacities => p_nom_min: 1.1 - p_nom_max: false # sets the expansion constraint, False to deactivate this option and use estimated renewable potentials determine by the workflow, float scales the p_nom_min factor accordingly + stats: "irena" # False, = greenfield expansion, 'irena' uses IRENA stats to add expansion limits + year: 2023 # Reference year, available years for IRENA stats are 2000 to 2023 + p_nom_min: 1 # any float, scales the minimum expansion acquired from stats, i.e. 110% of 's capacities => p_nom_min: 1.1 + p_nom_max: false # sets the expansion constraint, False to deactivate this option and use estimated renewable potentials determine by the workflow, float scales the p_nom_min factor accordingly technology_mapping: # Wind is the Fueltype in ppm.data.Capacity_stats, onwind, offwind-{ac,dc} the carrier in PyPSA-Earth Offshore: [offwind-ac, offwind-dc] @@ -196,18 +216,16 @@ transformers: atlite: nprocesses: 4 cutouts: - # geographical bounds automatically determined from countries input cutout-2013-era5: module: era5 - dx: 0.3 # cutout resolution - dy: 0.3 # cutout resolution + dx: 0.3 # cutout resolution + dy: 0.3 # cutout resolution # The cutout time is automatically set by the snapshot range. See `snapshot:` option above and 'build_cutout.py'. # time: ["2013-01-01", "2014-01-01"] # to manually specify a different weather year (~70 years available) # The cutout spatial extent [x,y] is automatically set by country selection. See `countires:` option above and 'build_cutout.py'. # x: [-12., 35.] # set cutout range manual, instead of automatic by boundaries of country # y: [33., 72] # manual set cutout range - renewable: onwind: cutout: cutout-2013-era5 @@ -242,7 +260,7 @@ renewable: method: wind turbine: NREL_ReferenceTurbine_5MW_offshore capacity_per_sqkm: 2 - correction_factor: 0.8855 + # correction_factor: 0.8855 # proxy for wake losses # from 10.1016/j.energy.2018.08.153 # until done more rigorously in #153 @@ -261,7 +279,7 @@ renewable: turbine: NREL_ReferenceTurbine_5MW_offshore # ScholzPhd Tab 4.3.1: 10MW/km^2 capacity_per_sqkm: 3 - correction_factor: 0.8855 + # correction_factor: 0.8855 # proxy for wake losses # from 10.1016/j.energy.2018.08.153 # until done more rigorously in #153 @@ -279,8 +297,8 @@ renewable: method: pv panel: CSi orientation: latitude_optimal # will lead into optimal design - # slope: 0. # slope: 0 represent a flat panel - # azimuth: 180. # azimuth: 180 south orientation + # slope: 0. # slope: 0 represent a flat panel + # azimuth: 180. # azimuth: 180 south orientation capacity_per_sqkm: 4.6 # From 1.7 to 4.6 addresses issue #361 # Determined by comparing uncorrected area-weighted full-load hours to those # published in Supplementary Data to @@ -300,19 +318,19 @@ renewable: resource: method: hydro hydrobasins: data/hydrobasins/hybas_world.shp - flowspeed: 1.0 # m/s + flowspeed: 1.0 # m/s # weight_with_height: false # show_progress: true carriers: [ror, PHS, hydro] PHS_max_hours: 6 - hydro_max_hours: "energy_capacity_totals_by_country" # not active - hydro_max_hours_default: 6.0 # (optional, default 6) Default value of max_hours for hydro when NaN values are found + hydro_max_hours: "energy_capacity_totals_by_country" # not active + hydro_max_hours_default: 6.0 # (optional, default 6) Default value of max_hours for hydro when NaN values are found clip_min_inflow: 1.0 extendable: true normalization: - method: hydro_capacities # 'hydro_capacities' to rescale country hydro production by using hydro_capacities, 'eia' to rescale by eia data, false for no rescaling - year: 2013 # (optional) year of statistics used to rescale the runoff time series. When not provided, the weather year of the snapshots is used - multiplier: 1.1 # multiplier applied after the normalization of the hydro production; default 1.0 + method: hydro_capacities # 'hydro_capacities' to rescale country hydro production by using hydro_capacities, 'eia' to rescale by eia data, false for no rescaling + year: 2013 # (optional) year of statistics used to rescale the runoff time series. When not provided, the cutout weather year is used + multiplier: 1.1 # multiplier applied after the normalization of the hydro production; default 1.0 csp: cutout: cutout-2013-era5 resource: @@ -335,12 +353,13 @@ renewable: csp_model: advanced # simple or advanced # TODO: Needs to be adjusted for Africa. -# Costs Configuration (Do not remove, needed for Sphynx documentation). costs: year: 2030 - version: v0.5.0 - rooftop_share: 0.14 # based on the potentials, assuming (0.1 kW/m2 and 10 m2/person) + version: v0.6.2 + discountrate: [0.071] #, 0.086, 0.111] + # [EUR/USD] ECB: https://www.ecb.europa.eu/stats/exchange/eurofxref/html/eurofxref-graph-usd.en.html # noqa: E501 USD2013_to_EUR2013: 0.7532 # [EUR/USD] ECB: https://www.ecb.europa.eu/stats/exchange/eurofxref/html/eurofxref-graph-usd.en.html + rooftop_share: 0.14 # based on the potentials, assuming (0.1 kW/m2 and 10 m2/person) fill_values: FOM: 0 VOM: 0 @@ -374,6 +393,8 @@ costs: # CCGT: 25.0 # efficiency: # per unit # CCGT: 0.58 + lines: + length_factor: 1.25 #to estimate offwind connection costs monte_carlo: @@ -383,7 +404,7 @@ monte_carlo: options: add_to_snakefile: false # When set to true, enables Monte Carlo sampling samples: 9 # number of optimizations. Note that number of samples when using scipy has to be the square of a prime number - sampling_strategy: "chaospy" # "pydoe2", "chaospy", "scipy", packages that are supported + sampling_strategy: "chaospy" # "pydoe2", "chaospy", "scipy", packages that are supported seed: 42 # set seedling for reproducibilty # Uncertanties on any PyPSA object are specified by declaring the specific PyPSA object under the key 'uncertainties'. # For each PyPSA object, the 'type' and 'args' keys represent the type of distribution and its argument, respectively. @@ -408,6 +429,251 @@ monte_carlo: type: beta args: [0.5, 2] +# ------------------- SECTOR OPTIONS ------------------- + +policy_config: + hydrogen: + temporal_matching: "no_res_matching" # either "h2_yearly_matching", "h2_monthly_matching", "no_res_matching" + spatial_matching: false + additionality: false # RE electricity is equal to the amount required for additional hydrogen export compared to the 0 export case ("reference_case") + allowed_excess: 1.0 + is_reference: false # Whether or not this network is a reference case network, relevant only if additionality is _true_ + remove_h2_load: false #Whether or not to remove the h2 load from the network, relevant only if is_reference is _true_ + path_to_ref: "" # Path to the reference case network for additionality calculation, relevant only if additionality is _true_ and is_reference is _false_ + re_country_load: false # Set to "True" to force the RE electricity to be equal to the electricity required for hydrogen export and the country electricity load. "False" excludes the country electricity load from the constraint. + + +demand_data: + update_data: true # if true, the workflow downloads the energy balances data saved in data/demand/unsd/data again. Turn on for the first run. + base_year: 2019 + + other_industries: false # Whether or not to include industries that are not specified. some countries have has exaggerated numbers, check carefully. + aluminium_year: 2019 # Year of the aluminium demand data specified in `data/AL_production.csv` + + +fossil_reserves: + oil: 100 #TWh Maybe redundant + +export: + h2export: [10] # Yearly export demand in TWh + store: true # [True, False] # specifies whether an export store to balance demand is implemented + store_capital_costs: "no_costs" # ["standard_costs", "no_costs"] # specifies the costs of the export store. "standard_costs" takes CAPEX of "hydrogen storage tank type 1 including compressor" + export_profile: "ship" # use "ship" or "constant" + ship: + ship_capacity: 0.4 # TWh # 0.05 TWh for new ones, 0.003 TWh for Susio Frontier, 0.4 TWh according to Hampp2021: "Corresponds to 11360 t H2 (l) with LHV of 33.3333 Mwh/t_H2. Cihlar et al 2020 based on IEA 2019, Table 3-B" + travel_time: 288 # hours # From Agadir to Rotterdam and back (12*24) + fill_time: 24 # hours, for 48h see Hampp2021 + unload_time: 24 # hours for 48h see Hampp2021 + +custom_data: + renewables: [] # ['csp', 'rooftop-solar', 'solar'] + elec_demand: false + heat_demand: false + industry_demand: false + industry_database: false + transport_demand: false + water_costs: false + h2_underground: false + add_existing: false + custom_sectors: false + gas_network: false # If "True" then a custom .csv file must be placed in "resources/custom_data/pipelines.csv" , If "False" the user can choose btw "greenfield" or Model built-in datasets. Please refer to ["sector"] below. + +industry: + reference_year: 2015 + +solar_thermal: + clearsky_model: simple + orientation: + slope: 45. + azimuth: 180. + +existing_capacities: + grouping_years_power: [1960, 1965, 1970, 1975, 1980, 1985, 1990, 1995, 2000, 2005, 2010, 2015, 2020, 2025, 2030] + grouping_years_heat: [1980, 1985, 1990, 1995, 2000, 2005, 2010, 2015, 2019] # these should not extend 2020 + threshold_capacity: 10 + default_heating_lifetime: 20 + conventional_carriers: + - lignite + - coal + - oil + - uranium + +sector: + gas: + spatial_gas: true # ALWAYS TRUE + network: false # ALWAYS FALSE for now (NOT USED) + network_data: GGIT # Global dataset -> 'GGIT' , European dataset -> 'IGGIELGN' + network_data_GGIT_status: ["Construction", "Operating", "Idle", "Shelved", "Mothballed", "Proposed"] + hydrogen: + network: true + H2_retrofit_capacity_per_CH4: 0.6 + network_limit: 2000 #GWkm + network_routes: gas # "gas or "greenfield". If "gas" -> the network data are fetched from ["sector"]["gas"]["network_data"]. If "greenfield" -> the network follows the topology of electrical transmission lines + gas_network_repurposing: true # If true -> ["sector"]["gas"]["network"] is automatically false + underground_storage: false + hydrogen_colors: false + set_color_shares: false + blue_share: 0.40 + pink_share: 0.05 + coal: + shift_to_elec: true # If true, residential and services demand of coal is shifted to electricity. If false, the final energy demand of coal is disregarded + + international_bunkers: false #Whether or not to count the emissions of international aviation and navigation + + oil: + spatial_oil: true + + district_heating: + potential: 0.3 #maximum fraction of urban demand which can be supplied by district heating + #increase of today's district heating demand to potential maximum district heating share + #progress = 0 means today's district heating share, progress=-1 means maximum fraction of urban demand is supplied by district heating + progress: 1 + # 2020: 0.0 + # 2030: 0.3 + # 2040: 0.6 + # 2050: 1.0 + district_heating_loss: 0.15 + reduce_space_heat_exogenously: true # reduces space heat demand by a given factor (applied before losses in DH) + # this can represent e.g. building renovation, building demolition, or if + # the factor is negative: increasing floor area, increased thermal comfort, population growth + reduce_space_heat_exogenously_factor: 0.29 # per unit reduction in space heat demand + # the default factors are determined by the LTS scenario from http://tool.european-calculator.eu/app/buildings/building-types-area/?levers=1ddd4444421213bdbbbddd44444ffffff11f411111221111211l212221 + # 2020: 0.10 # this results in a space heat demand reduction of 10% + # 2025: 0.09 # first heat demand increases compared to 2020 because of larger floor area per capita + # 2030: 0.09 + # 2035: 0.11 + # 2040: 0.16 + # 2045: 0.21 + # 2050: 0.29 + + tes: true + tes_tau: # 180 day time constant for centralised, 3 day for decentralised + decentral: 3 + central: 180 + boilers: true + oil_boilers: false + chp: true + micro_chp: false + solar_thermal: true + heat_pump_sink_T: 55 #Celsius, based on DTU / large area radiators; used un build_cop_profiles.py + time_dep_hp_cop: true #time dependent heat pump coefficient of performance + solar_cf_correction: 0.788457 # = >>>1/1.2683 + bev_plug_to_wheel_efficiency: 0.2 #kWh/km from EPA https://www.fueleconomy.gov/feg/ for Tesla Model S + bev_charge_efficiency: 0.9 #BEV (dis-)charging efficiency + transport_heating_deadband_upper: 20. + transport_heating_deadband_lower: 15. + ICE_lower_degree_factor: 0.375 #in per cent increase in fuel consumption per degree above deadband + ICE_upper_degree_factor: 1.6 + EV_lower_degree_factor: 0.98 + EV_upper_degree_factor: 0.63 + bev_avail_max: 0.95 + bev_avail_mean: 0.8 + bev_dsm_restriction_value: 0.75 #Set to 0 for no restriction on BEV DSM + bev_dsm_restriction_time: 7 #Time at which SOC of BEV has to be dsm_restriction_value + v2g: true #allows feed-in to grid from EV battery + bev_dsm: true #turns on EV battery + bev_energy: 0.05 #average battery size in MWh + bev_availability: 0.5 #How many cars do smart charging + transport_fuel_cell_efficiency: 0.5 + transport_internal_combustion_efficiency: 0.3 + industry_util_factor: 0.7 + + biomass_transport: true # biomass transport between nodes + biomass_transport_default_cost: 0.1 #EUR/km/MWh + solid_biomass_potential: 40 # TWh/a, Potential of whole modelled area + biogas_potential: 0.5 # TWh/a, Potential of whole modelled area + + efficiency_heat_oil_to_elec: 0.9 + efficiency_heat_biomass_to_elec: 0.9 + efficiency_heat_gas_to_elec: 0.9 + + dynamic_transport: + enable: false # If "True", then the BEV and FCEV shares are obtained depending on the "Co2L"-wildcard (e.g. "Co2L0.70: 0.10"). If "False", then the shares are obtained depending on the "demand" wildcard and "planning_horizons" wildcard as listed below (e.g. "DF_2050: 0.08") + land_transport_electric_share: + Co2L2.0: 0.00 + Co2L1.0: 0.01 + Co2L0.90: 0.03 + Co2L0.80: 0.06 + Co2L0.70: 0.10 + Co2L0.60: 0.17 + Co2L0.50: 0.27 + Co2L0.40: 0.40 + Co2L0.30: 0.55 + Co2L0.20: 0.69 + Co2L0.10: 0.80 + Co2L0.00: 0.88 + land_transport_fuel_cell_share: + Co2L2.0: 0.01 + Co2L1.0: 0.01 + Co2L0.90: 0.01 + Co2L0.80: 0.01 + Co2L0.70: 0.01 + Co2L0.60: 0.01 + Co2L0.50: 0.01 + Co2L0.40: 0.01 + Co2L0.30: 0.01 + Co2L0.20: 0.01 + Co2L0.10: 0.01 + Co2L0.00: 0.01 + + land_transport_fuel_cell_share: # 1 means all FCEVs HERE + BU_2030: 0.00 + AP_2030: 0.004 + NZ_2030: 0.02 + DF_2030: 0.01 + AB_2030: 0.01 + BU_2050: 0.00 + AP_2050: 0.06 + NZ_2050: 0.28 + DF_2050: 0.08 + + land_transport_electric_share: # 1 means all EVs # This leads to problems when non-zero HERE + BU_2030: 0.00 + AP_2030: 0.075 + NZ_2030: 0.13 + DF_2030: 0.01 + AB_2030: 0.01 + BU_2050: 0.00 + AP_2050: 0.42 + NZ_2050: 0.68 + DF_2050: 0.011 + + co2_network: true + co2_sequestration_potential: 200 #MtCO2/a sequestration potential for Europe + co2_sequestration_cost: 10 #EUR/tCO2 for sequestration of CO2 + hydrogen_underground_storage: true + shipping_hydrogen_liquefaction: false + shipping_average_efficiency: 0.4 #For conversion of fuel oil to propulsion in 2011 + + shipping_hydrogen_share: #1.0 + BU_2030: 0.00 + AP_2030: 0.00 + NZ_2030: 0.10 + DF_2030: 0.05 + AB_2030: 0.05 + BU_2050: 0.00 + AP_2050: 0.25 + NZ_2050: 0.36 + DF_2050: 0.12 + + gadm_level: 1 + h2_cavern: true + marginal_cost_storage: 0 + methanation: true + helmeth: true + dac: true + SMR: true + SMR CC: true + cc_fraction: 0.9 + cc: true + space_heat_share: 0.6 # the share of space heating from all heating. Remainder goes to water heating. + airport_sizing_factor: 3 + + min_part_load_fischer_tropsch: 0.9 + + conventional_generation: # generator : carrier + OCGT: gas + #Gen_Test: oil # Just for testing purposes solving: @@ -420,17 +686,68 @@ solving: clip_p_max_pu: 0.01 skip_iterations: true track_iterations: false - #nhours: 10 + # nhours: 10 + solver: name: gurobi - threads: 4 - method: 2 # barrier (=ipm) - crossover: 0 - BarConvTol: 1.e-5 - FeasibilityTol: 1.e-6 - AggFill: 0 - PreDual: 0 - GURO_PAR_BARDENSETHRESH: 200 + options: gurobi-default + + solver_options: + highs-default: + # refer to https://ergo-code.github.io/HiGHS/dev/options/definitions/ + threads: 4 + solver: "ipm" + run_crossover: "off" + small_matrix_value: 1e-6 + large_matrix_value: 1e9 + primal_feasibility_tolerance: 1e-5 + dual_feasibility_tolerance: 1e-5 + ipm_optimality_tolerance: 1e-4 + parallel: "on" + random_seed: 123 + gurobi-default: + threads: 4 + method: 2 # barrier + crossover: 0 + BarConvTol: 1.e-6 + Seed: 123 + AggFill: 0 + PreDual: 0 + GURO_PAR_BARDENSETHRESH: 200 + gurobi-numeric-focus: + NumericFocus: 3 # Favour numeric stability over speed + method: 2 # barrier + crossover: 0 # do not use crossover + BarHomogeneous: 1 # Use homogeneous barrier if standard does not converge + BarConvTol: 1.e-5 + FeasibilityTol: 1.e-4 + OptimalityTol: 1.e-4 + ObjScale: -0.5 + threads: 8 + Seed: 123 + gurobi-fallback: # Use gurobi defaults + crossover: 0 + method: 2 # barrier + BarHomogeneous: 1 # Use homogeneous barrier if standard does not converge + BarConvTol: 1.e-5 + FeasibilityTol: 1.e-5 + OptimalityTol: 1.e-5 + Seed: 123 + threads: 8 + cplex-default: + threads: 4 + lpmethod: 4 # barrier + solutiontype: 2 # non basic solution, ie no crossover + barrier.convergetol: 1.e-5 + feasopt.tolerance: 1.e-6 + copt-default: + Threads: 8 + LpMethod: 2 + Crossover: 0 + cbc-default: {} # Used in CI + glpk-default: {} # Used in CI + + mem: 30000 #memory in MB; 20 GB enough for 50+B+I+H2; 100 GB for 181+B+I+H2 plotting: @@ -440,84 +757,220 @@ plotting: p_nom: bus_size_factor: 5.e+4 linewidth_factor: 3.e+3 + color_geomap: + ocean: white + land: whitesmoke + + costs_max: 10 + costs_threshold: 0.2 + + energy_max: 20000 + energy_min: -20000 + energy_threshold: 15 + + vre_techs: + - onwind + - offwind-ac + - offwind-dc + - solar + - ror + conv_techs: + - OCGT + - CCGT + - nuclear + - Nuclear + - coal + - oil + storage_techs: + - hydro+PHS + - battery + - H2 + renewable_storage_techs: + - PHS + - hydro + load_carriers: + - AC load + AC_carriers: + - AC line + - AC transformer + link_carriers: + - DC line + - Converter AC-DC + heat_links: + - heat pump + - resistive heater + - CHP heat + - CHP electric + - gas boiler + - central heat pump + - central resistive heater + - central CHP heat + - central CHP electric + - central gas boiler + heat_generators: + - gas boiler + - central gas boiler + - solar thermal collector + - central solar thermal collector - costs_max: 800 - costs_threshold: 1 - - energy_max: 15000. - energy_min: -10000. - energy_threshold: 50. - - vre_techs: ["onwind", "offwind-ac", "offwind-dc", "solar", "ror"] - conv_techs: ["OCGT", "CCGT", "nuclear", "coal", "oil"] - storage_techs: ["hydro+PHS", "battery", "H2"] - load_carriers: ["AC load"] - AC_carriers: ["AC line", "AC transformer"] - link_carriers: ["DC line", "Converter AC-DC"] tech_colors: - "onwind": "#235ebc" - "onshore wind": "#235ebc" - "offwind": "#6895dd" - "offwind-ac": "#6895dd" - "offshore wind": "#6895dd" - "offshore wind ac": "#6895dd" - "offwind-dc": "#74c6f2" - "offshore wind dc": "#74c6f2" - "hydro": "#08ad97" - "hydro+PHS": "#08ad97" - "PHS": "#08ad97" - "hydro reservoir": "#08ad97" - "hydroelectricity": "#08ad97" - "ror": "#4adbc8" - "run of river": "#4adbc8" - "solar": "#f9d002" - "solar PV": "#f9d002" - "solar thermal": "#ffef60" - "biomass": "#0c6013" - "solid biomass": "#06540d" - "biogas": "#23932d" - "waste": "#68896b" - "geothermal": "#ba91b1" - "OCGT": "#d35050" - "gas": "#d35050" - "natural gas": "#d35050" - "CCGT": "#b20101" - "nuclear": "#ff9000" - "coal": "#707070" - "lignite": "#9e5a01" - "oil": "#262626" - "H2": "#ea048a" - "hydrogen storage": "#ea048a" - "battery": "#b8ea04" - "Electric load": "#f9d002" - "electricity": "#f9d002" - "lines": "#70af1d" - "transmission lines": "#70af1d" - "AC": "#70af1d" - "AC-AC": "#70af1d" - "AC line": "#70af1d" - "links": "#8a1caf" - "HVDC links": "#8a1caf" - "DC": "#8a1caf" - "DC-DC": "#8a1caf" - "DC link": "#8a1caf" - "load": "#ff0000" - "load shedding": "#ff0000" - "battery discharger": slategray - "battery charger": slategray - "h2 fuel cell": '#c251ae' - "h2 electrolysis": '#ff29d9' - "csp": "#fdd404" + onwind: #235ebc + onshore wind: #235ebc + offwind: #6895dd + offwind-ac: #6895dd + offshore wind: #6895dd + offshore wind ac: #6895dd + offshore wind (AC): #6895dd + offwind-dc: #74c6f2 + offshore wind dc: #74c6f2 + offshore wind (DC): #74c6f2 + wave: #004444 + hydro: #08ad97 + hydro+PHS: #08ad97 + PHS: #08ad97 + hydro reservoir: #08ad97 + hydroelectricity: #08ad97 + ror: #4adbc8 + run of river: #4adbc8 + solar: #f9d002 + solar PV: #f9d002 + solar thermal: #ffef60 + solar rooftop: #ffef60 + biomass: #0c6013 + solid biomass: #06540d + solid biomass for industry co2 from atmosphere: #654321 + solid biomass for industry co2 to stored: #654321 + solid biomass for industry CC: #654321 + biogas: #23932d + waste: #68896b + geothermal: #ba91b1 + OCGT: #d35050 + OCGT marginal: sandybrown + OCGT-heat: #ee8340 + gas: #d35050 + natural gas: #d35050 + gas boiler: #ee8340 + gas boilers: #ee8340 + gas boiler marginal: #ee8340 + gas-to-power/heat: brown + SMR: #4F4F2F + SMR CC: darkblue + oil: #262626 + oil boiler: #B5A642 + oil emissions: #666666 + gas for industry: #333333 + gas for industry CC: brown + gas for industry co2 to atmosphere: #654321 + gas for industry co2 to stored: #654321 + nuclear: #ff9000 + Nuclear: r + Nuclear marginal: r + uranium: r + coal: #707070 + Coal: k + Coal marginal: k + lignite: #9e5a01 + Lignite: grey + Lignite marginal: grey + H2: #ea048a + H2 for industry: #222222 + H2 for shipping: #6495ED + H2 liquefaction: m + hydrogen storage: #ea048a + battery: slategray + battery discharger: slategray + battery charger: slategray + battery storage: slategray + home battery: #614700 + home battery storage: #614700 + lines: #70af1d + transmission lines: #70af1d + AC: #70af1d + AC-AC: #70af1d + AC line: #70af1d + links: #8a1caf + HVDC links: #8a1caf + DC: #8a1caf + DC-DC: #8a1caf + DC link: #8a1caf + load: #ff0000 + load shedding: #ff0000 + Electric load: b + electricity: k + electric demand: k + electricity distribution grid: y + heat: darkred + Heat load: r + heat pumps: #76EE00 + heat pump: #76EE00 + air heat pump: #76EE00 + ground heat pump: #40AA00 + CHP: r + CHP heat: r + CHP electric: r + heat demand: darkred + rural heat: #880000 + central heat: #b22222 + decentral heat: #800000 + low-temperature heat for industry: #991111 + process heat: #FF3333 + power-to-heat: red + resistive heater: pink + Sabatier: #FF1493 + methanation: #FF1493 + power-to-gas: purple + power-to-liquid: darkgreen + helmeth: #7D0552 + DAC: deeppink + co2 stored: #123456 + CO2 pipeline: gray + CO2 sequestration: #123456 + co2: #123456 + co2 vent: #654321 + process emissions: #222222 + process emissions CC: gray + process emissions to stored: #444444 + process emissions to atmosphere: #888888 + agriculture heat: #D07A7A + agriculture machinery oil: #1e1e1e + agriculture machinery oil emissions: #111111 + agriculture electricity: #222222 + Fischer-Tropsch: #44DD33 + kerosene for aviation: #44BB11 + naphtha for industry: #44FF55 + land transport oil: #44DD33 + land transport oil emissions: #666666 + land transport fuel cell: #AAAAAA + land transport EV: grey + V2G: grey + BEV charger: grey + shipping: #6495ED + shipping oil: #6495ED + shipping oil emissions: #6495ED + water tanks: #BBBBBB + hot water storage: #BBBBBB + hot water charging: #BBBBBB + hot water discharging: #999999 + Li ion: grey + district heating: #CC4E5C + retrofitting: purple + building retrofitting: purple + solid biomass transport: green + biomass EOP: green + high-temp electrolysis: magenta + today: #D2691E + Ambient: k + nice_names: - OCGT: "Open-Cycle Gas" - CCGT: "Combined-Cycle Gas" - offwind-ac: "Offshore Wind (AC)" - offwind-dc: "Offshore Wind (DC)" - onwind: "Onshore Wind" - solar: "Solar" - PHS: "Pumped Hydro Storage" - hydro: "Reservoir & Dam" - battery: "Battery Storage" - H2: "Hydrogen Storage" - lines: "Transmission Lines" - ror: "Run of River" + OCGT: Open-Cycle Gas + CCGT: Combined-Cycle Gas + offwind-ac: Offshore Wind (AC) + offwind-dc: Offshore Wind (DC) + onwind: Onshore Wind + solar: Solar + PHS: Pumped Hydro Storage + hydro: Reservoir & Dam + battery: Battery Storage + H2: Hydrogen Storage + lines: Transmission Lines + ror: Run of River diff --git a/config.tutorial.yaml b/config.tutorial.yaml index e8fb947f2..0c98bb152 100644 --- a/config.tutorial.yaml +++ b/config.tutorial.yaml @@ -5,206 +5,35 @@ version: 0.4.1 tutorial: true -logging: - level: INFO - format: "%(levelname)s:%(name)s:%(message)s" countries: ["NG", "BJ"] - # ['DZ', 'AO', 'BJ', 'BW', 'BF', 'BI', 'CM', 'CF', 'TD', 'CG', 'CD', - # 'DJ', 'EG', 'GQ', 'ER', 'ET', 'GA', 'GH', 'GN', 'CI', 'KE', 'LS', 'LR', 'LY', - # 'MG', 'MW', 'ML', 'MR', 'MU', 'MA', 'MZ', 'NA', 'NE', 'NG', 'RW', - # 'SL', 'ZA', 'SS', 'SD', 'SZ', 'TZ', 'TG', 'TN', 'UG', 'ZM', 'ZW'] # list(AFRICA_CC) - - #["NG"] # Nigeria - #["NE"] # Niger - #["SL"] # Sierra Leone - #["MA"] # Morroco - #["ZA"] # South Africa - enable: - # prepare_links_p_nom: false - retrieve_databundle: true - retrieve_cost_data: true - download_osm_data: true - # If "build_cutout" : true # requires cds API key https://cds.climate.copernicus.eu/api-how-to - # More information https://atlite.readthedocs.io/en/latest/introduction.html#datasets - build_cutout: false - build_natura_raster: true # If True, then build_natura_raster can be run - -custom_rules: [] # Default empty [] or link to custom rule file e.g. ["my_folder/my_rules.smk"] that add rules to Snakefile - -run: - name: "" + build_natura_raster: true + progress_bar: false scenario: - simpl: [''] - ll: ['copt'] clusters: [6] opts: [Co2L-4H] -summary_dir: results - snapshots: start: "2013-03-1" end: "2013-03-7" - inclusive: "left" # end is not inclusive - -# definition of the Coordinate Reference Systems -crs: - geo_crs: EPSG:4326 # general geographic projection, not used for metric measures. "EPSG:4326" is the standard used by OSM and google maps - distance_crs: EPSG:3857 # projection for distance measurements only. Possible recommended values are "EPSG:3857" (used by OSM and Google Maps) - area_crs: ESRI:54009 # projection for area measurements only. Possible recommended values are Global Mollweide "ESRI:54009" -# CI relevant -retrieve_databundle: # required to be "false" for nice CI test output - show_progress: true # show (true) or do not show (false) the progress bar in retrieve_databundle while downloading data - -augmented_line_connection: - add_to_snakefile: false # If True, includes this rule to the workflow - connectivity_upgrade: 2 # Min. lines connection per node, https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.connectivity.edge_augmentation.k_edge_augmentation.html#networkx.algorithms.connectivity.edge_augmentation.k_edge_augmentation - new_line_type: ["HVAC"] # Expanded lines can be either ["HVAC"] or ["HVDC"] or both ["HVAC", "HVDC"] - min_expansion: 1 # [MW] New created line expands by float/int input - min_DC_length: 600 # [km] Minimum line length of DC line - -# if True clusters to GADM shapes, if False Voronoi cells will be clustered -cluster_options: - simplify_network: - to_substations: false # network is simplified to nodes with positive or negative power injection (i.e. substations or offwind connections) - algorithm: kmeans # choose from: [hac, kmeans] - feature: solar+onwind-time # only for hac. choose from: [solar+onwind-time, solar+onwind-cap, solar-time, solar-cap, solar+offwind-cap] etc. - exclude_carriers: [] - remove_stubs: true - remove_stubs_across_borders: true - p_threshold_drop_isolated: 20 # [MW] isolated buses are being discarded if bus mean power is below the specified threshold - p_threshold_merge_isolated: 300 # [MW] isolated buses are being merged into a single isolated bus if a bus mean power is below the specified threshold - s_threshold_fetch_isolated: 0.05 # [-] a share of the national load for merging an isolated network into a backbone network - cluster_network: - algorithm: kmeans - feature: solar+onwind-time - exclude_carriers: [] - alternative_clustering: false # "False" use Voronoi shapes, "True" use GADM shapes - distribute_cluster: ['load'] # ['load'],['pop'] or ['gdp'] - out_logging: true # When true, logging is printed to console - aggregation_strategies: - generators: # use "min" for more conservative assumptions - p_nom: sum - p_nom_max: sum - p_nom_min: sum - p_min_pu: mean - marginal_cost: mean - committable: any - ramp_limit_up: max - ramp_limit_down: max - efficiency: mean - -# options for build_shapes -build_shape_options: - gadm_layer_id: 1 # GADM level area used for the gadm_shapes. Codes are country-dependent but roughly: 0: country, 1: region/county-like, 2: municipality-like - update_file: false # When true, all the input files are downloaded again and replace the existing files - out_logging: true # When true, logging is printed to console - year: 2020 # reference year used to derive shapes, info on population and info on GDP - nprocesses: 2 # number of processes to be used in build_shapes - worldpop_method: "standard" # "standard" pulls from web 1kmx1km raster, "api" pulls from API 100mx100m raster, false (not "false") no pop addition to shape which is useful when generating only cutout - gdp_method: "standard" # "standard" pulls from web 1x1km raster, false (not "false") no gdp addition to shape which useful when generating only cutout - contended_flag: "set_by_country" # "set_by_country" assigns the contended areas to the countries according to the GADM database, "drop" drops these contended areas from the model clean_osm_data_options: - names_by_shapes: true # Set the country name based on the extended country shapes - threshold_voltage: 35000 # [V] minimum voltage threshold to keep the asset (cable, line, generator, etc.) [V] - tag_substation: "transmission" # needed feature tag to be considered for the analysis. If empty, no filtering on the tag_substation is performed - add_line_endings: true # When true, the line endings are added to the dataset of the substations - generator_name_method: OSM # Methodology to specify the name to the generator. Options: OSM (name as by OSM dataset), closest_city (name by the closest city) - use_custom_lines: "OSM_only" # Use OSM (OSM_only), customized (custom_only), or both data sets (add_custom) - path_custom_lines: false # If exists, provide the specific absolute path of the custom file e.g. (...\data\custom_lines.geojson) - use_custom_substations: "OSM_only" # Use OSM (OSM_only), customized (custom_only), or both data sets (add_custom) - path_custom_substations: false # If exists, provide the specific absolute path of the custom file e.g. (...\data\custom_substations.geojson) - use_custom_cables: "OSM_only" # Use OSM (OSM_only), customized (custom_only), or both data sets (add_custom) - path_custom_cables: false # If exists, provide the specific absolute path of the custom file e.g. (...\data\custom_cables.geojson) - -build_osm_network: # Options of the build_osm_network script; osm = OpenStreetMap - group_close_buses: true # When "True", close buses are merged and guarantee the voltage matching among line endings - group_tolerance_buses: 5000 # [m] (default 5000) Tolerance in meters of the close buses to merge - split_overpassing_lines: true # When True, lines overpassing buses are splitted and connected to the bueses - overpassing_lines_tolerance: 1 # [m] (default 1) Tolerance to identify lines overpassing buses - force_ac: false # When true, it forces all components (lines and substation) to be AC-only. To be used if DC assets create problem. + threshold_voltage: 35000 base_network: - min_voltage_substation_offshore: 35000 # [V] minimum voltage of the offshore substations + min_voltage_substation_offshore: 35000 min_voltage_rebase_voltage: 35000 -load_options: - ssp: "ssp2-2.6" # shared socio-economic pathway (GDP and population growth) scenario to consider - weather_year: 2013 # Load scenarios available with different weather year (different renewable potentials) - prediction_year: 2030 # Load scenarios available with different prediction year (GDP, population) - scale: 1 # scales all load time-series, i.e. 2 = doubles load electricity: - base_voltage: 380. - voltages: [132., 220., 300., 380., 500., 750.] co2limit: 1.487e+9 co2base: 1.487e+9 - agg_p_nom_limits: data/agg_p_nom_minmax.csv - hvdc_as_lines: false # should HVDC lines be modeled as `Line` or as `Link` component? automatic_emission: true - automatic_emission_base_year: 1990 # 1990 is taken as default. Any year from 1970 to 2018 can be selected. - - operational_reserve: # like https://genxproject.github.io/GenX/dev/core/#Reserves - activate: false - epsilon_load: 0.02 # share of total load - epsilon_vres: 0.02 # share of total renewable supply - contingency: 0 # fixed capacity in MW - - max_hours: - battery: 6 - H2: 168 - extendable_carriers: - Generator: [solar, onwind, offwind-ac, offwind-dc, OCGT] - StorageUnit: [] # battery, H2 - Store: [battery, H2] - Link: [] # H2 pipeline - - powerplants_filter: (DateOut >= 2022 or DateOut != DateOut) - custom_powerplants: false # "false" use only powerplantmatching (ppm) data, "merge" combines ppm and custom powerplants, "replace" use only custom powerplants - - conventional_carriers: [nuclear, oil, OCGT, CCGT, coal, lignite, geothermal, biomass] - renewable_carriers: [solar, onwind, offwind-ac, offwind-dc, hydro] - - estimate_renewable_capacities: - stats: "irena" # False, = greenfield expansion, 'irena' uses IRENA stats to add expansion limits - year: 2020 # Reference year, available years for IRENA stats are 2000 to 2020 - p_nom_min: 1 # any float, scales the minimum expansion acquired from stats, i.e. 110% of 's capacities => p_nom_min: 1.1 - p_nom_max: false # sets the expansion constraint, False to deactivate this option and use estimated renewable potentials determine by the workflow, float scales the p_nom_min factor accordingly - technology_mapping: - # Wind is the Fueltype in ppm.data.Capacity_stats, onwind, offwind-{ac,dc} the carrier in PyPSA-Earth - Offshore: [offwind-ac, offwind-dc] - Onshore: [onwind] - PV: [solar] -lines: - ac_types: - 132.: "243-AL1/39-ST1A 20.0" - 220.: "Al/St 240/40 2-bundle 220.0" - 300.: "Al/St 240/40 3-bundle 300.0" - 380.: "Al/St 240/40 4-bundle 380.0" - 500.: "Al/St 240/40 4-bundle 380.0" - 750.: "Al/St 560/50 4-bundle 750.0" - dc_types: - 500.: "HVDC XLPE 1000" - s_max_pu: 0.7 - s_nom_max: .inf - length_factor: 1.25 - under_construction: "zero" # 'zero': set capacity to zero, 'remove': remove, 'keep': with full capacity - -links: - p_max_pu: 1.0 - p_nom_max: .inf - under_construction: "zero" # 'zero': set capacity to zero, 'remove': remove, 'keep': with full capacity - -transformers: - x: 0.1 - s_nom: 2000. - type: "" atlite: nprocesses: 4 @@ -212,298 +41,26 @@ atlite: # use 'base' to determine geographical bounds and time span from config # base: # module: era5 - cutout-2013-era5-tutorial: - module: era5 - dx: 0.3 # cutout resolution - dy: 0.3 # cutout resolution - # The cutout time is automatically set by the snapshot range. See `snapshot:` option above and 'build_cutout.py'. - # time: ["2013-01-01", "2014-01-01"] # to manually specify a different weather year (~70 years available) - # The cutout spatial extent [x,y] is automatically set by country selection. See `countires:` option above and 'build_cutout.py'. - # x: [-12., 35.] # set cutout range manual, instead of automatic by boundaries of country - # y: [33., 72] # manual set cutout range + cutout-2013-era5-tutorial: {} renewable: onwind: cutout: cutout-2013-era5-tutorial - resource: - method: wind - turbine: Vestas_V112_3MW - capacity_per_sqkm: 3 # ScholzPhd Tab 4.3.1: 10MW/km^2 - # correction_factor: 0.93 - copernicus: - # Scholz, Y. (2012). Renewable energy based electricity supply at low costs: - # development of the REMix model and application for Europe. ( p.42 / p.28) - grid_codes: [20, 30, 40, 60, 100, 111, 112, 113, 114, 115, 116, 121, 122, 123, 124, 125, 126] - distance: 1000 - distance_grid_codes: [50] - natura: true - potential: simple # or conservative - clip_p_max_pu: 1.e-2 - extendable: true offwind-ac: cutout: cutout-2013-era5-tutorial - resource: - method: wind - turbine: NREL_ReferenceTurbine_5MW_offshore - capacity_per_sqkm: 3 - # correction_factor: 0.93 - copernicus: - grid_codes: [80, 200] - natura: true - max_depth: 50 - max_shore_distance: 30000 - potential: simple # or conservative - clip_p_max_pu: 1.e-2 - extendable: true offwind-dc: cutout: cutout-2013-era5-tutorial - resource: - method: wind - turbine: NREL_ReferenceTurbine_5MW_offshore - # ScholzPhd Tab 4.3.1: 10MW/km^2 - capacity_per_sqkm: 3 - # correction_factor: 0.93 - copernicus: - grid_codes: [80, 200] - natura: true - max_depth: 50 - min_shore_distance: 30000 - potential: simple # or conservative - clip_p_max_pu: 1.e-2 - extendable: true solar: cutout: cutout-2013-era5-tutorial - resource: - method: pv - panel: CSi - orientation: latitude_optimal # will lead into optimal design - # slope: 0. # slope: 0 represent a flat panel - # azimuth: 180. # azimuth: 180 south orientation - capacity_per_sqkm: 4.6 # From 1.7 to 4.6 addresses issue #361 - # Determined by comparing uncorrected area-weighted full-load hours to those - # published in Supplementary Data to - # Pietzcker, Robert Carl, et al. "Using the sun to decarbonize the power - # sector: The economic potential of photovoltaics and concentrating solar - # power." Applied Energy 135 (2014): 704-720. - correction_factor: 0.854337 - copernicus: - grid_codes: [20, 30, 40, 50, 60, 90, 100] - natura: true - potential: simple # or conservative - clip_p_max_pu: 1.e-2 - extendable: true hydro: cutout: cutout-2013-era5-tutorial hydrobasins_level: 4 - resource: - method: hydro - hydrobasins: data/hydrobasins/hybas_world.shp - flowspeed: 1.0 # m/s - # weight_with_height: false - # show_progress: true - carriers: [ror, PHS, hydro] - PHS_max_hours: 6 - hydro_max_hours: "energy_capacity_totals_by_country" # one of energy_capacity_totals_by_country, estimate_by_large_installations or a float - hydro_max_hours_default: 6.0 # (optional, default 6) Default value of max_hours for hydro when NaN values are found - clip_min_inflow: 1.0 - normalization: - method: hydro_capacities # 'hydro_capacities' to rescale country hydro production by using hydro_capacities, 'eia' to rescale by eia data, false for no rescaling - year: 2013 # (optional) year of statistics used to rescale the runoff time series. When not provided, the cutout weather year is used - multiplier: 1.1 # multiplier applied after the normalization of the hydro production; default 1.0 + hydro_max_hours: "energy_capacity_totals_by_country" csp: cutout: cutout-2013-era5-tutorial - resource: - method: csp - installation: SAM_solar_tower - capacity_per_sqkm: 2.392 # From 1.7 to 4.6 addresses issue #361 - # Determined by comparing uncorrected area-weighted full-load hours to those - # published in Supplementary Data to - # Pietzcker, Robert Carl, et al. "Using the sun to decarbonize the power - # sector: The economic potential of photovoltaics and concentrating solar - # power." Applied Energy 135 (2014): 704-720. - copernicus: - grid_codes: [20, 30, 40, 60, 90] - distancing_codes: [50] - distance_to_codes: 3000 - natura: true - potential: simple # or conservative - clip_p_max_pu: 1.e-2 - extendable: true - csp_model: advanced # simple or advanced - -# TODO: Needs to be adjusted for Africa -costs: - year: 2030 - version: v0.5.0 - rooftop_share: 0.14 # based on the potentials, assuming (0.1 kW/m2 and 10 m2/person) - USD2013_to_EUR2013: 0.7532 # [EUR/USD] ECB: https://www.ecb.europa.eu/stats/exchange/eurofxref/html/eurofxref-graph-usd.en.html - fill_values: - FOM: 0 - VOM: 0 - efficiency: 1 - fuel: 0 - investment: 0 - lifetime: 25 - CO2 intensity: 0 - discount rate: 0.07 - marginal_cost: # EUR/MWh - solar: 0.01 - onwind: 0.015 - offwind: 0.015 - hydro: 0. - H2: 0. - electrolysis: 0. - fuel cell: 0. - battery: 0. - battery inverter: 0. - emission_prices: # in currency per tonne emission, only used with the option Ep - co2: 0. - # investment: # EUR/MW - # CCGT: 830000 - # FOM: # %/year - # CCGT: 3.35 - # VOM: # EUR/MWh - # CCGT: 4.2 - # fuel: # EUR/MWh - # gas: 10.1 - # lifetime: # years - # CCGT: 25.0 - # efficiency: # per unit - # CCGT: 0.58 -monte_carlo: - # Description: Specify Monte Carlo sampling options for uncertainty analysis. - # Define the option list for Monte Carlo sampling. - # Make sure add_to_snakefile is set to true to enable Monte-Carlo - options: - add_to_snakefile: false # When set to true, enables Monte Carlo sampling - samples: 9 # number of optimizations. Note that number of samples when using scipy has to be the square of a prime number - sampling_strategy: "chaospy" # "pydoe2", "chaospy", "scipy", packages that are supported - seed: 42 # set seedling for reproducibilty - # Uncertanties on any PyPSA object are specified by declaring the specific PyPSA object under the key 'uncertainties'. - # For each PyPSA object, the 'type' and 'args' keys represent the type of distribution and its argument, respectively. - # Supported distributions types are uniform, normal, lognormal, triangle, beta and gamma. - # The arguments of the distribution are passed using the key 'args' as follows, tailored by distribution type - # normal: [mean, std], lognormal: [mean, std], uniform: [lower_bound, upper_bound], - # triangle: [mid_point (between 0 - 1)], beta: [alpha, beta], gamma: [shape, scale] - # More info on the distributions are documented in the Chaospy reference guide... - # https://chaospy.readthedocs.io/en/master/reference/distribution/index.html - # An abstract example is as follows: - # {pypsa network object, e.g. "loads_t.p_set"}: - # type: {any supported distribution among the previous: "uniform", "normal", ...} - # args: {arguments passed as a list depending on the distribution, see the above and more at https://pypsa.readthedocs.io/} - uncertainties: - loads_t.p_set: - type: uniform - args: [0, 1] - generators_t.p_max_pu.loc[:, n.generators.carrier == "onwind"]: - type: lognormal - args: [1.5] - generators_t.p_max_pu.loc[:, n.generators.carrier == "solar"]: - type: beta - args: [0.5, 2] - solving: - options: - formulation: kirchhoff - load_shedding: true - noisy_costs: true - min_iterations: 4 - max_iterations: 6 - clip_p_max_pu: 0.01 - skip_iterations: true - track_iterations: false - #nhours: 10 solver: name: glpk - - -plotting: - map: - figsize: [7, 7] - boundaries: [-10.2, 29, 35, 72] - p_nom: - bus_size_factor: 5.e+4 - linewidth_factor: 3.e+3 - - costs_max: 800 - costs_threshold: 1 - - energy_max: 15000. - energy_min: -10000. - energy_threshold: 50. - - vre_techs: ["onwind", "offwind-ac", "offwind-dc", "solar", "ror"] - conv_techs: ["OCGT", "CCGT", "nuclear", "coal", "oil"] - storage_techs: ["hydro+PHS", "battery", "H2"] - load_carriers: ["AC load"] - AC_carriers: ["AC line", "AC transformer"] - link_carriers: ["DC line", "Converter AC-DC"] - tech_colors: - "onwind": "#235ebc" - "onshore wind": "#235ebc" - "offwind": "#6895dd" - "offwind-ac": "#6895dd" - "offshore wind": "#6895dd" - "offshore wind ac": "#6895dd" - "offwind-dc": "#74c6f2" - "offshore wind dc": "#74c6f2" - "hydro": "#08ad97" - "hydro+PHS": "#08ad97" - "PHS": "#08ad97" - "hydro reservoir": "#08ad97" - "hydroelectricity": "#08ad97" - "ror": "#4adbc8" - "run of river": "#4adbc8" - "solar": "#f9d002" - "solar PV": "#f9d002" - "solar thermal": "#ffef60" - "biomass": "#0c6013" - "solid biomass": "#06540d" - "biogas": "#23932d" - "waste": "#68896b" - "geothermal": "#ba91b1" - "OCGT": "#d35050" - "gas": "#d35050" - "natural gas": "#d35050" - "CCGT": "#b20101" - "nuclear": "#ff9000" - "coal": "#707070" - "lignite": "#9e5a01" - "oil": "#262626" - "H2": "#ea048a" - "hydrogen storage": "#ea048a" - "battery": "#b8ea04" - "Electric load": "#f9d002" - "electricity": "#f9d002" - "lines": "#70af1d" - "transmission lines": "#70af1d" - "AC": "#70af1d" - "AC-AC": "#70af1d" - "AC line": "#70af1d" - "links": "#8a1caf" - "HVDC links": "#8a1caf" - "DC": "#8a1caf" - "DC-DC": "#8a1caf" - "DC link": "#8a1caf" - "load": "#ff0000" - "load shedding": "#ff0000" - "battery discharger": slategray - "battery charger": slategray - "h2 fuel cell": '#c251ae' - "h2 electrolysis": '#ff29d9' - "csp": "#fdd404" - nice_names: - OCGT: "Open-Cycle Gas" - CCGT: "Combined-Cycle Gas" - offwind-ac: "Offshore Wind (AC)" - offwind-dc: "Offshore Wind (DC)" - onwind: "Onshore Wind" - solar: "Solar" - PHS: "Pumped Hydro Storage" - hydro: "Reservoir & Dam" - battery: "Battery Storage" - H2: "Hydrogen Storage" - lines: "Transmission Lines" - ror: "Run of River" + options: glpk-default diff --git a/configs/bundle_config.yaml b/configs/bundle_config.yaml index 64a0248ea..c78bd4c0a 100644 --- a/configs/bundle_config.yaml +++ b/configs/bundle_config.yaml @@ -256,9 +256,22 @@ databundles: # build_cutout: [all] # cutouts bundle of the cutouts folder for the North American continent - # Note: this includes nearly the entire north emisphere [long +-180, lat 1-85]. Size about 81GB (zipped) + # Coordinate bounds: [long -172 to -47, lat 1.5-74] + # Size about 25 GB (zipped) bundle_cutouts_northamerica: - countries: [NorthAmerica, Europe] + countries: [NorthAmerica] + category: cutouts + destination: "cutouts" + urls: + gdrive: https://drive.google.com/file/d/1W0rEa7SrAUjqREycKSbl1dkylj_-xmpT/view?usp=drive_link + output: [cutouts/cutout-2013-era5.nc] + disable_by_opt: + build_cutout: [all] + + # cutouts bundle of the cutouts folder for the European continent + # Note: this includes nearly the entire north emisphere [long +-180, lat 1-85]. Size about 81GB (zipped) + bundle_cutouts_europe: + countries: [Europe] category: cutouts destination: "cutouts" urls: diff --git a/configs/powerplantmatching_config.yaml b/configs/powerplantmatching_config.yaml index 86ac59489..ca2dbcb9e 100644 --- a/configs/powerplantmatching_config.yaml +++ b/configs/powerplantmatching_config.yaml @@ -14,7 +14,7 @@ google_api_key: #matching config matching_sources: - # - CARMA # deprecated as no more public +# - CARMA # deprecated as no more public - GEO - GPD - GBPT @@ -30,7 +30,7 @@ matching_sources: # - EXTERNAL_DATABASE fully_included_sources: - # - CARMA # deprecated as no more public +# - CARMA # deprecated as no more public - GEO - GPD - GBPT diff --git a/configs/scenarios/config.NG.yaml b/configs/scenarios/config.NG.yaml index 76e237b12..e99574f3a 100644 --- a/configs/scenarios/config.NG.yaml +++ b/configs/scenarios/config.NG.yaml @@ -1,22 +1,15 @@ # SPDX-FileCopyrightText: PyPSA-Earth and PyPSA-Eur Authors # # SPDX-License-Identifier: CC0-1.0 +version: 0.5.0 -# Changes with respect to the base configuration file specified in run->base_config -# default value is config.tutorial.yaml run: name: NG # Name of the configuration (arbitrary string value) shared_cutouts: true # set to true to share the default cutout(s) across runs base_config: config.tutorial.yaml # base configuration file -retrieve_databundle: # required to be "false" for nice CI test output - show_progress: false - countries: - NG scenario: clusters: [5] - -enable: - retrieve_databundle: false diff --git a/data/AL_production.csv b/data/AL_production.csv new file mode 100644 index 000000000..5f0f6734d --- /dev/null +++ b/data/AL_production.csv @@ -0,0 +1,258 @@ +country,production[ktons/a],Year,source +CN,36000,2019,https://en.wikipedia.org/wiki/List_of_countries_by_aluminium_production +IN,3700,2019,https://en.wikipedia.org/wiki/List_of_countries_by_aluminium_production +RU,3600,2019,https://en.wikipedia.org/wiki/List_of_countries_by_aluminium_production +CA,2900,2019,https://en.wikipedia.org/wiki/List_of_countries_by_aluminium_production +AE,2700,2019,https://en.wikipedia.org/wiki/List_of_countries_by_aluminium_production +AU,1580,2018,https://en.wikipedia.org/wiki/List_of_countries_by_aluminium_production +BH,1400,2019,https://en.wikipedia.org/wiki/List_of_countries_by_aluminium_production +NO,1300,2019,https://en.wikipedia.org/wiki/List_of_countries_by_aluminium_production +US,1100,2019,https://en.wikipedia.org/wiki/List_of_countries_by_aluminium_production +SA,932,2018,https://en.wikipedia.org/wiki/List_of_countries_by_aluminium_production +IS,850,2019,https://en.wikipedia.org/wiki/List_of_countries_by_aluminium_production +MY,760,2018,https://en.wikipedia.org/wiki/List_of_countries_by_aluminium_production +ZA,714,2018,https://en.wikipedia.org/wiki/List_of_countries_by_aluminium_production +BR,659,2018,https://en.wikipedia.org/wiki/List_of_countries_by_aluminium_production +QA,616,2018,https://en.wikipedia.org/wiki/List_of_countries_by_aluminium_production +MZ,571,2018,https://en.wikipedia.org/wiki/List_of_countries_by_aluminium_production +DE,529,2018,https://en.wikipedia.org/wiki/List_of_countries_by_aluminium_production +AR,438,2018,https://en.wikipedia.org/wiki/List_of_countries_by_aluminium_production +FR,380,2018,https://en.wikipedia.org/wiki/List_of_countries_by_aluminium_production +OM,380,2018,https://en.wikipedia.org/wiki/List_of_countries_by_aluminium_production +IR,370,2018,https://en.wikipedia.org/wiki/List_of_countries_by_aluminium_production +ES,350,2018,https://en.wikipedia.org/wiki/List_of_countries_by_aluminium_production +NZ,340,2018,https://en.wikipedia.org/wiki/List_of_countries_by_aluminium_production +EG,317,2018,https://en.wikipedia.org/wiki/List_of_countries_by_aluminium_production +RO,283,2018,https://en.wikipedia.org/wiki/List_of_countries_by_aluminium_production +KZ,258,2018,https://en.wikipedia.org/wiki/List_of_countries_by_aluminium_production +ID,242,2018,https://en.wikipedia.org/wiki/List_of_countries_by_aluminium_production +SK,212,2019,https://en.wikipedia.org/wiki/List_of_countries_by_aluminium_production +GR,184,2019,https://en.wikipedia.org/wiki/List_of_countries_by_aluminium_production +SE,126,2019,https://en.wikipedia.org/wiki/List_of_countries_by_aluminium_production +VE,108,2019,https://en.wikipedia.org/wiki/List_of_countries_by_aluminium_production +NG,0,2019,no available information online assumed value of 0 +BJ,0,2019,no available information online assumed value of 0 +AF,0,2019,no available information online assumed value of 0 +AL,0,2019,no available information online assumed value of 0 +DZ,0,2019,no available information online assumed value of 0 +AS,0,2019,no available information online assumed value of 0 +AD,0,2019,no available information online assumed value of 0 +AO,0,2019,no available information online assumed value of 0 +AI,0,2019,no available information online assumed value of 0 +AQ,0,2019,no available information online assumed value of 0 +AG,0,2019,no available information online assumed value of 0 +AM,0,2019,no available information online assumed value of 0 +AW,0,2019,no available information online assumed value of 0 +AT,0,2019,no available information online assumed value of 0 +AZ,0,2019,no available information online assumed value of 0 +BS,0,2019,no available information online assumed value of 0 +BD,0,2019,no available information online assumed value of 0 +BB,0,2019,no available information online assumed value of 0 +BY,0,2019,no available information online assumed value of 0 +BE,0,2019,no available information online assumed value of 0 +BZ,0,2019,no available information online assumed value of 0 +BM,0,2019,no available information online assumed value of 0 +BT,0,2019,no available information online assumed value of 0 +BO,0,2019,no available information online assumed value of 0 +BA,0,2019,no available information online assumed value of 0 +BW,0,2019,no available information online assumed value of 0 +BV,0,2019,no available information online assumed value of 0 +IO,0,2019,no available information online assumed value of 0 +BN,0,2019,no available information online assumed value of 0 +BG,0,2019,no available information online assumed value of 0 +BF,0,2019,no available information online assumed value of 0 +BI,0,2019,no available information online assumed value of 0 +CV,0,2019,no available information online assumed value of 0 +KH,0,2019,no available information online assumed value of 0 +CM,0,2019,no available information online assumed value of 0 +KY,0,2019,no available information online assumed value of 0 +CF,0,2019,no available information online assumed value of 0 +TD,0,2019,no available information online assumed value of 0 +CL,0,2019,no available information online assumed value of 0 +CX,0,2019,no available information online assumed value of 0 +CC,0,2019,no available information online assumed value of 0 +CO,0,2019,no available information online assumed value of 0 +KM,0,2019,no available information online assumed value of 0 +CG,0,2019,no available information online assumed value of 0 +CD,0,2019,no available information online assumed value of 0 +CK,0,2019,no available information online assumed value of 0 +CR,0,2019,no available information online assumed value of 0 +CI,0,2019,no available information online assumed value of 0 +HR,0,2019,no available information online assumed value of 0 +CU,0,2019,no available information online assumed value of 0 +CW,0,2019,no available information online assumed value of 0 +CY,0,2019,no available information online assumed value of 0 +CZ,0,2019,no available information online assumed value of 0 +DK,0,2019,no available information online assumed value of 0 +DJ,0,2019,no available information online assumed value of 0 +DM,0,2019,no available information online assumed value of 0 +DO,0,2019,no available information online assumed value of 0 +EC,0,2019,no available information online assumed value of 0 +SV,0,2019,no available information online assumed value of 0 +GQ,0,2019,no available information online assumed value of 0 +ER,0,2019,no available information online assumed value of 0 +EE,0,2019,no available information online assumed value of 0 +SZ,0,2019,no available information online assumed value of 0 +ET,0,2019,no available information online assumed value of 0 +FK,0,2019,no available information online assumed value of 0 +FO,0,2019,no available information online assumed value of 0 +FJ,0,2019,no available information online assumed value of 0 +FI,0,2019,no available information online assumed value of 0 +GF,0,2019,no available information online assumed value of 0 +PF,0,2019,no available information online assumed value of 0 +TF,0,2019,no available information online assumed value of 0 +GA,0,2019,no available information online assumed value of 0 +GM,0,2019,no available information online assumed value of 0 +GE,0,2019,no available information online assumed value of 0 +GH,0,2019,no available information online assumed value of 0 +GI,0,2019,no available information online assumed value of 0 +GL,0,2019,no available information online assumed value of 0 +GD,0,2019,no available information online assumed value of 0 +GP,0,2019,no available information online assumed value of 0 +GU,0,2019,no available information online assumed value of 0 +GT,0,2019,no available information online assumed value of 0 +GG,0,2019,no available information online assumed value of 0 +GN,0,2019,no available information online assumed value of 0 +GW,0,2019,no available information online assumed value of 0 +GY,0,2019,no available information online assumed value of 0 +HT,0,2019,no available information online assumed value of 0 +HM,0,2019,no available information online assumed value of 0 +VA,0,2019,no available information online assumed value of 0 +HN,0,2019,no available information online assumed value of 0 +HK,0,2019,no available information online assumed value of 0 +HU,0,2019,no available information online assumed value of 0 +IM,0,2019,no available information online assumed value of 0 +IL,0,2019,no available information online assumed value of 0 +IT,0,2019,no available information online assumed value of 0 +JM,0,2019,no available information online assumed value of 0 +JP,0,2019,no available information online assumed value of 0 +JE,0,2019,no available information online assumed value of 0 +JO,0,2019,no available information online assumed value of 0 +KE,0,2019,no available information online assumed value of 0 +KI,0,2019,no available information online assumed value of 0 +KP,0,2019,no available information online assumed value of 0 +KW,0,2019,no available information online assumed value of 0 +KG,0,2019,no available information online assumed value of 0 +LA,0,2019,no available information online assumed value of 0 +LV,0,2019,no available information online assumed value of 0 +LB,0,2019,no available information online assumed value of 0 +LS,0,2019,no available information online assumed value of 0 +LR,0,2019,no available information online assumed value of 0 +LY,0,2019,no available information online assumed value of 0 +LI,0,2019,no available information online assumed value of 0 +LT,0,2019,no available information online assumed value of 0 +LU,0,2019,no available information online assumed value of 0 +MO,0,2019,no available information online assumed value of 0 +MG,0,2019,no available information online assumed value of 0 +MW,0,2019,no available information online assumed value of 0 +MV,0,2019,no available information online assumed value of 0 +ML,0,2019,no available information online assumed value of 0 +MT,0,2019,no available information online assumed value of 0 +MH,0,2019,no available information online assumed value of 0 +MQ,0,2019,no available information online assumed value of 0 +MR,0,2019,no available information online assumed value of 0 +MU,0,2019,no available information online assumed value of 0 +YT,0,2019,no available information online assumed value of 0 +MX,0,2019,no available information online assumed value of 0 +FM,0,2019,no available information online assumed value of 0 +MD,0,2019,no available information online assumed value of 0 +MC,0,2019,no available information online assumed value of 0 +MN,0,2019,no available information online assumed value of 0 +ME,0,2019,no available information online assumed value of 0 +MS,0,2019,no available information online assumed value of 0 +MA,0,2019,no available information online assumed value of 0 +MM,0,2019,no available information online assumed value of 0 +PW,0,2019,no available information online assumed value of 0 +NA,0,2019,no available information online assumed value of 0 +NR,0,2019,no available information online assumed value of 0 +NP,0,2019,no available information online assumed value of 0 +NL,0,2019,no available information online assumed value of 0 +NC,0,2019,no available information online assumed value of 0 +NZ,0,2019,no available information online assumed value of 0 +NI,0,2019,no available information online assumed value of 0 +NE,0,2019,no available information online assumed value of 0 +NU,0,2019,no available information online assumed value of 0 +NF,0,2019,no available information online assumed value of 0 +MP,0,2019,no available information online assumed value of 0 +NO,0,2019,no available information online assumed value of 0 +OM,0,2019,no available information online assumed value of 0 +PK,0,2019,no available information online assumed value of 0 +PS,0,2019,no available information online assumed value of 0 +PA,0,2019,no available information online assumed value of 0 +PG,0,2019,no available information online assumed value of 0 +PY,0,2019,no available information online assumed value of 0 +PE,0,2019,no available information online assumed value of 0 +PH,0,2019,no available information online assumed value of 0 +PN,0,2019,no available information online assumed value of 0 +PL,0,2019,no available information online assumed value of 0 +PT,0,2019,no available information online assumed value of 0 +PR,0,2019,no available information online assumed value of 0 +QA,0,2019,no available information online assumed value of 0 +MK,0,2019,no available information online assumed value of 0 +RO,0,2019,no available information online assumed value of 0 +RU,0,2019,no available information online assumed value of 0 +RW,0,2019,no available information online assumed value of 0 +RE,0,2019,no available information online assumed value of 0 +BL,0,2019,no available information online assumed value of 0 +SH,0,2019,no available information online assumed value of 0 +KN,0,2019,no available information online assumed value of 0 +LC,0,2019,no available information online assumed value of 0 +MF,0,2019,no available information online assumed value of 0 +PM,0,2019,no available information online assumed value of 0 +VC,0,2019,no available information online assumed value of 0 +WS,0,2019,no available information online assumed value of 0 +SM,0,2019,no available information online assumed value of 0 +ST,0,2019,no available information online assumed value of 0 +SA,0,2019,no available information online assumed value of 0 +SN,0,2019,no available information online assumed value of 0 +RS,0,2019,no available information online assumed value of 0 +SC,0,2019,no available information online assumed value of 0 +SL,0,2019,no available information online assumed value of 0 +SG,0,2019,no available information online assumed value of 0 +SX,0,2019,no available information online assumed value of 0 +SK,0,2019,no available information online assumed value of 0 +SI,0,2019,no available information online assumed value of 0 +SB,0,2019,no available information online assumed value of 0 +SO,0,2019,no available information online assumed value of 0 +ZA,0,2019,no available information online assumed value of 0 +GS,0,2019,no available information online assumed value of 0 +SS,0,2019,no available information online assumed value of 0 +ES,0,2019,no available information online assumed value of 0 +LK,0,2019,no available information online assumed value of 0 +SD,0,2019,no available information online assumed value of 0 +SR,0,2019,no available information online assumed value of 0 +SJ,0,2019,no available information online assumed value of 0 +SE,0,2019,no available information online assumed value of 0 +CH,0,2019,no available information online assumed value of 0 +SY,0,2019,no available information online assumed value of 0 +TW,0,2019,no available information online assumed value of 0 +TJ,0,2019,no available information online assumed value of 0 +TZ,0,2019,no available information online assumed value of 0 +TH,0,2019,no available information online assumed value of 0 +TL,0,2019,no available information online assumed value of 0 +TG,0,2019,no available information online assumed value of 0 +TK,0,2019,no available information online assumed value of 0 +TO,0,2019,no available information online assumed value of 0 +TT,0,2019,no available information online assumed value of 0 +TN,0,2019,no available information online assumed value of 0 +TR,0,2019,no available information online assumed value of 0 +TM,0,2019,no available information online assumed value of 0 +TC,0,2019,no available information online assumed value of 0 +TV,0,2019,no available information online assumed value of 0 +UG,0,2019,no available information online assumed value of 0 +UA,0,2019,no available information online assumed value of 0 +GB,0,2019,no available information online assumed value of 0 +US,0,2019,no available information online assumed value of 0 +UM,0,2019,no available information online assumed value of 0 +UY,0,2019,no available information online assumed value of 0 +UZ,0,2019,no available information online assumed value of 0 +VU,0,2019,no available information online assumed value of 0 +VE,0,2019,no available information online assumed value of 0 +VN,0,2019,no available information online assumed value of 0 +VG,0,2019,no available information online assumed value of 0 +VI,0,2019,no available information online assumed value of 0 +WF,0,2019,no available information online assumed value of 0 +EH,0,2019,no available information online assumed value of 0 +YE,0,2019,no available information online assumed value of 0 +ZM,0,2019,no available information online assumed value of 0 +ZW,0,2019,no available information online assumed value of 0 diff --git a/data/custom/TEMPLATE_energy_totals_AB_2030.csv b/data/custom/TEMPLATE_energy_totals_AB_2030.csv new file mode 100644 index 000000000..5a69a2a4e --- /dev/null +++ b/data/custom/TEMPLATE_energy_totals_AB_2030.csv @@ -0,0 +1,2 @@ +,Unnamed: 0,agriculture biomass,agriculture electricity,agriculture oil,district heat share,electricity rail,electricity residential,electricity residential space,electricity residential water,electricity services space,electricity services water,residential biomass,residential gas,residential heat biomass,residential heat gas,residential heat oil,residential oil,services biomass,services electricity,services gas,services oil,total domestic aviation,total domestic navigation,total international aviation,total international navigation,total navigation hydrogen,total navigation oil,total rail,total residential space,total residential water,total road,total road ev,total road fcev,total road ice,total services space,total services water +AE,0.0,0.0,0.0,0.0,0,0.0,64.38404562665289,0.4505805278999999,0.30038701859999994,0,0,0.0,0.0,0.0,0.0,0.8099939957379862,0.417141615,0.0,69.53247242631582,0.0,0.0,6.6599243305365174,0.0,111.1180823122369,242.89285120432652,0.0,0.0,0.0,0.9365769253427916,0.6243846168951945,155.84141405284205,0.0,0.0,0.0,0.0,0.0 diff --git a/data/custom/TEMPLATE_h2_underground_AB_2030 copy.csv b/data/custom/TEMPLATE_h2_underground_AB_2030 copy.csv new file mode 100644 index 000000000..7ec53a349 --- /dev/null +++ b/data/custom/TEMPLATE_h2_underground_AB_2030 copy.csv @@ -0,0 +1,19 @@ +country,id_region,storage_cap_MWh +AE,AE.8_AC,0 +AE,AE.9_AC,0 +AE,AE.10_AC,0 +AE,AE.3.9_AC,0 +AE,AE.3.5_AC,0 +AE,AE.1.3_AC,0 +AE,AE.1.2_AC,0 +AE,AE.11_AC,266458967703478 +AE,AE.12_AC,101020158085387 +AE,AE.5.58_1_AC,0 +AE,AE.13_AC,0 +AE,AE.14_AC,0 +AE,AE_2_43_AC,0 +AE,AE.7.1_1_AC,0 +AE,AE.15_AC,0 +AE,AE.16_AC,0 +AE,AE.17_AC,0 +AE,AE.18_AC,0 diff --git a/data/custom/TEMPLATE_industrial_database.csv b/data/custom/TEMPLATE_industrial_database.csv new file mode 100644 index 000000000..902fef6f6 --- /dev/null +++ b/data/custom/TEMPLATE_industrial_database.csv @@ -0,0 +1,2 @@ +country,y,x,technology,capacity,unit,quality,location +MA,32.992424,-7.622267,Industry NMM Cement,790, kt/yr,actual,Settat diff --git a/data/custom/TEMPLATE_industry_demand_AB_2030.csv b/data/custom/TEMPLATE_industry_demand_AB_2030.csv new file mode 100644 index 000000000..a97d197d8 --- /dev/null +++ b/data/custom/TEMPLATE_industry_demand_AB_2030.csv @@ -0,0 +1,9 @@ +country,carrier,Industry Steel Primary Blast Furnace Open Hearth Furnace,Industry Steel Primary Blast Furnace Basic Oxygen Furnace,Industry Steel Primary DRI,Industry Steel Secondary EAF,Industry Steel Other,Industry Chemical Ammonia SMR,Industry Chemical Ammonia Other conventional,Industry Chemical Ammonia Renewable,Industry Chemical HVC Naphtha,Industry Chemical HVC LPG,Industry Chemical HVC Methanol,Industry Chemical Other,Industry NMM Cement,Industry NMM Other,Industry Food and tobacco,Industry Construction,Industry Mining,Industry Machinery,Industry Non ferrous metals Aluminium Primary,Industry Non ferrous metals Aluminium Secondary,Industry Non ferrous metals Other,Industry Paper and pulp Pulp Primary,Industry Paper and pulp Pulp Secondary,Industry Paper and pulp Paper,Industry Paper and pulp Other,Industry Transport equipment,Industry Textiles and leather,Industry Wood,Industry Miscellaneous +MA,oil,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,10726146.18,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,397010.79,0.0,0.0,0.0,0.0,13258151.395154 +MA,gas,0.0,0.0,3601545.78,236922.08000000002,0.0,1788930.0,0.0,0.0,0.0,0.0,0.0,0.0,9281486.520000001,0.0,0.0,0.0,0.0,0.0,26202513.16,0.0,0.0,2514199.8,0.0,41960.49,0.0,0.0,0.0,0.0,207158615.483001 +MA,electricity,0.0,0.0,1031598.5399999999,962495.9500000001,0.0,93825.0,0.0,132050.0,1884697.5200000003,0.0,55432.72,0.0,3265708.22,0.0,0.0,0.0,0.0,0.0,11232826.1,0.0,0.0,838066.6,0.0,187208.34,0.0,0.0,0.0,0.0,55242297.464439005 +MA,coal,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,6875175.2,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0 +MA,heat,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0 +MA,biomass,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,171879.38,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,276211.484037 +MA,hydrogen,0.0,0.0,1158286.08,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,276211.484037 +MA,process emission,0.0,0.0,50065.41247790604,40962.59763502796,0.0,0.0,0.0,0.0,67875.68113871076,0.0,1385.228977747275,8.72479576360429e-05,9323308.507746331,0.03203319690797162,0.0,0.0,0.0,0.0,1658616.7007389446,0.0,0.18963180469598598,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0 diff --git a/data/custom_res_installable.csv b/data/custom_res_installable.csv new file mode 100644 index 000000000..5b2fa6140 --- /dev/null +++ b/data/custom_res_installable.csv @@ -0,0 +1,4 @@ +Generator,p_nom_max,investmentEuroPKW,fixedomEuroPKW,installedcapacity,lifetime +MAR001001,,,,, +MAR001002,,,,, +MAR001003,,,,, diff --git a/data/custom_res_potential.csv b/data/custom_res_potential.csv new file mode 100644 index 000000000..525cd9282 --- /dev/null +++ b/data/custom_res_potential.csv @@ -0,0 +1,4 @@ +,MAR001001,MAR001002,MAR001003 +2013-01-01 00:00:00,,, +2013-01-01 03:00:00,,, +2013-01-01 06:00:00,,, diff --git a/data/demand/district_heating.csv b/data/demand/district_heating.csv new file mode 100644 index 000000000..545e39afc --- /dev/null +++ b/data/demand/district_heating.csv @@ -0,0 +1,3 @@ +country,current,potential +DEFAULT, 0, 0 +MA, 0, 0 diff --git a/data/demand/efficiency_gains_cagr.csv b/data/demand/efficiency_gains_cagr.csv new file mode 100644 index 000000000..74ce17494 --- /dev/null +++ b/data/demand/efficiency_gains_cagr.csv @@ -0,0 +1,3 @@ +,total residential space,total residential water,electricity residential,total services space,total services water,total rail,electricity rail,total domestic aviation,total international aviation,total domestic navigation,total international navigation,services electricity,agriculture electricity,agriculture oil,residential oil,residential biomass,residential gas,agriculture biomass,services oil,services biomass,services gas,total road ev,total road fcev,total road ice,total navigation oil,total navigation hydrogen,residential heat biomass,residential heat oil,residential heat gas +DEFAULT,-0.004951421072036277,-0.010390428883694458,-0.0026960063028712566,-0.006705489381695462,-0.01786431270106026,-0.004951421072036277,-0.0021462195974406573,0.0,0.0,-0.01786431270106026,0.2742749857031337,-0.0026960063028712566,-0.0026960063028712566,-0.006705489381695462,0.0,-0.004951421072036277,-0.010390428883694458,-0.012329796028156648,0.0,-0.0055299435560203225,0.0,-0.06140104567447868,-0.026527359809364603,0.0,-0.0010627352815874014,-0.00851714967450834,-0.0026960063028712566,-0.0026960063028712566,0.0 +MA,-0.004951421072036277,-0.010390428883694458,-0.0026960063028712566,-0.006705489381695462,-0.01786431270106026,-0.004951421072036277,-0.0021462195974406573,0.0,0.0,-0.01786431270106026,0.2742749857031337,-0.0026960063028712566,-0.0026960063028712566,-0.006705489381695462,0.0,-0.004951421072036277,-0.010390428883694458,-0.012329796028156648,0.0,-0.0055299435560203225,0.0,-0.06140104567447868,-0.026527359809364603,0.0,-0.0010627352815874014,-0.00851714967450834,-0.0026960063028712566,-0.0026960063028712566,0.0 diff --git a/data/demand/fuel_shares.csv b/data/demand/fuel_shares.csv new file mode 100644 index 000000000..fa97310ac --- /dev/null +++ b/data/demand/fuel_shares.csv @@ -0,0 +1,3 @@ +country,oil residential heat share,biomass residential heat share,biomass to elec heat share,oil to elec heat share,biomass to elec share,oil to elec share,space to water heat share,gas to elec share,gas to elec heat share,gas residential heat share +DEFAULT, 0.6667, 0.75,0.0, 0.5, 0.0, 0.5,0.6,0,0,0.75 +MA, 0.6667, 0.75,0.0, 0.5, 0.0, 0.5,0.6,0,0,0.75 diff --git a/data/demand/growth_factors_cagr.csv b/data/demand/growth_factors_cagr.csv new file mode 100644 index 000000000..7d11e947c --- /dev/null +++ b/data/demand/growth_factors_cagr.csv @@ -0,0 +1,3 @@ +,total residential space,total residential water,electricity residential,total services space,total services water,total road,total rail,electricity rail,total domestic aviation,total international aviation,total domestic navigation,total international navigation,services electricity,agriculture electricity,agriculture oil,residential oil,residential biomass,residential gas,agriculture biomass,services oil,services biomass,services gas,residential heat oil,residential heat biomass,residential heat gas +DEFAULT,0.021569600815111167,0.025045532052292208,0.055685686523292866,0.01786680031720378,0.021569600815111167,0.01390442519840307,0.04940761418323669,0.03982178088300037,0.03715504444619189,0.021569600815111167,0.006453239989770987,0.025045532052292208,0.03715504444619189,0.021569600815111167,-0.018597262031625594,0.0,0.0,0.01095505452809764,0.0147194767041825,-0.03582400205750491,0.0,-0.006114588100848528,0.0,0.0,0.0 +MA,0.021569600815111167,0.025045532052292208,0.055685686523292866,0.01786680031720378,0.021569600815111167,0.01390442519840307,0.04940761418323669,0.03982178088300037,0.03715504444619189,0.021569600815111167,0.006453239989770987,0.025045532052292208,0.03715504444619189,0.021569600815111167,-0.018597262031625594,0.0,0.0,0.01095505452809764,0.0147194767041825,-0.03582400205750491,0.0,-0.006114588100848528,0.0,0.0,0.0 diff --git a/data/demand/industry_growth_cagr.csv b/data/demand/industry_growth_cagr.csv new file mode 100644 index 000000000..4e823274d --- /dev/null +++ b/data/demand/industry_growth_cagr.csv @@ -0,0 +1,3 @@ +country,chemical and petrochemical,construction,food and tobacco,iron and steel,machinery,mining and quarrying,non-ferrous metals,non-metallic minerals,paper pulp and print,textile and leather,transport equipment,wood and wood products,other +DEFAULT,0.03,0.015,0.02,0.017,0.03,0.03,0.03,0.03,0.03,0.03,0.03,0.03,0.03 +MA,0.03,0.015,0.02,0.017,0.03,0.03,0.03,0.03,0.03,0.03,0.03,0.03,0.03 diff --git a/data/demand/unsd/paths/Energy_Statistics_Database.xlsx b/data/demand/unsd/paths/Energy_Statistics_Database.xlsx new file mode 100644 index 000000000..631ceabb6 Binary files /dev/null and b/data/demand/unsd/paths/Energy_Statistics_Database.xlsx differ diff --git a/data/emobility/Bus__count b/data/emobility/Bus__count new file mode 100644 index 000000000..82089d566 --- /dev/null +++ b/data/emobility/Bus__count @@ -0,0 +1,171 @@ +File generated for type: Bus_ +Time of generation:2016-08-28 20:17:00 +day,hour,count,n_counts +0,0,688044.0,362525 +0,1,608947.0,362760 +0,2,572404.0,362373 +0,3,597034.0,362616 +0,4,805533.0,362414 +0,5,1200112.0,362489 +0,6,1860173.0,361440 +0,7,2098221.0,359719 +0,8,2404650.0,359120 +0,9,2578585.0,359720 +0,10,2350794.0,359929 +0,11,2321246.0,360102 +0,12,2260093.0,359865 +0,13,2386226.0,360122 +0,14,2339446.0,360016 +0,15,2255673.0,360028 +0,16,2216057.0,359829 +0,17,1983239.0,360283 +0,18,1683708.0,361261 +0,19,1315877.0,362196 +0,20,1028140.0,362436 +0,21,805207.0,362814 +0,22,663540.0,362753 +0,23,568841.0,362998 +1,0,509277.0,362249 +1,1,419731.0,362513 +1,2,390290.0,362108 +1,3,429170.0,362376 +1,4,641839.0,362289 +1,5,1054962.0,362523 +1,6,1750259.0,361621 +1,7,2023537.0,360128 +1,8,2324676.0,359251 +1,9,2362721.0,359477 +1,10,1980177.0,359155 +1,11,1887266.0,359195 +1,12,1951051.0,359236 +1,13,2135594.0,359521 +1,14,2120963.0,359223 +1,15,2094027.0,359244 +1,16,2143592.0,358847 +1,17,2041272.0,359291 +1,18,1771129.0,360558 +1,19,1352459.0,361620 +1,20,1005893.0,361930 +1,21,769552.0,362451 +1,22,639518.0,362455 +1,23,564931.0,362597 +2,0,508541.0,362648 +2,1,423035.0,363005 +2,2,393755.0,362492 +2,3,431433.0,362864 +2,4,654627.0,362817 +2,5,1089912.0,362885 +2,6,1816050.0,362102 +2,7,2129602.0,360763 +2,8,2496897.0,359752 +2,9,2554351.0,360151 +2,10,2138169.0,359936 +2,11,2021726.0,360236 +2,12,2064415.0,359958 +2,13,2275888.0,360461 +2,14,2253623.0,360077 +2,15,2211607.0,359758 +2,16,2262266.0,359447 +2,17,2160683.0,359537 +2,18,1900672.0,360899 +2,19,1458371.0,362159 +2,20,1093595.0,362416 +2,21,848917.0,362918 +2,22,712905.0,363133 +2,23,641304.0,363091 +3,0,582469.0,363273 +3,1,498079.0,363561 +3,2,469810.0,362951 +3,3,507598.0,363187 +3,4,721334.0,363299 +3,5,1144325.0,363376 +3,6,1884245.0,362695 +3,7,2243750.0,361484 +3,8,2590665.0,360527 +3,9,2641185.0,360609 +3,10,2270328.0,360376 +3,11,2152761.0,360513 +3,12,2165532.0,360273 +3,13,2356492.0,360522 +3,14,2345217.0,360337 +3,15,2299540.0,360099 +3,16,2340537.0,359603 +3,17,2206811.0,359633 +3,18,1924940.0,360965 +3,19,1515144.0,362334 +3,20,1165743.0,362820 +3,21,915349.0,363384 +3,22,774193.0,363427 +3,23,689359.0,363587 +4,0,621126.0,363388 +4,1,539901.0,363701 +4,2,520039.0,363287 +4,3,565110.0,363519 +4,4,798465.0,363425 +4,5,1245096.0,363643 +4,6,1980815.0,363050 +4,7,2325866.0,362354 +4,8,2660579.0,361873 +4,9,2745608.0,362056 +4,10,2620872.0,361697 +4,11,2600677.0,361778 +4,12,2543784.0,361465 +4,13,2666359.0,360650 +4,14,2634750.0,359843 +4,15,2525754.0,359410 +4,16,2516413.0,359387 +4,17,2400374.0,360167 +4,18,2139578.0,361294 +4,19,1741363.0,362428 +4,20,1430780.0,362897 +4,21,1229394.0,363349 +4,22,1130635.0,363493 +4,23,1088862.0,363690 +5,0,1018343.0,363206 +5,1,925525.0,363875 +5,2,863707.0,363663 +5,3,871107.0,363694 +5,4,955376.0,363668 +5,5,1144235.0,363985 +5,6,1463072.0,363621 +5,7,1950959.0,363818 +5,8,2587571.0,363438 +5,9,2839520.0,363453 +5,10,2529976.0,362857 +5,11,2201205.0,362676 +5,12,1956437.0,362363 +5,13,1979229.0,362549 +5,14,2006627.0,362495 +5,15,1997953.0,362534 +5,16,2128904.0,362430 +5,17,2365955.0,363048 +5,18,2373743.0,363122 +5,19,1927225.0,363419 +5,20,1559949.0,363495 +5,21,1295733.0,363705 +5,22,1109561.0,363689 +5,23,1007277.0,363785 +6,0,958544.0,363171 +6,1,881912.0,363459 +6,2,777244.0,349342 +6,3,770629.0,362382 +6,4,756589.0,362881 +6,5,809296.0,363310 +6,6,958540.0,363228 +6,7,1296002.0,363457 +6,8,1834878.0,363348 +6,9,2197519.0,363505 +6,10,2192665.0,363126 +6,11,2121109.0,362880 +6,12,1913820.0,362339 +6,13,1930082.0,362362 +6,14,2147226.0,362103 +6,15,2219053.0,362175 +6,16,2319372.0,361915 +6,17,2440426.0,362370 +6,18,2247233.0,362367 +6,19,1846874.0,362862 +6,20,1491772.0,362936 +6,21,1160206.0,363190 +6,22,934218.0,363207 +6,23,777840.0,363130 diff --git a/data/emobility/European_countries_car_ownership.csv b/data/emobility/European_countries_car_ownership.csv new file mode 100644 index 000000000..e10ce4e08 --- /dev/null +++ b/data/emobility/European_countries_car_ownership.csv @@ -0,0 +1,31 @@ +Passenger car ownership (passenger cars per 1 000 inhabitants),,,,Passenger cars stock,,,,Population,,,, +ctr,1995,2005,2007,2009,1995,2005,2007,2009,1995,2005,2007,2009 +Luxembourg,711,688,696,700,288348,317211,331223,345236,406,461,476,494 +Italy,529,593,599,603,30095699,34654962,35417303,36179643,56844,58462,59131,60045 +Malta,490,528,545,561,180851,212642,222119,232013,369,403,408,414 +Germany,417,531,541,551,33995614,43844313,44533683,45223052,81539,82501,82315,82002 +Cyprus,399,556,548,548,257314,416758,426876,436948,645,749,779,797 +Austria,423,507,517,528,3362604,4156738,4283532,4410326,7943,8201,8283,8355 +Switzerland,460,519,521,516,3229166,3846085,3908308,3970530,7019,7415,7509,7702 +France,421,479,484,490,24999145,30074344,30817127,31559910,59315,62773,63623,64367 +Slovenia,350,469,478,485,696460,936267,961223,986179,1989,1998,2010,2032 +Finland,372,461,473,484,1898191,2414070,2496651,2579233,5099,5237,5277,5326 +Sweden,412,458,471,481,3630886,4130366,4293138,4455910,8816,9011,9113,9256 +Spain,361,471,472,474,14211916,20250464,20993460,21736456,39343,43038,44475,45828 +Lithuania,197,425,449,473,718470,1455165,1519002,1582838,3643,3425,3385,3350 +Belgium,422,465,469,471,4273072,4860971,4961562,5062153,10131,10446,10585,10750 +United Kingdom,354,448,456,463,20526377,26890772,27694004,28497236,57943,60060,60781,61596 +Norway,384,435,447,454,1669164,2003057,2090795,2178533,4348,4606,4681,4799 +Netherlands,367,439,445,449,5664005,7152178,7275957,7399737,15424,16306,16358,16486 +Estonia,316,387,412,436,457042,520843,552474,584104,1448,1348,1342,1340 +Ireland,275,410,417,430,990375,1684031,1797710,1911389,3598,4109,4313,4450 +Greece,235,409,414,419,2492172,4530963,4624830,4718696,10595,11083,11172,11260 +Denmark,332,372,380,386,1729338,2013037,2070319,2127601,5216,5411,5447,5506 +Bulgaria,187,311,348,386,1574416,2417251,2675701,2934152,8427,7761,7679,7607 +Czech Republic,294,373,382,386,3034461,3817019,3927115,4037211,10333,10221,10287,10468 +Latvia,133,320,339,357,332153,738699,772850,807001,2501,2306,2281,2261 +Portugal,252,350,352,355,2520535,3680074,3728382,3776690,10018,10529,10599,10627 +Poland,195,313,328,342,7517260,11963408,12494111,13024815,38581,38174,38125,38136 +Hungary,160,270,282,294,1658229,2723837,2834001,2944165,10337,10098,10066,10031 +Slovakia,179,233,239,244,958900,1252049,1286700,1321351,5356,5385,5394,5412 +Romania,92,147,163,180,2091454,3182940,3506192,3860190,22712,21659,21565,21499 diff --git a/data/emobility/KFZ__count b/data/emobility/KFZ__count new file mode 100644 index 000000000..5ce0726f7 --- /dev/null +++ b/data/emobility/KFZ__count @@ -0,0 +1,171 @@ +File generated for type: KFZ_ +Time of generation:2016-08-28 14:55:02 +day,hour,count,n_counts +0,0,108473680.0,377319 +0,1,82987931.0,377577 +0,2,78055747.0,377161 +0,3,99581978.0,377428 +0,4,172795923.0,377238 +0,5,400623334.0,377401 +0,6,727700515.0,376521 +0,7,914767528.0,374979 +0,8,830383041.0,374209 +0,9,734596809.0,374676 +0,10,700350090.0,374810 +0,11,700405030.0,375003 +0,12,710251471.0,374707 +0,13,738780860.0,374996 +0,14,772520157.0,374869 +0,15,837956441.0,375033 +0,16,934010842.0,375027 +0,17,902342954.0,375441 +0,18,741103748.0,376228 +0,19,522132881.0,377135 +0,20,369891627.0,377329 +0,21,277916689.0,377731 +0,22,219250568.0,377645 +0,23,141678428.0,377850 +1,0,95156728.0,377035 +1,1,76026628.0,377326 +1,2,72517990.0,376877 +1,3,85055976.0,377173 +1,4,137277893.0,377098 +1,5,341366378.0,377432 +1,6,683476500.0,376695 +1,7,906037810.0,375351 +1,8,831626263.0,374260 +1,9,723694854.0,374319 +1,10,668452115.0,373960 +1,11,664704156.0,374005 +1,12,690565597.0,373987 +1,13,735536927.0,374315 +1,14,781166346.0,374048 +1,15,860257784.0,374193 +1,16,965402078.0,374066 +1,17,934866325.0,374463 +1,18,779387294.0,375527 +1,19,548212087.0,376486 +1,20,381721707.0,376748 +1,21,287688969.0,377301 +1,22,230826843.0,377264 +1,23,151270009.0,377397 +2,0,99616179.0,377393 +2,1,76961997.0,377709 +2,2,71796059.0,377134 +2,3,82858649.0,377543 +2,4,132930697.0,377537 +2,5,333303738.0,377714 +2,6,673294545.0,377078 +2,7,898898634.0,375922 +2,8,829407732.0,374739 +2,9,728235958.0,375027 +2,10,681952207.0,374726 +2,11,685713984.0,375050 +2,12,718219308.0,374758 +2,13,770418372.0,375283 +2,14,816464298.0,374897 +2,15,890812713.0,374707 +2,16,990725411.0,374557 +2,17,961389484.0,374666 +2,18,807912334.0,375865 +2,19,583263969.0,377031 +2,20,412514255.0,377266 +2,21,310607831.0,377782 +2,22,249885512.0,377948 +2,23,166192733.0,377905 +3,0,107876994.0,377993 +3,1,81437580.0,378342 +3,2,74233593.0,377694 +3,3,84125264.0,377956 +3,4,132580534.0,378079 +3,5,325787216.0,378209 +3,6,652758946.0,377663 +3,7,875031543.0,376605 +3,8,816037220.0,375450 +3,9,728032342.0,375444 +3,10,695708230.0,375202 +3,11,705193400.0,375367 +3,12,735624407.0,375098 +3,13,784820947.0,375397 +3,14,835187522.0,375223 +3,15,907919578.0,375128 +3,16,995789388.0,374778 +3,17,966250089.0,374802 +3,18,836284879.0,375970 +3,19,618832742.0,377227 +3,20,442937304.0,377693 +3,21,334643805.0,378303 +3,22,267652954.0,378318 +3,23,178146869.0,378423 +4,0,115705423.0,378121 +4,1,86908753.0,378462 +4,2,78502260.0,378033 +4,3,87775878.0,378294 +4,4,134134525.0,378202 +4,5,314584395.0,378476 +4,6,612697560.0,377982 +4,7,818107726.0,377431 +4,8,751902744.0,376827 +4,9,704861077.0,377003 +4,10,734119657.0,376643 +4,11,795396373.0,376756 +4,12,898172946.0,376441 +4,13,979133479.0,375687 +4,14,1019161427.0,374886 +4,15,1027411123.0,374474 +4,16,1012542255.0,374375 +4,17,957387669.0,375151 +4,18,847136984.0,376252 +4,19,664024491.0,377365 +4,20,496680891.0,377830 +4,21,375517425.0,378307 +4,22,310908746.0,378432 +4,23,236691370.0,378626 +5,0,170647816.0,378057 +5,1,125760497.0,378795 +5,2,102009453.0,378554 +5,3,98692501.0,378596 +5,4,118464284.0,378578 +5,5,180157441.0,378942 +5,6,241530096.0,378625 +5,7,342439034.0,378889 +5,8,487538788.0,378507 +5,9,656404729.0,378579 +5,10,769195000.0,378019 +5,11,803039041.0,377811 +5,12,794237213.0,377402 +5,13,803664678.0,377667 +5,14,798804166.0,377627 +5,15,733570647.0,377662 +5,16,690321161.0,377546 +5,17,672280656.0,378226 +5,18,615526093.0,378264 +5,19,480484999.0,378515 +5,20,371959421.0,378532 +5,21,285991449.0,378773 +5,22,246363536.0,378697 +5,23,208755872.0,378786 +6,0,160101609.0,378135 +6,1,115163686.0,378434 +6,2,77540144.0,363731 +6,3,65061949.0,377304 +6,4,66523216.0,377852 +6,5,89201395.0,378337 +6,6,107382896.0,378240 +6,7,147838676.0,378553 +6,8,242570906.0,378407 +6,9,397489009.0,378631 +6,10,561353053.0,378245 +6,11,673692139.0,377974 +6,12,706920410.0,377365 +6,13,745702428.0,377481 +6,14,786527068.0,377250 +6,15,761783218.0,377287 +6,16,764720330.0,377036 +6,17,788390221.0,377547 +6,18,723533261.0,377538 +6,19,600302038.0,378044 +6,20,469053762.0,378093 +6,21,344816931.0,378307 +6,22,246445284.0,378262 +6,23,164301984.0,378136 diff --git a/data/emobility/Lfw__count b/data/emobility/Lfw__count new file mode 100644 index 000000000..74c0d3029 --- /dev/null +++ b/data/emobility/Lfw__count @@ -0,0 +1,171 @@ +File generated for type: Lfw_ +Time of generation:2016-08-28 20:57:59 +day,hour,count,n_counts +0,0,7343543.0,351444 +0,1,6186286.0,351690 +0,2,6453736.0,351299 +0,3,8893046.0,351559 +0,4,15924754.0,351339 +0,5,32769945.0,351428 +0,6,63709284.0,350402 +0,7,69916938.0,348710 +0,8,65113309.0,348123 +0,9,57285903.0,348706 +0,10,54207525.0,348880 +0,11,53141494.0,349054 +0,12,51197929.0,348832 +0,13,51710899.0,349092 +0,14,53501380.0,348991 +0,15,58489423.0,348987 +0,16,63471327.0,348756 +0,17,52378227.0,349222 +0,18,40614283.0,350170 +0,19,29592192.0,351107 +0,20,21751956.0,351355 +0,21,17002836.0,351739 +0,22,14199546.0,351669 +0,23,10815233.0,351919 +1,0,8201665.0,351210 +1,1,7116678.0,351481 +1,2,6883983.0,351036 +1,3,7659611.0,351295 +1,4,10552911.0,351236 +1,5,21939774.0,351463 +1,6,54676510.0,350582 +1,7,63943651.0,349085 +1,8,59121792.0,348225 +1,9,52165803.0,348496 +1,10,49888295.0,348174 +1,11,50189655.0,348234 +1,12,49879872.0,348283 +1,13,51681013.0,348557 +1,14,54333355.0,348283 +1,15,60141748.0,348285 +1,16,65550148.0,347873 +1,17,54228269.0,348296 +1,18,42610001.0,349513 +1,19,31501452.0,350566 +1,20,22914649.0,350886 +1,21,17813566.0,351402 +1,22,14936088.0,351382 +1,23,11422110.0,351557 +2,0,8622049.0,351546 +2,1,7390440.0,351931 +2,2,7027093.0,351393 +2,3,7633967.0,351759 +2,4,10147433.0,351715 +2,5,21085909.0,351782 +2,6,53839783.0,351016 +2,7,63362599.0,349717 +2,8,58850261.0,348716 +2,9,52488247.0,349139 +2,10,50827190.0,348903 +2,11,51718072.0,349204 +2,12,51740494.0,348915 +2,13,53914905.0,349422 +2,14,56707486.0,349036 +2,15,62243365.0,348725 +2,16,67355332.0,348438 +2,17,56209363.0,348522 +2,18,44811104.0,349854 +2,19,33730171.0,351089 +2,20,24939304.0,351357 +2,21,19418040.0,351831 +2,22,16156497.0,352044 +2,23,12335184.0,352010 +3,0,9206370.0,352170 +3,1,7750642.0,352476 +3,2,7276817.0,351834 +3,3,7799405.0,352070 +3,4,10202285.0,352165 +3,5,20697297.0,352263 +3,6,52217544.0,351596 +3,7,61768714.0,350426 +3,8,57796785.0,349492 +3,9,52169034.0,349597 +3,10,51299649.0,349379 +3,11,52715347.0,349480 +3,12,53220555.0,349254 +3,13,55778091.0,349506 +3,14,59217166.0,349304 +3,15,65103019.0,349071 +3,16,69994963.0,348560 +3,17,59516088.0,348580 +3,18,48740267.0,349893 +3,19,37772143.0,351224 +3,20,28328593.0,351701 +3,21,21839031.0,352256 +3,22,17668883.0,352283 +3,23,13229933.0,352469 +4,0,9771339.0,352287 +4,1,8135050.0,352593 +4,2,7606454.0,352190 +4,3,8036314.0,352396 +4,4,10256588.0,352317 +4,5,19853898.0,352527 +4,6,48201520.0,351963 +4,7,58036724.0,351273 +4,8,55214720.0,350789 +4,9,52263225.0,350999 +4,10,55172298.0,350644 +4,11,59935302.0,350733 +4,12,64101642.0,350403 +4,13,66453594.0,349629 +4,14,65764731.0,348831 +4,15,63698805.0,348411 +4,16,59855286.0,348384 +4,17,52721863.0,349172 +4,18,45527306.0,350272 +4,19,36484125.0,351376 +4,20,28343035.0,351805 +4,21,22397328.0,352258 +4,22,18730897.0,352386 +4,23,15005841.0,352615 +5,0,11702950.0,352169 +5,1,9656560.0,352778 +5,2,8552724.0,352529 +5,3,8294981.0,352565 +5,4,8875452.0,352556 +5,5,12244359.0,352882 +5,6,19355997.0,352531 +5,7,25895465.0,352711 +5,8,30687945.0,352358 +5,9,35814741.0,352382 +5,10,39398035.0,351790 +5,11,40919859.0,351615 +5,12,40791621.0,351283 +5,13,40634233.0,351499 +5,14,39801604.0,351460 +5,15,37491124.0,351498 +5,16,35311486.0,351400 +5,17,33354082.0,352023 +5,18,29986628.0,352078 +5,19,24095462.0,352354 +5,20,18693694.0,352418 +5,21,14468888.0,352624 +5,22,12041509.0,352574 +5,23,10110804.0,352688 +6,0,8097109.0,352092 +6,1,6356221.0,352393 +6,2,4866424.0,338640 +6,3,4506172.0,351331 +6,4,4636227.0,351785 +6,5,5735829.0,352256 +6,6,7274359.0,352176 +6,7,9725198.0,352387 +6,8,14035975.0,352289 +6,9,20364646.0,352486 +6,10,26684604.0,352124 +6,11,31306621.0,351882 +6,12,32772318.0,351350 +6,13,33570124.0,351409 +6,14,34513158.0,351143 +6,15,34598170.0,351190 +6,16,34854652.0,350945 +6,17,35122496.0,351406 +6,18,32696529.0,351397 +6,19,28116797.0,351862 +6,20,22843253.0,351900 +6,21,17833457.0,352165 +6,22,13495084.0,352106 +6,23,9958520.0,352047 diff --git a/data/emobility/Lkw__count b/data/emobility/Lkw__count new file mode 100644 index 000000000..14c8d11b4 --- /dev/null +++ b/data/emobility/Lkw__count @@ -0,0 +1,171 @@ +File generated for type: Lkw_ +Time of generation:2016-08-28 08:24:42 +day,hour,count,n_counts +0,0,28353372.0,367662 +0,1,30476881.0,367896 +0,2,32461409.0,367506 +0,3,41167478.0,367755 +0,4,56354604.0,367553 +0,5,78379797.0,367627 +0,6,96858355.0,366538 +0,7,97698171.0,364712 +0,8,100714262.0,364087 +0,9,103553284.0,364691 +0,10,104780603.0,364896 +0,11,106546748.0,365085 +0,12,106217504.0,364847 +0,13,107379570.0,365118 +0,14,108031410.0,365014 +0,15,104983342.0,365028 +0,16,97429568.0,364811 +0,17,84359088.0,365256 +0,18,71117050.0,366307 +0,19,59440593.0,367294 +0,20,50618843.0,367571 +0,21,44133106.0,367962 +0,22,39663515.0,367900 +0,23,35200717.0,368153 +1,0,33432717.0,367393 +1,1,35014519.0,367650 +1,2,38130314.0,367256 +1,3,45285376.0,367516 +1,4,59514703.0,367440 +1,5,83900075.0,367668 +1,6,108377278.0,366722 +1,7,113636795.0,365103 +1,8,117891629.0,364189 +1,9,120563203.0,364445 +1,10,120196288.0,364117 +1,11,120529625.0,364150 +1,12,119829657.0,364200 +1,13,121018104.0,364476 +1,14,121315697.0,364181 +1,15,117563305.0,364201 +1,16,108775474.0,363807 +1,17,94262522.0,364228 +1,18,79550942.0,365564 +1,19,65672089.0,366692 +1,20,54535420.0,367033 +1,21,46514082.0,367567 +1,22,40691741.0,367575 +1,23,35463902.0,367716 +2,0,33282217.0,367784 +2,1,34375632.0,368087 +2,2,37102850.0,367540 +2,3,43591483.0,367955 +2,4,57479187.0,367929 +2,5,82413324.0,368003 +2,6,108573172.0,367179 +2,7,115328046.0,365766 +2,8,119928418.0,364742 +2,9,122343298.0,365151 +2,10,121518743.0,364916 +2,11,121734247.0,365220 +2,12,120716404.0,364960 +2,13,121759859.0,365440 +2,14,121988372.0,365036 +2,15,118051274.0,364712 +2,16,108917881.0,364364 +2,17,94540532.0,364452 +2,18,80402328.0,365914 +2,19,66767671.0,367249 +2,20,55311559.0,367542 +2,21,46793756.0,368062 +2,22,40629860.0,368277 +2,23,35116868.0,368236 +3,0,32714530.0,368416 +3,1,33639814.0,368707 +3,2,36091617.0,368102 +3,3,42113095.0,368335 +3,4,55215966.0,368457 +3,5,78901110.0,368540 +3,6,104137527.0,367825 +3,7,110953265.0,366515 +3,8,115364986.0,365524 +3,9,117204681.0,365595 +3,10,116491919.0,365378 +3,11,116518736.0,365512 +3,12,115334107.0,365253 +3,13,116073451.0,365511 +3,14,115957748.0,365327 +3,15,111627415.0,365049 +3,16,102402298.0,364516 +3,17,88380196.0,364528 +3,18,74855496.0,365973 +3,19,62378429.0,367430 +3,20,51913309.0,367949 +3,21,44263124.0,368536 +3,22,39421182.0,368591 +3,23,34464033.0,368743 +4,0,32293898.0,368562 +4,1,33167037.0,368870 +4,2,35550055.0,368460 +4,3,41508334.0,368695 +4,4,53912512.0,368598 +4,5,75485286.0,368806 +4,6,97127436.0,368176 +4,7,103458727.0,367430 +4,8,108770319.0,366931 +4,9,110076237.0,367139 +4,10,109356004.0,366733 +4,11,108685980.0,366811 +4,12,105702502.0,366489 +4,13,102355975.0,365618 +4,14,97423790.0,364740 +4,15,89395443.0,364298 +4,16,79522670.0,364282 +4,17,68778907.0,365124 +4,18,59430681.0,366374 +4,19,51752181.0,367559 +4,20,45586345.0,368063 +4,21,40096771.0,368525 +4,22,35368643.0,368677 +4,23,30307117.0,368889 +5,0,27532044.0,368376 +5,1,27188874.0,369040 +5,2,27097389.0,368840 +5,3,27967866.0,368871 +5,4,29887619.0,368847 +5,5,33447263.0,369162 +5,6,37931699.0,368788 +5,7,41211214.0,368984 +5,8,41151531.0,368588 +5,9,39547103.0,368566 +5,10,36844852.0,367935 +5,11,34210380.0,367702 +5,12,31663051.0,367358 +5,13,29840513.0,367585 +5,14,28142214.0,367521 +5,15,26071165.0,367549 +5,16,24006820.0,367466 +5,17,21909880.0,368118 +5,18,19392282.0,368219 +5,19,16635047.0,368513 +5,20,15095601.0,368611 +5,21,12814034.0,368850 +5,22,10622342.0,368837 +5,23,8261717.0,368929 +6,0,6045965.0,368328 +6,1,5114285.0,368617 +6,2,4390178.0,354319 +6,3,4296006.0,367533 +6,4,4324305.0,368029 +6,5,4783516.0,368459 +6,6,5383051.0,368364 +6,7,6276354.0,368592 +6,8,7662326.0,368442 +6,9,9297621.0,368553 +6,10,10646955.0,368136 +6,11,11569669.0,367830 +6,12,11671736.0,367262 +6,13,11832597.0,367297 +6,14,12269265.0,367023 +6,15,12558604.0,367089 +6,16,12967138.0,366824 +6,17,13320791.0,367320 +6,18,12975986.0,367348 +6,19,12219053.0,367903 +6,20,11532212.0,368041 +6,21,11941422.0,368309 +6,22,20801133.0,368345 +6,23,25971973.0,368290 diff --git a/data/emobility/LoA__count b/data/emobility/LoA__count new file mode 100644 index 000000000..d2609cc9a --- /dev/null +++ b/data/emobility/LoA__count @@ -0,0 +1,171 @@ +File generated for type: LoA_ +Time of generation:2016-08-29 00:30:52 +day,hour,count,n_counts +0,0,3673264.0,362524 +0,1,3955678.0,362757 +0,2,4719874.0,362371 +0,3,6429302.0,362606 +0,4,9990364.0,362412 +0,5,16272893.0,362492 +0,6,25261843.0,361440 +0,7,29390208.0,359715 +0,8,31930978.0,359113 +0,9,30439765.0,359725 +0,10,29741202.0,359925 +0,11,29620653.0,360094 +0,12,28565522.0,359862 +0,13,29253940.0,360115 +0,14,28951985.0,360014 +0,15,26818410.0,360026 +0,16,23091569.0,359826 +0,17,17389134.0,360273 +0,18,12767156.0,361250 +0,19,9588649.0,362182 +0,20,7611007.0,362429 +0,21,6369389.0,362807 +0,22,5725046.0,362737 +0,23,4943828.0,362992 +1,0,4533230.0,362228 +1,1,4748607.0,362491 +1,2,5451832.0,362102 +1,3,7045663.0,362366 +1,4,10286377.0,362288 +1,5,16402061.0,362524 +1,6,26370079.0,361614 +1,7,31227023.0,360135 +1,8,33488232.0,359240 +1,9,31815310.0,359483 +1,10,30775314.0,359157 +1,11,30592415.0,359188 +1,12,29770187.0,359235 +1,13,30915306.0,359522 +1,14,30752780.0,359226 +1,15,28520135.0,359243 +1,16,24517540.0,358843 +1,17,18518082.0,359295 +1,18,13743556.0,360553 +1,19,10285625.0,361606 +1,20,8039093.0,361932 +1,21,6678938.0,362447 +1,22,5956816.0,362441 +1,23,5099091.0,362582 +2,0,4627314.0,362630 +2,1,4791678.0,362977 +2,2,5474137.0,362493 +2,3,6981222.0,362852 +2,4,10189451.0,362808 +2,5,16308367.0,362885 +2,6,26341874.0,362094 +2,7,31206843.0,360765 +2,8,33512224.0,359741 +2,9,32000526.0,360146 +2,10,30958328.0,359934 +2,11,30870467.0,360240 +2,12,30008283.0,359961 +2,13,31127303.0,360464 +2,14,31016804.0,360076 +2,15,28820447.0,359753 +2,16,24807764.0,359448 +2,17,18822368.0,359530 +2,18,14092342.0,360895 +2,19,10618074.0,362148 +2,20,8298478.0,362408 +2,21,6848298.0,362913 +2,22,6055565.0,363116 +2,23,5142248.0,363083 +3,0,4631366.0,363257 +3,1,4777868.0,363546 +3,2,5441706.0,362941 +3,3,6909181.0,363175 +3,4,9956379.0,363296 +3,5,15875606.0,363380 +3,6,25597195.0,362693 +3,7,30386656.0,361486 +3,8,32685164.0,360515 +3,9,31158273.0,360601 +3,10,30241628.0,360380 +3,11,30139594.0,360511 +3,12,29367426.0,360272 +3,13,30469667.0,360520 +3,14,30389828.0,360339 +3,15,28233086.0,360102 +3,16,24323941.0,359599 +3,17,18597970.0,359635 +3,18,14061013.0,360962 +3,19,10714477.0,362327 +3,20,8415411.0,362815 +3,21,6943322.0,363376 +3,22,6127925.0,363415 +3,23,5205311.0,363577 +4,0,4668108.0,363373 +4,1,4772604.0,363685 +4,2,5440113.0,363280 +4,3,6871076.0,363506 +4,4,9878140.0,363416 +4,5,15467561.0,363640 +4,6,24431626.0,363054 +4,7,29409306.0,362358 +4,8,32101563.0,361872 +4,9,30448060.0,362056 +4,10,29843755.0,361699 +4,11,29795506.0,361777 +4,12,28806040.0,361463 +4,13,28460208.0,360653 +4,14,26923434.0,359839 +4,15,23802612.0,359404 +4,16,19740885.0,359376 +4,17,15538429.0,360160 +4,18,12266489.0,361284 +4,19,9650738.0,362417 +4,20,7758312.0,362887 +4,21,6444632.0,363338 +4,22,5579848.0,363473 +4,23,4584425.0,363682 +5,0,3951848.0,363185 +5,1,3816168.0,363845 +5,2,3954720.0,363643 +5,3,4244829.0,363666 +5,4,4881922.0,363648 +5,5,5931278.0,363968 +5,6,7841506.0,363606 +5,7,9707002.0,363808 +5,8,10157683.0,363423 +5,9,9961205.0,363441 +5,10,9823542.0,362839 +5,11,9620356.0,362662 +5,12,9092735.0,362343 +5,13,8653516.0,362536 +5,14,8113725.0,362482 +5,15,7306442.0,362511 +5,16,6496819.0,362405 +5,17,5721744.0,363038 +5,18,4869249.0,363104 +5,19,3974632.0,363391 +5,20,3265049.0,363466 +5,21,2643487.0,363680 +5,22,2182388.0,363674 +5,23,1797544.0,363768 +6,0,1470547.0,363160 +6,1,1255734.0,363444 +6,2,1063446.0,349329 +6,3,1061634.0,362371 +6,4,1151991.0,362862 +6,5,1373847.0,363301 +6,6,1615799.0,363218 +6,7,1923327.0,363446 +6,8,2426031.0,363332 +6,9,3216728.0,363489 +6,10,4167256.0,363116 +6,11,4850810.0,362872 +6,12,5013570.0,362324 +6,13,5038018.0,362347 +6,14,5098677.0,362078 +6,15,5146378.0,362158 +6,16,5228665.0,361890 +6,17,5250334.0,362355 +6,18,4994483.0,362349 +6,19,4550709.0,362843 +6,20,4042904.0,362914 +6,21,3664340.0,363156 +6,22,3806784.0,363167 +6,23,3742585.0,363114 diff --git a/data/emobility/Lzg__count b/data/emobility/Lzg__count new file mode 100644 index 000000000..4dab594de --- /dev/null +++ b/data/emobility/Lzg__count @@ -0,0 +1,171 @@ +File generated for type: Lzg_ +Time of generation:2016-08-29 00:53:36 +day,hour,count,n_counts +0,0,23300531.0,362534 +0,1,25096969.0,362762 +0,2,26311743.0,362372 +0,3,33064872.0,362617 +0,4,44091097.0,362411 +0,5,58774545.0,362489 +0,6,66859499.0,361444 +0,7,63395056.0,359714 +0,8,63467612.0,359115 +0,9,67471264.0,359722 +0,10,69617030.0,359914 +0,11,71506410.0,360091 +0,12,72332256.0,359857 +0,13,72689015.0,360116 +0,14,73670711.0,360008 +0,15,72915695.0,360019 +0,16,69314268.0,359816 +0,17,62566391.0,360269 +0,18,54594390.0,361246 +0,19,46820202.0,362190 +0,20,40546315.0,362436 +0,21,35707272.0,362820 +0,22,32107467.0,362756 +0,23,28615668.0,362996 +1,0,27366456.0,362242 +1,1,28789768.0,362514 +1,2,31204673.0,362110 +1,3,36548400.0,362366 +1,4,46945586.0,362293 +1,5,64090224.0,362525 +1,6,77060014.0,361627 +1,7,77194043.0,360134 +1,8,78809962.0,359246 +1,9,82955531.0,359479 +1,10,84050217.0,359150 +1,11,84668390.0,359187 +1,12,84744618.0,359230 +1,13,84621348.0,359522 +1,14,85073662.0,359227 +1,15,83661239.0,359241 +1,16,79022664.0,358847 +1,17,71051132.0,359287 +1,18,61752763.0,360553 +1,19,52167222.0,361619 +1,20,43968474.0,361936 +1,21,37762858.0,362462 +1,22,32898950.0,362462 +1,23,28713796.0,362590 +2,0,27121605.0,362645 +2,1,28125135.0,362997 +2,2,30205194.0,362503 +2,3,34978509.0,362863 +2,4,45059765.0,362813 +2,5,62727111.0,362884 +2,6,77244439.0,362096 +2,7,78755899.0,360765 +2,8,80578144.0,359747 +2,9,84297663.0,360145 +2,10,84983194.0,359927 +2,11,85422694.0,360238 +2,12,85236772.0,359955 +2,13,84969528.0,360455 +2,14,85336203.0,360077 +2,15,83723119.0,359752 +2,16,78789434.0,359447 +2,17,70899043.0,359528 +2,18,62088351.0,360891 +2,19,52773808.0,362157 +2,20,44370711.0,362419 +2,21,37787982.0,362929 +2,22,32661494.0,363135 +2,23,28259553.0,363091 +3,0,26497695.0,363274 +3,1,27342578.0,363565 +3,2,29148968.0,362951 +3,3,33531280.0,363184 +3,4,43020865.0,363301 +3,5,59674525.0,363374 +3,6,73591490.0,362699 +3,7,75200500.0,361485 +3,8,76878661.0,360519 +3,9,80069417.0,360600 +3,10,80645590.0,360370 +3,11,80906128.0,360509 +3,12,80527737.0,360270 +3,13,79986346.0,360522 +3,14,79938810.0,360337 +3,15,77949448.0,360105 +3,16,72826594.0,359596 +3,17,65072570.0,359632 +3,18,56659100.0,360958 +3,19,48320028.0,362331 +3,20,40858867.0,362824 +3,21,35133251.0,363383 +3,22,31344458.0,363430 +3,23,27509529.0,363586 +4,0,25999236.0,363388 +4,1,26831527.0,363704 +4,2,28568070.0,363290 +4,3,32911603.0,363522 +4,4,41737912.0,363421 +4,5,56663378.0,363641 +4,6,67880433.0,363054 +4,7,68794551.0,362357 +4,8,70931127.0,361877 +4,9,73691741.0,362058 +4,10,73738734.0,361693 +4,11,73116971.0,361775 +4,12,71250950.0,361459 +4,13,68302675.0,360647 +4,14,65109477.0,359843 +4,15,60500169.0,359403 +4,16,54962320.0,359378 +4,17,48815324.0,360157 +4,18,43214867.0,361284 +4,19,38809209.0,362430 +4,20,35054642.0,362896 +4,21,31235674.0,363354 +4,22,27558571.0,363497 +4,23,23650845.0,363687 +5,0,21667238.0,363204 +5,1,21580662.0,363862 +5,2,21483679.0,363651 +5,3,22058007.0,363682 +5,4,23199653.0,363662 +5,5,25420231.0,363973 +5,6,27545852.0,363613 +5,7,28356285.0,363812 +5,8,27160083.0,363424 +5,9,25498222.0,363437 +5,10,23270488.0,362843 +5,11,21217851.0,362662 +5,12,19505320.0,362348 +5,13,18135864.0,362527 +5,14,17001837.0,362474 +5,15,15841037.0,362512 +5,16,14548015.0,362409 +5,17,13067099.0,363034 +5,18,11466394.0,363095 +5,19,10152695.0,363405 +5,20,9743176.0,363476 +5,21,8456291.0,363692 +5,22,6974190.0,363669 +5,23,5179330.0,363764 +6,0,3400456.0,363164 +6,1,2801051.0,363445 +6,2,2402973.0,349340 +6,3,2315587.0,362379 +6,4,2259207.0,362876 +6,5,2420104.0,363304 +6,6,2596005.0,363219 +6,7,2793847.0,363441 +6,8,3062006.0,363324 +6,9,3440425.0,363490 +6,10,3758102.0,363105 +6,11,4014898.0,362859 +6,12,4151038.0,362313 +6,13,4268061.0,362336 +6,14,4419022.0,362076 +6,15,4591183.0,362142 +6,16,4810645.0,361877 +6,17,5014566.0,362346 +6,18,5153546.0,362353 +6,19,5300740.0,362842 +6,20,5537405.0,362921 +6,21,6692060.0,363176 +6,22,15501061.0,363189 +6,23,20824760.0,363125 diff --git a/data/emobility/Pkw__count b/data/emobility/Pkw__count new file mode 100644 index 000000000..b2625b55e --- /dev/null +++ b/data/emobility/Pkw__count @@ -0,0 +1,171 @@ +File generated for type: Pkw_ +Time of generation:2016-08-28 00:44:15 +day,hour,count,n_counts +0,0,60505420.0,351450 +0,1,37492700.0,351695 +0,2,31094666.0,351305 +0,3,39475671.0,351569 +0,4,82704875.0,351349 +0,5,247018956.0,351434 +0,6,487519584.0,350409 +0,7,646461135.0,348716 +0,8,571271067.0,348128 +0,9,490598450.0,348711 +0,10,462098807.0,348885 +0,11,461379423.0,349059 +0,12,473135116.0,348837 +0,13,497279091.0,349097 +0,14,525025205.0,348995 +0,15,581031653.0,348992 +0,16,668935283.0,348761 +0,17,664540270.0,349227 +0,18,546120154.0,350175 +0,19,374381719.0,351112 +0,20,256033806.0,351360 +0,21,186028860.0,351744 +0,22,141426408.0,351671 +0,23,80248929.0,351924 +1,0,43623969.0,351218 +1,1,26428885.0,351487 +1,2,20734849.0,351041 +1,3,24314641.0,351298 +1,4,54268719.0,351241 +1,5,201061338.0,351468 +1,6,447685115.0,350586 +1,7,630859274.0,349088 +1,8,563379406.0,348227 +1,9,471894090.0,348499 +1,10,425217066.0,348177 +1,11,421083012.0,348237 +1,12,445605798.0,348286 +1,13,482772169.0,348560 +1,14,520127287.0,348287 +1,15,588092473.0,348288 +1,16,684434394.0,347877 +1,17,682306419.0,348300 +1,18,570243457.0,349518 +1,19,389809888.0,350571 +1,20,261697774.0,350892 +1,21,191683322.0,351407 +1,22,150080930.0,351386 +1,23,87964977.0,351563 +2,0,47228027.0,351554 +2,1,27564752.0,351936 +2,2,20881971.0,351399 +2,3,23943229.0,351764 +2,4,52710930.0,351720 +2,5,196221733.0,351787 +2,6,439548111.0,351021 +2,7,623812425.0,349722 +2,8,559872079.0,348721 +2,9,473562625.0,349144 +2,10,434527175.0,348907 +2,11,436615050.0,349209 +2,12,466735933.0,348920 +2,13,509973727.0,349427 +2,14,547416443.0,349040 +2,15,611307000.0,348729 +2,16,704108636.0,348443 +2,17,702801162.0,348526 +2,18,591477390.0,349859 +2,19,416819590.0,351094 +2,20,285685420.0,351362 +2,21,209785929.0,351836 +2,22,165540768.0,352046 +2,23,100411550.0,352018 +3,0,54416768.0,352175 +3,1,31727428.0,352479 +3,2,23611858.0,351838 +3,3,26149869.0,352075 +3,4,54280155.0,352169 +3,5,193063963.0,352267 +3,6,426914025.0,351601 +3,7,608397986.0,350430 +3,8,553340587.0,349496 +3,9,477883656.0,349601 +3,10,449755328.0,349382 +3,11,456335269.0,349484 +3,12,484445074.0,349257 +3,13,524934074.0,349509 +3,14,566074498.0,349306 +3,15,628804654.0,349073 +3,16,710971509.0,348564 +3,17,708578615.0,348583 +3,18,617255095.0,349896 +3,19,447641406.0,351227 +3,20,311506961.0,351705 +3,21,230215254.0,352259 +3,22,180349040.0,352283 +3,23,110377276.0,352472 +4,0,60883780.0,352293 +4,1,36444873.0,352596 +4,2,27410102.0,352193 +4,3,29552584.0,352402 +4,4,56640466.0,352321 +4,5,187011031.0,352532 +4,6,402093716.0,351967 +4,7,568722993.0,351276 +4,8,504850959.0,350792 +4,9,463284983.0,351003 +4,10,485698446.0,350644 +4,11,535334118.0,350736 +4,12,625403999.0,350405 +4,13,698152918.0,349632 +4,14,738517808.0,348834 +4,15,755055610.0,348414 +4,16,755413741.0,348388 +4,17,724499920.0,349175 +4,18,643737063.0,350276 +4,19,498656556.0,351381 +4,20,364590450.0,351810 +4,21,269209536.0,352262 +4,22,221017049.0,352388 +4,23,164188001.0,352618 +5,0,111955295.0,352176 +5,1,74639316.0,352782 +5,2,54695061.0,352537 +5,3,50919995.0,352570 +5,4,65448723.0,352561 +5,5,112687133.0,352887 +5,6,153415459.0,352536 +5,7,231348351.0,352715 +5,8,353558756.0,352362 +5,9,498383162.0,352386 +5,10,596449397.0,351794 +5,11,626989618.0,351619 +5,12,622441787.0,351288 +5,13,632983743.0,351503 +5,14,631392190.0,351464 +5,15,578049176.0,351502 +5,16,544733904.0,351404 +5,17,534539031.0,352026 +5,18,492234809.0,352082 +5,19,382429414.0,352358 +5,20,293794785.0,352422 +5,21,224738641.0,352629 +5,22,194983502.0,352579 +5,23,166324089.0,352695 +6,0,127654805.0,352099 +6,1,90433681.0,352404 +6,2,59014779.0,338649 +6,3,48196655.0,351344 +6,4,48941477.0,351795 +6,5,66965746.0,352263 +6,6,79768176.0,352180 +6,7,110980975.0,352395 +6,8,187757052.0,352295 +6,9,315111159.0,352490 +6,10,450209037.0,352129 +6,11,543034147.0,351887 +6,12,571041370.0,351354 +6,13,605165846.0,351413 +6,14,640649127.0,351147 +6,15,618145297.0,351194 +6,16,620568613.0,350949 +6,17,642882258.0,351411 +6,18,589388151.0,351401 +6,19,486165115.0,351866 +6,20,376850444.0,351904 +6,21,272380036.0,352169 +6,22,182189174.0,352110 +6,23,109012042.0,352051 diff --git a/data/emobility/PmA__count b/data/emobility/PmA__count new file mode 100644 index 000000000..fcb4c70a2 --- /dev/null +++ b/data/emobility/PmA__count @@ -0,0 +1,171 @@ +File generated for type: PmA_ +Time of generation:2016-08-29 00:07:29 +day,hour,count,n_counts +0,0,1370980.0,362540 +0,1,1122100.0,362767 +0,2,1007756.0,362374 +0,3,1096055.0,362617 +0,4,1494098.0,362411 +0,5,2632117.0,362495 +0,6,5040844.0,361441 +0,7,6734633.0,359716 +0,8,7267283.0,359118 +0,9,7727214.0,359728 +0,10,8459109.0,359922 +0,11,8830399.0,360099 +0,12,8529356.0,359867 +0,13,8521282.0,360122 +0,14,8631975.0,360013 +0,15,8671765.0,360027 +0,16,8544168.0,359826 +0,17,7192283.0,360277 +0,18,5656559.0,361253 +0,19,4287554.0,362189 +0,20,3198490.0,362433 +0,21,2352343.0,362817 +0,22,1755082.0,362754 +0,23,1314022.0,362998 +1,0,1005392.0,362248 +1,1,847397.0,362516 +1,2,786540.0,362110 +1,3,851625.0,362375 +1,4,1173075.0,362297 +1,5,2119684.0,362522 +1,6,4470704.0,361613 +1,7,6276030.0,360136 +1,8,6752467.0,359244 +1,9,7189080.0,359483 +1,10,7794481.0,359153 +1,11,8079976.0,359192 +1,12,7862712.0,359234 +1,13,8091831.0,359525 +1,14,8402102.0,359227 +1,15,8557098.0,359248 +1,16,8512622.0,358840 +1,17,7191074.0,359293 +1,18,5729074.0,360558 +1,19,4396866.0,361612 +1,20,3289114.0,361926 +1,21,2428819.0,362451 +1,22,1825280.0,362455 +1,23,1367457.0,362594 +2,0,1049680.0,362645 +2,1,880559.0,363003 +2,2,812058.0,362501 +2,3,872623.0,362866 +2,4,1193607.0,362812 +2,5,2176322.0,362883 +2,6,4540578.0,362096 +2,7,6330227.0,360766 +2,8,6895238.0,359745 +2,9,7460725.0,360145 +2,10,8174174.0,359930 +2,11,8488161.0,360241 +2,12,8312798.0,359961 +2,13,8691772.0,360462 +2,14,9098390.0,360072 +2,15,9243026.0,359755 +2,16,9153770.0,359443 +2,17,7793564.0,359527 +2,18,6293163.0,360891 +2,19,4883114.0,362152 +2,20,3678028.0,362415 +2,21,2727234.0,362921 +2,22,2048624.0,363131 +2,23,1532197.0,363095 +3,0,1160897.0,363278 +3,1,960382.0,363568 +3,2,871783.0,362954 +3,3,942043.0,363193 +3,4,1271954.0,363303 +3,5,2268038.0,363370 +3,6,4625537.0,362690 +3,7,6467140.0,361481 +3,8,7184633.0,360522 +3,9,7968584.0,360603 +3,10,8836589.0,360373 +3,11,9178199.0,360510 +3,12,8951110.0,360273 +3,13,9232805.0,360526 +3,14,9572293.0,360342 +3,15,9661117.0,360107 +3,16,9488316.0,359596 +3,17,8194615.0,359636 +3,18,6753290.0,360962 +3,19,5337257.0,362326 +3,20,4095281.0,362823 +3,21,3089366.0,363383 +3,22,2357248.0,363432 +3,23,1777432.0,363583 +4,0,1357791.0,363387 +4,1,1109570.0,363707 +4,2,994076.0,363294 +4,3,1051080.0,363518 +4,4,1383504.0,363424 +4,5,2431527.0,363642 +4,6,4741219.0,363054 +4,7,6483026.0,362360 +4,8,7400858.0,361879 +4,9,8627703.0,362057 +4,10,9834477.0,361694 +4,11,10421857.0,361781 +4,12,10457946.0,361466 +4,13,10949863.0,360649 +4,14,11420028.0,359844 +4,15,11369683.0,359407 +4,16,10765132.0,359381 +4,17,9546660.0,360162 +4,18,8119567.0,361293 +4,19,6526356.0,362426 +4,20,5095448.0,362893 +4,21,3913660.0,363347 +4,22,3053728.0,363492 +4,23,2370754.0,363689 +5,0,1847091.0,363201 +5,1,1530385.0,363869 +5,2,1370784.0,363664 +5,3,1428099.0,363689 +5,4,1841623.0,363669 +5,5,2841688.0,363981 +5,6,4385937.0,363617 +5,7,6372232.0,363819 +5,8,8728069.0,363429 +5,9,11188778.0,363447 +5,10,12580268.0,362851 +5,11,12732664.0,362671 +5,12,12021894.0,362362 +5,13,11731520.0,362544 +5,14,11312156.0,362501 +5,15,10269083.0,362528 +5,16,9114799.0,362428 +5,17,8000062.0,363052 +5,18,6642936.0,363116 +5,19,5212069.0,363414 +5,20,3996119.0,363495 +5,21,3003952.0,363702 +5,22,2284437.0,363691 +5,23,1735776.0,363789 +6,0,1314876.0,363174 +6,1,1054444.0,363453 +6,2,892669.0,349344 +6,3,903624.0,362388 +6,4,1089356.0,362880 +6,5,1610545.0,363319 +6,6,2321719.0,363229 +6,7,3058046.0,363457 +6,8,4194907.0,363344 +6,9,5979547.0,363511 +6,10,7804799.0,363126 +6,11,8962863.0,362885 +6,12,9118678.0,362340 +6,13,8993217.0,362365 +6,14,8798804.0,362102 +6,15,8433439.0,362170 +6,16,8105182.0,361914 +6,17,7728014.0,362369 +6,18,6928657.0,362369 +6,19,5658506.0,362862 +6,20,4303733.0,362940 +6,21,3199738.0,363194 +6,22,2418659.0,363201 +6,23,1806868.0,363125 diff --git a/data/emobility/Sat__count b/data/emobility/Sat__count new file mode 100644 index 000000000..a656b46be --- /dev/null +++ b/data/emobility/Sat__count @@ -0,0 +1,171 @@ +File generated for type: Sat_ +Time of generation:2016-08-29 01:16:51 +day,hour,count,n_counts +0,0,17017517.0,351437 +0,1,18439581.0,351686 +0,2,19468406.0,351292 +0,3,24537101.0,351564 +0,4,32642712.0,351336 +0,5,43309706.0,351422 +0,6,48383063.0,350401 +0,7,45353712.0,348704 +0,8,45173926.0,348115 +0,9,48637666.0,348698 +0,10,50743493.0,348867 +0,11,52439727.0,349044 +0,12,53268861.0,348823 +0,13,53488536.0,349086 +0,14,54302613.0,348983 +0,15,53953698.0,348980 +0,16,51548206.0,348748 +0,17,46942974.0,349215 +0,18,40976380.0,350158 +0,19,34358486.0,351102 +0,20,28305820.0,351354 +0,21,23558633.0,351738 +0,22,20789610.0,351665 +0,23,18763808.0,351915 +1,0,17848515.0,351208 +1,1,18553615.0,351479 +1,2,20468167.0,351035 +1,3,25007027.0,351293 +1,4,33535391.0,351234 +1,5,46897621.0,351462 +1,6,56309592.0,350582 +1,7,56258616.0,349083 +1,8,57451495.0,348221 +1,9,60986147.0,348491 +1,10,62218789.0,348171 +1,11,62962418.0,348231 +1,12,63161329.0,348276 +1,13,62899460.0,348553 +1,14,63190916.0,348280 +1,15,62279427.0,348283 +1,16,59062519.0,347871 +1,17,53456894.0,348288 +1,18,46400240.0,349506 +1,19,38337179.0,350566 +1,20,30782786.0,350886 +1,21,24953748.0,351401 +1,22,21238400.0,351381 +1,23,18724911.0,351552 +2,0,17513358.0,351546 +2,1,17898982.0,351928 +2,2,19574226.0,351393 +2,3,23703443.0,351759 +2,4,32028882.0,351712 +2,5,45839412.0,351782 +2,6,56508910.0,351013 +2,7,57582383.0,349717 +2,8,58940357.0,348715 +2,9,62135418.0,349135 +2,10,63063545.0,348898 +2,11,63634971.0,349203 +2,12,63610569.0,348909 +2,13,63214435.0,349420 +2,14,63422083.0,349032 +2,15,62364740.0,348723 +2,16,58909396.0,348437 +2,17,53381766.0,348515 +2,18,46720372.0,349845 +2,19,38854390.0,351086 +2,20,31135999.0,351355 +2,21,25045223.0,351830 +2,22,21133289.0,352042 +2,23,18447782.0,352011 +3,0,17096694.0,352169 +3,1,17372335.0,352476 +3,2,18861394.0,351835 +3,3,22704290.0,352070 +3,4,30567146.0,352163 +3,5,43656838.0,352263 +3,6,53868721.0,351596 +3,7,55031883.0,350426 +3,8,56285139.0,349491 +3,9,59036165.0,349592 +3,10,59835441.0,349376 +3,11,60237052.0,349476 +3,12,60048406.0,349249 +3,13,59420258.0,349500 +3,14,59265301.0,349298 +3,15,57887474.0,349068 +3,16,54251730.0,348554 +3,17,48788325.0,348575 +3,18,42435329.0,349885 +3,19,35383047.0,351219 +3,20,28418010.0,351700 +3,21,23022980.0,352250 +3,22,20121248.0,352278 +3,23,17872306.0,352467 +4,0,16749329.0,352285 +4,1,17049280.0,352589 +4,2,18457512.0,352186 +4,3,22246902.0,352395 +4,4,29630136.0,352312 +4,5,41375477.0,352524 +4,6,49589013.0,351962 +4,7,50217179.0,351271 +4,8,51775236.0,350788 +4,9,54211553.0,350997 +4,10,54528158.0,350638 +4,11,54238347.0,350729 +4,12,52892940.0,350397 +4,13,50513977.0,349624 +4,14,48137956.0,348829 +4,15,44907879.0,348405 +4,16,41101875.0,348383 +4,17,36731229.0,349165 +4,18,32348588.0,350264 +4,19,28229015.0,351376 +4,20,24150750.0,351805 +4,21,20380335.0,352256 +4,22,17704868.0,352384 +4,23,15405120.0,352609 +5,0,13924290.0,352169 +5,1,13599040.0,352771 +5,2,13746841.0,352529 +5,3,14825664.0,352562 +5,4,16564819.0,352554 +5,5,18982583.0,352880 +5,6,20985673.0,352524 +5,7,21880022.0,352709 +5,8,21196279.0,352356 +5,9,19988910.0,352378 +5,10,18254921.0,351790 +5,11,16655183.0,351612 +5,12,15313830.0,351278 +5,13,14202905.0,351489 +5,14,13265942.0,351447 +5,15,12381772.0,351485 +5,16,11411064.0,351390 +5,17,10270984.0,352014 +5,18,9035394.0,352064 +5,19,7981458.0,352346 +5,20,7671168.0,352401 +5,21,6680304.0,352617 +5,22,5522186.0,352566 +5,23,4105229.0,352678 +6,0,2676969.0,352088 +6,1,2215451.0,352393 +6,2,1924656.0,338640 +6,3,1881690.0,351333 +6,4,1840389.0,351786 +6,5,1959029.0,352247 +6,6,2087353.0,352162 +6,7,2257580.0,352374 +6,8,2476505.0,352274 +6,9,2746232.0,352468 +6,10,2950279.0,352110 +6,11,3114276.0,351867 +6,12,3202088.0,351332 +6,13,3289422.0,351395 +6,14,3403264.0,351120 +6,15,3545969.0,351170 +6,16,3711850.0,350924 +6,17,3858901.0,351390 +6,18,3979807.0,351386 +6,19,4104294.0,351849 +6,20,4290238.0,351886 +6,21,5176706.0,352151 +6,22,11499982.0,352090 +6,23,15224700.0,352045 diff --git a/data/emobility/traffic.tex b/data/emobility/traffic.tex new file mode 100644 index 000000000..327ad68eb --- /dev/null +++ b/data/emobility/traffic.tex @@ -0,0 +1,14 @@ +\documentclass[a4paper,10pt]{article} +\usepackage[utf8]{inputenc} + +\begin{document} + +\section{Traffic data} +Data is provided by Bundesanstalt für Straßenwesen (BASt). +Hourly data for passenger cars from 2010-2015 was used. +Data gives the number of counted vehicles in a given hour. +Day $0$ refers to Monday, day $1$ to Tuesday etc. +Hour $0$ gives the number of vehicles counted between 0 a.m. and 1 a.m., hour $1$ between $1$ a.m. and $2$ a.m. and so on. +Only measurements marked as ``on a regular base'' were considered. +Hence, total number of measurements for single hours of the week slightly vary. +\end{document} diff --git a/data/energy_totals_DF_2030.csv b/data/energy_totals_DF_2030.csv new file mode 100644 index 000000000..14fb5124a --- /dev/null +++ b/data/energy_totals_DF_2030.csv @@ -0,0 +1,2 @@ +,agriculture biomass,agriculture electricity,agriculture oil,electricity rail,electricity residential,residential biomass,residential gas,residential heat biomass,residential heat gas,residential heat oil,residential oil,services biomass,services electricity,services gas,services oil,total domestic aviation,total domestic navigation,total international aviation,total international navigation,total rail,total residential space,total residential water,total road,total services space,total services water,electricity residential space,electricity residential water,district heat share,electricity services space,electricity services water +MA,0.0,4.123081554340076,8.521542348983138,0.5789568718163199,25.58975669506309,1.3014631205375813,0.0,4.002848367140494,0.0,10.133548789154782,5.218711410000001,7.2243124635979745,8.529932599841148,0.0,0.4160644494555048,0.5915285488151758,0.0,12.000646158859418,2.019527928700952,0.8072925980221416,14.118892132377166,9.41259475491811,81.7049031093965,0.0,0.0,5.6370538386,3.7580358924,0,0,0 diff --git a/data/existing_infrastructure/existing_heating_raw.csv b/data/existing_infrastructure/existing_heating_raw.csv new file mode 100644 index 000000000..224c2ef7f --- /dev/null +++ b/data/existing_infrastructure/existing_heating_raw.csv @@ -0,0 +1,32 @@ +,gas boiler,coal boiler,oil boiler,resistive heater,air heat pump,ground heat pump +Austria,9.32,0.4,15.42,0,0.72,1.077 +Belgium,28.39,1.19,19.53,3.14,0.17,0.061 +Bulgaria,0.16,3.68,0.04,3.46,1.01,0.045 +Croatia,8.39,0.03,2.88,1.53,0,0 +Czech Republic,9.26,1.02,0.1,2.73,0.35,0.263 +Denmark,4.82,0,3.67,2.19,1.9,0.381 +Estonia,0.22,0.02,0.12,0.27,0.33,0.1 +Finland,0,0.04,3.79,10.3,1.98,0.58 +France,76.85,1.03,46.03,87.24,26.14,1.97 +Germany,131.09,0.44,132.04,0,2.38,3.29 +Greece,2.17,0.03,18.13,5.91,0,0 +Hungary,21.21,1.3,0.04,0.06,0.03,0.035 +Ireland,4.32,0.8,4.85,1.03,0.03,0.03 +Italy,112.68,1.89,3.33,6.61,54.98,0.6 +Latvia,1.53,0.4,0,0.03,0,0 +Lithuania,0,0,0,0,0.01,0.02 +Luxembourg,0.79,0,0.77,0.09,0.01,0.001 +Netherlands,81.41,0,0.1,0.1,1.82,0.849 +Poland,8.25,24.75,9.04,5.96,0.01,0.04 +Portugal,4.79,0,0.2,21.26,1.58,0.064 +Romania,16.56,0.32,0.03,0.72,0,0 +Slovakia,8.05,0.19,0.01,0.55,0.06,0.015 +Slovenia,0.4,0,1.08,0.4,0.03,0.056 +Spain,48.99,0.51,17.95,56.58,1.15,0.016 +Sweden,1.01,0,0.77,3.76,3.42,4.813 +United Kingdom,160.49,1.26,7.39,13.81,0.81,0.21 +Norway,,,,,2.91,0.334 +Switzerland,,,,,1,0.849 +Serbia,,,,,, +Bosnia Herzegovina,,,,,, +DEFAULT,,,,,, diff --git a/data/export_ports.csv b/data/export_ports.csv new file mode 100644 index 000000000..2981ce22b --- /dev/null +++ b/data/export_ports.csv @@ -0,0 +1,14 @@ +name,country,fraction,y,x +Port of Nador,MA,0.2,35.2748795,-2.92229843 +Port of Tanger Med,MA,0.2,35.5324,-5.3036 +Port of Kenitra,MA,0.1,34.26101,-6.5802 +Port of Tan-tan,MA,0.4,28.47384,-11.3453 +Port of Kenitra,MA,0.1,33.1267,-8.62028 +dummy port 1,NG,1,6.455,4.234 +dummy port 1,BJ,1,6.47,2.63 +dummy port 1,BR,1,-22.9068,-43.1729 +dummy port 1,NA,1,-21.05431,13.50664 +dummy port 1,AE,1,25.2048,55.2708 +AS Suways,EG, 1, 29.966667,32.55 +Damietta,EG,1,31.483333,31.75 +Port Said,EG,3,31.266667,32.3 diff --git a/data/heat_load_profile_BDEW.csv b/data/heat_load_profile_BDEW.csv new file mode 100644 index 000000000..62ca10712 --- /dev/null +++ b/data/heat_load_profile_BDEW.csv @@ -0,0 +1,25 @@ +,residential space weekday,residential space weekend,services space weekday,services space weekend,residential water weekday,residential water weekend,services water weekday,services water weekend +0,0.5437843306385036,0.5391846410003029,0.740230434593118,0.7918173557545402,1.0,1.0,1.0,1.0 +1,0.5690496225400243,0.5641534370440313,0.7642025524842398,0.7929627291950984,1.0,1.0,1.0,1.0 +2,0.5624023211873742,0.5575494117194042,0.8264420882344785,0.8961602364492307,1.0,1.0,1.0,1.0 +3,0.6120351867307156,0.6074588966300298,0.9338477492552973,1.066547622880321,1.0,1.0,1.0,1.0 +4,0.8210089232467712,0.8188451841881503,1.1288089786462463,1.2779268432155158,1.0,1.0,1.0,1.0 +5,1.2287073985428116,1.2315677844536332,1.3311522394966053,1.2808129834243316,1.0,1.0,1.0,1.0 +6,1.327953505819319,1.3349874311629708,1.3976491755316236,1.3076676145167292,1.0,1.0,1.0,1.0 +7,1.2533048874868005,1.2584095945395426,1.3529869654334066,1.239881414312941,1.0,1.0,1.0,1.0 +8,1.204661538907097,1.206562127967529,1.2631870820835946,1.157513929299677,1.0,1.0,1.0,1.0 +9,1.1511425365003825,1.152931252109671,1.183486516733693,1.1001631309844286,1.0,1.0,1.0,1.0 +10,1.0982914366923946,1.0987739728887453,1.1056637898031139,1.0553379006911972,1.0,1.0,1.0,1.0 +11,1.0602079991199889,1.0598534287519163,1.0536117591812475,0.9953570175561463,1.0,1.0,1.0,1.0 +12,1.0430483470403709,1.042552786631541,1.0075511014823457,0.9238971341830102,1.0,1.0,1.0,1.0 +13,1.023765876994618,1.0234573235486537,0.983633820661761,0.928978159404834,1.0,1.0,1.0,1.0 +14,1.0250355817085612,1.0241187665206792,0.973887563496691,0.9277637088455348,1.0,1.0,1.0,1.0 +15,1.0419068035344277,1.0407369052119213,0.968639109712126,0.940383626933661,1.0,1.0,1.0,1.0 +16,1.0886607269753739,1.0871365340901091,0.9776106671510321,0.9762628252848075,1.0,1.0,1.0,1.0 +17,1.1391891744979068,1.1377875788466947,0.9713068946564802,0.9923707220696051,1.0,1.0,1.0,1.0 +18,1.1813708458227477,1.1815796155786216,0.97710710371407,0.9822063279944322,1.0,1.0,1.0,1.0 +19,1.2048721952031847,1.2066686818939167,0.9620977486617706,0.9872726025741575,1.0,1.0,1.0,1.0 +20,1.1883594612741015,1.1911629803333679,0.9096499832485738,0.9736368622053816,1.0,1.0,1.0,1.0 +21,1.0841006081889941,1.0875548281900813,0.7954827338259405,0.8733383541170725,1.0,1.0,1.0,1.0 +22,0.8887378869444746,0.8893062174837649,0.7007233800713178,0.7753100551108082,1.0,1.0,1.0,1.0 +23,0.6584028044030574,0.6576606192147261,0.6910405618412271,0.756430842996538,1.0,1.0,1.0,1.0 diff --git a/data/hydrogen_salt_cavern_potentials.csv b/data/hydrogen_salt_cavern_potentials.csv new file mode 100644 index 000000000..7d905f7e9 --- /dev/null +++ b/data/hydrogen_salt_cavern_potentials.csv @@ -0,0 +1,6 @@ +ct,TWh +DZ, 1000 +MA, 300 +TN, 100 +NG, 100 +BJ, 20 diff --git a/data/override_component_attrs/buses.csv b/data/override_component_attrs/buses.csv new file mode 100644 index 000000000..890580582 --- /dev/null +++ b/data/override_component_attrs/buses.csv @@ -0,0 +1,3 @@ +attribute,type,unit,default,description,status +location,string,n/a,n/a,Reference to original electricity bus,Input (optional) +unit,string,n/a,MWh,Unit of the bus (descriptive only), Input (optional) diff --git a/data/override_component_attrs/generators.csv b/data/override_component_attrs/generators.csv new file mode 100644 index 000000000..0facfb2f9 --- /dev/null +++ b/data/override_component_attrs/generators.csv @@ -0,0 +1,3 @@ +attribute,type,unit,default,description,status +build_year,integer,year,n/a,build year,Input (optional) +lifetime,float,years,n/a,lifetime,Input (optional) diff --git a/data/override_component_attrs/links.csv b/data/override_component_attrs/links.csv new file mode 100644 index 000000000..87f608c3d --- /dev/null +++ b/data/override_component_attrs/links.csv @@ -0,0 +1,13 @@ +attribute,type,unit,default,description,status +bus2,string,n/a,n/a,2nd bus,Input (optional) +bus3,string,n/a,n/a,3rd bus,Input (optional) +bus4,string,n/a,n/a,4th bus,Input (optional) +efficiency2,static or series,per unit,1.,2nd bus efficiency,Input (optional) +efficiency3,static or series,per unit,1.,3rd bus efficiency,Input (optional) +efficiency4,static or series,per unit,1.,4th bus efficiency,Input (optional) +p2,series,MW,0.,2nd bus output,Output +p3,series,MW,0.,3rd bus output,Output +p4,series,MW,0.,4th bus output,Output +build_year,integer,year,n/a,build year,Input (optional) +lifetime,float,years,n/a,lifetime,Input (optional) +carrier,string,n/a,n/a,carrier,Input (optional) diff --git a/data/override_component_attrs/loads.csv b/data/override_component_attrs/loads.csv new file mode 100644 index 000000000..10bb5b4f9 --- /dev/null +++ b/data/override_component_attrs/loads.csv @@ -0,0 +1,2 @@ +attribute,type,unit,default,description,status +carrier,string,n/a,n/a,carrier,Input (optional) diff --git a/data/override_component_attrs/stores.csv b/data/override_component_attrs/stores.csv new file mode 100644 index 000000000..8d521fab1 --- /dev/null +++ b/data/override_component_attrs/stores.csv @@ -0,0 +1,4 @@ +attribute,type,unit,default,description,status +build_year,integer,year,n/a,build year,Input (optional) +lifetime,float,years,n/a,lifetime,Input (optional) +carrier,string,n/a,n/a,carrier,Input (optional) diff --git a/data/temp_hard_coded/biomass_transport_costs.csv b/data/temp_hard_coded/biomass_transport_costs.csv new file mode 100644 index 000000000..bb7c8fa92 --- /dev/null +++ b/data/temp_hard_coded/biomass_transport_costs.csv @@ -0,0 +1,48 @@ +0,EUR/km/MWh +BE,0.140625 +BG,0.063541666666667 +CZ,0.0875 +DK,0.190625 +DE,0.133333333333333 +EE,0.086458333333333 +IE,0.133333333333333 +GR,0.111458333333333 +ES,0.119791666666667 +FR,0.142708333333333 +IT,0.132291666666667 +CY,0.109375 +LV,0.08125 +LT,0.073958333333333 +LU,0.145833333333333 +HU,0.072916666666667 +MT,0.091666666666667 +NL,0.145833333333333 +AT,0.136458333333333 +PL,0.078125 +PT,0.092708333333333 +RO,0.0625 +SI,0.097916666666667 +SK,0.083333333333333 +FI,0.148958333333333 +SE,0.161458333333333 +GB,0.14375 +HR,0.080208333333333 +AL,0.055208333333333 +BA,0.059375 +MK,0.051041666666667 +ME,0.060416666666667 +RS,0.057291666666667 +KO,0.058333333333333 +UA,0.053125 +TR,0.078125 +MD,0.055208333333333 +CH,0.177083333333333 +NO,0.161458333333333 +MA,0.1 +NG,0.1 +BJ,0.1 +NA,0.1 +BR,0.1 +AE,0.1 +QA,0.1 +EG,0.1 diff --git a/data/temp_hard_coded/energy_totals.csv b/data/temp_hard_coded/energy_totals.csv new file mode 100644 index 000000000..cb94680cd --- /dev/null +++ b/data/temp_hard_coded/energy_totals.csv @@ -0,0 +1,37 @@ +country,total residential space,electricity residential space,total residential water,electricity residential water,total residential cooking,electricity residential cooking,total residential,electricity residential,derived heat residential,thermal uses residential,total services space,electricity services space,total services water,electricity services water,total services cooking,electricity services cooking,total services,electricity services,derived heat services,thermal uses services,total agriculture electricity,total agriculture heat,total agriculture machinery,total agriculture,total road,electricity road,total two-wheel,total passenger cars,electricity passenger cars,total other road passenger,electricity other road passenger,total light duty road freight,electricity light duty road freight,total heavy duty road freight,total rail,electricity rail,total rail passenger,electricity rail passenger,total rail freight,electricity rail freight,total aviation passenger,total aviation freight,total domestic aviation passenger,total international aviation passenger,total domestic aviation freight,total international aviation freight,total domestic aviation,total international aviation,total domestic navigation,district heat share,total international navigation +AL,2.7488162085994774,0.33565441229798754,0.8186880852468945,0.2935681630661989,0.5876126186307569,0.4133041142766344,5.795,2.7119444444444447,,,0.7015204014345264,0.21339438510562977,0.16085230281569138,0.08980533653391662,0.21510664966169507,0.1666272170319332,1.9011111111111112,1.2980555555555557,,,,,,,8.658611111111112,0.0,0.11293992734115464,5.012148472073846,0.0,0.41883893104610537,0.0,1.027023388363935,0.0,2.087660392286071,0.035555555555555556,0.0,0.02700012495483377,0.0,0.00855543060072178,0.0,0.22298871032990178,0.01590017855898714,0.0,0.22298871032990178,0.0,0.01590017855898714,0.0,0.2388888888888889,0.23777777777777778,0.0,0.0 +AT,46.09595316297465,3.7088411225845146,9.130088223854552,1.9169282473111817,3.3241823708759717,2.1859785517387285,68.12759623448028,17.89608727824309,6.705828826078094,58.611179779652815,19.128966573551367,0.6672257209178536,3.401969524184086,0.10500134121606851,3.4192218216867016,2.036238290254376,35.02192174891562,12.04308062090128,10.588603994087725,26.421270067764656,0.6437819867533202,3.3380974776703938,1.7539298226462325,5.735809287069947,84.44686747629804,0.023014348842666586,0.5770811056953263,48.1396891335453,0.005082302937890749,3.0957840148665956,0.017261519330267264,5.3618371595975685,0.0006705265745085729,27.272476062593228,3.4674938979041348,2.9530470623465117,2.3133298743867328,1.9446718379317867,1.154164023517402,1.008375224414725,8.337414321498516,0.3456671637923202,0.31754085926093834,8.019873462237577,0.08287771118699262,0.26278945260532754,0.40041857044793094,8.282662914842904,0.05805591816196775,0.14,0.23611111111111113 +BA,4.521581968627476,0.5627703651445004,1.353670546906757,0.4922070328004311,0.978915195284958,0.6929606726000438,9.604722222222223,4.546944444444445,,,1.7557982432118706,0.2158498892997825,0.3149789075223063,0.09083871602235619,0.32148832498936736,0.16854457690098215,3.215522170273163,1.3129921287898147,,,,,,,6.0156632317881025,0.0,0.07846622969764248,3.4822440791948663,0.0,0.2909928538426024,0.0,0.7135355493260557,0.0,1.4504245197269359,0.1388888888888889,0.1388888888888889,0.10546923810481942,0.1097829232524015,0.03341965078406946,0.029105965636487405,0.13956511635536614,0.009951670949498134,0.0,0.13956511635536614,0.0,0.009951670949498134,0.0,0.14951678730486426,0.04381257394940196,0.08,0.0 +BE,60.07759573514164,2.4574590580229816,14.269796248030486,1.7687525943758393,5.3150528341341285,1.869339247170565,92.39298733318694,19.256978502352034,0.15027841087748214,79.74599606385434,30.52387518704442,5.98319045991244,4.406024721977337,1.1459566205952985,4.257282425660194,1.6251176809076644,51.73931110007098,21.649305145340918,1.0377790287661888,40.119189505718644,0.6735296575315048,5.349606793884193,1.9354834277204307,7.958619879136127,97.92152785552094,0.0037235863529514156,0.6958590248778924,57.6774759076758,0.001621646364895789,4.3240869846997185,0.0021019399880556266,11.321734111097756,0.0,23.902371827169755,2.21379669097965,1.5511036045791369,1.767094793484459,1.3713338815623115,0.4467018974951906,0.17976972301682553,13.926425532583533,3.226394430241005,0.0,13.926425532583533,0.6062760498029495,2.620118380438056,0.6062760498029495,16.546543913021587,1.9294409331483928,0.009911613901887219,78.50166666666667 +BG,15.34450879546816,1.1948032511633053,5.010635660353494,2.6674817677458496,2.9381856688027854,2.4998424360384854,27.680373902007464,10.91200314004214,4.1797076855536455,23.40169700086206,4.799509529916545,1.9213248265229492,1.4393963224086341,0.8415780032415145,1.6352650929946666,1.3509269228092395,12.256671707192313,8.514799907362562,1.7258493745019599,8.164882097871613,0.2411544187850093,1.3111580530137128,0.8304660005944632,2.382778472393185,28.905658327361348,0.006186517068539435,0.23691902435465959,18.58584785341711,0.0,3.0395474242667904,0.006186517068539435,1.786688905128767,0.0,5.256655120194014,0.46444007750147454,0.25305296607471406,0.29289081917566845,0.17429504605024307,0.17154925832580614,0.078757920024471,2.195900136902935,0.02604430754150471,0.0789871111111105,2.1169130257918245,0.0151817923295495,0.010862515211955207,0.09416890344065998,2.1277755410037797,0.0,0.16,0.8744444444444445 +CH,41.388888888888886,3.555555555555556,8.777777777777779,2.361111111111111,2.5833333333333335,1.3611111111111112,62.05555555555556,17.694444444444446,,,17.27777777777778,0.888888888888889,2.7777777777777777,0.19444444444444442,0.6666666666666666,0.6666666666666666,35.38888888888889,16.444444444444446,,,,,,,55.666666666666664,0.0,0.7260967386085588,32.223366391954016,0.0,2.6927375375072824,0.0,6.602787431527142,0.0,13.421678567069666,3.083333333333333,3.083333333333333,2.3414170859269907,2.4371808962033126,0.7419162474063419,0.6461524371300204,16.895389759843553,1.2157213512675575,0.8194594802459856,16.075930279597568,0.06942940864290333,1.1462919426246543,0.888888888888889,17.22222222222222,0.4444444444444445,0.04,0.0 +CZ,58.59225852701038,2.4397371460031145,9.920000585931934,2.8104727119514794,5.1398761189566375,2.795398161822098,79.39338451146106,14.199960862984167,12.911903976097026,73.67973401637705,22.226676229531854,4.123665807848028,2.9871449389938958,0.974060500075843,3.4761853439128725,1.7400914785868866,36.09634123035027,14.425308638984422,5.947460541150703,28.9685925795637,0.7502833058403744,3.337334059897441,2.362987517719688,6.450604883457503,65.17743647357334,0.11461286222857717,0.6745219969207359,32.94627378632074,0.0002015808401501622,3.9880971930196965,0.114411281388427,5.405543694495818,0.0,22.16299980281634,2.582197066119628,1.5033118260828273,1.933497057324229,1.0689062063545154,0.6487000087953989,0.4344056197283119,4.06708233878091,0.05853827533020912,0.10902295531872894,3.9580593834621816,0.03013694347020266,0.028401331860006464,0.1391598987889316,3.986460715322188,0.03583321105643493,0.1837279295500325,0.0 +DE,422.63700591976396,20.13959672172813,86.70647136646228,9.410722608372033,40.90856738368676,15.81902745537792,634.5784032356139,136.5998807002577,45.65193248491252,551.4743466376403,172.28581851293262,6.129155246337327,37.97466554752434,5.9552147050509925,46.22787655969591,21.25591844276544,358.9476566306718,138.0047914499899,23.983059770905506,261.1975741717025,7.172357267965595,5.5214722244297185,1.3577309259142931,14.05156041830961,591.9194716582508,0.05050420054304681,5.207215732491667,383.65594906711345,0.02877930018070664,19.499261748767733,0.01413965576102355,28.80429321088056,0.007585244601316613,154.75275189899736,16.33312001055445,12.084157080207738,11.993787447599404,8.46906597723943,4.339332562955044,3.615091102968311,84.94350522962422,12.524776804663865,8.43224142805425,76.51126380156997,2.1094557231162954,10.415321081547571,10.541697151170544,86.92658488311754,3.57499889114527,0.0856864750371445,31.408611111111114 +DK,34.53565732496317,0.6806012886411269,7.218235887609038,0.45889599724585783,2.9501884468581867,2.258315131597759,51.15544591088954,10.11102640577204,18.745897740078043,44.747036577480664,11.475853825810752,1.2385462978018895,1.904555805876222,0.40816329670928175,2.0812833509419217,1.6222263816288023,22.784158890115183,10.65418025026027,8.70825647431357,15.824042136275821,1.6216608790407236,4.878196128031019,3.1344058779643054,9.63426288503605,46.57926052841746,0.0017109292425222344,0.2646353354471898,25.58627236868954,0.0017109292425222344,3.980646619465156,0.0,6.6343555671294405,0.0,10.113350637686127,1.3338905353516775,0.3969435023050881,1.1985625014455203,0.3567919724863354,0.1353280339061572,0.04015152981875274,10.308948937840139,0.30022033375701207,0.7570890412500971,9.551859896590043,0.11831142223833246,0.18190891151867958,0.8754004634884297,9.733768808108723,2.0501746323762484,0.45325516397244575,8.084166666666667 +EE,7.524087112872855,0.11443500108583639,1.5731350788411405,0.09811231367330156,0.7499330885569813,0.6457207604008528,10.889283298156702,1.9339375314756475,3.8688839112667712,9.847287373882864,2.6579160452456514,0.6000549845808805,0.3640235438222673,0.1694131771993946,0.42707406284673427,0.36387085233399696,4.681279656641867,2.380786253140931,1.1969429044836677,3.458011907571063,0.1582739809227145,0.7096124761044406,0.3995805894739887,1.2674670465011437,8.153867025767806,0.01927244980418805,0.014073657887598809,4.954656881128455,0.00028399729179984755,0.8499484240384143,0.01898006520741134,0.595325092571906,8.387304976863395e-06,1.739862970141434,0.4574841926887977,0.058052614617976964,0.1339973783867172,0.058052614617976964,0.3234868143020805,0.0,0.39677317477543717,0.00934210992501796,0.0,0.39677317477543717,0.003467091041626906,0.005875018883391054,0.003467091041626906,0.40264819365882815,0.058886992038257285,0.38073753236138214,2.1597222222222223 +ES,80.372310906666,13.819023440188797,39.557576490863816,8.641524301473853,19.760765397495266,9.169181271047236,186.734573950555,80.18486078573926,0.0,141.46698671684436,44.387071919013835,10.384024487841591,13.789666475279082,7.391941124160933,17.800179339394454,13.43821278685975,125.67139313470406,81.29826081736151,0.0,85.33907109028121,3.4201273086846045,15.342477694688231,9.162390411860274,27.92499541523311,331.98656148730413,0.0016936958751923449,5.574506816789147,194.4928579316821,0.0016936958751923449,11.607993191831378,0.0,22.96786501955535,0.0,97.34333852744622,10.592495992600144,4.514991908109179,7.406098768146668,4.000539809592942,3.1863972244534766,0.5144520985162377,65.8381525590742,1.0762918525127656,24.535555543530545,41.30259701554366,0.40102774564942556,0.6752641068633399,24.936583289179968,41.977861122407,9.617504423289883,0.0,99.19194444444445 +FI,41.561921513414624,7.9584965638929654,8.827395229202057,3.1704980297864753,2.758708922235876,2.704926390704652,60.39558967888448,21.42594222815439,17.558888087765556,53.23478163580391,20.72623653865316,6.036854744876441,2.5267080310874555,0.9596191660270464,2.6849040780870688,2.636303872210049,33.48066887362547,17.262076927388012,11.871146662654901,26.225161074281324,1.2345608955841842,6.905567039616236,1.9294036825391927,10.069531617739614,45.924127830010946,0.000842558871110215,0.5352976616427196,26.125552858866715,0.00025549077092280805,2.999465252173668,0.0,5.27797529780554,0.0005638448739778003,10.985836759522305,1.1102757010139601,0.7299999932919197,0.567621888960476,0.5186247006985854,0.5426538120534841,0.2113752925933344,8.110129303054869,0.3456858904863211,1.7485334047369514,6.361595898317917,0.10590759659486869,0.2397782938914524,1.85444100133182,6.60137419220937,1.8316757120344753,0.37037573583205124,2.302777777777778 +FR,254.75525470296535,25.246348097381215,60.50375606907916,13.545313587220909,36.56396031268107,15.168094036351743,436.1891582716937,140.47482029341046,17.83332642573739,352.3467232589124,138.58804714932668,30.673093617965154,24.64445813826855,11.385478350216285,28.110293801347574,15.118554800476256,274.01188458307104,141.0643172515238,10.774452123403918,205.15869496487744,6.929023969173455,34.64087907321249,21.171263925927242,62.74116696831319,481.84605440750386,0.06128998473984608,6.436448227726867,253.32345257335328,0.012216103221788616,21.35284877800194,0.025311063314164304,90.80878811904758,0.023762818203893164,109.9245167093742,12.020960351288943,9.947409144358327,10.075432032135547,8.39339667115828,1.945528319153396,1.5540124732000469,73.17358165884323,3.6872419899176174,20.295352640822717,52.87822901802052,1.5031171267935584,2.1841248631240595,21.798469767616275,55.06235388114458,5.991667785858972,0.05,28.602222222222224 +GB,262.7982597107485,27.22762361611588,78.78916533927541,11.80007361147335,19.23101964399065,3.7000655297635276,425.2575592755557,111.591013616885,0.6038888888888893,361.0985788068445,107.23246230699095,16.791821595415946,21.008503355645562,8.784748134555482,24.36895905386316,10.776269415673813,210.73377537819806,95.66671802904204,4.475000000000009,156.62294500417684,3.275242232061276,4.588107048726044,2.1472568470367834,10.010606127824103,435.1830447460397,0.02819784255145931,2.2016605164130776,264.8344781523258,0.004131630295166207,14.104094083391427,0.015396732803841864,61.53024838065249,0.008669479452451237,92.51256361325679,11.468498778886454,4.231941269301228,10.204460016654354,3.8707058209832237,1.2640387622320988,0.36123544831800514,134.46842645168536,6.987566516477356,8.741120513246134,125.72730593843922,0.9104037973870717,6.077162719090285,9.651524310633205,131.8044686575295,9.753325660353585,0.009810078691537641,35.50194444444445 +GR,41.49582932608903,0.9719838223593845,8.096865102794412,3.75387436094054,5.931532031540117,4.541044459696281,63.562860347385374,17.628025018575457,0.626666666666667,57.15249509458662,5.792122631217957,2.2988540724338007,3.119339069483572,2.539427172959066,2.943323201142433,2.10606720586135,21.723009033444047,16.83907504415766,0.0,13.325701921801627,2.109571567817103,3.264854227440645,3.5260674790753335,8.900493274333082,69.04050906906491,0.0,3.115376018691967,37.83087174572504,0.0,5.198414931998759,0.0,7.661043521635481,0.0,15.234802851013654,0.3613895056484419,0.18388964136729427,0.31069737449182006,0.1737352543755475,0.05069213115662187,0.010154386991746771,11.091715982329,0.0882314118908981,1.6588918519757754,9.432824130353223,0.062164636806169515,0.026066775084728586,1.7210564887819448,9.458890905437952,5.996654216569651,0.008891638736458434,32.03472222222223 +HR,19.648707827931364,0.14774042559148423,4.576960072542419,1.2188446524343994,2.668168989486114,1.2856787106226006,30.600806066702532,6.541026804485754,1.7041698624888444,27.71345384661747,3.680948384765413,1.138737303317166,0.9492946075437665,0.47883955007363094,1.0083332221656265,0.6566155143730918,8.853004541785873,5.5158931369532125,0.5013786490290209,6.070138665900562,0.05801754322964838,2.055925545342165,0.7831251159601095,2.897068204531923,21.335069523416166,2.3880462609742222e-05,0.09282727591149446,13.953621714779754,0.0,1.8691799152008708,0.0,1.3528829460681484,2.3880462609742222e-05,4.066557671455898,0.5483275780364458,0.23999983390893212,0.3648325477791393,0.1557403927771871,0.18349503025730649,0.08425944113174501,1.337260794798596,0.006333089493564461,0.13449158891160376,1.202769205886992,0.0032182999214838155,0.0031147895720806448,0.1377098888330876,1.205883995459073,0.43749166655939575,0.063,0.2675 +HU,55.9583209540609,1.1073243682850533,9.122860548664773,2.077602345736839,5.811632986565434,1.9642839255117819,76.40251024297828,11.311950926833159,6.149728453882386,70.93977460767667,22.31329544003069,2.5732016194070657,2.693275283229499,0.5601065079974142,3.211727263200585,0.8049659305800232,35.50316019652054,11.458897256024539,2.3674937914782848,28.648022094092877,0.6388627655962039,3.420467502093073,1.5603916334044279,5.619721901093705,42.10688054521005,0.007178738276153479,0.20250674696253573,21.19465646216518,0.0013664726009006416,4.024701057027359,0.005812265675252838,4.984762332228973,0.0,11.700253946825994,1.6536088977755954,1.1169429746360504,1.3235668045314954,0.8480580037458347,0.3300420932441,0.2688849708902156,2.632879898269461,0.07378320529278866,0.0,2.632879898269461,0.045516872387854186,0.02826633290493448,0.045516872387854186,2.6611462311743956,0.011630000000000001,0.0792875588637399,0.0 +IE,19.578533353834807,1.0546704542071668,6.372000420850374,1.4324282537728528,1.6745663120427838,1.0119350730044179,32.171741542067174,8.28314036614851,0.0,27.640905273752438,6.5644231428164375,0.06100478986135852,1.71859492274644,0.18283256805456885,1.8233024508857372,0.8227124578443913,15.469971776049348,6.4972641275574325,0.0,10.369099364513948,0.47028996203489104,1.5437114175107056,0.9498965067211395,2.9638978862667362,41.2697978978524,0.0037968435736073928,0.050806740341467885,25.078918235351153,0.0033967742036306726,2.1141429655214496,0.00016632633806645697,5.542625500693079,0.0002337430319102632,8.483304455945245,0.5261124832709942,0.045000532825308394,0.5111291878729443,0.04500053282530839,0.014983295398050074,0.0,7.988220673324568,0.1706057550442699,0.03204196595898767,7.95617870736558,0.07719934353124704,0.09340641151302286,0.1092413094902347,8.049585118878603,0.23416560474621778,0.0,1.1216666666666668 +IT,221.398100417684,1.0346614727578969,66.42978048640587,6.420622047981239,34.33876157362275,4.969859647293299,376.55698593881596,70.13994780780855,6.601668090525953,328.6098596902793,78.49822064048436,8.2084958133708,19.55143619356035,6.605911116194935,22.927601142827903,7.315978964021103,184.9224586348693,86.93202722941588,2.0177806660948745,131.15220488631053,5.0362948255804065,15.575365448908837,13.39739348684073,34.00905376132997,414.91328569241944,0.038039603168984575,14.249005544423982,236.25334943317745,0.038039603168984575,26.394588248064593,0.0,73.78026726367446,0.0,64.23607520307891,10.818553788822426,10.286053928838843,9.37358715434626,8.885345509779574,1.4449666344761638,1.4007084190592687,44.83902594112198,1.328215423453257,13.606177443440373,31.23284849768161,0.27544531163978947,1.0527701118134674,13.881622755080162,32.285618609495074,12.505826838855644,0.018747629308126505,29.035555555555558 +LT,12.355798412102155,0.04002200151930364,2.5987966240019107,0.16765377677229842,1.3279139370277313,0.6917612756155628,17.894235790263227,2.618110926559587,5.647275283535294,16.283963205505646,3.6334169589178176,0.2807864932248237,0.63201857623936,0.2785025392392833,0.6771677818722958,0.491586099790956,6.845297312541881,2.9731425201845836,1.9844131306277386,4.964118713366294,0.1407059377828149,0.9069759779937155,0.29259725758254596,1.3402791733590764,16.20429128032357,0.01781549113040702,0.04896084431820287,10.890041029446927,7.777315492971165e-06,0.5808002071844686,0.01780771381491405,0.6224154520742412,0.0,4.062073747299726,0.7397147480552919,0.009962893723206358,0.13827976971049294,0.009962893723206358,0.6014349783447989,0.0,0.6407499537314395,0.006505588315712973,0.0,0.6407499537314395,0.0048820832433323835,0.0016235050723805904,0.0048820832433323835,0.6423734588038201,0.059724647385381906,0.3591706980094418,1.6391666666666669 +LU,3.9470246220332976,0.0723726259697635,0.5386631918947256,0.018124337142463587,0.20984206427004712,0.04860919801618621,5.2889509761889375,0.8519097113797371,0.0,4.709193401564832,2.3403492340472574,0.37355381415993927,0.3765315419262418,0.13299274281842746,0.4407813413467202,0.19222890271856125,4.317178145573238,1.8782453867581317,0.7283333346869453,3.2991165842992403,0.03927399876653334,0.18474316853999712,0.05769691095940215,0.28171407826593264,26.672537457904586,0.002789033021318427,0.024744706933444497,10.462831003373191,0.0023966216265285598,0.34715896922070705,0.0003447757003380651,0.4637386166834006,4.7635694451801965e-05,15.374064161693838,0.16423153043136135,0.12889441039871682,0.146824447526548,0.11618058898243262,0.01740708290481337,0.012713821416284198,1.4694582279351314,3.2241146519359214,0.0,1.4694582279351314,0.1360354308231823,3.088079221112739,0.1360354308231823,4.55753744904787,0.0,0.09094719559714451,0.0 +LV,11.156600291877822,0.048000954722733226,2.351668606233656,0.02026262729402798,0.5715422900441415,0.25958380837597833,15.441436050886324,1.7750577406080588,4.26998990245345,14.080003666076076,3.677039403497877,0.2722881030737441,0.6109911832283433,0.18535314239622583,0.6324008884340625,0.4364662221104241,6.50336947132678,2.5041925755890975,1.3799967366243002,4.9429649560415445,0.11380010076396964,0.9802403436071967,0.6878248634681197,1.7818653078392857,10.190791718865723,0.047830398479961206,0.02855911044596135,5.761667346504384,0.0,0.8872998502872564,0.04782037284551143,0.5733601396932794,1.0025634449766049e-05,2.939905271934841,0.934176310004225,0.0400104384895729,0.10222042642541893,0.0400104384895729,0.831955883578806,0.0,1.356584470502264,0.011763078965182399,0.0,1.356584470502264,0.008517943758076709,0.0032451352071056917,0.008517943758076709,1.3598296057093697,0.058887729008134916,0.29700867153345484,2.4741666666666666 +ME,1.6559164880111146,0.1476631876287879,0.45735420714444647,0.12914834173607742,0.2907681083346737,0.18182333000288275,3.1200000000000006,1.1930555555555555,,,0.06221323098811586,0.004429543196072349,0.010274580511307242,0.001864138164731417,0.009197700368106911,0.0034587716781719494,0.09833333333333334,0.026944444444444448,,,,,,,2.4411111111111112,0.0,0.03184100867710587,1.413068582098263,0.0,0.11808272195416168,0.0,0.28954738497135996,0.0,0.5885714134102208,0.013055555555555558,0.013055555555555558,0.009914108381853028,0.010319594785725741,0.0031414471737025297,0.0027359607698298166,0.11408724714553115,0.008134975076691095,0.0,0.11408724714553115,0.0,0.008134975076691095,0.0,0.12222222222222223,0.0125,0.0,0.0 +MK,2.737373705085587,0.4140070094123083,0.8676763843287041,0.3620964682621291,0.6776050509175459,0.5097826635377681,6.3133333333333335,3.345,,,0.9702384218304272,0.24513183377851924,0.20870138793433718,0.10316179039462109,0.2634248772158791,0.19140913781883528,2.3869444444444445,1.491111111111111,,,,,,,5.4775,0.0,0.07144661471368349,3.1707213666813434,0.0,0.2649605364376552,0.0,0.6497024219674836,0.0,1.320669060199834,0.065,0.016944444444444446,0.04935960343305549,0.013393516636792982,0.015640396566944506,0.0035509278076514637,0.04511632046209641,0.0032170128712369333,0.0,0.04511632046209641,0.0,0.0032170128712369333,0.0,0.04833333333333334,0.0,0.237745607009008,0.0 +NL,71.09123319489385,1.294018241969305,21.394448653138546,1.4305885462818118,9.127989493249794,1.245188144736828,119.22882920129575,23.043014665780344,2.9047294193101956,101.7101929282673,38.201768113822226,4.0229819358532755,8.68624134542251,3.1732338062445287,9.984680964764177,4.442823354462051,81.77555913322148,37.000766756874484,3.2247191098404038,59.080746125023275,6.003970234857895,31.554509594709653,6.329362019686628,43.88784184925417,130.9047319562777,0.021262683785678662,2.0023213442489487,68.3613949991795,0.0046700946223730685,4.1856077622538574,0.015676527461294425,19.73020286229721,0.000916061702011168,36.62520498829819,2.107496116107096,1.728051728132293,1.9390964762389407,1.598035731366381,0.16839963986815557,0.13001599676591186,35.61245743892048,5.83363127540512,0.0,35.61245743892048,0.4309475389629081,5.402683736442212,0.4309475389629081,41.01514117536269,4.198888264002294,0.03812060906690227,169.52166666666668 +NO,28.679513127735074,20.936044583246602,6.240851203967479,4.555821378896259,2.071590494496357,1.5122610609823404,45.95194444444444,36.058888888888895,,,17.429205728310578,12.723320181666722,2.536828913587433,1.8518851069188262,1.7310243187828043,1.2636477527114471,30.40777777777778,24.59388888888889,,,,,,,39.86666666666667,0.005,0.5200070056142733,23.077333056752696,0.0009980252952751733,1.9284515538076108,0.0036178277039541117,4.72870285515357,0.00038414700077071514,9.612172195338516,0.8269444444444445,0.683888888888889,0.6279638436760948,0.5405711140948251,0.19898060076834956,0.14331777479406402,8.349134530861472,0.6455876913607508,3.744417662549,4.6047168683124715,0.3172490041176663,0.32833868724308446,4.0616666666666665,4.933055555555556,9.583055555555555,0.04,4.383888888888889 +PL,159.19617990501106,0.6682423589152866,36.510837555801864,0.5184145609817947,19.35353484560614,7.2890716773996855,233.5976674865098,28.258081533828427,48.61112296922581,215.09833664177685,57.18624930106038,10.614023763786333,8.114052730584515,3.212626216217853,8.342251127109828,5.57905254787623,97.93343904655447,44.14369131922328,11.848058445750793,74.43865586430563,1.3911602789240956,34.99746023440522,6.431231030356537,42.81985154368584,195.13435796531672,0.06634874922140112,1.1788131629151593,103.3486891888789,0.0002813561761257034,9.673960866054456,0.06606739304527542,24.545596476439965,0.0,56.38729827102827,4.344083578894413,2.960839404924366,2.2572212348713467,1.8141255755734997,2.086862344023065,1.146713829350866,5.788210706247441,0.065976457330767,0.5100291013423637,5.278181604905077,0.03146512091754419,0.03451133641322282,0.5414942222599078,5.3126929413183,0.03611109255123829,0.20881332257986518,1.9836111111111112 +PT,5.657092973774139,0.15083838062827584,7.019297614887283,0.6666212321654327,10.398488535566496,3.690849741079436,32.28876877176269,13.752174409307244,0.010555725895792805,23.294026165291868,5.9134817406653735,1.9935259744708376,2.3586126301952732,1.4540160139270473,2.801041292274993,1.978715328630981,21.87204489325834,16.26528322517285,0.19277840706100358,12.677858226860144,0.8410934993614988,1.9882677641517388,2.1164759881330455,4.9458372516462825,66.02894939714282,0.004779400371054035,0.7240194008174893,41.36707492450902,0.0033358164772986517,2.3945987105071067,0.0014377610919926443,10.92193742827972,5.822801762738885e-06,10.621318933029494,0.5563993679617288,0.39084291807050103,0.4595771196833704,0.3339018317357902,0.09682224827835836,0.056941086334710816,11.793837692280889,0.25865988302692683,1.8461247206908706,9.947712971590015,0.13532248320399995,0.12333739982292688,1.9814472038948707,10.071050371412943,1.356110579061021,0.0007075471698113201,6.4944444444444445 +RO,62.219660019368916,0.7958413198010135,12.336939555018922,0.6016271003896877,8.238712379563015,0.5847237335645684,91.7512177481418,11.576943788537283,13.032219866838899,83.00947706509771,12.672155574687446,0.7381893433952651,2.3215779313191995,0.5045634707041677,2.676807019743927,1.0579010707596863,23.152460726701797,7.9152404125680995,2.6183681129300815,17.8213504555741,0.6488875923973445,2.3989088601921225,2.0815759901835698,5.129372442773037,55.13261970914581,0.0018091215888470047,0.19984865730038978,31.100989802996768,0.0017957348060126657,11.265900680500602,0.0,6.507014733097469,1.33867828343392e-05,6.05886583525058,3.6441396020061707,1.3438841899372298,2.638162689279144,0.950197263471695,1.0059769127270266,0.39368692646553477,2.6100696947998747,0.025747050385860972,0.2924988720415489,2.317570822758326,0.02270772365542296,0.0030393267304380136,0.31520659569697185,2.320610149488764,0.6077718590249878,0.15521630006022094,0.10722222222222223 +RS,18.98245934697394,1.8150710890976087,5.323224114316094,1.587487206895104,3.4750083589367504,2.23496644567455,36.59805555555556,14.665000000000001,,,6.690334208806246,0.8224794072624647,1.2002029095290632,0.3461339431440985,1.2250065443018223,0.6422261515005668,12.252500000000001,5.003055555555556,,,,,,,22.922222222222224,0.0,0.29898953527933275,13.268823326666894,0.0,1.1088058961831386,0.0,2.718872349549001,0.0,5.526731114543858,0.6505555555555557,0.528888888888889,0.49401791128297423,0.4180533717451449,0.15653764427258135,0.11083551714374405,0.53180214521701,0.037920077005212355,0.0,0.53180214521701,0.0,0.037920077005212355,0.0,0.5697222222222222,0.16694444444444445,0.25,0.0 +SE,56.8405529232076,18.94960502352269,13.091883280951613,6.4193447237979075,5.059619467776717,4.988946091260288,86.82448873561987,42.353928923015026,29.128058551067273,75.10186156309533,23.597518901720758,3.91287473733487,4.214802522745754,1.7636125133847242,4.280539109432537,4.109861715206538,46.80198659793274,24.63233380567647,14.457779264606945,32.912157513235876,0.9963078025020058,2.999416768482414,1.52788446551391,5.523609036498329,84.77468080828608,0.0038005922025692853,0.36042411771544564,51.40559182050632,0.0011605051717118228,5.9873283417851235,0.0011388489583268131,7.28111948265953,0.00079187450654651,19.740217045619683,2.651944454010767,2.6399999996863084,1.792882515351252,1.786819299002744,0.8590619386595152,0.8531807006835644,10.367967064646693,0.2395423533519642,2.170007229406291,8.197959835240402,0.09089205514495001,0.1486502982070142,2.260899284551241,8.346610133447417,1.3583350289115894,0.40352019291933794,19.82027777777778 +SI,9.013524638476808,0.3101884291816804,2.9493710498792414,0.46966649265929955,0.8994425859975202,0.5225613236098434,14.707442876350305,3.2109690075577566,1.0394319361311932,12.917508381676768,3.331227385925306,0.6703495155149303,0.5145564766645554,0.1474601925610313,0.6152129573524242,0.5008566027580501,6.372976998442289,3.2609990773297515,0.49778118919238035,4.610057850668179,0.0,0.5294209566488663,0.2556105646307224,0.7850315212795888,21.595300894617896,2.930797080591121e-05,0.11576818031650793,12.601361047221133,2.930797080591121e-05,0.7063829371769783,0.0,0.8568475768010727,0.0,7.314941153102202,0.28222504862054787,0.16389228335959946,0.16668508620881756,0.08771820600448986,0.11553996241173031,0.0761740773551096,0.28667223358914384,0.003606845181239247,0.0,0.28667223358914384,0.002084374742649007,0.0015224704385902405,0.002084374742649007,0.28819470402773406,0.0,0.08770259971899795,0.3666666666666667 +SK,16.274433740544108,0.6066878874227958,3.8647951785664603,0.4601773246977492,1.871127174178766,0.6223313665387125,24.670544706743268,4.502961082471661,5.324976326998166,22.018880845488454,11.329033062302202,2.0929383508132253,1.5155294390305374,0.810020507989601,1.4908393494717878,0.9476569505560773,18.60390600253911,8.194092744813428,2.3353021935940115,14.545653635872348,0.252873044434499,1.1348010240616653,0.44388857861974124,1.8315626471159052,24.51789764096202,0.03780165618552521,0.030128119498509954,10.119168332403872,4.503923111242812e-05,1.8264188273916395,0.03775661695441278,2.4569018659302015,0.0,10.085280495737795,0.5360986253061619,0.5360986253061619,0.3853396282592357,0.3853396282592357,0.15075899704692625,0.15075899704692625,0.4904426886431383,0.014834972559268286,0.0,0.4904426886431383,0.011648016114905079,0.0031869564443632046,0.011648016114905079,0.4936296450875014,0.18956900000000004,0.2095002337441789,0.0 +MA,80.372310906666,13.819023440188797,39.557576490863816,8.641524301473853,19.760765397495266,9.169181271047236,186.734573950555,80.18486078573926,0.0,141.46698671684436,44.387071919013835,10.384024487841591,13.789666475279082,7.391941124160933,17.800179339394454,13.43821278685975,125.67139313470406,81.29826081736151,0.0,85.33907109028121,3.4201273086846045,15.342477694688231,9.162390411860274,27.92499541523311,331.98656148730413,0.0016936958751923449,5.574506816789147,194.4928579316821,0.0016936958751923449,11.607993191831378,0.0,22.96786501955535,0.0,97.34333852744622,10.592495992600144,4.514991908109179,7.406098768146668,4.000539809592942,3.1863972244534766,0.5144520985162377,65.8381525590742,1.0762918525127656,24.535555543530545,41.30259701554366,0.40102774564942556,0.6752641068633399,24.936583289179968,41.977861122407,9.617504423289883,0.0,99.19194444444445 +NG,80.372310906666,13.819023440188797,39.557576490863816,8.641524301473853,19.760765397495266,9.169181271047236,186.734573950555,80.18486078573926,0.0,141.46698671684436,44.387071919013835,10.384024487841591,13.789666475279082,7.391941124160933,17.800179339394454,13.43821278685975,125.67139313470406,81.29826081736151,0.0,85.33907109028121,3.4201273086846045,15.342477694688231,9.162390411860274,27.92499541523311,331.98656148730413,0.0016936958751923449,5.574506816789147,194.4928579316821,0.0016936958751923449,11.607993191831378,0.0,22.96786501955535,0.0,97.34333852744622,10.592495992600144,4.514991908109179,7.406098768146668,4.000539809592942,3.1863972244534766,0.5144520985162377,65.8381525590742,1.0762918525127656,24.535555543530545,41.30259701554366,0.40102774564942556,0.6752641068633399,24.936583289179968,41.977861122407,9.617504423289883,0.0,99.19194444444445 +BJ,9.013524638476808,0.3101884291816804,2.9493710498792414,0.46966649265929955,0.8994425859975202,0.5225613236098434,14.707442876350305,3.2109690075577566,1.0394319361311932,12.917508381676768,3.331227385925306,0.6703495155149303,0.5145564766645554,0.1474601925610313,0.6152129573524242,0.5008566027580501,6.372976998442289,3.2609990773297515,0.49778118919238035,4.610057850668179,0.0,0.5294209566488663,0.2556105646307224,0.7850315212795888,21.595300894617896,2.930797080591121e-05,0.11576818031650793,12.601361047221133,2.930797080591121e-05,0.7063829371769783,0.0,0.8568475768010727,0.0,7.314941153102202,0.28222504862054787,0.16389228335959946,0.16668508620881756,0.08771820600448986,0.11553996241173031,0.0761740773551096,0.28667223358914384,0.003606845181239247,0.0,0.28667223358914384,0.002084374742649007,0.0015224704385902405,0.002084374742649007,0.28819470402773406,0.0,0.08770259971899795,0.3666666666666667 diff --git a/data/temp_hard_coded/transport_data.csv b/data/temp_hard_coded/transport_data.csv new file mode 100644 index 000000000..fd0ba5595 --- /dev/null +++ b/data/temp_hard_coded/transport_data.csv @@ -0,0 +1,123 @@ +country,number cars,average fuel efficiency +AL,563106,0.4 +AR,21633587,0.758 +AU,18326236,0.753 +AT,7421647,0.634 +AZ,1330551,0.755 +BD,2879708,0.858 +BY,4192291,0.795 +BE,7330718,0.714 +BJ,469761,0.324 +BO,1711005,0.593 +BA,978229,0.863 +BW,653274,0.679 +BR,93867016,0.552 +BG,4031748,0.805 +CI,905537,0.689 +KH,3751715,0.364 +CM,758145,0.462 +CA,23923806,0.682 +CL,4960945,0.689 +CN,294694457,0.914 +CO,13477996,0.588 +CR,1991398,0.314 +HR,1996056,0.634 +CU,633369,0.957 +CY,650805,0.696 +CZ,7325789,0.83 +DK,3131673,0.671 +DO,3854038,0.737 +EC,1925368,0.583 +EG,8412673,0.775 +SV,1008080,0.519 +ER,72405,0.696 +EE,865040,0.873 +ET,708416,0.531 +FI,5217850,0.761 +FR,42363000,0.576 +GE,1126470,0.578 +DE,56622000,0.786 +GH,2066943,0.446 +GR,9489299,0.752 +GT,3250194,0.6 +HN,1694504,0.605 +HU,4022798,0.728 +IS,289501,0.598 +IN,210023289,0.885 +ID,128398594,0.692 +IR,30377065,0.751 +IQ,5775777,0.794 +IE,2573961,0.679 +IL,3239305,0.739 +IT,52581575,0.67 +JM,541316,0.757 +JP,81602046,0.825 +JO,1502420,0.708 +KZ,4383120,0.939 +KE,2979910,0.471 +KW,2001940,0.847 +KG,993000,0.722 +LV,803628,0.571 +LB,1866407,0.756 +LY,3553497,0.607 +LT,1391568,0.538 +LU,466472,0.332 +MY,27613120,0.703 +MT,358947,0.769 +MU,507676,0.745 +MX,40205671,0.649 +MN,841537,0.889 +ME,211219,0.766 +MA,3791469,0.712 +MZ,698864,0.432 +MM,6381136,0.634 +NA,371281,0.446 +NP,2339169,0.56 +NL,10757655,0.801 +NZ,3656300,0.551 +NE,436420,0.408 +NG,11733425,0.646 +MK,442962,0.785 +NO,3969612,0.602 +OM,1370913,0.792 +PK,18352500,0.711 +PA,1288573,0.636 +PY,1871947,0.069 +PE,5604789,0.597 +PH,9251565,0.722 +PL,27409106,0.843 +PT,6590094,0.633 +QA,1330487,0.818 +KR,25680967,0.837 +MD,894253,0.753 +RO,7014661,0.776 +RU,54014259,0.838 +SA,6895799,0.741 +SN,468051,0.611 +RS,2282401,0.845 +SG,933534,0.848 +SK,2606412,0.793 +SI,1468439,0.585 +SS,69647,0.349 +ES,32986384,0.647 +LK,6795469,0.523 +SD,1252740,0.408 +SR,228388,0.663 +SE,6102914,0.467 +CH,5980512,0.552 +SY,2396544,0.76 +TR,21090424,0.802 +TJ,439972,0.665 +TH,37338139,0.753 +TG,64118,0.227 +TT,831803,0.862 +TN,2015601,0.747 +UA,14433709,0.886 +AE,3391125,0.79 +GB,38388214,0.715 +TZ,2163623,0.424 +US,281312446,0.666 +UY,2342026,0.447 +VE,7999760,0.677 +VN,50666855,0.777 +ZW,1198584,0.777 diff --git a/data/unsd_transactions.csv b/data/unsd_transactions.csv new file mode 100644 index 000000000..a23602e12 --- /dev/null +++ b/data/unsd_transactions.csv @@ -0,0 +1,39 @@ +Transaction;clean_name +consumption not elsewhere specified (industry);other +consumption by food and tobacco ;food and tobacco +consumption by non-metallic minerals ;non-metallic minerals +consumption by non-ferrous metals;non-ferrous metals +consumption by non-metallic minerals;non-metallic minerals +consumption by iron and steel;iron and steel +consumption by paper, pulp and print;paper pulp and print +consumption by food and tobacco;food and tobacco +consumption by chemical and petrochemical;chemical and petrochemical +consumption by machinery;machinery +consumption by textile and leather;textile and leather +consumption by construction;construction +consumption by mining and quarrying;mining and quarrying +consumption by transport equipment ;transport equipment +consumption by non-ferrous metals ;non-ferrous metals +consumption by wood and wood products ;wood and wood products +consumption by machinery ;machinery +consumption by mining and quarrying ;mining and quarrying +consumption by construction ;construction +consumption by textile and leather ;textile and leather +consumption by chemical and petrochemical industry;chemical and petrochemical +consumption by industries not elsewhere specified;other +consumption by non-ferrous metals industry;non-ferrous metals +consumption by non-metallic minerals industry;non-metallic minerals +consumption by mining and quarrying industry;mining and quarrying +consumption by food, beverage and tobacco industry;food and tobacco +consumption by iron and steel industry;iron and steel +consumption by transport equipment industry;transport equipment +consumption by machinery industry;machinery +consumption by wood and wood products industry;wood and wood products +consumption by construction industry;construction +consumption by wood and wood products;wood and wood products +consumption by transport equipment;transport equipment +consumption by food and tobacco industry;food and tobacco +consumption by textile and leather industry;textile and leather +consumption by other manufacturing, construction and non-fuel;other +consumption by chemical and petrochemicalindustry;chemical and petrochemical +consumption by chemical industry;chemical and petrochemical diff --git a/doc/configtables/electricity.csv b/doc/configtables/electricity.csv index 5dea5a432..eb4960c65 100644 --- a/doc/configtables/electricity.csv +++ b/doc/configtables/electricity.csv @@ -26,7 +26,7 @@ conventional_carriers,--,"Any subset of {nuclear, oil, OCGT, CCGT, coal, lignite renewable_carriers,--, "Any subset of {solar, onwind, offwind-ac, offwind-dc, hydro}", "List of renewable power plants to include in the model from ``resources/powerplants.csv``." estimate_renewable_capacities,,, -- stats,, "{""irena"" or False}", "Defines which database to use, currently only ""irena"" is available. ""irena"" uses IRENA stats to add expansion limits. ``False`` enables greenfield expansion." --- year,, "Any year beetween 2000 and 2020", "Reference year for renewable capacities. Available years for IRENA stats are from 2000 to 2020." +-- year,, "Any year beetween 2000 and 2023", "Reference year for renewable capacities. Available years for IRENA stats are from 2000 to 2023." -- p_nom_min,,float,"Scales the minimum expansion acquired from stats. For example, 110% of 's capacities is obtained with p_nom_min: 1.1." -- p_nom_max,,float or ``False``,"sets the expansion constraint, False to deactivate this option and use estimated renewable potentials determine by the workflow, float scales the p_nom_min factor accordingly." -- technology_mapping,,, "Maps the technologies defined in ppm.data.Capacity_stats with the carriers in PyPSA-Earth." diff --git a/doc/configtables/licenses.csv b/doc/configtables/licenses.csv index 08044668e..6277fa75e 100644 --- a/doc/configtables/licenses.csv +++ b/doc/configtables/licenses.csv @@ -9,3 +9,8 @@ "data/raw/WorldPop/*","CC","x",,,,https://www.worldpop.org/ "data/raw/GDP/*","CC1.0",,,,,https://datadryad.org/stash/dataset/doi:10.5061/dryad.dk1j0 "data/osm/*","ODbL",,,,,https://www.openstreetmap.org/copyright +"data/demand/unsd/*","Custom","x",,,,"https://unstats.un.org/unsd/energystats/data/" +"data/industrial_database.csv","CC","x",,,,https://globalenergymonitor.org/projects/global-steel-plant-tracker/download-data/ +"data/industrial_database.csv","CC4.0","x",,,,https://www.cgfi.ac.uk/spatial-finance-initiative/geoasset-project/cement/ +"data/industrial_database.csv","CC4.0","x",,,,https://www.cgfi.ac.uk/spatial-finance-initiative/geoasset-project/pulp-and-paper-mill-database-for-latin-america/ +"data/airports.csv","Public Domain",,,,,https://ourairports.com/data/ diff --git a/doc/how_to_contribute.rst b/doc/how_to_contribute.rst index 8fffc1123..f2b312535 100644 --- a/doc/how_to_contribute.rst +++ b/doc/how_to_contribute.rst @@ -42,8 +42,8 @@ Add a new test if you want to contribute new functionality to the config. We perform currently *multiple* integration tests which means various workflows need to work. All test configs are build by updating the ``config.tutorial.yaml`` with the configs in ``pypysa-earth/test/*.yaml``. - * You can test your contribution locally with ``snakemake --cores 4 run_tests``. This will build test configs and executes them. - * Run ``snakemake -j1 build_test_configs`` to build and analyse locally the test configs. + * You can test your contribution locally with ``make test``. + * See the Makefile for further information which configurations are tested. To contribute a test: diff --git a/doc/release_notes.rst b/doc/release_notes.rst index d4c81f1c7..b2cddaabd 100644 --- a/doc/release_notes.rst +++ b/doc/release_notes.rst @@ -10,13 +10,20 @@ Upcoming release ================ Please add descriptive release notes like in `PyPSA-Eur `__. -E.g. if a new rule becomes available describe how to use it `snakemake -j1 run_tests` and in one sentence what it does. +E.g. if a new rule becomes available describe how to use it `make test` and in one sentence what it does. **New Features and Major Changes** +* The workflow configuration now supports incremental changes to the default configuration in the `config.yaml` and configfiles passed to snakemake via `--configfile myconfig.yaml`. Therefore the user may now only include settings in their `config.yaml` which differ from the default configuration. One can think of the new `config.yaml` as of a list of arguments in a python function that already have a default. So in principle the `config.yaml` could now be empty, and the workflow would still run. `PR #1053 `_ + +* Local tests are now run with `make test`. This uses a `Makefile` which runs snakemake calls with different configurations. `PR #1053 `_ **Minor Changes and bug-fixing** +* The default configuration for `electricity:estimate_renewable_capacities:year` was updated from 2020 to 2023. `PR #1106 `_ + +* Include a dedicated cutout for North America in bundle_config.yaml `PR #1121 `_ + PyPSA-Earth 0.4.1 ================= diff --git a/envs/environment.yaml b/envs/environment.yaml index a6980ac98..95899cbad 100644 --- a/envs/environment.yaml +++ b/envs/environment.yaml @@ -15,7 +15,7 @@ dependencies: - pypsa>=0.25, <0.28 # - atlite>=0.2.4 # until https://github.com/PyPSA/atlite/issues/244 is not merged - dask -- powerplantmatching>=0.5.7 +- powerplantmatching - earth-osm>=2.1 - atlite @@ -32,7 +32,7 @@ dependencies: - numpy - pandas - geopandas>=0.11.0, <=0.14.3 -- fiona!=1.8.22 +- fiona<1.10.0 - xarray>=2023.11.0, <2023.12.0 - netcdf4 - networkx @@ -78,11 +78,14 @@ dependencies: # Default solver for tests (required for CI) - glpk -- ipopt #<3.13.3 +- ipopt - gurobi - pip: + - earth-osm>=2.2 # until conda release it out + - powerplantmatching>=0.5.19 # until conda release it out - git+https://github.com/davide-f/google-drive-downloader@master # google drive with fix for virus scan - git+https://github.com/FRESNA/vresutils@master # until new pip release > 0.3.1 (strictly) - tsam>=1.1.0 - chaospy # lastest version only available on pip + - fake_useragent diff --git a/scripts/_helpers.py b/scripts/_helpers.py index 060f9e311..ce2119f93 100644 --- a/scripts/_helpers.py +++ b/scripts/_helpers.py @@ -5,16 +5,26 @@ # -*- coding: utf-8 -*- +import io import logging import os +import shutil import subprocess import sys +import time +import zipfile from pathlib import Path import country_converter as coco import geopandas as gpd +import numpy as np import pandas as pd +import requests import yaml +from fake_useragent import UserAgent +from pypsa.components import component_attrs, components +from shapely.geometry import Point +from vresutils.costdata import annuity logger = logging.getLogger(__name__) @@ -76,6 +86,14 @@ def handle_exception(exc_type, exc_value, exc_traceback): ) +def copy_default_files(): + fn = Path("config.yaml") + if not fn.exists(): + fn.write_text( + "# Write down config entries differing from config.default.yaml\n\nrun: {}" + ) + + def create_logger(logger_name, level=logging.INFO): """ Create a logger for a module and adds a handler needed to capture in logs @@ -134,41 +152,6 @@ def read_osm_config(*args): return tuple([osm_config[a] for a in args]) -def sets_path_to_root(root_directory_name): - """ - Search and sets path to the given root directory (root/path/file). - - Parameters - ---------- - root_directory_name : str - Name of the root directory. - n : int - Number of folders the function will check upwards/root directed. - """ - import os - - repo_name = root_directory_name - n = 8 # check max 8 levels above. Random default. - n0 = n - - while n >= 0: - n -= 1 - # if repo_name is current folder name, stop and set path - if repo_name == os.path.basename(os.path.abspath(".")): - repo_path = os.getcwd() # os.getcwd() = current_path - os.chdir(repo_path) # change dir_path to repo_path - print("This is the repository path: ", repo_path) - print("Had to go %d folder(s) up." % (n0 - 1 - n)) - break - # if repo_name NOT current folder name for 5 levels then stop - if n == 0: - print("Can't find the repo path.") - # if repo_name NOT current folder name, go one directory higher - else: - upper_path = os.path.dirname(os.path.abspath(".")) # name of upper folder - os.chdir(upper_path) - - def configure_logging(snakemake, skip_handlers=False): """ Configure the basic behaviour for the logging module. @@ -446,14 +429,99 @@ def dlProgress(count, blockSize, totalSize, roundto=roundto): data = urllib.parse.urlencode(data).encode() if headers: - opener = urllib.request.build_opener() - opener.addheaders = headers - urllib.request.install_opener(opener) + req = urllib.request.Request(url, headers=headers) + with urllib.request.urlopen(req) as response: + with open(file, "wb") as f: + f.write(response.read()) + + else: + urllib.request.urlretrieve(url, file, reporthook=dlProgress, data=data) + + +def content_retrieve(url, data=None, headers=None, max_retries=3, backoff_factor=0.3): + """ + Retrieve the content of a url with improved robustness. + + This function uses a more robust approach to handle permission issues + and avoid being blocked by the server. It implements exponential backoff + for retries and rotates user agents. - urllib.request.urlretrieve(url, file, reporthook=dlProgress, data=data) + Parameters + ---------- + url : str + URL to retrieve the content from + data : dict, optional + Data for the request, by default None + headers : dict, optional + Headers for the request, defaults to a fake user agent + If no headers are wanted at all, pass an empty dict. + max_retries : int, optional + Maximum number of retries, by default 3 + backoff_factor : float, optional + Factor to apply between attempts, by default 0.3 + """ + if headers is None: + ua = UserAgent() + headers = { + "User-Agent": ua.random, + "Upgrade-Insecure-Requests": "1", + "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8", + "Accept-Language": "en-US,en;q=0.5", + "Accept-Encoding": "gzip, deflate, br", + "DNT": "1", + "Connection": "keep-alive", + "Referer": "https://www.google.com/", + } + + session = requests.Session() + + for i in range(max_retries): + try: + response = session.get(url, headers=headers, data=data) + response.raise_for_status() + return io.BytesIO(response.content) + except ( + requests.exceptions.RequestException, + requests.exceptions.HTTPError, + ) as e: + if i == max_retries - 1: # last attempt + raise + else: + # Exponential backoff + wait_time = backoff_factor * (2**i) + np.random.uniform(0, 0.1) + time.sleep(wait_time) + + # Rotate user agent for next attempt + headers["User-Agent"] = UserAgent().random + + raise Exception("Max retries exceeded") + +def get_aggregation_strategies(aggregation_strategies): + """ + Default aggregation strategies that cannot be defined in .yaml format must + be specified within the function, otherwise (when defaults are passed in + the function's definition) they get lost when custom values are specified + in the config. + """ + import numpy as np + + # to handle the new version of PyPSA. + try: + from pypsa.clustering.spatial import _make_consense + except Exception: + # TODO: remove after new release and update minimum pypsa version + from pypsa.clustering.spatial import _make_consense + + bus_strategies = dict(country=_make_consense("Bus", "country")) + bus_strategies.update(aggregation_strategies.get("buses", {})) + + generator_strategies = {"build_year": lambda x: 0, "lifetime": lambda x: np.inf} + generator_strategies.update(aggregation_strategies.get("generators", {})) + return bus_strategies, generator_strategies -def mock_snakemake(rulename, **wildcards): + +def mock_snakemake(rulename, root_dir=None, submodule_dir=None, **wildcards): """ This function is expected to be executed from the "scripts"-directory of " the snakemake project. It returns a snakemake.script.Snakemake object, @@ -476,57 +544,72 @@ def mock_snakemake(rulename, **wildcards): from snakemake.script import Snakemake script_dir = Path(__file__).parent.resolve() - assert ( - Path.cwd().resolve() == script_dir - ), f"mock_snakemake has to be run from the repository scripts directory {script_dir}" - os.chdir(script_dir.parent) - for p in sm.SNAKEFILE_CHOICES: - if os.path.exists(p): - snakefile = p - break - workflow = sm.Workflow( - snakefile, overwrite_configfiles=[], rerun_triggers=[] - ) # overwrite_config=config - workflow.include(snakefile) - workflow.global_resources = {} + if root_dir is None: + root_dir = script_dir.parent + else: + root_dir = Path(root_dir).resolve() + + user_in_script_dir = Path.cwd().resolve() == script_dir + if str(submodule_dir) in __file__: + # the submodule_dir path is only need to locate the project dir + os.chdir(Path(__file__[: __file__.find(str(submodule_dir))])) + elif user_in_script_dir: + os.chdir(root_dir) + elif Path.cwd().resolve() != root_dir: + raise RuntimeError( + "mock_snakemake has to be run from the repository root" + f" {root_dir} or scripts directory {script_dir}" + ) try: - rule = workflow.get_rule(rulename) - except Exception as exception: - print( - exception, - f"The {rulename} might be a conditional rule in the Snakefile.\n" - f"Did you enable {rulename} in the config?", + for p in sm.SNAKEFILE_CHOICES: + if os.path.exists(p): + snakefile = p + break + workflow = sm.Workflow( + snakefile, overwrite_configfiles=[], rerun_triggers=[] + ) # overwrite_config=config + workflow.include(snakefile) + workflow.global_resources = {} + try: + rule = workflow.get_rule(rulename) + except Exception as exception: + print( + exception, + f"The {rulename} might be a conditional rule in the Snakefile.\n" + f"Did you enable {rulename} in the config?", + ) + raise + dag = sm.dag.DAG(workflow, rules=[rule]) + wc = Dict(wildcards) + job = sm.jobs.Job(rule, dag, wc) + + def make_accessable(*ios): + for io in ios: + for i in range(len(io)): + io[i] = os.path.abspath(io[i]) + + make_accessable(job.input, job.output, job.log) + snakemake = Snakemake( + job.input, + job.output, + job.params, + job.wildcards, + job.threads, + job.resources, + job.log, + job.dag.workflow.config, + job.rule.name, + None, ) - raise - dag = sm.dag.DAG(workflow, rules=[rule]) - wc = Dict(wildcards) - job = sm.jobs.Job(rule, dag, wc) - - def make_accessable(*ios): - for io in ios: - for i in range(len(io)): - io[i] = os.path.abspath(io[i]) - - make_accessable(job.input, job.output, job.log) - snakemake = Snakemake( - job.input, - job.output, - job.params, - job.wildcards, - job.threads, - job.resources, - job.log, - job.dag.workflow.config, - job.rule.name, - None, - ) - snakemake.benchmark = job.benchmark + snakemake.benchmark = job.benchmark - # create log and output dir if not existent - for path in list(snakemake.log) + list(snakemake.output): - Path(path).parent.mkdir(parents=True, exist_ok=True) + # create log and output dir if not existent + for path in list(snakemake.log) + list(snakemake.output): + Path(path).parent.mkdir(parents=True, exist_ok=True) - os.chdir(script_dir) + finally: + if user_in_script_dir: + os.chdir(script_dir) return snakemake @@ -819,7 +902,7 @@ def get_last_commit_message(path): os.chdir(backup_cwd) return last_commit_message - + def update_config_dictionary( config_dict, parameter_key_to_fill="lines", @@ -828,3 +911,546 @@ def update_config_dictionary( config_dict.setdefault(parameter_key_to_fill, {}) config_dict[parameter_key_to_fill].update(dict_to_use) return config_dict + +# PYPSA-EARTH-SEC + + +def prepare_costs( + cost_file: str, USD_to_EUR: float, fill_values: dict, Nyears: float | int = 1 +): + # set all asset costs and other parameters + costs = pd.read_csv(cost_file, index_col=[0, 1]).sort_index() + + # correct units to MW and EUR + costs.loc[costs.unit.str.contains("/kW"), "value"] *= 1e3 + costs.loc[costs.unit.str.contains("USD"), "value"] *= USD_to_EUR + + # min_count=1 is important to generate NaNs which are then filled by fillna + costs = ( + costs.loc[:, "value"].unstack(level=1).groupby("technology").sum(min_count=1) + ) + costs = costs.fillna(fill_values) + + def annuity_factor(v): + return annuity(v["lifetime"], v["discount rate"]) + v["FOM"] / 100 + + costs["fixed"] = [ + annuity_factor(v) * v["investment"] * Nyears for i, v in costs.iterrows() + ] + + return costs + + +def create_network_topology( + n, prefix, like="ac", connector=" <-> ", bidirectional=True +): + """ + Create a network topology like the power transmission network. + + Parameters + ---------- + n : pypsa.Network + prefix : str + connector : str + bidirectional : bool, default True + True: one link for each connection + False: one link for each connection and direction (back and forth) + + Returns + ------- + pd.DataFrame with columns bus0, bus1 and length + """ + + ln_attrs = ["bus0", "bus1", "length"] + lk_attrs = ["bus0", "bus1", "length", "underwater_fraction"] + + # TODO: temporary fix for when underwater_fraction is not found + if "underwater_fraction" not in n.links.columns: + if n.links.empty: + n.links["underwater_fraction"] = None + else: + n.links["underwater_fraction"] = 0.0 + + candidates = pd.concat( + [n.lines[ln_attrs], n.links.loc[n.links.carrier == "DC", lk_attrs]] + ).fillna(0) + + positive_order = candidates.bus0 < candidates.bus1 + candidates_p = candidates[positive_order] + swap_buses = {"bus0": "bus1", "bus1": "bus0"} + candidates_n = candidates[~positive_order].rename(columns=swap_buses) + candidates = pd.concat([candidates_p, candidates_n]) + + def make_index(c): + return prefix + c.bus0 + connector + c.bus1 + + topo = candidates.groupby(["bus0", "bus1"], as_index=False).mean() + topo.index = topo.apply(make_index, axis=1) + + if not bidirectional: + topo_reverse = topo.copy() + topo_reverse.rename(columns=swap_buses, inplace=True) + topo_reverse.index = topo_reverse.apply(make_index, axis=1) + topo = pd.concat([topo, topo_reverse]) + + return topo + + +def create_dummy_data(n, sector, carriers): + ind = n.buses_t.p.index + ind = n.buses.index[n.buses.carrier == "AC"] + + if sector == "industry": + col = [ + "electricity", + "coal", + "coke", + "solid biomass", + "methane", + "hydrogen", + "low-temperature heat", + "naphtha", + "process emission", + "process emission from feedstock", + "current electricity", + ] + else: + raise Exception("sector not found") + data = ( + np.random.randint(10, 500, size=(len(ind), len(col))) * 1000 * 1 + ) # TODO change 1 with temp. resolution + + return pd.DataFrame(data, index=ind, columns=col) + + +# def create_transport_data_dummy(pop_layout, +# transport_data, +# cars=4000000, +# average_fuel_efficiency=0.7): + +# for country in pop_layout.ct.unique(): + +# country_data = pd.DataFrame( +# data=[[cars, average_fuel_efficiency]], +# columns=transport_data.columns, +# index=[country], +# ) +# transport_data = pd.concat([transport_data, country_data], axis=0) + +# transport_data_dummy = transport_data + +# return transport_data_dummy + +# def create_temperature_dummy(pop_layout, temperature): + +# temperature_dummy = pd.DataFrame(index=temperature.index) + +# for index in pop_layout.index: +# temperature_dummy[index] = temperature["ES0 0"] + +# return temperature_dummy + +# def create_energy_totals_dummy(pop_layout, energy_totals): +# """ +# Function to add additional countries specified in pop_layout.index to energy_totals, these countries take the same values as Spain +# """ +# # All countries in pop_layout get the same values as Spain +# for country in pop_layout.ct.unique(): +# energy_totals.loc[country] = energy_totals.loc["ES"] + +# return energy_totals + + +def cycling_shift(df, steps=1): + """ + Cyclic shift on index of pd.Series|pd.DataFrame by number of steps. + """ + df = df.copy() + new_index = np.roll(df.index, steps) + df.values[:] = df.reindex(index=new_index).values + return df + + +def override_component_attrs(directory): + """Tell PyPSA that links can have multiple outputs by + overriding the component_attrs. This can be done for + as many buses as you need with format busi for i = 2,3,4,5,.... + See https://pypsa.org/doc/components.html#link-with-multiple-outputs-or-inputs + + Parameters + ---------- + directory : string + Folder where component attributes to override are stored + analogous to ``pypsa/component_attrs``, e.g. `links.csv`. + + Returns + ------- + Dictionary of overridden component attributes. + """ + + attrs = {k: v.copy() for k, v in component_attrs.items()} + + for component, list_name in components.list_name.items(): + fn = f"{directory}/{list_name}.csv" + if os.path.isfile(fn): + overrides = pd.read_csv(fn, index_col=0, na_values="n/a") + attrs[component] = overrides.combine_first(attrs[component]) + + return attrs + + +def get_country(target, **keys): + """ + Function to convert country codes using pycountry. + + Parameters + ---------- + target: str + Desired type of country code. + Examples: + - 'alpha_3' for 3-digit + - 'alpha_2' for 2-digit + - 'name' for full country name + keys: dict + Specification of the country name and reference system. + Examples: + - alpha_3="ZAF" for 3-digit + - alpha_2="ZA" for 2-digit + - name="South Africa" for full country name + Returns + ------- + country code as requested in keys or np.nan, when country code is not recognized + Example of usage + ------- + - Convert 2-digit code to 3-digit codes: get_country('alpha_3', alpha_2="ZA") + - Convert 3-digit code to 2-digit codes: get_country('alpha_2', alpha_3="ZAF") + - Convert 2-digit code to full name: get_country('name', alpha_2="ZA") + """ + import pycountry as pyc + + assert len(keys) == 1 + try: + return getattr(pyc.countries.get(**keys), target) + except (KeyError, AttributeError): + return np.nan + + +def download_GADM(country_code, update=False, out_logging=False): + """ + Download gpkg file from GADM for a given country code. + + Parameters + ---------- + country_code : str + Two letter country codes of the downloaded files + update : bool + Update = true, forces re-download of files + + Returns + ------- + gpkg file per country + """ + + GADM_filename = f"gadm36_{two_2_three_digits_country(country_code)}" + GADM_url = f"https://biogeo.ucdavis.edu/data/gadm3.6/gpkg/{GADM_filename}_gpkg.zip" + _logger = logging.getLogger(__name__) + GADM_inputfile_zip = os.path.join( + os.getcwd(), + "data", + "raw", + "gadm", + GADM_filename, + GADM_filename + ".zip", + ) # Input filepath zip + + GADM_inputfile_gpkg = os.path.join( + os.getcwd(), + "data", + "raw", + "gadm", + GADM_filename, + GADM_filename + ".gpkg", + ) # Input filepath gpkg + + if not os.path.exists(GADM_inputfile_gpkg) or update is True: + if out_logging: + _logger.warning( + f"Stage 4/4: {GADM_filename} of country {two_digits_2_name_country(country_code)} does not exist, downloading to {GADM_inputfile_zip}" + ) + # create data/osm directory + os.makedirs(os.path.dirname(GADM_inputfile_zip), exist_ok=True) + + with requests.get(GADM_url, stream=True) as r: + with open(GADM_inputfile_zip, "wb") as f: + shutil.copyfileobj(r.raw, f) + + with zipfile.ZipFile(GADM_inputfile_zip, "r") as zip_ref: + zip_ref.extractall(os.path.dirname(GADM_inputfile_zip)) + + return GADM_inputfile_gpkg, GADM_filename + + +def get_GADM_layer(country_list, layer_id, update=False, outlogging=False): + """ + Function to retrieve a specific layer id of a geopackage for a selection of + countries. + + Parameters + ---------- + country_list : str + List of the countries + layer_id : int + Layer to consider in the format GID_{layer_id}. + When the requested layer_id is greater than the last available layer, then the last layer is selected. + When a negative value is requested, then, the last layer is requested + """ + # initialization of the list of geodataframes + geodf_list = [] + + for country_code in country_list: + # download file gpkg + file_gpkg, name_file = download_GADM(country_code, update, outlogging) + + # get layers of a geopackage + list_layers = fiona.listlayers(file_gpkg) + + # get layer name + if layer_id < 0 | layer_id >= len(list_layers): + # when layer id is negative or larger than the number of layers, select the last layer + layer_id = len(list_layers) - 1 + code_layer = np.mod(layer_id, len(list_layers)) + layer_name = ( + f"gadm36_{two_2_three_digits_country(country_code).upper()}_{code_layer}" + ) + + # read gpkg file + geodf_temp = gpd.read_file(file_gpkg, layer=layer_name) + + # convert country name representation of the main country (GID_0 column) + geodf_temp["GID_0"] = [ + three_2_two_digits_country(twoD_c) for twoD_c in geodf_temp["GID_0"] + ] + + # create a subindex column that is useful + # in the GADM processing of sub-national zones + geodf_temp["GADM_ID"] = geodf_temp[f"GID_{code_layer}"] + + # concatenate geodataframes + geodf_list = pd.concat([geodf_list, geodf_temp]) + + geodf_GADM = gpd.GeoDataFrame(pd.concat(geodf_list, ignore_index=True)) + geodf_GADM.set_crs(geodf_list[0].crs, inplace=True) + + return geodf_GADM + + +def locate_bus( + coords, + co, + gadm_level, + path_to_gadm=None, + gadm_clustering=False, + col="name", +): + """ + Function to locate the right node for a coordinate set input coords of + point. + + Parameters + ---------- + coords: pandas dataseries + dataseries with 2 rows x & y representing the longitude and latitude + co: string (code for country where coords are MA Morocco) + code of the countries where the coordinates are + """ + col = "name" + if not gadm_clustering: + gdf = gpd.read_file(path_to_gadm) + else: + if path_to_gadm: + gdf = gpd.read_file(path_to_gadm) + if "GADM_ID" in gdf.columns: + col = "GADM_ID" + + if gdf[col][0][ + :3 + ].isalpha(): # TODO clean later by changing all codes to 2 letters + gdf[col] = gdf[col].apply( + lambda name: three_2_two_digits_country(name[:3]) + name[3:] + ) + else: + gdf = get_GADM_layer(co, gadm_level) + col = "GID_{}".format(gadm_level) + + # gdf.set_index("GADM_ID", inplace=True) + gdf_co = gdf[ + gdf[col].str.contains(co) + ] # geodataframe of entire continent - output of prev function {} are placeholders + # in strings - conditional formatting + # insert any variable into that place using .format - extract string and filter for those containing co (MA) + point = Point(coords["x"], coords["y"]) # point object + + try: + return gdf_co[gdf_co.contains(point)][ + col + ].item() # filter gdf_co which contains point and returns the bus + + except ValueError: + return gdf_co[gdf_co.geometry == min(gdf_co.geometry, key=(point.distance))][ + col + ].item() # looks for closest one shape=node + + +def get_conv_factors(sector): + # Create a dictionary with all the conversion factors from ktons or m3 to TWh based on https://unstats.un.org/unsd/energy/balance/2014/05.pdf + if sector == "industry": + fuels_conv_toTWh = { + "Gas Oil/ Diesel Oil": 0.01194, + "Motor Gasoline": 0.01230, + "Kerosene-type Jet Fuel": 0.01225, + "Aviation gasoline": 0.01230, + "Biodiesel": 0.01022, + "Natural gas liquids": 0.01228, + "Biogasoline": 0.007444, + "Bitumen": 0.01117, + "Fuel oil": 0.01122, + "Liquefied petroleum gas (LPG)": 0.01313, + "Liquified Petroleum Gas (LPG)": 0.01313, + "Lubricants": 0.01117, + "Naphtha": 0.01236, + "Fuelwood": 0.00254, + "Charcoal": 0.00819, + "Patent fuel": 0.00575, + "Brown coal briquettes": 0.00575, + "Hard coal": 0.007167, + "Hrad coal": 0.007167, + "Other bituminous coal": 0.005556, + "Anthracite": 0.005, + "Peat": 0.00271, + "Peat products": 0.00271, + "Lignite": 0.003889, + "Brown coal": 0.003889, + "Sub-bituminous coal": 0.005555, + "Coke-oven coke": 0.0078334, + "Coke oven coke": 0.0078334, + "Coke Oven Coke": 0.0078334, + "Gasoline-type jet fuel": 0.01230, + "Conventional crude oil": 0.01175, + "Brown Coal Briquettes": 0.00575, + "Refinery Gas": 0.01375, + "Petroleum coke": 0.009028, + "Coking coal": 0.007833, + "Peat Products": 0.00271, + "Petroleum Coke": 0.009028, + "Additives and Oxygenates": 0.008333, + "Bagasse": 0.002144, + "Bio jet kerosene": 0.011111, + "Crude petroleum": 0.011750, + "Gas coke": 0.007326, + "Gas Coke": 0.007326, + "Refinery gas": 0.01375, + "Coal Tar": 0.007778, + "Paraffin waxes": 0.01117, + "Ethane": 0.01289, + "Oil shale": 0.00247, + "Other kerosene": 0.01216, + } + return fuels_conv_toTWh + + +def aggregate_fuels(sector): + gas_fuels = [ + "Natural gas (including LNG)", # + "Natural Gas (including LNG)", # + ] + + oil_fuels = [ + "Motor Gasoline", ## + "Liquefied petroleum gas (LPG)", ## + "Liquified Petroleum Gas (LPG)", ## + "Fuel oil", ## + "Kerosene-type Jet Fuel", ## + "Conventional crude oil", # + "Crude petroleum", ## + "Lubricants", + "Naphtha", ## + "Gas Oil/ Diesel Oil", ## + "Petroleum coke", ## + "Petroleum Coke", ## + "Ethane", ## + "Bitumen", ## + "Refinery gas", ## + "Additives and Oxygenates", # + "Refinery Gas", ## + "Aviation gasoline", ## + "Gasoline-type jet fuel", ## + "Paraffin waxes", ## + "Natural gas liquids", # + "Other kerosene", + ] + + biomass_fuels = [ + "Bagasse", # + "Fuelwood", # + "Biogases", + "Biogasoline", # + "Biodiesel", # + "Charcoal", # + "Black Liquor", # + "Bio jet kerosene", # + "Animal waste", # + "Industrial Waste", # + "Industrial waste", + "Municipal Wastes", # + "Vegetal waste", + ] + + coal_fuels = [ + "Anthracite", + "Brown coal", # + "Brown coal briquettes", # + "Coke oven coke", + "Coke-oven coke", + "Coke Oven Coke", + "Coking coal", + "Hard coal", # + "Hrad coal", # + "Other bituminous coal", + "Sub-bituminous coal", + "Coking coal", + "Coke Oven Gas", ## + "Gas Coke", + "Gasworks Gas", ## + "Lignite", # + "Peat", # + "Peat products", + "Coal Tar", ## + "Brown Coal Briquettes", ## + "Gas coke", + "Peat Products", + "Oil shale", # + "Oil Shale", # + "Coal coke", ## + "Patent fuel", ## + "Blast Furnace Gas", ## + "Recovered gases", ## + ] + + electricity = ["Electricity"] + + heat = ["Heat", "Direct use of geothermal heat", "Direct use of solar thermal heat"] + + return gas_fuels, oil_fuels, biomass_fuels, coal_fuels, heat, electricity + + +def safe_divide(numerator, denominator, default_value=np.nan): + """ + Safe division function that returns NaN when the denominator is zero. + """ + if denominator != 0.0: + return numerator / denominator + else: + logging.warning( + f"Division by zero: {numerator} / {denominator}, returning NaN." + ) + return np.nan \ No newline at end of file diff --git a/scripts/add_brownfield.py b/scripts/add_brownfield.py new file mode 100644 index 000000000..fba41d327 --- /dev/null +++ b/scripts/add_brownfield.py @@ -0,0 +1,263 @@ +# -*- coding: utf-8 -*- +# SPDX-FileCopyrightText: PyPSA-Earth and PyPSA-Eur Authors +# +# SPDX-License-Identifier: AGPL-3.0-or-later +""" +Prepares brownfield data from previous planning horizon. +""" + +import logging + +import numpy as np +import pandas as pd +import pypsa +import xarray as xr +from add_existing_baseyear import add_build_year_to_new_assets + +# from pypsa.clustering.spatial import normed_or_uniform + +logger = logging.getLogger(__name__) +idx = pd.IndexSlice + + +def add_brownfield(n, n_p, year): + logger.info(f"Preparing brownfield for the year {year}") + + # electric transmission grid set optimised capacities of previous as minimum + n.lines.s_nom_min = n_p.lines.s_nom_opt + dc_i = n.links[n.links.carrier == "DC"].index + n.links.loc[dc_i, "p_nom_min"] = n_p.links.loc[dc_i, "p_nom_opt"] + + for c in n_p.iterate_components(["Link", "Generator", "Store"]): + attr = "e" if c.name == "Store" else "p" + + # first, remove generators, links and stores that track + # CO2 or global EU values since these are already in n + n_p.mremove(c.name, c.df.index[c.df.lifetime == np.inf]) + + # remove assets whose build_year + lifetime < year + n_p.mremove(c.name, c.df.index[c.df.build_year + c.df.lifetime < year]) + + # remove assets if their optimized nominal capacity is lower than a threshold + # since CHP heat Link is proportional to CHP electric Link, make sure threshold is compatible + chp_heat = c.df.index[ + (c.df[f"{attr}_nom_extendable"] & c.df.index.str.contains("urban central")) + & c.df.index.str.contains("CHP") + & c.df.index.str.contains("heat") + ] + + threshold = snakemake.params.threshold_capacity + + if not chp_heat.empty: + threshold_chp_heat = ( + threshold + * c.df.efficiency[chp_heat.str.replace("heat", "electric")].values + * c.df.p_nom_ratio[chp_heat.str.replace("heat", "electric")].values + / c.df.efficiency[chp_heat].values + ) + n_p.mremove( + c.name, + chp_heat[c.df.loc[chp_heat, f"{attr}_nom_opt"] < threshold_chp_heat], + ) + + n_p.mremove( + c.name, + c.df.index[ + (c.df[f"{attr}_nom_extendable"] & ~c.df.index.isin(chp_heat)) + & (c.df[f"{attr}_nom_opt"] < threshold) + ], + ) + + # copy over assets but fix their capacity + c.df[f"{attr}_nom"] = c.df[f"{attr}_nom_opt"] + c.df[f"{attr}_nom_extendable"] = False + + n.import_components_from_dataframe(c.df, c.name) + + # copy time-dependent + selection = n.component_attrs[c.name].type.str.contains( + "series" + ) & n.component_attrs[c.name].status.str.contains("Input") + for tattr in n.component_attrs[c.name].index[selection]: + n.import_series_from_dataframe(c.pnl[tattr], c.name, tattr) + + # deal with gas network + pipe_carrier = ["gas pipeline"] + if snakemake.params.H2_retrofit: + # drop capacities of previous year to avoid duplicating + to_drop = n.links.carrier.isin(pipe_carrier) & (n.links.build_year != year) + n.mremove("Link", n.links.loc[to_drop].index) + + # subtract the already retrofitted from today's gas grid capacity + h2_retrofitted_fixed_i = n.links[ + (n.links.carrier == "H2 pipeline retrofitted") + & (n.links.build_year != year) + ].index + gas_pipes_i = n.links[n.links.carrier.isin(pipe_carrier)].index + CH4_per_H2 = 1 / snakemake.params.H2_retrofit_capacity_per_CH4 + fr = "H2 pipeline retrofitted" + to = "gas pipeline" + # today's pipe capacity + pipe_capacity = n.links.loc[gas_pipes_i, "p_nom"] + # already retrofitted capacity from gas -> H2 + already_retrofitted = ( + n.links.loc[h2_retrofitted_fixed_i, "p_nom"] + .rename(lambda x: x.split("-2")[0].replace(fr, to)) + .groupby(level=0) + .sum() + ) + remaining_capacity = ( + pipe_capacity + - CH4_per_H2 + * already_retrofitted.reindex(index=pipe_capacity.index).fillna(0) + ) + n.links.loc[gas_pipes_i, "p_nom"] = remaining_capacity + else: + new_pipes = n.links.carrier.isin(pipe_carrier) & ( + n.links.build_year == year + ) + n.links.loc[new_pipes, "p_nom"] = 0.0 + n.links.loc[new_pipes, "p_nom_min"] = 0.0 + + +def disable_grid_expansion_if_limit_hit(n): + """ + Check if transmission expansion limit is already reached; then turn off. + + In particular, this function checks if the total transmission + capital cost or volume implied by s_nom_min and p_nom_min are + numerically close to the respective global limit set in + n.global_constraints. If so, the nominal capacities are set to the + minimum and extendable is turned off; the corresponding global + constraint is then dropped. + """ + cols = {"cost": "capital_cost", "volume": "length"} + for limit_type in ["cost", "volume"]: + glcs = n.global_constraints.query( + f"type == 'transmission_expansion_{limit_type}_limit'" + ) + + for name, glc in glcs.iterrows(): + total_expansion = ( + ( + n.lines.query("s_nom_extendable") + .eval(f"s_nom_min * {cols[limit_type]}") + .sum() + ) + + ( + n.links.query("carrier == 'DC' and p_nom_extendable") + .eval(f"p_nom_min * {cols[limit_type]}") + .sum() + ) + ).sum() + + # Allow small numerical differences + if np.abs(glc.constant - total_expansion) / glc.constant < 1e-6: + logger.info( + f"Transmission expansion {limit_type} is already reached, disabling expansion and limit" + ) + extendable_acs = n.lines.query("s_nom_extendable").index + n.lines.loc[extendable_acs, "s_nom_extendable"] = False + n.lines.loc[extendable_acs, "s_nom"] = n.lines.loc[ + extendable_acs, "s_nom_min" + ] + + extendable_dcs = n.links.query( + "carrier == 'DC' and p_nom_extendable" + ).index + n.links.loc[extendable_dcs, "p_nom_extendable"] = False + n.links.loc[extendable_dcs, "p_nom"] = n.links.loc[ + extendable_dcs, "p_nom_min" + ] + + n.global_constraints.drop(name, inplace=True) + + +# def adjust_renewable_profiles(n, input_profiles, params, year): +# """ +# Adjusts renewable profiles according to the renewable technology specified, +# using the latest year below or equal to the selected year. +# """ + +# # spatial clustering +# cluster_busmap = pd.read_csv(snakemake.input.cluster_busmap, index_col=0).squeeze() +# simplify_busmap = pd.read_csv( +# snakemake.input.simplify_busmap, index_col=0 +# ).squeeze() +# clustermaps = simplify_busmap.map(cluster_busmap) +# clustermaps.index = clustermaps.index.astype(str) + +# # temporal clustering +# dr = pd.date_range(**params["snapshots"], freq="h") +# snapshotmaps = ( +# pd.Series(dr, index=dr).where(lambda x: x.isin(n.snapshots), pd.NA).ffill() +# ) + +# for carrier in params["carriers"]: +# if carrier == "hydro": +# continue +# with xr.open_dataset(getattr(input_profiles, "profile_" + carrier)) as ds: +# if ds.indexes["bus"].empty or "year" not in ds.indexes: +# continue + +# closest_year = max( +# (y for y in ds.year.values if y <= year), default=min(ds.year.values) +# ) + +# p_max_pu = ( +# ds["profile"] +# .sel(year=closest_year) +# .transpose("time", "bus") +# .to_pandas() +# ) + +# # spatial clustering +# weight = ds["weight"].sel(year=closest_year).to_pandas() +# weight = weight.groupby(clustermaps).transform(normed_or_uniform) +# p_max_pu = (p_max_pu * weight).T.groupby(clustermaps).sum().T +# p_max_pu.columns = p_max_pu.columns + f" {carrier}" + +# # temporal_clustering +# p_max_pu = p_max_pu.groupby(snapshotmaps).mean() + +# # replace renewable time series +# n.generators_t.p_max_pu.loc[:, p_max_pu.columns] = p_max_pu + + +if __name__ == "__main__": + if "snakemake" not in globals(): + + from _helpers import mock_snakemake + + snakemake = mock_snakemake( + "add_brownfield", + simpl="", + clusters="10", + ll="c1.0", + opts="Co2L", + planning_horizons="2030", + sopts="144H", + discountrate=0.071, + demand="AB", + h2export="120", + ) + + logger.info(f"Preparing brownfield from the file {snakemake.input.network_p}") + + year = int(snakemake.wildcards.planning_horizons) + + n = pypsa.Network(snakemake.input.network) + + # TODO + # adjust_renewable_profiles(n, snakemake.input, snakemake.params, year) + + add_build_year_to_new_assets(n, year) + + n_p = pypsa.Network(snakemake.input.network_p) + + add_brownfield(n, n_p, year) + + disable_grid_expansion_if_limit_hit(n) + + n.meta = dict(snakemake.config, **dict(wildcards=dict(snakemake.wildcards))) + n.export_to_netcdf(snakemake.output[0]) diff --git a/scripts/add_electricity.py b/scripts/add_electricity.py index e5c8c1545..55c9749fc 100755 --- a/scripts/add_electricity.py +++ b/scripts/add_electricity.py @@ -127,8 +127,6 @@ def _add_missing_carriers_from_costs(n, costs, carriers): costs.columns.to_series().loc[lambda s: s.str.endswith("_emissions")].values ) suptechs = missing_carriers.str.split("-").str[0] - if "csp" in suptechs: - suptechs = suptechs.str.replace("csp", "csp-tower") emissions = costs.loc[suptechs, emissions_cols].fillna(0.0) emissions.index = missing_carriers n.import_components_from_dataframe(emissions, "Carrier") @@ -150,6 +148,7 @@ def load_costs(tech_costs, config, elec_config, Nyears=1): for attr in ("investment", "lifetime", "FOM", "VOM", "efficiency", "fuel"): overwrites = config.get(attr) if overwrites is not None: + breakpoint() overwrites = pd.Series(overwrites) costs.loc[overwrites.index, attr] = overwrites logger.info( @@ -189,6 +188,7 @@ def load_costs(tech_costs, config, elec_config, Nyears=1): config["rooftop_share"] * costs.at["solar-rooftop", "capital_cost"] + (1 - config["rooftop_share"]) * costs.at["solar-utility", "capital_cost"] ) + costs.loc["csp"] = costs.loc["csp-tower"] def costs_for_storage(store, link1, link2=None, max_hours=1.0): capital_cost = link1["capital_cost"] + max_hours * store["capital_cost"] @@ -371,9 +371,7 @@ def attach_wind_and_solar( ) ) else: - capital_cost = costs.at[ - "csp-tower" if tech == "csp" else tech, "capital_cost" - ] + capital_cost = costs.at[tech, "capital_cost"] if not df.query("carrier == @tech").empty: buses = n.buses.loc[ds.indexes["bus"]] @@ -395,13 +393,9 @@ def attach_wind_and_solar( p_nom_max=ds["p_nom_max"].to_pandas(), p_max_pu=ds["profile"].transpose("time", "bus").to_pandas(), weight=ds["weight"].to_pandas(), - marginal_cost=costs.at[ - "csp-tower" if suptech == "csp" else suptech, "marginal_cost" - ], + marginal_cost=costs.at[suptech, "marginal_cost"], capital_cost=capital_cost, - efficiency=costs.at[ - "csp-tower" if suptech == "csp" else suptech, "efficiency" - ], + efficiency=costs.at[suptech, "efficiency"], ) @@ -774,7 +768,8 @@ def estimate_renewable_capacities_irena( ( n.generators_t.p_max_pu[tech_i].mean() * n.generators.loc[tech_i, "p_nom_max"] - ) # maximal yearly generation + ) + # maximal yearly generation .groupby(n.generators.bus.map(n.buses.country)) .transform(lambda s: normed(s) * tech_capacities.at[s.name]) .where(lambda s: s > 0.1, 0.0) @@ -819,11 +814,10 @@ def add_nice_carrier_names(n, config): if __name__ == "__main__": if "snakemake" not in globals(): - from _helpers import mock_snakemake, sets_path_to_root + from _helpers import mock_snakemake - os.chdir(os.path.dirname(os.path.abspath(__file__))) snakemake = mock_snakemake("add_electricity") - sets_path_to_root("pypsa-earth") + configure_logging(snakemake) n = pypsa.Network(snakemake.input.base_network) diff --git a/scripts/add_existing_baseyear.py b/scripts/add_existing_baseyear.py new file mode 100644 index 000000000..f2529587d --- /dev/null +++ b/scripts/add_existing_baseyear.py @@ -0,0 +1,660 @@ +# -*- coding: utf-8 -*- +# SPDX-FileCopyrightText: PyPSA-Earth and PyPSA-Eur Authors +# +# SPDX-License-Identifier: AGPL-3.0-or-later +""" +Adds existing power and heat generation capacities for initial planning +horizon. +""" + +import logging +import os +from types import SimpleNamespace + +import country_converter as coco +import numpy as np +import pandas as pd +import powerplantmatching as pm +import pypsa +import xarray as xr + +# from _helpers import ( +# configure_logging, +# set_scenario_config, +# update_config_from_wildcards, +# ) +# from add_electricity import sanitize_carriers +from prepare_sector_network import define_spatial, prepare_costs # , cluster_heat_buses + +logger = logging.getLogger(__name__) +cc = coco.CountryConverter() +idx = pd.IndexSlice +spatial = SimpleNamespace() + + +def add_build_year_to_new_assets(n, baseyear): + """ + Parameters + ---------- + n : pypsa.Network + baseyear : int + year in which optimized assets are built + """ + # Give assets with lifetimes and no build year the build year baseyear + for c in n.iterate_components(["Link", "Generator", "Store"]): + assets = c.df.index[(c.df.lifetime != np.inf) & (c.df.build_year == 0)] + c.df.loc[assets, "build_year"] = baseyear + + # add -baseyear to name + rename = pd.Series(c.df.index, c.df.index) + rename[assets] += f"-{str(baseyear)}" + c.df.rename(index=rename, inplace=True) + + # rename time-dependent + selection = n.component_attrs[c.name].type.str.contains( + "series" + ) & n.component_attrs[c.name].status.str.contains("Input") + for attr in n.component_attrs[c.name].index[selection]: + c.pnl[attr] = c.pnl[attr].rename(columns=rename) + + +def add_existing_renewables(df_agg): + """ + Append existing renewables to the df_agg pd.DataFrame with the conventional + power plants. + """ + tech_map = {"solar": "PV", "onwind": "Onshore", "offwind": "Offshore"} + + countries = snakemake.config["countries"] + irena = pm.data.IRENASTAT().powerplant.convert_country_to_alpha2() + irena = irena.query("Country in @countries") + irena = irena.groupby(["Technology", "Country", "Year"]).Capacity.sum() + + irena = irena.unstack().reset_index() + + for carrier, tech in tech_map.items(): + df = ( + irena[irena.Technology.str.contains(tech)] + .drop(columns=["Technology"]) + .set_index("Country") + .reindex(countries, fill_value=0.0) + .fillna(0.0) + ) + df.columns = df.columns.astype(int) + + # calculate yearly differences + df.insert(loc=0, value=0.0, column="1999") + df = df.diff(axis=1).drop("1999", axis=1).clip(lower=0) + + # distribute capacities among nodes according to capacity factor + # weighting with nodal_fraction + elec_buses = n.buses.index[n.buses.carrier == "AC"].union( + n.buses.index[n.buses.carrier == "DC"] + ) + nodal_fraction = pd.Series(0.0, elec_buses) + + for country in n.buses.loc[elec_buses, "country"].unique(): + gens = n.generators.index[ + (n.generators.index.str[:2] == country) + & (n.generators.carrier == carrier) + ] + cfs = n.generators_t.p_max_pu[gens].mean() + cfs_key = cfs / cfs.sum() + nodal_fraction.loc[n.generators.loc[gens, "bus"]] = cfs_key.groupby( + n.generators.loc[gens, "bus"] + ).sum() + + nodal_df = df.loc[n.buses.loc[elec_buses, "country"]] + nodal_df.index = elec_buses + nodal_df = nodal_df.multiply(nodal_fraction, axis=0) + + for year in nodal_df.columns: + for node in nodal_df.index: + name = f"{node}-{carrier}-{year}" + capacity = nodal_df.loc[node, year] + if capacity > 0.0: + df_agg.at[name, "Fueltype"] = carrier + df_agg.at[name, "Capacity"] = capacity + df_agg.at[name, "DateIn"] = year + df_agg.at[name, "lifetime"] = costs.at[carrier, "lifetime"] + df_agg.at[name, "DateOut"] = ( + year + costs.at[carrier, "lifetime"] - 1 + ) + df_agg.at[name, "cluster_bus"] = node + + +def add_power_capacities_installed_before_baseyear(n, grouping_years, costs, baseyear): + """ + Parameters + ---------- + n : pypsa.Network + grouping_years : + intervals to group existing capacities + costs : + to read lifetime to estimate YearDecomissioning + baseyear : int + """ + logger.debug( + f"Adding power capacities installed before {baseyear} from powerplants.csv" + ) + + df_agg = pd.read_csv(snakemake.input.powerplants, index_col=0) + + rename_fuel = { + "Hard Coal": "coal", + "Lignite": "lignite", + "Nuclear": "nuclear", + "Oil": "oil", + "OCGT": "OCGT", + "CCGT": "CCGT", + "Bioenergy": "urban central solid biomass CHP", + } + + # Replace Fueltype "Natural Gas" with the respective technology (OCGT or CCGT) + df_agg.loc[df_agg["Fueltype"] == "Natural Gas", "Fueltype"] = df_agg.loc[ + df_agg["Fueltype"] == "Natural Gas", "Technology" + ] + + fueltype_to_drop = [ + "Hydro", + "Wind", + "Solar", + "Geothermal", + "Waste", + "Other", + "CCGT, Thermal", + ] + + technology_to_drop = ["Pv", "Storage Technologies"] + + # drop unused fueltyps and technologies + df_agg.drop(df_agg.index[df_agg.Fueltype.isin(fueltype_to_drop)], inplace=True) + df_agg.drop(df_agg.index[df_agg.Technology.isin(technology_to_drop)], inplace=True) + df_agg.Fueltype = df_agg.Fueltype.map(rename_fuel) + + # Intermediate fix for DateIn & DateOut + # Fill missing DateIn + # TODO: revise CHP + biomass_i = df_agg.loc[df_agg.Fueltype == "urban central solid biomass CHP"].index + if biomass_i.empty: + mean = 0 + else: + mean = df_agg.loc[biomass_i, "DateIn"].mean() + df_agg.loc[biomass_i, "DateIn"] = df_agg.loc[biomass_i, "DateIn"].fillna(int(mean)) + # Fill missing DateOut + dateout = ( + df_agg.loc[biomass_i, "DateIn"] + + snakemake.params.costs["fill_values"]["lifetime"] + ) + df_agg.loc[biomass_i, "DateOut"] = df_agg.loc[biomass_i, "DateOut"].fillna(dateout) + + # drop assets which are already phased out / decommissioned + phased_out = df_agg[df_agg["DateOut"] < baseyear].index + df_agg.drop(phased_out, inplace=True) + + # assign clustered bus + busmap_s = pd.read_csv(snakemake.input.busmap_s, index_col=0).squeeze() + busmap = pd.read_csv(snakemake.input.busmap, index_col=0).squeeze() + + inv_busmap = {} + for k, v in busmap.items(): + inv_busmap[v] = inv_busmap.get(v, []) + [k] + + clustermaps = busmap_s.map(busmap) + clustermaps.index = clustermaps.index.astype(int) + + df_agg["cluster_bus"] = df_agg.bus.map(clustermaps) + + # include renewables in df_agg + add_existing_renewables(df_agg) + + df_agg["grouping_year"] = np.take( + grouping_years, np.digitize(df_agg.DateIn, grouping_years, right=True) + ) + + # calculate (adjusted) remaining lifetime before phase-out (+1 because assuming + # phase out date at the end of the year) + df_agg["lifetime"] = df_agg.DateOut - df_agg["grouping_year"] + 1 + + df = df_agg.pivot_table( + index=["grouping_year", "Fueltype"], + columns="cluster_bus", + values="Capacity", + aggfunc="sum", + ) + + lifetime = df_agg.pivot_table( + index=["grouping_year", "Fueltype"], + columns="cluster_bus", + values="lifetime", + aggfunc="mean", # currently taken mean for clustering lifetimes + ) + + carrier = { + "OCGT": "gas", + "CCGT": "gas", + "coal": "coal", + "oil": "oil", + "lignite": "lignite", + "nuclear": "uranium", + "urban central solid biomass CHP": "biomass", + } + + for grouping_year, generator in df.index: + # capacity is the capacity in MW at each node for this + capacity = df.loc[grouping_year, generator] + capacity = capacity[~capacity.isna()] + capacity = capacity[ + capacity > snakemake.params.existing_capacities["threshold_capacity"] + ] + suffix = "-ac" if generator == "offwind" else "" + name_suffix = f" {generator}{suffix}-{grouping_year}" + asset_i = capacity.index + name_suffix + if generator in ["solar", "onwind", "offwind"]: + # to consider electricity grid connection costs or a split between + # solar utility and rooftop as well, rather take cost assumptions + # from existing network than from the cost database + capital_cost = n.generators.loc[ + n.generators.carrier == generator + suffix, "capital_cost" + ].mean() + marginal_cost = n.generators.loc[ + n.generators.carrier == generator + suffix, "marginal_cost" + ].mean() + # check if assets are already in network (e.g. for 2020) + already_build = n.generators.index.intersection(asset_i) + new_build = asset_i.difference(n.generators.index) + + # this is for the year 2020 + if not already_build.empty: + n.generators.loc[already_build, "p_nom_min"] = capacity.loc[ + already_build.str.replace(name_suffix, "") + ].values + new_capacity = capacity.loc[new_build.str.replace(name_suffix, "")] + + if "m" in snakemake.wildcards.clusters: + for ind in new_capacity.index: + # existing capacities are split evenly among regions in every country + inv_ind = list(inv_busmap[ind]) + + # for offshore the splitting only includes coastal regions + inv_ind = [ + i for i in inv_ind if (i + name_suffix) in n.generators.index + ] + + p_max_pu = n.generators_t.p_max_pu[ + [i + name_suffix for i in inv_ind] + ] + p_max_pu.columns = [i + name_suffix for i in inv_ind] + + n.madd( + "Generator", + [i + name_suffix for i in inv_ind], + bus=ind, + carrier=generator, + p_nom=new_capacity[ind] + / len(inv_ind), # split among regions in a country + marginal_cost=marginal_cost, + capital_cost=capital_cost, + efficiency=costs.at[generator, "efficiency"], + p_max_pu=p_max_pu, + build_year=grouping_year, + lifetime=costs.at[generator, "lifetime"], + ) + + else: + # TODO: revision of this line to avoid this hardfix + # try: + p_max_pu = n.generators_t.p_max_pu[ + capacity.index + f" {generator}{suffix}-{baseyear}" + ] + # except: + # p_max_pu = n.generators_t.p_max_pu[ + # capacity.index + f" {generator}{suffix}" + # ] + + if not new_build.empty: + n.madd( + "Generator", + new_capacity.index, + suffix=" " + name_suffix, + bus=new_capacity.index, + carrier=generator, + p_nom=new_capacity, + marginal_cost=marginal_cost, + capital_cost=capital_cost, + efficiency=costs.at[generator, "efficiency"], + p_max_pu=p_max_pu.rename(columns=n.generators.bus), + build_year=grouping_year, + lifetime=costs.at[generator, "lifetime"], + ) + + else: + if generator not in vars(spatial).keys(): + logger.debug(f"Carrier type {generator} not in spatial data, skipping") + continue + + bus0 = vars(spatial)[carrier[generator]].nodes + if "EU" not in vars(spatial)[carrier[generator]].locations: + bus0 = bus0.intersection(capacity.index + " " + carrier[generator]) + + # check for missing bus + missing_bus = pd.Index(bus0).difference(n.buses.index) + if not missing_bus.empty: + logger.info(f"add buses {bus0}") + n.madd( + "Bus", + bus0, + carrier=generator, + location=vars(spatial)[carrier[generator]].locations, + unit="MWh_el", + ) + + already_build = n.links.index.intersection(asset_i) + new_build = asset_i.difference(n.links.index) + lifetime_assets = lifetime.loc[grouping_year, generator].dropna() + + # this is for the year 2020 + if not already_build.empty: + n.links.loc[already_build, "p_nom_min"] = capacity.loc[ + already_build.str.replace(name_suffix, "") + ].values + + if not new_build.empty: + new_capacity = capacity.loc[new_build.str.replace(name_suffix, "")] + + if generator != "urban central solid biomass CHP": + n.madd( + "Link", + new_capacity.index, + suffix=name_suffix, + bus0=bus0, + bus1=new_capacity.index, + bus2="co2 atmosphere", + carrier=generator, + marginal_cost=costs.at[generator, "efficiency"] + * costs.at[generator, "VOM"], # NB: VOM is per MWel + capital_cost=costs.at[generator, "efficiency"] + * costs.at[generator, "fixed"], # NB: fixed cost is per MWel + p_nom=new_capacity / costs.at[generator, "efficiency"], + efficiency=costs.at[generator, "efficiency"], + efficiency2=costs.at[carrier[generator], "CO2 intensity"], + build_year=grouping_year, + lifetime=lifetime_assets.loc[new_capacity.index], + ) + else: + key = "central solid biomass CHP" + n.madd( + "Link", + new_capacity.index, + suffix=name_suffix, + bus0=spatial.biomass.df.loc[new_capacity.index]["nodes"].values, + bus1=new_capacity.index, + bus2=new_capacity.index + " urban central heat", + carrier=generator, + p_nom=new_capacity / costs.at[key, "efficiency"], + capital_cost=costs.at[key, "fixed"] + * costs.at[key, "efficiency"], + marginal_cost=costs.at[key, "VOM"], + efficiency=costs.at[key, "efficiency"], + build_year=grouping_year, + efficiency2=costs.at[key, "efficiency-heat"], + lifetime=lifetime_assets.loc[new_capacity.index], + ) + # check if existing capacities are larger than technical potential + existing_large = n.generators[ + n.generators["p_nom_min"] > n.generators["p_nom_max"] + ].index + if len(existing_large): + logger.warning( + f"Existing capacities larger than technical potential for {existing_large},\ + adjust technical potential to existing capacities" + ) + n.generators.loc[existing_large, "p_nom_max"] = n.generators.loc[ + existing_large, "p_nom_min" + ] + + +def add_heating_capacities_installed_before_baseyear( + n, + baseyear, + grouping_years, + ashp_cop, + gshp_cop, + time_dep_hp_cop, + costs, + default_lifetime, +): + """ + Parameters + ---------- + n : pypsa.Network + baseyear : last year covered in the existing capacities database + grouping_years : intervals to group existing capacities + linear decommissioning of heating capacities from 2020 to 2045 is + currently assumed heating capacities split between residential and + services proportional to heating load in both 50% capacities + in rural busess 50% in urban buses + """ + logger.debug(f"Adding heating capacities installed before {baseyear}") + + existing_heating = pd.read_csv( + snakemake.input.existing_heating_distribution, header=[0, 1], index_col=0 + ) + + techs = existing_heating.columns.get_level_values(1).unique() + + for name in existing_heating.columns.get_level_values(0).unique(): + name_type = "central" if name == "urban central" else "decentral" + + nodes = pd.Index(n.buses.location[n.buses.index.str.contains(f"{name} heat")]) + + if (name_type != "central") and options["electricity_distribution_grid"]: + nodes_elec = nodes + " low voltage" + else: + nodes_elec = nodes + + heat_pump_type = "air" if "urban" in name else "ground" + + # Add heat pumps + costs_name = f"decentral {heat_pump_type}-sourced heat pump" + + cop = {"air": ashp_cop, "ground": gshp_cop} + + if time_dep_hp_cop: + efficiency = cop[heat_pump_type][nodes] + else: + efficiency = costs.at[costs_name, "efficiency"] + + for i, grouping_year in enumerate(grouping_years): + if int(grouping_year) + default_lifetime <= int(baseyear): + continue + + # installation is assumed to be linear for the past default_lifetime years + ratio = (int(grouping_year) - int(grouping_years[i - 1])) / default_lifetime + + n.madd( + "Link", + nodes, + suffix=f" {name} {heat_pump_type} heat pump-{grouping_year}", + bus0=nodes_elec, + bus1=nodes + " " + name + " heat", + carrier=f"{name} {heat_pump_type} heat pump", + efficiency=efficiency, + capital_cost=costs.at[costs_name, "efficiency"] + * costs.at[costs_name, "fixed"], + p_nom=existing_heating.loc[nodes, (name, f"{heat_pump_type} heat pump")] + * ratio + / costs.at[costs_name, "efficiency"], + build_year=int(grouping_year), + lifetime=costs.at[costs_name, "lifetime"], + ) + + # add resistive heater, gas boilers and oil boilers + n.madd( + "Link", + nodes, + suffix=f" {name} resistive heater-{grouping_year}", + bus0=nodes_elec, + bus1=nodes + " " + name + " heat", + carrier=name + " resistive heater", + efficiency=costs.at[f"{name_type} resistive heater", "efficiency"], + capital_cost=( + costs.at[f"{name_type} resistive heater", "efficiency"] + * costs.at[f"{name_type} resistive heater", "fixed"] + ), + p_nom=( + existing_heating.loc[nodes, (name, "resistive heater")] + * ratio + / costs.at[f"{name_type} resistive heater", "efficiency"] + ), + build_year=int(grouping_year), + lifetime=costs.at[f"{name_type} resistive heater", "lifetime"], + ) + + n.madd( + "Link", + nodes, + suffix=f" {name} gas boiler-{grouping_year}", + bus0="EU gas" if "EU gas" in spatial.gas.nodes else nodes + " gas", + bus1=nodes + " " + name + " heat", + bus2="co2 atmosphere", + carrier=name + " gas boiler", + efficiency=costs.at[f"{name_type} gas boiler", "efficiency"], + efficiency2=costs.at["gas", "CO2 intensity"], + capital_cost=( + costs.at[f"{name_type} gas boiler", "efficiency"] + * costs.at[f"{name_type} gas boiler", "fixed"] + ), + p_nom=( + existing_heating.loc[nodes, (name, "gas boiler")] + * ratio + / costs.at[f"{name_type} gas boiler", "efficiency"] + ), + build_year=int(grouping_year), + lifetime=costs.at[f"{name_type} gas boiler", "lifetime"], + ) + + n.madd( + "Link", + nodes, + suffix=f" {name} oil boiler-{grouping_year}", + bus0=spatial.oil.nodes, + bus1=nodes + " " + name + " heat", + bus2="co2 atmosphere", + carrier=name + " oil boiler", + efficiency=costs.at["decentral oil boiler", "efficiency"], + efficiency2=costs.at["oil", "CO2 intensity"], + capital_cost=costs.at["decentral oil boiler", "efficiency"] + * costs.at["decentral oil boiler", "fixed"], + p_nom=( + existing_heating.loc[nodes, (name, "oil boiler")] + * ratio + / costs.at["decentral oil boiler", "efficiency"] + ), + build_year=int(grouping_year), + lifetime=costs.at[f"{name_type} gas boiler", "lifetime"], + ) + + # delete links with p_nom=nan corresponding to extra nodes in country + n.mremove( + "Link", + [ + index + for index in n.links.index.to_list() + if str(grouping_year) in index and np.isnan(n.links.p_nom[index]) + ], + ) + + # delete links with capacities below threshold + threshold = snakemake.params.existing_capacities["threshold_capacity"] + n.mremove( + "Link", + [ + index + for index in n.links.index.to_list() + if str(grouping_year) in index and n.links.p_nom[index] < threshold + ], + ) + + +if __name__ == "__main__": + if "snakemake" not in globals(): + from _helpers import mock_snakemake + + snakemake = mock_snakemake( + "add_existing_baseyear", + simpl="", + clusters="4", + ll="c1", + opts="Co2L", + planning_horizons="2030", + sopts="144H", + discountrate=0.071, + demand="DF", + h2export="120", + ) + + # configure_logging(snakemake) + # set_scenario_config(snakemake) + + # update_config_from_wildcards(snakemake.config, snakemake.wildcards) + + options = snakemake.params.sector + + baseyear = snakemake.params.baseyear + + n = pypsa.Network(snakemake.input.network) + + # define spatial resolution of carriers + spatial = define_spatial(n.buses[n.buses.carrier == "AC"].index, options) + add_build_year_to_new_assets(n, baseyear) + + Nyears = n.snapshot_weightings.generators.sum() / 8760.0 + costs = prepare_costs( + snakemake.input.costs, + snakemake.params.costs["USD2013_to_EUR2013"], + snakemake.params.costs["fill_values"], + Nyears, + ) + + grouping_years_power = snakemake.params.existing_capacities["grouping_years_power"] + grouping_years_heat = snakemake.params.existing_capacities["grouping_years_heat"] + add_power_capacities_installed_before_baseyear( + n, grouping_years_power, costs, baseyear + ) + + # TODO: not implemented in -sec yet + # if options["heating"]: + # time_dep_hp_cop = options["time_dep_hp_cop"] + # ashp_cop = ( + # xr.open_dataarray(snakemake.input.cop_air_total) + # .to_pandas() + # .reindex(index=n.snapshots) + # ) + # gshp_cop = ( + # xr.open_dataarray(snakemake.input.cop_soil_total) + # .to_pandas() + # .reindex(index=n.snapshots) + # ) + # default_lifetime = snakemake.params.existing_capacities[ + # "default_heating_lifetime" + # ] + # add_heating_capacities_installed_before_baseyear( + # n, + # baseyear, + # grouping_years_heat, + # ashp_cop, + # gshp_cop, + # time_dep_hp_cop, + # costs, + # default_lifetime, + # ) + + # if options.get("cluster_heat_buses", False): + # cluster_heat_buses(n) + + n.meta = dict(snakemake.config, **dict(wildcards=dict(snakemake.wildcards))) + + # sanitize_carriers(n, snakemake.config) + + n.export_to_netcdf(snakemake.output[0]) diff --git a/scripts/add_export.py b/scripts/add_export.py new file mode 100644 index 000000000..3a2aab8e8 --- /dev/null +++ b/scripts/add_export.py @@ -0,0 +1,229 @@ +# -*- coding: utf-8 -*- +# SPDX-FileCopyrightText: PyPSA-Earth and PyPSA-Eur Authors +# +# SPDX-License-Identifier: AGPL-3.0-or-later + +# -*- coding: utf-8 -*- +""" +Proposed code structure: +X read network (.nc-file) +X add export bus +X connect hydrogen buses (advanced: only ports, not all) to export bus +X add store and connect to export bus +X (add load and connect to export bus) only required if the "store" option fails + +Possible improvements: +- Select port buses automatically (with both voronoi and gadm clustering). Use data/ports.csv? +""" + + +import logging + +import geopandas as gpd +import numpy as np +import pandas as pd +import pypsa +from _helpers import locate_bus, override_component_attrs, prepare_costs + +logger = logging.getLogger(__name__) + + +def select_ports(n): + """ + This function selects the buses where ports are located. + """ + + ports = pd.read_csv( + snakemake.input.export_ports, + index_col=None, + keep_default_na=False, + ).squeeze() + + ports = ports[ports.country.isin(countries)] + if len(ports) < 1: + logger.error( + "No export ports chosen, please add ports to the file data/export_ports.csv" + ) + gadm_level = snakemake.params.gadm_level + + ports["gadm_{}".format(gadm_level)] = ports[["x", "y", "country"]].apply( + lambda port: locate_bus( + port[["x", "y"]], + port["country"], + gadm_level, + snakemake.input["shapes_path"], + snakemake.params.alternative_clustering, + ), + axis=1, + ) + + ports = ports.set_index("gadm_{}".format(gadm_level)) + + # Select the hydrogen buses based on nodes with ports + hydrogen_buses_ports = n.buses.loc[ports.index + " H2"] + hydrogen_buses_ports.index.name = "Bus" + + return hydrogen_buses_ports + + +def add_export(n, hydrogen_buses_ports, export_profile): + country_shape = gpd.read_file(snakemake.input["shapes_path"]) + # Find most northwestern point in country shape and get x and y coordinates + country_shape = country_shape.to_crs( + "EPSG:3395" + ) # Project to Mercator projection (Projected) + + # Get coordinates of the most western and northern point of the country and add a buffer of 2 degrees (equiv. to approx 220 km) + x_export = country_shape.geometry.centroid.x.min() - 2 + y_export = country_shape.geometry.centroid.y.max() + 2 + + # add export bus + n.add( + "Bus", + "H2 export bus", + carrier="H2", + location="Earth", + x=x_export, + y=y_export, + ) + + # add export links + logger.info("Adding export links") + n.madd( + "Link", + names=hydrogen_buses_ports.index + " export", + bus0=hydrogen_buses_ports.index, + bus1="H2 export bus", + p_nom_extendable=True, + ) + + export_links = n.links[n.links.index.str.contains("export")] + logger.info(export_links) + + # add store depending on config settings + + if snakemake.params.store == True: + if snakemake.params.store_capital_costs == "no_costs": + capital_cost = 0 + elif snakemake.params.store_capital_costs == "standard_costs": + capital_cost = costs.at[ + "hydrogen storage tank type 1 including compressor", "fixed" + ] + else: + logger.error( + f"Value {snakemake.params.store_capital_costs} for ['export']['store_capital_costs'] is not valid" + ) + + n.add( + "Store", + "H2 export store", + bus="H2 export bus", + e_nom_extendable=True, + carrier="H2", + e_initial=0, # actually not required, since e_cyclic=True + marginal_cost=0, + capital_cost=capital_cost, + e_cyclic=True, + ) + + elif snakemake.params.store == False: + pass + + # add load + n.add( + "Load", + "H2 export load", + bus="H2 export bus", + carrier="H2", + p_set=export_profile, + ) + + return + + +def create_export_profile(): + """ + This function creates the export profile based on the annual export demand + and resamples it to temp resolution obtained from the wildcard. + """ + + export_h2 = eval(snakemake.wildcards["h2export"]) * 1e6 # convert TWh to MWh + + if snakemake.params.export_profile == "constant": + export_profile = export_h2 / 8760 + snapshots = pd.date_range(freq="h", **snakemake.params.snapshots) + export_profile = pd.Series(export_profile, index=snapshots) + + elif snakemake.params.export_profile == "ship": + # Import hydrogen export ship profile and check if it matches the export demand obtained from the wildcard + export_profile = pd.read_csv(snakemake.input.ship_profile, index_col=0) + export_profile.index = pd.to_datetime(export_profile.index) + export_profile = pd.Series( + export_profile["profile"], index=pd.to_datetime(export_profile.index) + ) + + if np.abs(export_profile.sum() - export_h2) > 1: # Threshold of 1 MWh + logger.error( + f"Sum of ship profile ({export_profile.sum()/1e6} TWh) does not match export demand ({export_h2} TWh)" + ) + raise ValueError( + f"Sum of ship profile ({export_profile.sum()/1e6} TWh) does not match export demand ({export_h2} TWh)" + ) + + # Resample to temporal resolution defined in wildcard "sopts" with pandas resample + sopts = snakemake.wildcards.sopts.split("-") + export_profile = export_profile.resample(sopts[0].casefold()).mean() + + # revise logger msg + export_type = snakemake.params.export_profile + logger.info( + f"The yearly export demand is {export_h2/1e6} TWh, profile generated based on {export_type} method and resampled to {sopts[0]}" + ) + + return export_profile + + +if __name__ == "__main__": + if "snakemake" not in globals(): + + from _helpers import mock_snakemake + + snakemake = mock_snakemake( + "add_export", + simpl="", + clusters="10", + ll="c1.0", + opts="Co2L", + planning_horizons="2030", + sopts="144H", + discountrate="0.071", + demand="AB", + h2export="120", + ) + + overrides = override_component_attrs(snakemake.input.overrides) + n = pypsa.Network(snakemake.input.network, override_component_attrs=overrides) + countries = list(n.buses.country.unique()) + + # Create export profile + export_profile = create_export_profile() + + # Prepare the costs dataframe + Nyears = n.snapshot_weightings.generators.sum() / 8760 + + costs = prepare_costs( + snakemake.input.costs, + snakemake.params.costs["USD2013_to_EUR2013"], + snakemake.params.costs["fill_values"], + Nyears, + ) + + # get hydrogen export buses/ports + hydrogen_buses_ports = select_ports(n) + + # add export value and components to network + add_export(n, hydrogen_buses_ports, export_profile) + + n.export_to_netcdf(snakemake.output[0]) + + logger.info("Network successfully exported") diff --git a/scripts/add_extra_components.py b/scripts/add_extra_components.py index 1a2c71b0a..cab8195df 100644 --- a/scripts/add_extra_components.py +++ b/scripts/add_extra_components.py @@ -104,7 +104,7 @@ def attach_stores(n, costs, config): _add_missing_carriers_from_costs(n, costs, carriers) - buses_i = n.buses.index + buses_i = n.buses.query("carrier == 'AC'").index bus_sub_dict = {k: n.buses[k].values for k in ["x", "y", "country"]} if "H2" in carriers: @@ -187,20 +187,17 @@ def attach_stores(n, costs, config): if ("csp" in elec_opts["renewable_carriers"]) and ( config["renewable"]["csp"]["csp_model"] == "advanced" ): - # get CSP generators and their buses - csp_gens = n.generators.query("carrier == 'csp'") - buses_csp_gens = n.buses.loc[csp_gens.bus] - - csp_buses_i = csp_gens.index - c_buses_i = csp_gens.bus.values - - csp_bus_sub_dict = {k: buses_csp_gens[k].values for k in ["x", "y", "country"]} - - # add buses for csp - n.madd("Bus", csp_buses_i, carrier="csp", **csp_bus_sub_dict) - - # change bus of existing csp generators - n.generators.loc[csp_gens.index, "bus"] = csp_buses_i + # add separate buses for csp + main_buses = n.generators.query("carrier == 'csp'").bus + csp_buses_i = n.madd( + "Bus", + main_buses + " csp", + carrier="csp", + x=n.buses.loc[main_buses, "x"].values, + y=n.buses.loc[main_buses, "y"].values, + country=n.buses.loc[main_buses, "country"].values, + ) + n.generators.loc[main_buses.index, "bus"] = csp_buses_i # add stores for csp n.madd( @@ -219,7 +216,7 @@ def attach_stores(n, costs, config): "Link", csp_buses_i, bus0=csp_buses_i, - bus1=c_buses_i, + bus1=main_buses, carrier="csp", efficiency=costs.at["csp-tower", "efficiency"], capital_cost=costs.at["csp-tower", "capital_cost"], @@ -273,8 +270,8 @@ def attach_hydrogen_pipelines(n, costs, config): if "snakemake" not in globals(): from _helpers import mock_snakemake - os.chdir(os.path.dirname(os.path.abspath(__file__))) - snakemake = mock_snakemake("add_extra_components", simpl="", clusters="20flex") + snakemake = mock_snakemake("add_extra_components", simpl="", clusters=10) + configure_logging(snakemake) n = pypsa.Network(snakemake.input.network) diff --git a/scripts/augmented_line_connections.py b/scripts/augmented_line_connections.py index 3b0072457..634d10eea 100644 --- a/scripts/augmented_line_connections.py +++ b/scripts/augmented_line_connections.py @@ -54,10 +54,10 @@ def haversine(p): if "snakemake" not in globals(): from _helpers import mock_snakemake - os.chdir(os.path.dirname(os.path.abspath(__file__))) snakemake = mock_snakemake( "augmented_line_connections", network="elec", simpl="", clusters="54" ) + configure_logging(snakemake) n = pypsa.Network(snakemake.input.network) diff --git a/scripts/base_network.py b/scripts/base_network.py index 2ef76e93d..e11ff83c6 100644 --- a/scripts/base_network.py +++ b/scripts/base_network.py @@ -542,9 +542,8 @@ def base_network( if "snakemake" not in globals(): from _helpers import mock_snakemake - os.chdir(os.path.dirname(os.path.abspath(__file__))) - snakemake = mock_snakemake("base_network") + configure_logging(snakemake) inputs = snakemake.input diff --git a/scripts/build_base_energy_totals.py b/scripts/build_base_energy_totals.py new file mode 100644 index 000000000..e16f44898 --- /dev/null +++ b/scripts/build_base_energy_totals.py @@ -0,0 +1,477 @@ +# -*- coding: utf-8 -*- +# SPDX-FileCopyrightText: PyPSA-Earth and PyPSA-Eur Authors +# +# SPDX-License-Identifier: AGPL-3.0-or-later + +# -*- coding: utf-8 -*- +import glob +import logging +import os +import sys +from io import BytesIO +from pathlib import Path +from urllib.request import urlopen +from zipfile import ZipFile + +import country_converter as coco +import matplotlib.pyplot as plt +import numpy as np +import pandas as pd +import py7zr +import requests +from _helpers import aggregate_fuels, get_conv_factors + +_logger = logging.getLogger(__name__) + +pd.options.mode.chained_assignment = None + + +def calc_sector(sector): + for country in countries: + # print(country, sector) + df_co = df_yr[df_yr.country == country] + + if sector == "navigation": + df_sector = df_co.loc[ + (df_co["Commodity - Transaction"].str.lower().str.contains(sector)) + | ( + df_co["Commodity - Transaction"] + .str.lower() + .str.contains("marine bunkers") + ) + ] + + elif sector == "non energy use": + df_sector = df_co.loc[ + (df_co["Transaction"].str.lower().str.contains(sector)) + | ( + df_co["Transaction"] + .str.replace("-", " ") + .str.replace("uses", "use") + .str.lower() + .str.contains(sector) + ) + ] + elif sector == "other energy": + df_sector = df_co.loc[df_co["Transaction"].isin(other_energy)] + else: + df_sector = df_co.loc[ + df_co["Commodity - Transaction"].str.lower().str.contains(sector) + ] + # assert df_yr[df_yr["Commodity - Transaction"].str.contains(sector)]["Unit"].unique() == 'Metric tons, thousand', "Not all quantities have the expected unit: {}".format(expected_unit) + + if df_sector.empty: + if sector == "consumption by households": + energy_totals_base.at[country, "electricity residential"] = np.NaN + energy_totals_base.at[country, "residential oil"] = np.NaN + energy_totals_base.at[country, "residential biomass"] = np.NaN + energy_totals_base.at[country, "residential gas"] = np.NaN + energy_totals_base.at[country, "total residential space"] = np.NaN + energy_totals_base.at[country, "total residential water"] = np.NaN + + elif sector == "services": + energy_totals_base.at[country, "services electricity"] = np.NaN + energy_totals_base.at[country, "services oil"] = np.NaN + energy_totals_base.at[country, "services biomass"] = np.NaN + energy_totals_base.at[country, "services gas"] = np.NaN + energy_totals_base.at[country, "total services space"] = np.NaN + energy_totals_base.at[country, "total services water"] = np.NaN + + elif sector == "road": + energy_totals_base.at[country, "total road"] = np.NaN + + elif sector == "agriculture": + energy_totals_base.at[country, "agriculture electricity"] = np.NaN + energy_totals_base.at[country, "agriculture oil"] = np.NaN + energy_totals_base.at[country, "agriculture biomass"] = np.NaN + # energy_totals_base.at[country, "electricity rail"] = np.NaN + + elif sector == "rail": + energy_totals_base.at[country, "total rail"] = np.NaN + energy_totals_base.at[country, "electricity rail"] = np.NaN + + elif sector == "aviation": + energy_totals_base.at[country, "total international aviation"] = np.NaN + energy_totals_base.at[country, "total domestic aviation"] = np.NaN + + elif sector == "navigation": + energy_totals_base.at[country, "total international navigation"] = ( + np.NaN + ) + energy_totals_base.at[country, "total domestic navigation"] = np.NaN + + _logger.warning("No data for " + country + " in the sector " + sector + ".") + + else: + index_mass = df_sector.loc[ + df_sector["Unit"] == "Metric tons, thousand" + ].index + df_sector.loc[index_mass, "Quantity_TWh"] = df_sector.loc[index_mass].apply( + lambda x: x["Quantity"] * fuels_conv_toTWh[x["Commodity"]], axis=1 + ) + + index_energy = df_sector[ + df_sector["Unit"] == "Kilowatt-hours, million" + ].index + df_sector.loc[index_energy, "Quantity_TWh"] = df_sector.loc[ + index_energy + ].apply(lambda x: x["Quantity"] / 1e3, axis=1) + + index_energy_TJ = df_sector[df_sector["Unit"] == "Terajoules"].index + df_sector.loc[index_energy_TJ, "Quantity_TWh"] = df_sector.loc[ + index_energy_TJ + ].apply(lambda x: x["Quantity"] / 3600, axis=1) + + index_volume = df_sector[ + df_sector["Unit"] == "Cubic metres, thousand" + ].index + df_sector.loc[index_volume, "Quantity_TWh"] = df_sector.loc[ + index_volume + ].apply(lambda x: x["Quantity"] * fuels_conv_toTWh[x["Commodity"]], axis=1) + + sectors_dfs[sector] = df_sector.copy() + + if sector == "consumption by households": + if snakemake.params.shift_coal_to_elec: + condition = (df_sector.Commodity == "Electricity") | ( + df_sector.Commodity.isin(coal_fuels) + ) + else: + condition = df_sector.Commodity == "Electricity" + + energy_totals_base.at[country, "electricity residential"] = round( + df_sector[condition].Quantity_TWh.sum(), 4 + ) + energy_totals_base.at[country, "residential oil"] = round( + df_sector[df_sector.Commodity.isin(oil_fuels)].Quantity_TWh.sum(), 4 + ) + energy_totals_base.at[country, "residential biomass"] = round( + df_sector[ + df_sector.Commodity.isin(biomass_fuels) + ].Quantity_TWh.sum(), + 4, + ) + energy_totals_base.at[country, "residential gas"] = round( + df_sector[df_sector.Commodity.isin(gas_fuels)].Quantity_TWh.sum(), 4 + ) + energy_totals_base.at[country, "total residential space"] = ( + round( + df_sector[df_sector.Commodity.isin(heat)].Quantity_TWh.sum(), 4 + ) + * snakemake.params.space_heat_share + ) + energy_totals_base.at[country, "total residential water"] = round( + df_sector[df_sector.Commodity.isin(heat)].Quantity_TWh.sum(), 4 + ) * (1 - snakemake.params.space_heat_share) + + elif sector == "services": + if snakemake.params.shift_coal_to_elec: + condition = (df_sector.Commodity == "Electricity") | ( + df_sector.Commodity.isin(coal_fuels) + ) + else: + condition = df_sector.Commodity == "Electricity" + + energy_totals_base.at[country, "services electricity"] = round( + df_sector[condition].Quantity_TWh.sum(), + 4, + ) + energy_totals_base.at[country, "services oil"] = round( + df_sector[df_sector.Commodity.isin(oil_fuels)].Quantity_TWh.sum(), 4 + ) + energy_totals_base.at[country, "services biomass"] = round( + df_sector[ + df_sector.Commodity.isin(biomass_fuels) + ].Quantity_TWh.sum(), + 4, + ) + energy_totals_base.at[country, "services gas"] = round( + df_sector[df_sector.Commodity.isin(gas_fuels)].Quantity_TWh.sum(), 4 + ) + energy_totals_base.at[country, "total services space"] = ( + round( + df_sector[df_sector.Commodity.isin(heat)].Quantity_TWh.sum(), 4 + ) + * snakemake.params.space_heat_share + ) + energy_totals_base.at[country, "total services water"] = round( + df_sector[df_sector.Commodity.isin(heat)].Quantity_TWh.sum(), 4 + ) * (1 - snakemake.params.space_heat_share) + + elif sector == "road": + energy_totals_base.at[country, "total road"] = round( + df_sector.Quantity_TWh.sum(), 4 + ) + energy_totals_base.at[country, "road electricity"] = round( + df_sector[df_sector.Commodity == "Electricity"].Quantity_TWh.sum(), + 4, + ) + energy_totals_base.at[country, "road gas"] = round( + df_sector[df_sector.Commodity.isin(gas_fuels)].Quantity_TWh.sum(), 4 + ) + energy_totals_base.at[country, "road biomass"] = round( + df_sector[ + df_sector.Commodity.isin(biomass_fuels) + ].Quantity_TWh.sum(), + 4, + ) + energy_totals_base.at[country, "road oil"] = round( + df_sector[df_sector.Commodity.isin(oil_fuels)].Quantity_TWh.sum(), 4 + ) + + elif sector == "agriculture": + energy_totals_base.at[country, "agriculture electricity"] = round( + df_sector[ + (df_sector.Commodity == "Electricity") + ].Quantity_TWh.sum(), + 4, + ) + energy_totals_base.at[country, "agriculture oil"] = round( + df_sector[df_sector.Commodity.isin(oil_fuels)].Quantity_TWh.sum(), 4 + ) + energy_totals_base.at[country, "agriculture biomass"] = round( + df_sector[ + df_sector.Commodity.isin(biomass_fuels) + ].Quantity_TWh.sum(), + 4, + ) + energy_totals_base.at[country, "agriculture coal"] = round( + df_sector[df_sector.Commodity.isin(coal_fuels)].Quantity_TWh.sum(), + 4, + ) + # energy_totals_base.at[country, "electricity rail"] = round(df_house[(df_house.Commodity=="Electricity")].Quantity_TWh.sum(), 4) + + elif sector == "rail": + energy_totals_base.at[country, "total rail"] = round( + df_sector[ + (df_sector.Commodity == "Gas Oil/ Diesel Oil") + | (df_sector.Commodity == "Biodiesel") + | (df_sector.Commodity == "Electricity") + ].Quantity_TWh.sum(), + 4, + ) + energy_totals_base.at[country, "electricity rail"] = round( + df_sector[ + (df_sector.Commodity == "Electricity") + ].Quantity_TWh.sum(), + 4, + ) + + elif sector == "aviation": + energy_totals_base.at[country, "total international aviation"] = round( + df_sector[ + (df_sector.Commodity == "Kerosene-type Jet Fuel") + & (df_sector.Transaction == "International aviation bunkers") + ].Quantity_TWh.sum(), + 4, + ) + energy_totals_base.at[country, "total domestic aviation"] = round( + df_sector[ + (df_sector.Commodity == "Kerosene-type Jet Fuel") + & (df_sector.Transaction == "Consumption by domestic aviation") + ].Quantity_TWh.sum(), + 4, + ) + + elif sector == "navigation": + energy_totals_base.at[country, "total international navigation"] = ( + round( + df_sector[ + df_sector.Transaction == "International marine bunkers" + ].Quantity_TWh.sum(), + 4, + ) + ) + energy_totals_base.at[country, "total domestic navigation"] = round( + df_sector[ + df_sector.Transaction == "Consumption by domestic navigation" + ].Quantity_TWh.sum(), + 4, + ) + elif sector == "other energy": + if snakemake.params.shift_coal_to_elec: + condition = (df_sector.Commodity == "Electricity") | ( + df_sector.Commodity.isin(coal_fuels) + ) + else: + condition = df_sector.Commodity == "Electricity" + + energy_totals_base.at[country, "other electricity"] = round( + df_sector[condition].Quantity_TWh.sum(), 4 + ) + + energy_totals_base.at[country, "other oil"] = round( + df_sector[df_sector.Commodity.isin(oil_fuels)].Quantity_TWh.sum(), 4 + ) + energy_totals_base.at[country, "other biomass"] = round( + df_sector[ + df_sector.Commodity.isin(biomass_fuels) + ].Quantity_TWh.sum(), + 4, + ) + energy_totals_base.at[country, "other gas"] = round( + df_sector[df_sector.Commodity.isin(gas_fuels)].Quantity_TWh.sum(), + 4, + ) + energy_totals_base.at[country, "other heat"] = round( + df_sector[df_sector.Commodity.isin(heat)].Quantity_TWh.sum(), + 4, + ) + elif sector == "non energy use": + if snakemake.params.shift_coal_to_elec: + condition = (df_sector.Commodity == "Electricity") | ( + df_sector.Commodity.isin(coal_fuels) + ) + else: + condition = df_sector.Commodity == "Electricity" + + energy_totals_base.at[country, "non energy electricity"] = round( + df_sector[condition].Quantity_TWh.sum(), 4 + ) + + energy_totals_base.at[country, "non energy oil"] = round( + df_sector[df_sector.Commodity.isin(oil_fuels)].Quantity_TWh.sum(), 4 + ) + energy_totals_base.at[country, "non energy biomass"] = round( + df_sector[ + df_sector.Commodity.isin(biomass_fuels) + ].Quantity_TWh.sum(), + 4, + ) + energy_totals_base.at[country, "non energy gas"] = round( + df_sector[df_sector.Commodity.isin(gas_fuels)].Quantity_TWh.sum(), + 4, + ) + energy_totals_base.at[country, "non energy heat"] = round( + df_sector[df_sector.Commodity.isin(heat)].Quantity_TWh.sum(), + 4, + ) + else: + print("wrong sector") + + +if __name__ == "__main__": + if "snakemake" not in globals(): + from _helpers import mock_snakemake + + snakemake = mock_snakemake( + "build_base_energy_totals", + simpl="", + clusters=19, + demand="AB", + planning_horizons=2030, + ) + + energy_stat_database = pd.read_excel( + snakemake.input.unsd_paths, index_col=0, header=0 + ) # pd.read_excel("/nfs/home/haz43975/pypsa-earth-sec/scripts/Energy_Statistics_Database.xlsx" + + # Load the links and make a dictionary + df = energy_stat_database.copy() + df = df.dropna(axis=0, subset=["Link"]) + df = df.to_dict("dict") + d = df["Link"] + + if snakemake.params.update_data: + # Delete and existing files to avoid duplication and double counting + + files = glob.glob("data/demand/unsd/data/*.txt") + for f in files: + os.remove(f) + + # Feed the dictionary of links to the for loop, download and unzip all files + for key, value in d.items(): + zipurl = value + + with urlopen(zipurl) as zipresp: + with ZipFile(BytesIO(zipresp.read())) as zfile: + zfile.extractall("data/demand/unsd/data") + + path = "data/demand/unsd/data" + + # Get the files from the path provided in the OP + all_files = list(Path("data/demand/unsd/data").glob("*.txt")) + + # Create a dataframe from all downloaded files + df = pd.concat( + (pd.read_csv(f, encoding="utf8", sep=";") for f in all_files), ignore_index=True + ) + + # Split 'Commodity', 'Transaction' column to two + df[["Commodity", "Transaction", "extra"]] = df["Commodity - Transaction"].str.split( + " - ", expand=True + ) + + # Remove Foootnote and Estimate from 'Commodity - Transaction' column + df = df.loc[df["Commodity - Transaction"] != "Footnote"] + df = df.loc[df["Commodity - Transaction"] != "Estimate"] + + # Create a column with iso2 country code + cc = coco.CountryConverter() + Country = pd.Series(df["Country or Area"]) + + df["country"] = cc.pandas_convert(series=Country, to="ISO2", not_found="not found") + + # remove countries or areas that have no iso2 such as former countries names + df = df.loc[df["country"] != "not found"] + + # Convert country column that contains lists for some country names that are identified with more than one country. + df["country"] = df["country"].astype(str) + + # Remove all iso2 conversions for some country names that are identified with more than one country. + df = df[~df.country.str.contains(",", na=False)].reset_index(drop=True) + + # Create a dictionary with all the conversion factors from ktons or m3 to TWh based on https://unstats.un.org/unsd/energy/balance/2014/05.pdf + fuels_conv_toTWh = get_conv_factors("industry") + + # Fetch country list and demand base year from the config file + year = snakemake.params.base_year + countries = snakemake.params.countries + + # Filter for the year and country + df_yr = df[df.Year == year] + df_yr = df_yr[df_yr.country.isin(countries)] + + # Create an empty dataframe for energy_totals_base + energy_totals_cols = pd.read_csv("data/energy_totals_DF_2030.csv").columns + energy_totals_base = pd.DataFrame(columns=energy_totals_cols, index=countries) + + # Lists that combine the different fuels in the dataset to the model's carriers + ( + gas_fuels, + oil_fuels, + biomass_fuels, + coal_fuels, + heat, + electricity, + ) = aggregate_fuels("industry") + + other_energy = [ + "consumption not elsewhere specified (other)", + "consumption not elsewhere specified (other)" + "Consumption not elsewhere specified (other)", + "Consumption by other consumers not elsewhere specified", + "consumption by other consumers not elsewhere specified", + ] + + # non_energy = ['non energy uses', 'non-energy uses', 'consumption for non-energy uses', 'Consumption for non-energy uses', 'non-energy use'] + # Create a dictionary to save the data if need to be checked + sectors_dfs = {} + + # Run the function that processes the data for all the sectors + sectors = [ + "consumption by households", + "road", + "rail", + "aviation", + "navigation", + "agriculture", + "services", + "other energy", + "non energy use", + ] + for sector in sectors: + calc_sector(sector) + + # Export the base energy totals file + energy_totals_base.to_csv(snakemake.output.energy_totals_base) diff --git a/scripts/build_base_industry_totals.py b/scripts/build_base_industry_totals.py new file mode 100644 index 000000000..eef58f10a --- /dev/null +++ b/scripts/build_base_industry_totals.py @@ -0,0 +1,203 @@ +# -*- coding: utf-8 -*- +# SPDX-FileCopyrightText: PyPSA-Earth and PyPSA-Eur Authors +# +# SPDX-License-Identifier: AGPL-3.0-or-later +""" +Created on Thu Jul 14 19:01:13 2022. + +@author: user +""" + + +import os +import re +from pathlib import Path + +import country_converter as coco +import pandas as pd +from _helpers import aggregate_fuels, get_conv_factors, read_csv_nafix +from prepare_sector_network import get + +# def calc_industry_base(df): + + +def calculate_end_values(df): + return (1 + df) ** no_years + + +def create_industry_base_totals(df): + # Converting values of mass (ktons) to energy (TWh) + index_mass = df.loc[df["Unit"] == "Metric tons, thousand"].index + df.loc[index_mass, "Quantity_TWh"] = df.loc[index_mass].apply( + lambda x: x["Quantity"] * fuels_conv_toTWh.get(x["Commodity"], float("nan")), + axis=1, + ) + + # Converting values of energy (GWh) to energy (TWh) + index_energy = df[df["Unit"] == "Kilowatt-hours, million"].index + df.loc[index_energy, "Quantity_TWh"] = df.loc[index_energy].apply( + lambda x: x["Quantity"] / 1e3, axis=1 + ) + + # Converting values of energy (TJ) to energy (TWh) + index_energy_TJ = df[df["Unit"] == "Terajoules"].index + df.loc[index_energy_TJ, "Quantity_TWh"] = df.loc[index_energy_TJ].apply( + lambda x: x["Quantity"] / 3600, axis=1 + ) + + # Converting values of volume (thousand m3) to energy (TWh) + index_volume = df[df["Unit"] == "Cubic metres, thousand"].index + df.loc[index_volume, "Quantity_TWh"] = df.loc[index_volume].apply( + lambda x: x["Quantity"] * fuels_conv_toTWh[x["Commodity"]], axis=1 + ) + + df["carrier"] = df["Commodity"].map(fuel_dict) + + # Aggregating and grouping the dataframe + df_agg = ( + df.groupby(["country", "carrier", "Transaction"]) + .agg({"Quantity_TWh": "sum"}) + .reset_index() + ) + industry_totals_base = df_agg.pivot_table( + columns="Transaction", index=["country", "carrier"] + ).fillna(0.0) + industry_totals_base = industry_totals_base.droplevel(level=0, axis=1) + # industry_totals_base["other"] = 0 + + if not include_other: + # Loop through the columns in the list and sum them if they exist + print( + "unspecified industries are not included, check thoroughly as values sometimes significant for some countries" + ) + industry_totals_base.drop("other", axis=1) + + industry_totals_base = industry_totals_base.rename( + columns={"paper, pulp and print": "paper pulp and print"} + ) + + missing_columns = [ + col for col in clean_industry_list if col not in industry_totals_base.columns + ] + + # Add missing columns with all values set to 0 + for col in missing_columns: + industry_totals_base[col] = 0 + + return industry_totals_base * 1e6 # change from TWh to MWh + + +if __name__ == "__main__": + if "snakemake" not in globals(): + from _helpers import mock_snakemake + + snakemake = mock_snakemake( + "build_base_industry_totals", + planning_horizons=2030, + demand="EG", + ) + + # Loading config file and wild cards + + year = snakemake.params.base_year + countries = snakemake.params.countries + + investment_year = int(snakemake.wildcards.planning_horizons) + demand_sc = snakemake.wildcards.demand + no_years = int(snakemake.wildcards.planning_horizons) - int( + snakemake.params.base_year + ) + include_other = snakemake.params.other_industries + + transaction = read_csv_nafix( + snakemake.input.transactions_path, + sep=";", + ) + + renaming_dit = transaction.set_index("Transaction")["clean_name"].to_dict() + clean_industry_list = list(transaction.clean_name.unique()) + + unsd_path = ( + os.path.dirname(snakemake.input["energy_totals_base"]) + "/demand/unsd/data/" + ) + + # Get the files from the path provided in the OP + all_files = list(Path(unsd_path).glob("*.txt")) + + # Create a dataframe from all downloaded files + df = pd.concat( + (pd.read_csv(f, encoding="utf8", sep=";") for f in all_files), ignore_index=True + ) + + # Split 'Commodity', 'Transaction' column to two + df[["Commodity", "Transaction", "extra"]] = df["Commodity - Transaction"].str.split( + " - ", expand=True + ) + + df = df[ + df.Commodity != "Other bituminous coal" + ] # dropping problematic column leading to double counting + + # Remove fill na in Transaction column + df["Transaction"] = df["Transaction"].fillna("NA") + df["Transaction"] = df["Transaction"].str.lower() + # Remove Foootnote and Estimate from 'Commodity - Transaction' column + df = df.loc[df["Commodity - Transaction"] != "Footnote"] + df = df.loc[df["Commodity - Transaction"] != "Estimate"] + + # Create a column with iso2 country code + cc = coco.CountryConverter() + Country = pd.Series(df["Country or Area"]) + + df["country"] = cc.pandas_convert(series=Country, to="ISO2", not_found="not found") + + # remove countries or areas that have no iso2 such as former countries names + df = df.loc[df["country"] != "not found"] + + # Convert country column that contains lists for some country names that are identified with more than one country. + df["country"] = df["country"].astype(str) + + # Remove all iso2 conversions for some country names that are identified with more than one country. + df = df[~df.country.str.contains(",", na=False)].reset_index(drop=True) + + # Create a dictionary with all the conversion factors from ktons or m3 to TWh based on https://unstats.un.org/unsd/energy/balance/2014/05.pdf + fuels_conv_toTWh = get_conv_factors("industry") + + # Lists that combine the different fuels in the dataset to the model's carriers + + # Fetch the fuel categories from the helpers script + ( + gas_fuels, + oil_fuels, + biomass_fuels, + coal_fuels, + heat, + electricity, + ) = aggregate_fuels("industry") + + # Create fuel dictionary to use for mapping all fuels to the pypsa representative fuels + fuel_dict = { + element: var_name + for var_name, element_list in [ + ("gas", gas_fuels), + ("oil", oil_fuels), + ("biomass", biomass_fuels), + ("heat", heat), + ("coal", coal_fuels), + ("electricity", electricity), + ] + for element in element_list + } + + # Filter for the year and country + df_yr = df[df.Year == year] + + df_yr = df_yr[df_yr.Transaction.isin(transaction.Transaction)] + + df_yr["Transaction"] = df_yr["Transaction"].map(renaming_dit) + + # Create the industry totals file + industry_totals_base = create_industry_base_totals(df_yr) + + # Export the industry totals dataframe + industry_totals_base.to_csv(snakemake.output["base_industry_totals"]) diff --git a/scripts/build_bus_regions.py b/scripts/build_bus_regions.py index d1e4f5e3c..1a0dc2338 100644 --- a/scripts/build_bus_regions.py +++ b/scripts/build_bus_regions.py @@ -150,8 +150,8 @@ def get_gadm_shape( if "snakemake" not in globals(): from _helpers import mock_snakemake - os.chdir(os.path.dirname(os.path.abspath(__file__))) snakemake = mock_snakemake("build_bus_regions") + configure_logging(snakemake) countries = snakemake.params.countries diff --git a/scripts/build_clustered_population_layouts.py b/scripts/build_clustered_population_layouts.py new file mode 100644 index 000000000..374edd448 --- /dev/null +++ b/scripts/build_clustered_population_layouts.py @@ -0,0 +1,61 @@ +# -*- coding: utf-8 -*- +# SPDX-FileCopyrightText: PyPSA-Earth and PyPSA-Eur Authors +# +# SPDX-License-Identifier: AGPL-3.0-or-later +""" +Build clustered population layouts. +""" +import os + +import atlite +import geopandas as gpd +import pandas as pd +import xarray as xr +from _helpers import read_csv_nafix, to_csv_nafix + +if __name__ == "__main__": + if "snakemake" not in globals(): + from _helpers import mock_snakemake + + snakemake = mock_snakemake( + "build_clustered_population_layouts", + simpl="", + clusters=38, + ) + + cutout_path = ( + snakemake.input.cutout + ) # os.path.abspath(snakemake.config["atlite"]["cutout"]) + cutout = atlite.Cutout(cutout_path) + # cutout = atlite.Cutout(snakemake.config['atlite']['cutout']) + + clustered_regions = ( + gpd.read_file(snakemake.input.regions_onshore) + .set_index("name") + .buffer(0) + .squeeze() + ) + + I = cutout.indicatormatrix(clustered_regions) + + pop = {} + for item in ["total", "urban", "rural"]: + pop_layout = xr.open_dataarray(snakemake.input[f"pop_layout_{item}"]) + pop[item] = I.dot(pop_layout.stack(spatial=("y", "x"))) + + pop = pd.DataFrame(pop, index=clustered_regions.index) + + pop["ct"] = gpd.read_file(snakemake.input.regions_onshore).set_index("name").country + country_population = pop.total.groupby(pop.ct).sum() + pop["fraction"] = (pop.total / pop.ct.map(country_population)).fillna(0.0) + + to_csv_nafix(pop, snakemake.output.clustered_pop_layout) + + gdp_layout = xr.open_dataarray(snakemake.input["gdp_layout"]) + gdp = I.dot(gdp_layout.stack(spatial=("y", "x"))) + gdp = pd.DataFrame(gdp, index=clustered_regions.index, columns=["total"]) + + gdp["ct"] = gpd.read_file(snakemake.input.regions_onshore).set_index("name").country + country_gdp = gdp.total.groupby(gdp.ct).sum() + gdp["fraction"] = (gdp.total / gdp.ct.map(country_gdp)).fillna(0.0) + to_csv_nafix(gdp, snakemake.output.clustered_gdp_layout) diff --git a/scripts/build_cop_profiles.py b/scripts/build_cop_profiles.py new file mode 100644 index 000000000..d785b3ee6 --- /dev/null +++ b/scripts/build_cop_profiles.py @@ -0,0 +1,45 @@ +# -*- coding: utf-8 -*- +# SPDX-FileCopyrightText: PyPSA-Earth and PyPSA-Eur Authors +# +# SPDX-License-Identifier: AGPL-3.0-or-later +""" +Build COP time series for air- or ground-sourced heat pumps. +""" + +import xarray as xr + + +def coefficient_of_performance(delta_T, source="air"): + """ + COP is function of temp difference source to sink. + + The quadratic regression is based on Staffell et al. (2012) + https://doi.org/10.1039/C2EE22653G. + """ + if source == "air": + return 6.81 - 0.121 * delta_T + 0.000630 * delta_T**2 + elif source == "soil": + return 8.77 - 0.150 * delta_T + 0.000734 * delta_T**2 + else: + raise NotImplementedError("'source' must be one of ['air', 'soil']") + + +if __name__ == "__main__": + if "snakemake" not in globals(): + from _helpers import mock_snakemake + + snakemake = mock_snakemake( + "build_cop_profiles", + simpl="", + clusters=15, + ) + + for area in ["total", "urban", "rural"]: + for source in ["air", "soil"]: + source_T = xr.open_dataarray(snakemake.input[f"temp_{source}_{area}"]) + + delta_T = snakemake.params.heat_pump_sink_T - source_T + + cop = coefficient_of_performance(delta_T, source) + + cop.to_netcdf(snakemake.output[f"cop_{source}_{area}"]) diff --git a/scripts/build_cutout.py b/scripts/build_cutout.py index 06e5a24cd..cebea46b3 100644 --- a/scripts/build_cutout.py +++ b/scripts/build_cutout.py @@ -107,8 +107,8 @@ if "snakemake" not in globals(): from _helpers import mock_snakemake - os.chdir(os.path.dirname(os.path.abspath(__file__))) snakemake = mock_snakemake("build_cutout", cutout="africa-2013-era5") + configure_logging(snakemake) cutout_params = snakemake.params.cutouts[snakemake.wildcards.cutout] diff --git a/scripts/build_demand_profiles.py b/scripts/build_demand_profiles.py index b4893d112..51f1193c0 100644 --- a/scripts/build_demand_profiles.py +++ b/scripts/build_demand_profiles.py @@ -292,11 +292,10 @@ def upsample(cntry, group): if __name__ == "__main__": if "snakemake" not in globals(): - from _helpers import mock_snakemake, sets_path_to_root + from _helpers import mock_snakemake - os.chdir(os.path.dirname(os.path.abspath(__file__))) snakemake = mock_snakemake("build_demand_profiles") - sets_path_to_root("pypsa-earth") + configure_logging(snakemake) n = pypsa.Network(snakemake.input.base_network) diff --git a/scripts/build_existing_heating_distribution.py b/scripts/build_existing_heating_distribution.py new file mode 100644 index 000000000..09d1cba8f --- /dev/null +++ b/scripts/build_existing_heating_distribution.py @@ -0,0 +1,178 @@ +# -*- coding: utf-8 -*- +# SPDX-FileCopyrightText: PyPSA-Earth and PyPSA-Eur Authors +# +# SPDX-License-Identifier: AGPL-3.0-or-later +""" +Builds table of existing heat generation capacities for initial planning +horizon. + +Existing heat generation capacities are distributed to nodes based on population. +Within the nodes, the capacities are distributed to sectors (residential and services) based on sectoral consumption and urban/rural based population distribution. + +Inputs: +------- +- Existing heating generators: `data/existing_heating_raw.csv` per country +- Population layout: `resources/{run_name}/pop_layout_s_.csv`. Output of `scripts/build_clustered_population_layout.py` +- Population layout with energy demands: `resources//pop_weighted_energy_totals_s_.csv` +- District heating share: `resources//district_heat_share_elec_s__.csv` + +Outputs: +-------- +- Existing heat generation capacities distributed to nodes: `resources/{run_name}/existing_heating_distribution_elec_s{simpl}_{clusters}_{planning_horizons}.csv` + +Relevant settings: +------------------ +.. code:: yaml + scenario: + planning_horizons + sector: + existing_capacities: + +Notes: +------ +- Data for Albania, Montenegro and Macedonia is not included in input database and assumed 0. +- Coal and oil boilers are assimilated to oil boilers. +- All ground-source heat pumps are assumed in rural areas and all air-source heat pumps are assumed to be in urban areas. + +References: +----------- +- "Mapping and analyses of the current and future (2020 - 2030) heating/cooling fuel deployment (fossil/renewables)" (https://energy.ec.europa.eu/publications/mapping-and-analyses-current-and-future-2020-2030-heatingcooling-fuel-deployment-fossilrenewables-1_en) +""" +import logging +import os + +import country_converter as coco +import numpy as np +import pandas as pd + +logger = logging.getLogger(__name__) + +cc = coco.CountryConverter() + + +def build_existing_heating(): + # retrieve existing heating capacities + + # Add existing heating capacities, data comes from the study + # "Mapping and analyses of the current and future (2020 - 2030) + # heating/cooling fuel deployment (fossil/renewables) " + # https://energy.ec.europa.eu/publications/mapping-and-analyses-current-and-future-2020-2030-heatingcooling-fuel-deployment-fossilrenewables-1_en + # file: "WP2_DataAnnex_1_BuildingTechs_ForPublication_201603.xls" -> "existing_heating_raw.csv". + # data is for buildings only (i.e. NOT district heating) and represents the year 2012 + # TODO start from original file + + existing_heating = pd.read_csv( + snakemake.input.existing_heating, index_col=0, header=0 + ) + + # data for Albania, Montenegro and Macedonia not included in database + existing_heating.loc["Albania"] = np.nan + existing_heating.loc["Montenegro"] = np.nan + existing_heating.loc["Macedonia"] = np.nan + + existing_heating.fillna(0.0, inplace=True) + + fillvalue_missing = existing_heating.loc["DEFAULT"] + + # convert GW to MW + existing_heating *= 1e3 + + existing_heating.index = cc.convert(existing_heating.index, to="iso2") + + # coal and oil boilers are assimilated to oil boilers + existing_heating["oil boiler"] = ( + existing_heating["oil boiler"] + existing_heating["coal boiler"] + ) + existing_heating.drop(["coal boiler"], axis=1, inplace=True) + + # distribute technologies to nodes by population + pop_layout = pd.read_csv(snakemake.input.clustered_pop_layout, index_col=0) + + # fill missing rows + missing_countries = list(set(pop_layout.ct.unique()) - set(existing_heating.index)) + if len(missing_countries) > 0: + logger.warning( + f"Missing population data for countries: {missing_countries}. Filling with DEFAULT values." + ) + for country in missing_countries: + existing_heating.loc[country] = fillvalue_missing + + nodal_heating = existing_heating.loc[pop_layout.ct] + nodal_heating.index = pop_layout.index + nodal_heating = nodal_heating.multiply(pop_layout.fraction, axis=0) + + district_heat_info = pd.read_csv(snakemake.input.district_heat_share, index_col=0) + urban_fraction = pop_layout["fraction"] + + energy_layout = pd.read_csv( + snakemake.input.clustered_pop_energy_layout, index_col=0 + ) + + uses = ["space", "water"] + sectors = ["residential", "services"] + + nodal_sectoral_totals = pd.DataFrame(dtype=float) + + for sector in sectors: + nodal_sectoral_totals[sector] = energy_layout[ + [f"total {sector} {use}" for use in uses] + ].sum(axis=1) + + nodal_sectoral_fraction = nodal_sectoral_totals.div( + nodal_sectoral_totals.sum(axis=1), axis=0 + ) + + nodal_heat_name_fraction = pd.DataFrame(index=district_heat_info.index, dtype=float) + + nodal_heat_name_fraction["urban central"] = 0.0 + + for sector in sectors: + nodal_heat_name_fraction[f"{sector} rural"] = nodal_sectoral_fraction[ + sector + ] * (1 - urban_fraction) + nodal_heat_name_fraction[f"{sector} urban decentral"] = ( + nodal_sectoral_fraction[sector] * urban_fraction + ) + + nodal_heat_name_tech = pd.concat( + { + name: nodal_heating.multiply(nodal_heat_name_fraction[name], axis=0) + for name in nodal_heat_name_fraction.columns + }, + axis=1, + names=["heat name", "technology"], + ) + + # move all ground HPs to rural, all air to urban + + for sector in sectors: + nodal_heat_name_tech[(f"{sector} rural", "ground heat pump")] += ( + nodal_heat_name_tech[("urban central", "ground heat pump")] + * nodal_sectoral_fraction[sector] + + nodal_heat_name_tech[(f"{sector} urban decentral", "ground heat pump")] + ) + nodal_heat_name_tech[(f"{sector} urban decentral", "ground heat pump")] = 0.0 + + nodal_heat_name_tech[ + (f"{sector} urban decentral", "air heat pump") + ] += nodal_heat_name_tech[(f"{sector} rural", "air heat pump")] + nodal_heat_name_tech[(f"{sector} rural", "air heat pump")] = 0.0 + + nodal_heat_name_tech[("urban central", "ground heat pump")] = 0.0 + + nodal_heat_name_tech.to_csv(snakemake.output.existing_heating_distribution) + + +if __name__ == "__main__": + if "snakemake" not in globals(): + from _helpers import mock_snakemake + + snakemake = mock_snakemake( + "build_existing_heating_distribution", + simpl="", + clusters=4, + planning_horizons=2030, + demand="DF", + ) + + build_existing_heating() diff --git a/scripts/build_heat_demand.py b/scripts/build_heat_demand.py new file mode 100644 index 000000000..685a595cc --- /dev/null +++ b/scripts/build_heat_demand.py @@ -0,0 +1,44 @@ +# -*- coding: utf-8 -*- +# SPDX-FileCopyrightText: PyPSA-Earth and PyPSA-Eur Authors +# +# SPDX-License-Identifier: AGPL-3.0-or-later +""" +Build heat demand time series. +""" + +import os + +import atlite +import geopandas as gpd +import numpy as np +import pandas as pd +import xarray as xr + +if __name__ == "__main__": + if "snakemake" not in globals(): + from _helpers import mock_snakemake + + snakemake = mock_snakemake("build_heat_demand", simpl="", clusters="10") + + time = pd.date_range(freq="h", **snakemake.params.snapshots) + cutout_config = snakemake.input.cutout + cutout = atlite.Cutout(cutout_config).sel(time=time) + + clustered_regions = ( + gpd.read_file(snakemake.input.regions_onshore) + .set_index("name") + .buffer(0) + .squeeze() + ) + + I = cutout.indicatormatrix(clustered_regions) + + for area in ["rural", "urban", "total"]: + pop_layout = xr.open_dataarray(snakemake.input[f"pop_layout_{area}"]) + + stacked_pop = pop_layout.stack(spatial=("y", "x")) + M = I.T.dot(np.diag(I.dot(stacked_pop))) + + heat_demand = cutout.heat_demand(matrix=M.T, index=clustered_regions.index) + + heat_demand.to_netcdf(snakemake.output[f"heat_demand_{area}"]) diff --git a/scripts/build_industrial_database.py b/scripts/build_industrial_database.py new file mode 100644 index 000000000..c565712eb --- /dev/null +++ b/scripts/build_industrial_database.py @@ -0,0 +1,526 @@ +# -*- coding: utf-8 -*- +# SPDX-FileCopyrightText: PyPSA-Earth and PyPSA-Eur Authors +# +# SPDX-License-Identifier: AGPL-3.0-or-later + +import math + +import country_converter as coco +import numpy as np +import pandas as pd +import pycountry +import requests +from _helpers import content_retrieve +from geopy.geocoders import Nominatim + + +def get_cocode_from_name(df, country_column_name): + country_codes = {} + + for country in pycountry.countries: + country_codes[country.name] = country.alpha_2 + + df["country"] = df[country_column_name].map(country_codes) + return df + + +def get_cocode_from_coords(df): + geolocator = Nominatim(user_agent="geoapi") # Initialize geolocator + + # Initialize an empty list to store country codes + country_codes = [] + + for index, row in df.iterrows(): + # Get latitude and longitude from the row + latitude = row["Latitude"] + longitude = row["Longitude"] + + # Perform reverse geocoding to get location information + tries = 0 + location = None + while tries < 10: + try: + location = geolocator.reverse((latitude, longitude), exactly_one=True) + break + except: + tries += 1 + if tries == 10: + print( + "Country code of location ({},{}) could not be geocoded after 10 tries.".format( + latitude, longitude + ) + ) + + if location and location.raw.get("address", {}).get("country_code"): + # Extract and append the country code to the list + country_code = location.raw["address"]["country_code"].upper() + country_codes.append(country_code) + else: + country_codes.append(None) + + # Add the country code list as a new column to the DataFrame + df["country"] = country_codes + + return df + + +def create_steel_db(): + # Global Steel Plant Tracker data set you requested from Global Energy Monitor from the link below: + + # The following excel file was downloaded from the following webpage + # https://globalenergymonitor.org/wp-content/uploads/2023/03/Global-Steel-Plant-Tracker-2023-03.xlsx . The dataset contains 1433 Steel plants globally. + + url = "https://globalenergymonitor.org/wp-content/uploads/2023/03/Global-Steel-Plant-Tracker-2023-03.xlsx" + + df_steel = pd.read_excel( + content_retrieve(url), + index_col=0, + sheet_name="Steel Plants", + header=0, + ) + + df_steel = df_steel[ + [ + "Plant name (English)", + "Country", + "Coordinates", + "Coordinate accuracy", + "Status", + "Start date", + "Plant age (years)", + "Nominal crude steel capacity (ttpa)", + "Nominal BOF steel capacity (ttpa)", + "Nominal EAF steel capacity (ttpa)", + "Nominal OHF steel capacity (ttpa)", + "Nominal iron capacity (ttpa)", + "Nominal BF capacity (ttpa)", + "Nominal DRI capacity (ttpa)", + "Ferronickel capacity (ttpa)", + "Sinter plant capacity (ttpa)", + "Coking plant capacity (ttpa)", + "Pelletizing plant capacity (ttpa)", + "Category steel product", + "Main production process", + "Municipality", + ] + ] + + # Keep only operating steel plants + df_steel = df_steel.loc[df_steel["Status"] == "operating"] + + # Create a column with iso2 country code + cc = coco.CountryConverter() + Country = pd.Series(df_steel["Country"]) + df_steel["country"] = cc.pandas_convert(series=Country, to="ISO2") + + # Split Coordeinates column into x and y columns + df_steel[["y", "x"]] = df_steel["Coordinates"].str.split(",", expand=True) + + # Drop Coordinates column as it contains a ',' and is not needed anymore + df_steel = df_steel.drop(columns="Coordinates", axis=1) + + # Fetch steel plants that uses DRI and BF techs and drop them from main df + mixed_steel_plants = df_steel[ + df_steel["Main production process"] == "integrated (BF and DRI)" + ].copy() + df_steel = df_steel.drop(mixed_steel_plants.index) + + # Separate the two techs in two dataframes + DRI_share = mixed_steel_plants.copy() + BF_share = mixed_steel_plants.copy() + BF_share["Main production process"] = "integrated (BF)" + DRI_share["Main production process"] = "integrated (DRI)" + + # Calculate the share of both techs according to the capacities of iron production + BF_share["Nominal crude steel capacity (ttpa)"] = BF_share[ + "Nominal crude steel capacity (ttpa)" + ] * mixed_steel_plants.apply( + lambda x: x["Nominal BF capacity (ttpa)"] / x["Nominal iron capacity (ttpa)"], + axis=1, + ) + DRI_share["Nominal crude steel capacity (ttpa)"] = ( + mixed_steel_plants["Nominal crude steel capacity (ttpa)"] + - BF_share["Nominal crude steel capacity (ttpa)"] + ) + + # Add suffix to the index to differentiate between them in the main df + DRI_share.index += "_DRI" + BF_share.index += "_BF" + + # Merge them back to the main df + df_steel = pd.concat([df_steel, BF_share, DRI_share]) + df_steel["Main production process"].value_counts() + + # Remove plants with unknown production technology + unknown_ind = df_steel[ + df_steel["Main production process"].str.contains("unknown") + ].index + df_steel = df_steel.drop(unknown_ind) + if len(unknown_ind) > 0: + print( + "dropped {0} steel/iron plants with unknown production technology of total {1} plants".format( + len(unknown_ind), len(df_steel) + ) + ) + df_steel["Main production process"].value_counts() + + # Dict to map the technology names of the source to that expected in the workflow + iron_techs = { + "electric": "Electric arc", + "integrated (BF)": "Integrated steelworks", + "integrated (DRI)": "DRI + Electric arc", + "ironmaking (BF)": "Integrated steelworks", + "ironmaking (DRI)": "DRI + Electric arc", + "oxygen": "Integrated steelworks", + "electric, oxygen": "Electric arc", + } + + # Creating the necessary columns in the dataframe + iron_making = df_steel[ + df_steel["Main production process"].str.contains("ironmaking") + ].index + df_steel.loc[iron_making, "Nominal crude steel capacity (ttpa)"] = df_steel.loc[ + iron_making, "Nominal iron capacity (ttpa)" + ] + df_steel["unit"] = "kt/yr" + df_steel["quality"] = "exact" + df_steel = df_steel.reset_index() + df_steel = df_steel.rename( + columns={ + "Nominal crude steel capacity (ttpa)": "capacity", + "Municipality": "location", + "Plant ID": "ID", + } + ) + df_steel.capacity = pd.to_numeric(df_steel.capacity) + df_steel["technology"] = df_steel["Main production process"].apply( + lambda x: iron_techs[x] + ) + df_steel.x = df_steel.x.apply(lambda x: eval(x)) + df_steel.y = df_steel.y.apply(lambda y: eval(y)) + + return df_steel[ + [ + "country", + "y", + "x", + "location", + "technology", + "capacity", + "unit", + "quality", + "ID", + ] + ].dropna() + + +def create_cement_db(): + # ------------- + # CEMENT + # ------------- + # The following excel file was downloaded from the following webpage https://www.cgfi.ac.uk/spatial-finance-initiative/geoasset-project/cement/. + # The dataset contains 3117 cement plants globally. + fn = "https://www.cgfi.ac.uk/wp-content/uploads/2021/08/SFI-Global-Cement-Database-July-2021.xlsx" + storage_options = {"User-Agent": "Mozilla/5.0"} + cement_orig = pd.read_excel( + fn, + index_col=0, + storage_options=storage_options, + sheet_name="SFI_ALD_Cement_Database", + header=0, + ) + + df_cement = cement_orig.copy() + df_cement = df_cement[ + [ + "country", + "iso3", + "latitude", + "longitude", + "status", + "plant_type", + "capacity", + "year", + "city", + ] + ] + df_cement = df_cement.rename( + columns={ + "country": "Country", + "latitude": "y", + "longitude": "x", + "city": "location", + } + ) + df_cement["unit"] = "Kt/yr" + df_cement["technology"] = "Cement" + df_cement["capacity"] = df_cement["capacity"] * 1000 + # Keep only operating steel plants + df_cement = df_cement.loc[df_cement["status"] == "Operating"] + + # Create a column with iso2 country code + cc = coco.CountryConverter() + iso3 = pd.Series(df_cement["iso3"]) + df_cement["country"] = cc.pandas_convert(series=iso3, to="ISO2") + + # Dropping the null capacities reduces the dataframe from 3000+ rows to 1672 rows + na_index = df_cement[df_cement.capacity.isna()].index + print( + "There are {} out of {} total cement plants with unknown capacities, setting value to country average".format( + len(na_index), len(df_cement) + ) + ) + avg_c_cap = df_cement.groupby(df_cement.country)["capacity"].mean() + df_cement["capacity"] = df_cement.apply( + lambda x: ( + avg_c_cap[x["country"]] if math.isnan(x["capacity"]) else x["capacity"] + ), + axis=1, + ) + + df_cement["quality"] = "actual" + df_cement.loc[na_index, "quality"] = "actual" # TODO change + + df_cement = df_cement.reset_index() + df_cement = df_cement.rename(columns={"uid": "ID"}) + df_cement.capacity = pd.to_numeric(df_cement.capacity) + + return df_cement[ + [ + "country", + "y", + "x", + "location", + "technology", + "capacity", + "unit", + "quality", + "ID", + ] + ] + + +def create_refineries_df(): + # ------------- + # OIL REFINERIES + # ------------- + # The data were downloaded directly from arcgis server using a query found on this webpage: + # https://www.arcgis.com/home/item.html?id=a6979b6bccbf4e719de3f703ea799259&sublayer=0#data + # and https://www.arcgis.com/home/item.html?id=a917ac2766bc47e1877071f0201b6280 + + # The dataset contains 536 global Oil refineries. + + base_url = "https://services.arcgis.com" + facts = "/jDGuO8tYggdCCnUJ/arcgis/rest/services/Global_Oil_Refinery_Complex_and_Daily_Capacity/FeatureServer/0/query?f=json&where=1%3D1&returnGeometry=false&spatialRel=esriSpatialRelIntersects&outFields=*&orderByFields=FID%20ASC&resultOffset=0&resultRecordCount=537&cacheHint=true&quantizationParameters=%7B%22mode%22%3A%22edit%22%7D" + + first_response = requests.get(base_url + facts) + response_list = first_response.json() + + data = [] + for response in response_list["features"]: + data.append( + { + "FID_": response["attributes"].get("FID_"), + "Company": response["attributes"].get("Company"), + "Name": response["attributes"].get("Name"), + "City": response["attributes"].get("City"), + "Facility": response["attributes"].get("Facility"), + "Prov_State": response["attributes"].get("Prov_State"), + "Country": response["attributes"].get("Country"), + "Address": response["attributes"].get("Address"), + "Zip": response["attributes"].get("Zip"), + "County": response["attributes"].get("County"), + "PADD": response["attributes"].get("PADD"), + "Capacity": response["attributes"].get("Capacity"), + "Longitude": response["attributes"].get("Longitude"), + "Latitude": response["attributes"].get("Latitude"), + "Markets": response["attributes"].get("Markets"), + "CORPORATIO": response["attributes"].get("CORPORATIO"), + } + ) + + df = pd.DataFrame(data) + + df = get_cocode_from_name(df, "Country") + + df_nans = df[df.country.isna()] + df = df.dropna(axis=0) + + df_bylocation = get_cocode_from_coords(df_nans) + + df_refineries = pd.concat([df, df_bylocation]) + + # Creating the necessary columns in the dataframe + # df_refineries["technology"] = df_refineries["Main production process"].apply(lambda x: iron_techs[x]) + df_refineries["unit"] = "bpd" + df_refineries["quality"] = "exact" + df_refineries["technology"] = "HVC" + + df_refineries = df_refineries.rename( + columns={ + "Capacity": "capacity", + "Prov_State": "location", + "Latitude": "y", + "Longitude": "x", + "FID_": "ID", + } + ) + df_refineries = df_refineries.reset_index() + df_refineries.capacity = pd.to_numeric(df_refineries.capacity) + + return df_refineries[ + [ + "country", + "y", + "x", + "location", + "technology", + "capacity", + "unit", + "quality", + "ID", + ] + ] + + +def create_paper_df(): + # ------------- + # Paper + # ------------- + # The following excel file was downloaded from the following webpage https://www.cgfi.ac.uk/spatial-finance-initiative/geoasset-project/cement/ . The dataset contains 3117 cement plants globally. + + fn = "https://www.cgfi.ac.uk/wp-content/uploads/2023/03/SFI_ALD_Pulp_Paper_Sample_LatAm_Jan_2023.xlsx" + + storage_options = {"User-Agent": "Mozilla/5.0"} + paper_orig = pd.read_excel( + fn, + index_col=0, + storage_options=storage_options, + sheet_name="SFI_ALD_PPM_LatAm", + header=0, + ) + + df_paper = paper_orig.copy() + df_paper = df_paper[ + [ + "country", + "iso3", + "latitude", + "longitude", + "status", + "primary_product", + "capacity_paper", + "city", + ] + ] + + df_paper = df_paper.rename( + columns={ + "country": "Country", + "latitude": "y", + "longitude": "x", + "city": "location", + "capacity_paper": "capacity", + } + ) + df_paper["unit"] = "10kt/yr" + df_paper["technology"] = "Paper" + df_paper["capacity"] = df_paper["capacity"] + + df_paper.capacity = df_paper.capacity.apply( + lambda x: x if type(x) == int or type(x) == int == float else np.nan + ) + + # Keep only operating steel plants + # df_paper = df_paper.loc[df_paper["status"] == "Operating"] + + # Create a column with iso2 country code + cc = coco.CountryConverter() + iso3 = pd.Series(df_paper["iso3"]) + df_paper["country"] = cc.pandas_convert(series=iso3, to="ISO2") + + # Dropping the null capacities reduces the dataframe from 3000+ rows to 1672 rows + na_index = df_paper[df_paper.capacity.isna()].index + print( + "There are {} out of {} total paper plants with unknown capacities, setting value to country average".format( + len(na_index), len(df_paper) + ) + ) + avg_c_cap = df_paper.groupby(df_paper.country)["capacity"].mean() + na_index + + df_paper["capacity"] = df_paper.apply( + lambda x: ( + avg_c_cap[x["country"]] if math.isnan(x["capacity"]) else x["capacity"] + ), + axis=1, + ) + + df_paper["quality"] = "actual" + df_paper.loc[na_index, "quality"] = "actual" # TODO change + df_paper.capacity = pd.to_numeric(df_paper.capacity) + + df_paper = df_paper.reset_index() + df_paper = df_paper.rename(columns={"uid": "ID"}) + + industrial_database_paper = df_paper[ + [ + "country", + "y", + "x", + "location", + "technology", + "capacity", + "unit", + "quality", + "ID", + ] + ] + + no_infp_index = industrial_database_paper[ + industrial_database_paper.y == "No information" + ].index + print( + "Setting plants of countries with no values for paper plants to 1.0".format( + len(na_index), len(df_paper) + ) + ) + industrial_database_paper = industrial_database_paper.drop(no_infp_index) + industrial_database_paper.capacity = industrial_database_paper.capacity.fillna(1) + + return industrial_database_paper + + +if __name__ == "__main__": + if "snakemake" not in globals(): + from _helpers import mock_snakemake + + snakemake = mock_snakemake( + "build_industrial_database", + simpl="", + clusters="4", + ll="c1.0", + opts="Co2L", + planning_horizons="2030", + sopts="144H", + discountrate="0.071", + demand="DF", + ) + + industrial_database_steel = create_steel_db() + industrial_database_cement = create_cement_db() + industrial_database_refineries = create_refineries_df() + industrial_database_paper = create_paper_df() + + industrial_database = pd.concat( + [ + industrial_database_steel, + industrial_database_cement, + industrial_database_refineries, + industrial_database_paper, + ] + ) + + industrial_database.to_csv( + snakemake.output["industrial_database"], header=True, index=0 + ) diff --git a/scripts/build_industrial_distribution_key.py b/scripts/build_industrial_distribution_key.py new file mode 100644 index 000000000..83656b1d3 --- /dev/null +++ b/scripts/build_industrial_distribution_key.py @@ -0,0 +1,190 @@ +# -*- coding: utf-8 -*- +# SPDX-FileCopyrightText: PyPSA-Earth and PyPSA-Eur Authors +# +# SPDX-License-Identifier: AGPL-3.0-or-later +""" +Build industrial distribution keys from hotmaps database. +""" + +import logging +import os +import uuid +from distutils.version import StrictVersion +from itertools import product + +import geopandas as gpd +import pandas as pd +from _helpers import locate_bus, three_2_two_digits_country +from shapely.geometry import Point + +logger = logging.getLogger(__name__) +gpd_version = StrictVersion(gpd.__version__) + + +def map_industry_to_buses(df, countries, gadm_level, shapes_path, gadm_clustering): + """ + Load hotmaps database of industrial sites and map onto bus regions. Build + industrial demand... Change name and add other functions. + + Function similar to aviation/shipping. Use functions to disaggregate. + Only cement not steel - proof of concept. + Change hotmaps to more descriptive name, etc. + """ + df = df[df.country.isin(countries)] + df["gadm_{}".format(gadm_level)] = df[["x", "y", "country"]].apply( + lambda site: locate_bus( + site[["x", "y"]].astype("float"), + site["country"], + gadm_level, + shapes_path, + gadm_clustering, + ), + axis=1, + ) + + return df.set_index("gadm_" + str(gadm_level)) + + +def build_nodal_distribution_key( + industrial_database, regions, industry, countries +): # returns percentage of co2 emissions + """ + Build nodal distribution keys for each sector. + """ + + # countries = regions["name"].str[:2].unique() + + keys = pd.DataFrame(index=regions.name, columns=industry, dtype=float) + + pop = pd.read_csv( + snakemake.input.clustered_pop_layout, + index_col=0, + keep_default_na=False, + na_values=[""], + ) + + gdp = pd.read_csv( + snakemake.input.clustered_gdp_layout, + index_col=0, + keep_default_na=False, + na_values=[""], + ) + + # pop["country"] = pop.index.str[:2] + keys["population"] = pop["total"].values / pop["total"].sum() + + keys["gdp"] = gdp["total"].values / gdp["total"].sum() + + for tech, country in product(industry, countries): + regions_ct = regions.name[regions.name.str.contains(country)] + + facilities = industrial_database.query( + "country == @country and industry == @tech" + ) + # TODO adapt for facilities with production values not emissions + if not facilities.empty: + indicator = facilities["capacity"] + if indicator.sum() == 0: + key = pd.Series(1 / len(facilities), facilities.index) + else: + # TODO BEWARE: this is a strong assumption + # indicator = indicator.fillna(0) + key = indicator / indicator.sum() + key = ( + key.groupby(facilities.index).sum().reindex(regions_ct, fill_value=0.0) + ) + else: + key = keys.loc[regions_ct, "gdp"] + + keys.loc[regions_ct, tech] = key + keys["country"] = pop["ct"] + return keys + + +def match_technology(df): + industry_mapping = { + "Integrated steelworks": "iron and steel", + "DRI + Electric arc": "iron and steel", + "Electric arc": "iron and steel", + "Cement": "non-metallic minerals", + "HVC": "chemical and petrochemical", + "Paper": "paper pulp and print", + "Aluminium": "non-ferrous metals", + } + + df["industry"] = df["technology"].map(industry_mapping) + return df + + +if __name__ == "__main__": + if "snakemake" not in globals(): + from _helpers import mock_snakemake + + snakemake = mock_snakemake( + "build_industrial_distribution_key", + simpl="", + clusters=12, + demand="AB", + planning_horizons=2050, + ) + + regions = gpd.read_file(snakemake.input.regions_onshore) + shapes_path = snakemake.input.shapes_path + + gadm_level = snakemake.params.gadm_level + countries = snakemake.params.countries + gadm_clustering = snakemake.params.alternative_clustering + + # countries = ["EG", "BH"] + + if regions["name"][0][ + :3 + ].isalpha(): # TODO clean later by changing all codes to 2 letters + regions["name"] = regions["name"].apply( + lambda name: three_2_two_digits_country(name[:3]) + name[3:] + ) + + if snakemake.params.industry_database: + logger.info( + "Using custom industry database from 'data/custom/industrial_database.csv' instead of default" + ) + geo_locs = pd.read_csv( + "data/custom/industrial_database.csv", + sep=",", + header=0, + keep_default_na=False, # , index_col=0 + ) + geo_locs["industry"] = geo_locs["technology"] + else: + logger.info("Using default industry database") + geo_locs = pd.read_csv( + snakemake.input.industrial_database, + sep=",", + header=0, + keep_default_na=False, # , index_col=0 + ) + geo_locs = geo_locs[geo_locs["country"].isin(countries)] + geo_locs["capacity"] = pd.to_numeric(geo_locs.capacity) + + # Call the function to add the "industry" column + df_with_industry = match_technology(geo_locs) + + geo_locs.capacity = pd.to_numeric(geo_locs.capacity) + + geo_locs = geo_locs[geo_locs.quality != "nonexistent"] + + industry = geo_locs.industry.unique() + + industrial_database = map_industry_to_buses( + geo_locs[geo_locs.quality != "unavailable"], + countries, + gadm_level, + shapes_path, + gadm_clustering, + ) + + keys = build_nodal_distribution_key( + industrial_database, regions, industry, countries + ) + + keys.to_csv(snakemake.output.industrial_distribution_key) diff --git a/scripts/build_industry_demand.py b/scripts/build_industry_demand.py new file mode 100644 index 000000000..90922bb6d --- /dev/null +++ b/scripts/build_industry_demand.py @@ -0,0 +1,319 @@ +# -*- coding: utf-8 -*- +# SPDX-FileCopyrightText: PyPSA-Earth and PyPSA-Eur Authors +# +# SPDX-License-Identifier: AGPL-3.0-or-later +""" +Created on Thu Jul 14 21:18:06 2022. + +@author: user +""" + +import logging +import os +from itertools import product + +import pandas as pd +from _helpers import mock_snakemake, read_csv_nafix + +_logger = logging.getLogger(__name__) + + +def calculate_end_values(df): + return (1 + df) ** no_years + + +def country_to_nodal(industrial_production, keys): + # keys["country"] = keys.index.str[:2] # TODO 2digit_3_digit adaptation needed + + nodal_production = pd.DataFrame( + index=keys.index, columns=industrial_production.columns, dtype=float + ) + + countries = keys.country.unique() + sectors = industrial_production.columns + + for country, sector in product(countries, sectors): + buses = keys.index[keys.country == country] + + if sector not in dist_keys.columns or dist_keys[sector].sum() == 0: + mapping = "gdp" + else: + mapping = sector + + key = keys.loc[buses, mapping] + # print(sector) + nodal_production.loc[buses, sector] = ( + industrial_production.at[country, sector] * key + ) + + return nodal_production + + +if __name__ == "__main__": + if "snakemake" not in globals(): + snakemake = mock_snakemake( + "build_industry_demand", + simpl="", + clusters=10, + planning_horizons=2030, + demand="AB", + ) + + countries = snakemake.params.countries + + if snakemake.params.industry_demand: + _logger.info( + "Fetching custom industry demand data.. expecting file at 'data/custom/industry_demand_{0}_{1}.csv'".format( + snakemake.wildcards["demand"], snakemake.wildcards["planning_horizons"] + ) + ) + + industry_demand = pd.read_csv( + "data/custom/industry_demand_{0}_{1}.csv".format( + snakemake.wildcards["demand"], snakemake.wildcards["planning_horizons"] + ), + index_col=[0, 1], + ) + keys_path = snakemake.input.industrial_distribution_key + + dist_keys = pd.read_csv( + keys_path, index_col=0, keep_default_na=False, na_values=[""] + ) + production_base = pd.DataFrame( + 1, columns=industry_demand.columns, index=countries + ) + nodal_keys = country_to_nodal(production_base, dist_keys) + + nodal_df = pd.DataFrame() + + for country in countries: + nodal_production_tom_co = nodal_keys[ + nodal_keys.index.to_series().str.startswith(country) + ] + industry_base_totals_co = industry_demand.loc[country] + # final energy consumption per node and industry (TWh/a) + nodal_df_co = nodal_production_tom_co.dot(industry_base_totals_co.T) + nodal_df = pd.concat([nodal_df, nodal_df_co]) + + else: + no_years = int(snakemake.wildcards.planning_horizons) - int( + snakemake.params.base_year + ) + + cagr = read_csv_nafix(snakemake.input.industry_growth_cagr, index_col=0) + + # Building nodal industry production growth + for country in countries: + if country not in cagr.index: + cagr.loc[country] = cagr.loc["DEFAULT"] + _logger.warning( + "No industry growth data for " + + country + + " using default data instead." + ) + + cagr = cagr[cagr.index.isin(countries)] + + growth_factors = calculate_end_values(cagr) + + industry_base_totals = read_csv_nafix( + snakemake.input["base_industry_totals"], index_col=[0, 1] + ) + + production_base = cagr.map(lambda x: 1) + production_tom = production_base * growth_factors + + # non-used line; commented out + # industry_totals = (production_tom * industry_base_totals).fillna(0) + + industry_util_factor = snakemake.params.industry_util_factor + + # Load distribution keys + keys_path = snakemake.input.industrial_distribution_key + + dist_keys = pd.read_csv( + keys_path, index_col=0, keep_default_na=False, na_values=[""] + ) + + # production of industries per node compared to current + nodal_production_tom = country_to_nodal(production_tom, dist_keys) + + clean_industry_list = [ + "iron and steel", + "chemical and petrochemical", + "non-ferrous metals", + "non-metallic minerals", + "transport equipment", + "machinery", + "mining and quarrying", + "food and tobacco", + "paper pulp and print", + "wood and wood products", + "textile and leather", + "construction", + "other", + ] + + emission_factors = { # Based on JR data following PyPSA-EUR + "iron and steel": 0.025, + "chemical and petrochemical": 0.51, # taken from HVC including process and feedstock + "non-ferrous metals": 1.5, # taken from Aluminum primary + "non-metallic minerals": 0.542, # taken for cement + "transport equipment": 0, + "machinery": 0, + "mining and quarrying": 0, # assumed + "food and tobacco": 0, + "paper pulp and print": 0, + "wood and wood products": 0, + "textile and leather": 0, + "construction": 0, # assumed + "other": 0, + } + + # fill industry_base_totals + level_2nd = industry_base_totals.index.get_level_values(1).unique() + mlv_index = pd.MultiIndex.from_product([countries, level_2nd]) + industry_base_totals = industry_base_totals.reindex(mlv_index, fill_value=0) + + geo_locs = pd.read_csv( + snakemake.input.industrial_database, + sep=",", + header=0, + keep_default_na=False, + index_col=0, + ) + geo_locs["capacity"] = pd.to_numeric(geo_locs.capacity) + + def match_technology(df): + industry_mapping = { + "Integrated steelworks": "iron and steel", + "DRI + Electric arc": "iron and steel", + "Electric arc": "iron and steel", + "Cement": "non-metallic minerals", + "HVC": "chemical and petrochemical", + "Paper": "paper pulp and print", + } + + df["industry"] = df["technology"].map(industry_mapping) + return df + + # Calculating emissions + + # get the subset of countries that al + countries_geo = geo_locs.index.unique().intersection(countries) + geo_locs = match_technology(geo_locs).loc[countries_geo] + + aluminium_year = snakemake.params.aluminium_year + AL = read_csv_nafix("data/AL_production.csv", index_col=0) + AL_prod_tom = AL.query("Year == @aluminium_year and index in @countries_geo")[ + "production[ktons/a]" + ].reindex(countries_geo, fill_value=0.0) + AL_emissions = AL_prod_tom * emission_factors["non-ferrous metals"] + + Steel_emissions = ( + geo_locs[geo_locs.industry == "iron and steel"] + .groupby("country") + .sum() + .capacity + * 1000 + * emission_factors["iron and steel"] + * industry_util_factor + ) + NMM_emissions = ( + geo_locs[geo_locs.industry == "non-metallic minerals"] + .groupby("country") + .sum() + .capacity + * 1000 + * emission_factors["non-metallic minerals"] + * industry_util_factor + ) + refinery_emissons = ( + geo_locs[geo_locs.industry == "chemical and petrochemical"] + .groupby("country") + .sum() + .capacity + * emission_factors["chemical and petrochemical"] + * 0.136 + * 365 + * industry_util_factor + ) + + for country in countries: + industry_base_totals.loc[(country, "process emissions"), :] = 0 + try: + industry_base_totals.loc[ + (country, "process emissions"), "non-metallic minerals" + ] = NMM_emissions.loc[country] + except KeyError: + pass + + try: + industry_base_totals.loc[ + (country, "process emissions"), "iron and steel" + ] = Steel_emissions.loc[country] + except KeyError: + pass + try: + industry_base_totals.loc[ + (country, "process emissions"), "non-ferrous metals" + ] = AL_emissions.loc[country] + except KeyError: + pass + try: + industry_base_totals.loc[ + (country, "process emissions"), "chemical and petrochemical" + ] = refinery_emissons.loc[country] + except KeyError: + pass + industry_base_totals = industry_base_totals.sort_index() + + all_carriers = [ + "electricity", + "gas", + "coal", + "oil", + "hydrogen", + "biomass", + "low-temperature heat", + ] + + # Fill missing carriers with 0s + for country in countries: + carriers_present = industry_base_totals.xs(country, level=0).index + missing_carriers = set(all_carriers) - set(carriers_present) + for carrier in missing_carriers: + # Add the missing carrier with a value of 0 + industry_base_totals.loc[(country, carrier), :] = 0 + + # temporary fix: merge other manufacturing, construction and non-fuel into other and drop the column + other_cols = list(set(industry_base_totals.columns) - set(clean_industry_list)) + if len(other_cols) > 0: + industry_base_totals["other"] += industry_base_totals[other_cols].sum( + axis=1 + ) + industry_base_totals.drop(columns=other_cols, inplace=True) + + nodal_df = pd.DataFrame() + + for country in countries: + nodal_production_tom_co = nodal_production_tom[ + nodal_production_tom.index.to_series().str.startswith(country) + ] + industry_base_totals_co = industry_base_totals.loc[country] + # final energy consumption per node and industry (TWh/a) + nodal_df_co = nodal_production_tom_co.dot(industry_base_totals_co.T) + nodal_df = pd.concat([nodal_df, nodal_df_co]) + + rename_sectors = { + "elec": "electricity", + "biomass": "solid biomass", + "heat": "low-temperature heat", + } + nodal_df.rename(columns=rename_sectors, inplace=True) + + nodal_df.index.name = "MWh/a (tCO2/a)" + + nodal_df.to_csv( + snakemake.output.industrial_energy_demand_per_node, float_format="%.2f" + ) diff --git a/scripts/build_natura_raster.py b/scripts/build_natura_raster.py index 9593f7767..efd6a4681 100644 --- a/scripts/build_natura_raster.py +++ b/scripts/build_natura_raster.py @@ -178,7 +178,6 @@ def unify_protected_shape_areas(inputs, natura_crs, out_logging): if "snakemake" not in globals(): from _helpers import mock_snakemake - os.chdir(os.path.dirname(os.path.abspath(__file__))) snakemake = mock_snakemake( "build_natura_raster", cutouts=["cutouts/africa-2013-era5.nc"] ) diff --git a/scripts/build_osm_network.py b/scripts/build_osm_network.py index 7ba0af620..f6de40de8 100644 --- a/scripts/build_osm_network.py +++ b/scripts/build_osm_network.py @@ -15,7 +15,6 @@ create_logger, read_geojson, read_osm_config, - sets_path_to_root, to_csv_nafix, ) from shapely.geometry import LineString, Point @@ -898,8 +897,8 @@ def built_network( if "snakemake" not in globals(): from _helpers import mock_snakemake - os.chdir(os.path.dirname(os.path.abspath(__file__))) snakemake = mock_snakemake("build_osm_network") + configure_logging(snakemake) # load default crs @@ -909,8 +908,6 @@ def built_network( build_osm_network = snakemake.params.build_osm_network countries = snakemake.params.countries - sets_path_to_root("pypsa-earth") - # Keep only a predefined set of columns, as otherwise conflicts are possible # e.g. the columns which names starts with "bus" are mixed up with # the third-bus specification when executing additional_linkports() diff --git a/scripts/build_population_layouts.py b/scripts/build_population_layouts.py new file mode 100644 index 000000000..fbf5bcae3 --- /dev/null +++ b/scripts/build_population_layouts.py @@ -0,0 +1,137 @@ +# -*- coding: utf-8 -*- +# SPDX-FileCopyrightText: PyPSA-Earth and PyPSA-Eur Authors +# +# SPDX-License-Identifier: AGPL-3.0-or-later +""" +Build mapping between grid cells and population (total, urban, rural) +""" +import multiprocessing as mp +import os + +import atlite +import geopandas as gpd +import numpy as np +import pandas as pd +import xarray as xr +from _helpers import read_csv_nafix +from vresutils import shapes as vshapes + +if __name__ == "__main__": + if "snakemake" not in globals(): + + from _helpers import mock_snakemake + + snakemake = mock_snakemake( + "build_population_layouts", + planning_horizons=2030, + ) + + cutout_path = ( + snakemake.input.cutout + ) # os.path.abspath(snakemake.config["atlite"]["cutout"]) + cutout = atlite.Cutout(cutout_path) + + grid_cells = cutout.grid.geometry.to_list() + + # nuts3 has columns country, gdp, pop, geometry + nuts3 = gpd.read_file(snakemake.input.nuts3_shapes).set_index("GADM_ID") + + # Set value of population to same dimension as in PyPSA-Eur-Sec, where the value is given in 1e3 + nuts3["pop"] = nuts3["pop"] / 1000 + + # Indicator matrix NUTS3 -> grid cells + I = atlite.cutout.compute_indicatormatrix(nuts3.geometry, grid_cells) + + # Indicator matrix grid_cells -> NUTS3; inprinciple Iinv*I is identity + # but imprecisions mean not perfect + Iinv = cutout.indicatormatrix(nuts3.geometry) + + countries = np.sort(nuts3.country.unique()) + + urban_percent_df = read_csv_nafix( + snakemake.input.urban_percent, + usecols=[0, 1, 4], + index_col=0, + ) + + # Filter for the year used in the workflow + urban_percent_df = urban_percent_df.loc[ + (urban_percent_df["Year"] == int(snakemake.wildcards.planning_horizons)) + ] + + # Filter for urban percent column + urban_percent_df = urban_percent_df[ + ["Urban population as percentage of total population"] + ] + + # Remove index header + urban_percent_df.index.name = None + + # Squeeze into a Series + urban_fraction = urban_percent_df.squeeze() / 100.0 + urban_fraction = urban_fraction.groupby(urban_fraction.index).sum() + + # population in each grid cell + pop_cells = pd.Series(I.dot(nuts3["pop"])) + gdp_cells = pd.Series(I.dot(nuts3["gdp"])) + + # in km^2 + with mp.Pool(processes=snakemake.threads) as pool: + cell_areas = pd.Series(pool.map(vshapes.area, grid_cells)) / 1e6 + + # pop per km^2 + density_cells_pop = pop_cells / cell_areas + density_cells_gdp = gdp_cells / cell_areas + + # rural or urban population in grid cell + pop_rural = pd.Series(0.0, density_cells_pop.index) + pop_urban = pd.Series(0.0, density_cells_pop.index) + + for ct in countries: + indicator_nuts3_ct = nuts3.country.apply(lambda x: 1.0 if x == ct else 0.0) + + indicator_cells_ct = pd.Series(Iinv.T.dot(indicator_nuts3_ct)) + + density_cells_pop_ct = indicator_cells_ct * density_cells_pop + density_cells_gdp_ct = indicator_cells_ct * density_cells_gdp + + pop_cells_ct = indicator_cells_ct * pop_cells + gdp_cells_ct = indicator_cells_ct * gdp_cells + # correct for imprecision of Iinv*I + pop_ct = nuts3.loc[nuts3.country == ct, "pop"].sum() + pop_cells_ct *= pop_ct / pop_cells_ct.sum() + + gdp_ct = nuts3.loc[nuts3.country == ct, "gdp"].sum() + gdp_cells_ct *= gdp_ct / gdp_cells_ct.sum() + + # The first low density grid cells to reach rural fraction are rural + asc_density_i = density_cells_pop_ct.sort_values().index + asc_density_cumsum = pop_cells_ct[asc_density_i].cumsum() / pop_cells_ct.sum() + rural_fraction_ct = 1 - urban_fraction[ct] + pop_ct_rural_b = asc_density_cumsum < rural_fraction_ct + pop_ct_urban_b = ~pop_ct_rural_b + + pop_ct_rural_b[indicator_cells_ct == 0.0] = False + pop_ct_urban_b[indicator_cells_ct == 0.0] = False + + pop_rural += pop_cells_ct.where(pop_ct_rural_b, 0.0) + pop_urban += pop_cells_ct.where(pop_ct_urban_b, 0.0) + + pop_cells = {"total": pop_cells} + pop_cells["rural"] = pop_rural + pop_cells["urban"] = pop_urban + + for key, pop in pop_cells.items(): + ycoords = ("y", cutout.coords["y"].data) + xcoords = ("x", cutout.coords["x"].data) + values = pop.values.reshape(cutout.shape) + pop_layout = xr.DataArray(values, [ycoords, xcoords]) + + pop_layout.to_netcdf(snakemake.output[f"pop_layout_{key}"]) + + # for key, gdp in gdp_cells.items(): + ycoords = ("y", cutout.coords["y"].data) + xcoords = ("x", cutout.coords["x"].data) + values = gdp_cells.values.reshape(cutout.shape) + gdp_layout = xr.DataArray(values, [ycoords, xcoords]) + gdp_layout.to_netcdf(snakemake.output[f"gdp_layout"]) diff --git a/scripts/build_powerplants.py b/scripts/build_powerplants.py index 350c46fff..5b2ea79ae 100644 --- a/scripts/build_powerplants.py +++ b/scripts/build_powerplants.py @@ -296,7 +296,6 @@ def replace_natural_gas_technology(df: pd.DataFrame): if "snakemake" not in globals(): from _helpers import mock_snakemake - os.chdir(os.path.dirname(os.path.abspath(__file__))) snakemake = mock_snakemake("build_powerplants") configure_logging(snakemake) diff --git a/scripts/build_renewable_profiles.py b/scripts/build_renewable_profiles.py index ae2e16189..1ebf220b4 100644 --- a/scripts/build_renewable_profiles.py +++ b/scripts/build_renewable_profiles.py @@ -202,9 +202,9 @@ import pandas as pd import progressbar as pgb import xarray as xr -from _helpers import configure_logging, create_logger, sets_path_to_root +from _helpers import configure_logging, create_logger from add_electricity import load_powerplants -from dask.distributed import Client, LocalCluster +from dask.distributed import Client from pypsa.geo import haversine from shapely.geometry import LineString, Point, box @@ -488,16 +488,14 @@ def create_scaling_factor( if "snakemake" not in globals(): from _helpers import mock_snakemake - os.chdir(os.path.dirname(os.path.abspath(__file__))) snakemake = mock_snakemake("build_renewable_profiles", technology="solar") - sets_path_to_root("pypsa-earth") configure_logging(snakemake) pgb.streams.wrap_stderr() countries = snakemake.params.countries paths = snakemake.input nprocesses = int(snakemake.threads) - noprogress = not snakemake.config["atlite"].get("show_progress", False) + noprogress = not snakemake.config["enable"]["progress_bar"] config = snakemake.params.renewable[snakemake.wildcards.technology] resource = config["resource"] correction_factor = config.get("correction_factor", 1.0) @@ -522,8 +520,10 @@ def create_scaling_factor( # do not pull up, set_index does not work if geo dataframe is empty regions = regions.set_index("name").rename_axis("bus") - cluster = LocalCluster(n_workers=nprocesses, threads_per_worker=1) - client = Client(cluster, asynchronous=True) + if nprocesses > 1: + client = Client(n_workers=nprocesses, threads_per_worker=1) + else: + client = None cutout = atlite.Cutout(paths["cutout"]) @@ -833,4 +833,6 @@ def create_scaling_factor( ds["profile"] = ds["profile"].where(ds["profile"] >= min_p_max_pu, 0) ds.to_netcdf(snakemake.output.profile) - client.shutdown() + + if client is not None: + client.shutdown() diff --git a/scripts/build_shapes.py b/scripts/build_shapes.py index 3d34f2015..22e6b68cf 100644 --- a/scripts/build_shapes.py +++ b/scripts/build_shapes.py @@ -21,7 +21,6 @@ from _helpers import ( configure_logging, create_logger, - sets_path_to_root, three_2_two_digits_country, two_2_three_digits_country, two_digits_2_name_country, @@ -36,9 +35,6 @@ from shapely.validation import make_valid from tqdm import tqdm -sets_path_to_root("pypsa-earth") - - logger = create_logger(__name__) @@ -224,6 +220,19 @@ def get_GADM_layer( # in the GADM processing of sub-national zones geodf_temp["GADM_ID"] = geodf_temp[f"GID_{cur_layer_id}"] + # from pypsa-earth-sec + # if layer_id == 0: + # geodf_temp["GADM_ID"] = geodf_temp[f"GID_{cur_layer_id}"].apply( + # lambda x: two_2_three_digits_country(x[:2]) + # ) + pd.Series(range(1, geodf_temp.shape[0] + 1)).astype(str) + # else: + # # create a subindex column that is useful + # # in the GADM processing of sub-national zones + # # Fix issues with missing "." in selected cases + # geodf_temp["GADM_ID"] = geodf_temp[f"GID_{cur_layer_id}"].apply( + # lambda x: x if x[3] == "." else x[:3] + "." + x[3:] + # ) + # append geodataframes geodf_list.append(geodf_temp) @@ -1309,9 +1318,7 @@ def gadm( if "snakemake" not in globals(): from _helpers import mock_snakemake - os.chdir(os.path.dirname(os.path.abspath(__file__))) snakemake = mock_snakemake("build_shapes") - sets_path_to_root("pypsa-earth") configure_logging(snakemake) out = snakemake.output diff --git a/scripts/build_ship_profile.py b/scripts/build_ship_profile.py new file mode 100644 index 000000000..f3f8465e8 --- /dev/null +++ b/scripts/build_ship_profile.py @@ -0,0 +1,92 @@ +# -*- coding: utf-8 -*- +# SPDX-FileCopyrightText: PyPSA-Earth and PyPSA-Eur Authors +# +# SPDX-License-Identifier: AGPL-3.0-or-later + +import logging +import os +from pathlib import Path + +import numpy as np +import pandas as pd + +logger = logging.getLogger(__name__) + + +def build_ship_profile(export_volume, ship_opts): + ship_capacity = ship_opts["ship_capacity"] + travel_time = ship_opts["travel_time"] + fill_time = ship_opts["fill_time"] + unload_time = ship_opts["unload_time"] + + landing = export_volume / ship_capacity # fraction of max delivery + pause_time = 8760 / landing - (fill_time + travel_time) + full_cycle = fill_time + travel_time + unload_time + pause_time + + max_transport = ship_capacity * 8760 / (fill_time + travel_time + unload_time) + print(f"The maximum transport capacity per ship is {max_transport:.2f} TWh/year") + + # throw error if max_transport < export_volume + if max_transport < export_volume: + ships = np.ceil(export_volume / max_transport) + print(f"Number of ships needed to export {export_volume} TWh/year is {ships}") + logger.info( + "Not enough ship capacity to export all hydrogen in one ship. Extending the number of shipts to {}".format( + ships + ) + ) + + # Set fill_time -> 1 and travel_time, unload_time, pause_time -> 0 + ship = pd.Series( + [1.0] * fill_time + [0.0] * int(travel_time + unload_time + pause_time) + ) # , index) + ship.name = "profile" + ship = pd.concat( + [ship] * 1000, ignore_index=True + ) # extend ship series to above 8760 hours + + # Add index, cut profile after length of snapshots + snapshots = pd.date_range(freq="h", **snakemake.params.snapshots) + ship = ship[: len(snapshots)] + ship.index = snapshots + + # Scale ship profile to export_volume + export_profile = ship / ship.sum() * export_volume * 1e6 # in MWh + + # Check profile + if abs(export_profile.sum() / 1e6 - export_volume) > 0.001: + raise ValueError( + f"Sum of ship profile ({export_profile.sum()/1e6} TWh) does not match export demand ({export_volume} TWh)" + ) + + return export_profile + + +if __name__ == "__main__": + if "snakemake" not in globals(): + + from _helpers import mock_snakemake + + snakemake = mock_snakemake( + "build_ship_profile", + h2export="120", + ) + + # Get parameters from config and wildcard + ship_opts = snakemake.params.ship_opts + export_volume = eval(snakemake.wildcards.h2export) + + # Create export profile + if export_volume > 0: + export_profile = build_ship_profile(export_volume, ship_opts) + else: + export_profile = pd.Series( + 0, + index=pd.date_range(freq="h", **snakemake.params.snapshots), + name="profile", + ) + + # Save export profile + export_profile.to_csv(snakemake.output.ship_profile) # , header=False) + + logger.info("Ship profile successfully created") diff --git a/scripts/build_solar_thermal_profiles.py b/scripts/build_solar_thermal_profiles.py new file mode 100644 index 000000000..ec5dbb2fe --- /dev/null +++ b/scripts/build_solar_thermal_profiles.py @@ -0,0 +1,56 @@ +# -*- coding: utf-8 -*- +# SPDX-FileCopyrightText: PyPSA-Earth and PyPSA-Eur Authors +# +# SPDX-License-Identifier: AGPL-3.0-or-later +""" +Build solar thermal collector time series. +""" + +import os + +import atlite +import geopandas as gpd +import numpy as np +import pandas as pd +import xarray as xr + +if __name__ == "__main__": + if "snakemake" not in globals(): + from _helpers import mock_snakemake + + snakemake = mock_snakemake( + "build_solar_thermal_profiles", + simpl="", + clusters=15, + ) + + config = snakemake.params.solar_thermal_config + + time = pd.date_range(freq="h", **snakemake.params.snapshots) + cutout_config = snakemake.input.cutout + cutout = atlite.Cutout(cutout_config).sel(time=time) + + clustered_regions = ( + gpd.read_file(snakemake.input.regions_onshore) + .set_index("name") + .buffer(0) + .squeeze() + ) + + I = cutout.indicatormatrix(clustered_regions) + + for area in ["total", "rural", "urban"]: + pop_layout = xr.open_dataarray(snakemake.input[f"pop_layout_{area}"]) + + stacked_pop = pop_layout.stack(spatial=("y", "x")) + M = I.T.dot(np.diag(I.dot(stacked_pop))) + + nonzero_sum = M.sum(axis=0, keepdims=True) + nonzero_sum[nonzero_sum == 0.0] = 1.0 + M_tilde = M / nonzero_sum + + solar_thermal = cutout.solar_thermal( + **config, matrix=M_tilde.T, index=clustered_regions.index + ) + + solar_thermal.to_netcdf(snakemake.output[f"solar_thermal_{area}"]) diff --git a/scripts/build_temperature_profiles.py b/scripts/build_temperature_profiles.py new file mode 100644 index 000000000..bd7de5156 --- /dev/null +++ b/scripts/build_temperature_profiles.py @@ -0,0 +1,60 @@ +# -*- coding: utf-8 -*- +# SPDX-FileCopyrightText: PyPSA-Earth and PyPSA-Eur Authors +# +# SPDX-License-Identifier: AGPL-3.0-or-later +""" +Build temperature profiles. +""" +import os + +import atlite +import geopandas as gpd +import numpy as np +import pandas as pd +import xarray as xr + +if __name__ == "__main__": + if "snakemake" not in globals(): + from _helpers import mock_snakemake + + snakemake = mock_snakemake( + "build_temperature_profiles", + simpl="", + clusters=900, + ) + + time = pd.date_range(freq="h", **snakemake.params.snapshots) + cutout_path = ( + snakemake.input.cutout + ) # os.path.abspath(snakemake.config["atlite"]["cutout"]) + + cutout = atlite.Cutout(cutout_path).sel(time=time) + + clustered_regions = ( + gpd.read_file(snakemake.input.regions_onshore) + .set_index("name") + .buffer(0) + .squeeze() + ) + + I = cutout.indicatormatrix(clustered_regions) + + for area in ["total", "rural", "urban"]: + pop_layout = xr.open_dataarray(snakemake.input[f"pop_layout_{area}"]) + + stacked_pop = pop_layout.stack(spatial=("y", "x")) + M = I.T.dot(np.diag(I.dot(stacked_pop))) + + nonzero_sum = M.sum(axis=0, keepdims=True) + nonzero_sum[nonzero_sum == 0.0] = 1.0 + M_tilde = M / nonzero_sum + + temp_air = cutout.temperature(matrix=M_tilde.T, index=clustered_regions.index) + + temp_air.to_netcdf(snakemake.output[f"temp_air_{area}"]) + + temp_soil = cutout.soil_temperature( + matrix=M_tilde.T, index=clustered_regions.index + ) + + temp_soil.to_netcdf(snakemake.output[f"temp_soil_{area}"]) diff --git a/scripts/build_test_configs.py b/scripts/build_test_configs.py index 349a1ef00..1f0cb00c5 100644 --- a/scripts/build_test_configs.py +++ b/scripts/build_test_configs.py @@ -88,7 +88,6 @@ def create_test_config(default_config, diff_config, output_path): if "snakemake" not in globals(): from _helpers import mock_snakemake - os.chdir(os.path.dirname(os.path.abspath(__file__))) snakemake = mock_snakemake("build_test_configs") # Input paths diff --git a/scripts/clean_osm_data.py b/scripts/clean_osm_data.py index 1e9f76049..5362e3c21 100644 --- a/scripts/clean_osm_data.py +++ b/scripts/clean_osm_data.py @@ -1062,7 +1062,6 @@ def clean_data( if "snakemake" not in globals(): from _helpers import mock_snakemake - os.chdir(os.path.dirname(os.path.abspath(__file__))) snakemake = mock_snakemake("clean_osm_data") configure_logging(snakemake) diff --git a/scripts/cluster_network.py b/scripts/cluster_network.py index d6466e47f..c0a6cbf79 100644 --- a/scripts/cluster_network.py +++ b/scripts/cluster_network.py @@ -133,8 +133,8 @@ REGION_COLS, configure_logging, create_logger, - sets_path_to_root, update_config_dictionary, + get_aggregation_strategies, update_p_nom_max, ) from add_electricity import load_costs @@ -380,7 +380,6 @@ def n_bounds(model, *n_id): def busmap_for_gadm_clusters(inputs, n, gadm_level, geo_crs, country_list): - # gdf = get_GADM_layer(country_list, gadm_level, geo_crs) gdf = gpd.read_file(inputs.gadm_shapes) def locate_bus(coords, co): @@ -661,11 +660,9 @@ def cluster_regions(busmaps, inputs, output): if "snakemake" not in globals(): from _helpers import mock_snakemake - os.chdir(os.path.dirname(os.path.abspath(__file__))) snakemake = mock_snakemake( "cluster_network", network="elec", simpl="", clusters="min" ) - sets_path_to_root("pypsa-earth") configure_logging(snakemake) inputs, outputs, config = snakemake.input, snakemake.output, snakemake.config diff --git a/scripts/copy_config.py b/scripts/copy_config.py new file mode 100644 index 000000000..780511d81 --- /dev/null +++ b/scripts/copy_config.py @@ -0,0 +1,23 @@ +# -*- coding: utf-8 -*- +# SPDX-FileCopyrightText: PyPSA-Earth and PyPSA-Eur Authors +# +# SPDX-License-Identifier: AGPL-3.0-or-later +import os +from shutil import copy + +files_to_copy = { + "./config.yaml": "config.yaml", + "./Snakefile": "Snakefile", + "./scripts/solve_network.py": "solve_network.py", + "./scripts/prepare_sector_network.py": "prepare_sector_network.py", +} + +if __name__ == "__main__": + if "snakemake" not in globals(): + from _helpers import mock_snakemake + + snakemake = mock_snakemake("copy_config") + + directory = snakemake.output["folder"] + for f, name in files_to_copy.items(): + copy(f, directory + "/" + name) diff --git a/scripts/download_osm_data.py b/scripts/download_osm_data.py index ec99baecd..c92fdc2b4 100644 --- a/scripts/download_osm_data.py +++ b/scripts/download_osm_data.py @@ -92,11 +92,9 @@ def convert_iso_to_geofk( if __name__ == "__main__": if "snakemake" not in globals(): - from _helpers import mock_snakemake, sets_path_to_root + from _helpers import mock_snakemake - os.chdir(os.path.dirname(os.path.abspath(__file__))) snakemake = mock_snakemake("download_osm_data") - sets_path_to_root("pypsa-earth") configure_logging(snakemake) run = snakemake.config.get("run", {}) @@ -115,6 +113,7 @@ def convert_iso_to_geofk( out_dir=store_path_resources, out_format=["csv", "geojson"], out_aggregate=True, + progress_bar=snakemake.config["enable"]["progress_bar"], ) out_path = Path.joinpath(store_path_resources, "out") diff --git a/scripts/make_statistics.py b/scripts/make_statistics.py index 5c544b61a..2b84e48fc 100644 --- a/scripts/make_statistics.py +++ b/scripts/make_statistics.py @@ -31,7 +31,7 @@ import pandas as pd import pypsa import xarray as xr -from _helpers import create_logger, mock_snakemake, sets_path_to_root, to_csv_nafix +from _helpers import create_logger, mock_snakemake, to_csv_nafix from build_test_configs import create_test_config from shapely.validation import make_valid @@ -43,9 +43,9 @@ def _multi_index_scen(rulename, keys): def _mock_snakemake(rule, **kwargs): - os.chdir(os.path.dirname(os.path.abspath(__file__))) + snakemake = mock_snakemake(rule, **kwargs) - sets_path_to_root("pypsa-earth") + return snakemake @@ -581,11 +581,8 @@ def calculate_stats( if "snakemake" not in globals(): from _helpers import mock_snakemake - os.chdir(os.path.dirname(os.path.abspath(__file__))) snakemake = mock_snakemake("make_statistics") - sets_path_to_root("pypsa-earth") - fp_stats = snakemake.output["stats"] scenario = snakemake.params.scenario scenario_name = snakemake.config["run"]["name"] diff --git a/scripts/make_summary.py b/scripts/make_summary.py index 583766ac4..ccddcef6a 100644 --- a/scripts/make_summary.py +++ b/scripts/make_summary.py @@ -536,7 +536,6 @@ def to_csv(dfs, dir): if "snakemake" not in globals(): from _helpers import mock_snakemake - os.chdir(os.path.dirname(os.path.abspath(__file__))) snakemake = mock_snakemake( "make_summary", simpl="", diff --git a/scripts/monte_carlo.py b/scripts/monte_carlo.py index a448d142b..b8d0ab1dd 100644 --- a/scripts/monte_carlo.py +++ b/scripts/monte_carlo.py @@ -350,7 +350,6 @@ def validate_parameters( if "snakemake" not in globals(): from _helpers import mock_snakemake - os.chdir(os.path.dirname(os.path.abspath(__file__))) snakemake = mock_snakemake( "monte_carlo", simpl="", diff --git a/scripts/non_workflow/zip_folder.py b/scripts/non_workflow/zip_folder.py index 0bac2de21..020ff0780 100644 --- a/scripts/non_workflow/zip_folder.py +++ b/scripts/non_workflow/zip_folder.py @@ -12,8 +12,6 @@ from os.path import basename from xml.etree.ElementInclude import include -from _helpers import sets_path_to_root - # Zip the files from given directory that matches the filter @@ -41,11 +39,8 @@ def zipFilesInDir(dirName, zipFileName, filter, include_parent=True): if __name__ == "__main__": # Set path to this file - os.chdir(os.path.dirname(os.path.abspath(__file__))) - # Required to set path to pypsa-earth - sets_path_to_root("pypsa-earth") - -# Execute zip function -# zipFilesInDir("./resources", "resources.zip", lambda x: True, include_parent=False) -zipFilesInDir("./data", "data.zip", lambda x: True, include_parent=False) -# zipFilesInDir("./cutouts", "cutouts.zip", lambda x: True, include_parent=False) + + # Execute zip function + # zipFilesInDir("./resources", "resources.zip", lambda x: True, include_parent=False) + zipFilesInDir("./data", "data.zip", lambda x: True, include_parent=False) + # zipFilesInDir("./cutouts", "cutouts.zip", lambda x: True, include_parent=False) diff --git a/scripts/override_respot.py b/scripts/override_respot.py new file mode 100644 index 000000000..b6d78d02b --- /dev/null +++ b/scripts/override_respot.py @@ -0,0 +1,116 @@ +# -*- coding: utf-8 -*- +# SPDX-FileCopyrightText: PyPSA-Earth and PyPSA-Eur Authors +# +# SPDX-License-Identifier: AGPL-3.0-or-later + +import os +from itertools import dropwhile +from types import SimpleNamespace + +import numpy as np +import pandas as pd +import pypsa +import pytz +import xarray as xr +from _helpers import mock_snakemake, override_component_attrs + + +def override_values(tech, year, dr): + custom_res_t = pd.read_csv( + snakemake.input["custom_res_pot_{0}_{1}_{2}".format(tech, year, dr)], + index_col=0, + parse_dates=True, + ).filter(buses, axis=1) + + custom_res = ( + pd.read_csv( + snakemake.input["custom_res_ins_{0}_{1}_{2}".format(tech, year, dr)], + index_col=0, + ) + .filter(buses, axis=0) + .reset_index() + ) + + custom_res["Generator"] = custom_res["Generator"].apply(lambda x: x + " " + tech) + custom_res = custom_res.set_index("Generator") + + if tech.replace("-", " ") in n.generators.carrier.unique(): + to_drop = n.generators[n.generators.carrier == tech].index + n.mremove("Generator", to_drop) + + if snakemake.wildcards["planning_horizons"] == 2050: + directory = "results/" + snakemake.params.run.replace("2050", "2030") + n_name = snakemake.input.network.split("/")[-1].replace( + n.config["scenario"]["clusters"], "" + ) + df = pd.read_csv(directory + "/res_caps_" + n_name, index_col=0) + # df = pd.read_csv(snakemake.config["custom_data"]["existing_renewables"], index_col=0) + existing_res = df.loc[tech] + existing_res.index = existing_res.index.str.apply(lambda x: x + tech) + else: + existing_res = custom_res["installedcapacity"].values + + n.madd( + "Generator", + buses, + " " + tech, + bus=buses, + carrier=tech, + p_nom_extendable=True, + p_nom_max=custom_res["p_nom_max"].values, + # weight=ds["weight"].to_pandas(), + # marginal_cost=custom_res["fixedomEuroPKW"].values * 1000, + capital_cost=custom_res["annualcostEuroPMW"].values, + efficiency=1.0, + p_max_pu=custom_res_t, + lifetime=custom_res["lifetime"][0], + p_nom_min=existing_res, + ) + + +if __name__ == "__main__": + if "snakemake" not in globals(): + snakemake = mock_snakemake( + "override_respot", + simpl="", + clusters="16", + ll="c1.0", + opts="Co2L", + planning_horizons="2030", + sopts="3H", + demand="AP", + discountrate=0.071, + ) + + overrides = override_component_attrs(snakemake.input.overrides) + n = pypsa.Network(snakemake.input.network, override_component_attrs=overrides) + m = n.copy() + if snakemake.params.custom_data["renewables"]: + buses = list(n.buses[n.buses.carrier == "AC"].index) + energy_totals = pd.read_csv(snakemake.input.energy_totals, index_col=0) + countries = snakemake.params.countries + if snakemake.params.custom_data["renewables"]: + techs = snakemake.params.custom_data["renewables"] + year = snakemake.wildcards["planning_horizons"] + dr = snakemake.wildcards["discountrate"] + + m = n.copy() + + for tech in techs: + override_values(tech, year, dr) + + else: + print("No RES potential techs to override...") + + if snakemake.params.custom_data["elec_demand"]: + for country in countries: + n.loads_t.p_set.filter(like=country)[buses] = ( + ( + n.loads_t.p_set.filter(like=country)[buses] + / n.loads_t.p_set.filter(like=country)[buses].sum().sum() + ) + * energy_totals.loc[country, "electricity residential"] + * 1e6 + ) + + n.export_to_netcdf(snakemake.output[0]) diff --git a/scripts/plot_network.py b/scripts/plot_network.py index 8f2763509..3bcac8f52 100644 --- a/scripts/plot_network.py +++ b/scripts/plot_network.py @@ -25,6 +25,7 @@ import matplotlib.pyplot as plt import numpy as np import pandas as pd +import pypsa from _helpers import ( aggregate_costs, aggregate_p, @@ -40,6 +41,20 @@ logger = create_logger(__name__) +def assign_location(n): + for c in n.iterate_components(n.one_port_components | n.branch_components): + ifind = pd.Series(c.df.index.str.find(" ", start=4), c.df.index) + + for i in ifind.value_counts().index: + # these have already been assigned defaults + if i == -1: + continue + + names = ifind.index[ifind == i] + + c.df.loc[names, "location"] = names.str[:i] + + def make_handler_map_to_scale_circles_as_in(ax, dont_resize_actively=False): fig = ax.get_figure() @@ -356,11 +371,708 @@ def split_costs(n): ax.grid(True, axis="y", color="k", linestyle="dotted") +############################################# +# plot Hydrogen infrastructure map +############################################# + +# TODO function redundant with plot_h2_infra +# def plot_h2_infra(network): +# n = network.copy() + +# # assign_location(n) + +# bus_size_factor = 1e5 +# linewidth_factor = 1e3 +# # MW below which not drawn +# line_lower_threshold = 1e2 +# bus_color = "m" +# link_color = "c" + +# n.links.loc[:, "p_nom_opt"] = n.links.loc[:, "p_nom_opt"] +# # n.links.loc[n.links.carrier == "H2 Electrolysis"].p_nom_opt + +# # Drop non-electric buses so they don't clutter the plot +# n.buses.drop(n.buses.index[n.buses.carrier != "AC"], inplace=True) + +# elec = n.links.index[n.links.carrier == "SMR"] + +# bus_sizes = ( +# n.links.loc[elec, "p_nom_opt"].groupby(n.links.loc[elec, "bus0"]).sum() +# / bus_size_factor +# ) + +# # make a fake MultiIndex so that area is correct for legend +# bus_sizes.index = pd.MultiIndex.from_product([bus_sizes.index, ["SMR"]]) + +# # n.links.drop(n.links.index[n.links.carrier != "H2 pipeline"], inplace=True) + +# # link_widths = n.links.p_nom_opt / linewidth_factor +# # link_widths[n.links.p_nom_opt < line_lower_threshold] = 0.0 + +# # n.links.bus0 = n.links.bus0.str.replace(" H2", "") +# # n.links.bus1 = n.links.bus1.str.replace(" H2", "") + +# # print(link_widths.sort_values()) + +# # print(n.links[["bus0", "bus1"]]) + +# fig, ax = plt.subplots(subplot_kw={"projection": ccrs.PlateCarree()}) + +# fig.set_size_inches(10.5, 9) +# bus_sizes.index = bus_sizes.index.set_levels( +# bus_sizes.index.levels[0].str.replace(" gas", ""), level=0 +# ) +# n.plot( +# bus_sizes=bus_sizes, +# bus_colors={"SMR": "darkolivegreen"}, +# # link_colors=link_color, +# # link_widths=link_widths, +# branch_components=["Link"], +# color_geomap={"ocean": "lightblue", "land": "oldlace"}, +# ax=ax, +# boundaries=(-20, 0, 25, 40), +# ) + +# handles = make_legend_circles_for( +# [5000, 1000], scale=bus_size_factor, facecolor="darkolivegreen" +# ) +# labels = ["{} GW".format(s) for s in (5, 1)] +# l2 = ax.legend( +# handles, +# labels, +# loc="upper left", +# bbox_to_anchor=(0.01, 1.01), +# labelspacing=0.8, +# framealpha=1.0, +# title="SMR capacity", +# handler_map=make_handler_map_to_scale_circles_as_in(ax), +# ) +# ax.add_artist(l2) + +# handles = [] +# labels = [] + +# for s in (5, 1): +# handles.append( +# plt.Line2D([0], [0], color=link_color, linewidth=s * 1e3 / linewidth_factor) +# ) +# labels.append("{} GW".format(s)) +# l1_1 = ax.legend( +# handles, +# labels, +# loc="upper left", +# bbox_to_anchor=(0.32, 1.01), +# framealpha=1, +# labelspacing=0.8, +# handletextpad=1.5, +# title="H2 pipeline capacity", +# ) +# ax.add_artist(l1_1) + +# # fig.savefig(snakemake.output.hydrogen, bbox_inches='tight', transparent=True, +# fig.savefig( +# snakemake.output.map.replace("-costs-all", "-h2_network"), bbox_inches="tight" +# ) + + +def plot_h2_infra(network): + n = network.copy() + + # assign_location(n) + + bus_size_factor = 1e5 + linewidth_factor = 4e2 + # MW below which not drawn + line_lower_threshold = 1e2 + bus_color = "m" + link_color = "c" + + n.links.loc[:, "p_nom_opt"] = n.links.loc[:, "p_nom_opt"] + # n.links.loc[n.links.carrier == "H2 Electrolysis"].p_nom_opt + + # Drop non-electric buses so they don't clutter the plot + n.buses.drop(n.buses.index[n.buses.carrier != "AC"], inplace=True) + + elec = n.links.index[n.links.carrier == "H2 Electrolysis"] + + bus_sizes = ( + n.links.loc[elec, "p_nom_opt"].groupby(n.links.loc[elec, "bus0"]).sum() + / bus_size_factor + ) + + # make a fake MultiIndex so that area is correct for legend + bus_sizes.index = pd.MultiIndex.from_product([bus_sizes.index, ["electrolysis"]]) + + n.links.drop(n.links.index[n.links.carrier != "H2 pipeline"], inplace=True) + + link_widths = n.links.p_nom_opt / linewidth_factor + link_widths[n.links.p_nom_opt < line_lower_threshold] = 0.0 + + n.links.bus0 = n.links.bus0.str.replace(" H2", "") + n.links.bus1 = n.links.bus1.str.replace(" H2", "") + + print(link_widths.sort_values()) + + print(n.links[["bus0", "bus1"]]) + + fig, ax = plt.subplots(subplot_kw={"projection": ccrs.PlateCarree()}) + + fig.set_size_inches(10.5, 9) + + n.plot( + bus_sizes=bus_sizes, + bus_colors={"electrolysis": bus_color}, + link_colors=link_color, + link_widths=link_widths, + branch_components=["Link"], + color_geomap={"ocean": "lightblue", "land": "oldlace"}, + ax=ax, + # boundaries=(-20, 0, 25, 40), + ) + + handles = make_legend_circles_for( + [5000, 1000], scale=bus_size_factor, facecolor=bus_color + ) + labels = ["{} GW".format(s) for s in (5, 1)] + l2 = ax.legend( + handles, + labels, + loc="upper left", + bbox_to_anchor=(0.01, 1.01), + labelspacing=0.8, + framealpha=1.0, + title="Electrolyzer capacity", + handler_map=make_handler_map_to_scale_circles_as_in(ax), + ) + ax.add_artist(l2) + + handles = [] + labels = [] + + for s in (5, 1): + handles.append( + plt.Line2D([0], [0], color=link_color, linewidth=s * 1e3 / linewidth_factor) + ) + labels.append("{} GW".format(s)) + l1_1 = ax.legend( + handles, + labels, + loc="upper left", + bbox_to_anchor=(0.32, 1.01), + framealpha=1, + labelspacing=0.8, + handletextpad=1.5, + title="H2 pipeline capacity", + ) + ax.add_artist(l1_1) + + # fig.savefig(snakemake.output.hydrogen, bbox_inches='tight', transparent=True, + fig.savefig( + snakemake.output.map.replace("-costs-all", "-h2_network"), bbox_inches="tight" + ) + + +def plot_smr(network): + n = network.copy() + + # assign_location(n) + + bus_size_factor = 1e5 + linewidth_factor = 1e3 + # MW below which not drawn + line_lower_threshold = 1e2 + bus_color = "m" + link_color = "c" + + n.links.loc[:, "p_nom_opt"] = n.links.loc[:, "p_nom_opt"] + # n.links.loc[n.links.carrier == "H2 Electrolysis"].p_nom_opt + + # Drop non-electric buses so they don't clutter the plot + n.buses.drop(n.buses.index[n.buses.carrier != "AC"], inplace=True) + + elec = n.links.index[n.links.carrier == "SMR"] + + bus_sizes = ( + n.links.loc[elec, "p_nom_opt"].groupby(n.links.loc[elec, "bus0"]).sum() + / bus_size_factor + ) + + # make a fake MultiIndex so that area is correct for legend + bus_sizes.index = pd.MultiIndex.from_product([bus_sizes.index, ["SMR"]]) + + # n.links.drop(n.links.index[n.links.carrier != "H2 pipeline"], inplace=True) + + # link_widths = n.links.p_nom_opt / linewidth_factor + # link_widths[n.links.p_nom_opt < line_lower_threshold] = 0.0 + + # n.links.bus0 = n.links.bus0.str.replace(" H2", "") + # n.links.bus1 = n.links.bus1.str.replace(" H2", "") + + # print(link_widths.sort_values()) + + # print(n.links[["bus0", "bus1"]]) + + fig, ax = plt.subplots(subplot_kw={"projection": ccrs.PlateCarree()}) + + fig.set_size_inches(10.5, 9) + bus_sizes.index = bus_sizes.index.set_levels( + bus_sizes.index.levels[0].str.replace(" gas", ""), level=0 + ) + n.plot( + bus_sizes=bus_sizes, + bus_colors={"SMR": "darkolivegreen"}, + # link_colors=link_color, + # link_widths=link_widths, + branch_components=["Link"], + color_geomap={"ocean": "lightblue", "land": "oldlace"}, + ax=ax, + # boundaries=(-20, 0, 25, 40), + ) + + handles = make_legend_circles_for( + [5000, 1000], scale=bus_size_factor, facecolor="darkolivegreen" + ) + labels = ["{} GW".format(s) for s in (5, 1)] + l2 = ax.legend( + handles, + labels, + loc="upper left", + bbox_to_anchor=(0.01, 1.01), + labelspacing=0.8, + framealpha=1.0, + title="SMR capacity", + handler_map=make_handler_map_to_scale_circles_as_in(ax), + ) + ax.add_artist(l2) + + handles = [] + labels = [] + + for s in (5, 1): + handles.append( + plt.Line2D([0], [0], color=link_color, linewidth=s * 1e3 / linewidth_factor) + ) + labels.append("{} GW".format(s)) + l1_1 = ax.legend( + handles, + labels, + loc="upper left", + bbox_to_anchor=(0.32, 1.01), + framealpha=1, + labelspacing=0.8, + handletextpad=1.5, + title="H2 pipeline capacity", + ) + ax.add_artist(l1_1) + + # fig.savefig(snakemake.output.hydrogen, bbox_inches='tight', transparent=True, + fig.savefig(snakemake.output.map.replace("-costs-all", "-SMR"), bbox_inches="tight") + + +def plot_transmission_topology(network): + n = network.copy() + bus_size_factor = 1e5 # Def 1e5 + linewidth_factor = 2e4 # Def 1e4 + line_lower_threshold = 1e2 # MW below which not drawn. Def 1e3 + + DC_lines = n.links[n.links.carrier == "DC"] + + n.links = n.links[n.links.carrier == "H2 pipeline"] + n.links.bus0 = n.links.bus0.str.replace(" H2", "") + n.links.bus1 = n.links.bus1.str.replace(" H2", "") + + n.lines = pd.concat([n.lines, DC_lines[["bus0", "bus1"]]]) + + n.madd("Line", names=DC_lines.index, bus0=DC_lines.bus0, bus1=DC_lines.bus1) + + fig = plt.figure() + fig.set_size_inches(10.5, 9) + + n.plot( + branch_components=["Link", "Line"], + # boundaries=(-20, 0, 25, 40), + color_geomap={"ocean": "lightblue", "land": "oldlace"}, + line_colors="darkblue", + link_colors="turquoise", + link_widths=5, + bus_sizes=0.03, + bus_colors="red", + line_widths=1, + ) + + # Legend + Elec_Circle = plt.Line2D( + [0], + [0], + marker="o", + color="darkblue", + label="Clustered node", + markerfacecolor="red", + markersize=10, + ) + elec_Line = plt.Line2D( + [0], + [0], + marker="_", + color="darkblue", + label="Existing Power Lines", + markerfacecolor="w", + markersize=16, + lw=4, + ) + + H2_Line = plt.Line2D( + [0], + [0], + marker="_", + color="turquoise", + label="Allowed H2 Pipeline Routes", + markerfacecolor="w", + markersize=16, + lw=4, + ) + + plt.legend(handles=[Elec_Circle, elec_Line, H2_Line], loc="upper left") + + fig.savefig( + snakemake.output.map.replace("-costs-all", "-full_topology"), + bbox_inches="tight", + ) + + +preferred_order = pd.Index( + [ + "transmission lines", + "hydroelectricity", + "hydro reservoir", + "run of river", + "pumped hydro storage", + "solid biomass", + "biogas", + "onshore wind", + "offshore wind", + "offshore wind (AC)", + "offshore wind (DC)", + "solar PV", + "solar thermal", + "solar", + "building retrofitting", + "ground heat pump", + "air heat pump", + "heat pump", + "resistive heater", + "power-to-heat", + "gas-to-power/heat", + "CHP", + "OCGT", + "gas boiler", + "gas", + "natural gas", + "helmeth", + "methanation", + "hydrogen storage", + "power-to-gas", + "power-to-liquid", + "battery storage", + "hot water storage", + "CO2 sequestration", + ] +) + + +def rename_techs(label): + prefix_to_remove = [ + "residential ", + "services ", + "urban ", + "rural ", + "central ", + "decentral ", + ] + + rename_if_contains = [ + "CHP", + "gas boiler", + "biogas", + "solar thermal", + "air heat pump", + "ground heat pump", + "resistive heater", + "Fischer-Tropsch", + ] + + rename_if_contains_dict = { + "water tanks": "hot water storage", + "retrofitting": "building retrofitting", + "H2": "hydrogen storage", + "battery": "battery storage", + "CCS": "CCS", + } + + rename = { + "solar": "solar PV", + "Sabatier": "methanation", + "offwind": "offshore wind", + "offwind-ac": "offshore wind (AC)", + "offwind-dc": "offshore wind (DC)", + "onwind": "onshore wind", + "ror": "hydroelectricity", + "hydro": "hydroelectricity", + "PHS": "hydroelectricity", + "co2 Store": "DAC", + "co2 stored": "CO2 sequestration", + "AC": "transmission lines", + "DC": "transmission lines", + "B2B": "transmission lines", + } + + for ptr in prefix_to_remove: + if label[: len(ptr)] == ptr: + label = label[len(ptr) :] + + for rif in rename_if_contains: + if rif in label: + label = rif + + for old, new in rename_if_contains_dict.items(): + if old in label: + label = new + + for old, new in rename.items(): + if old == label: + label = new + return label + + +def rename_techs_tyndp(tech): + tech = rename_techs(tech) + if "heat pump" in tech or "resistive heater" in tech: + return "power-to-heat" + elif tech in ["methanation", "hydrogen storage", "helmeth"]: + return "power-to-gas" + elif tech in ["OCGT", "CHP", "gas boiler"]: + return "gas-to-power/heat" + elif "solar" in tech: + return "solar" + elif tech == "Fischer-Tropsch": + return "power-to-liquid" + elif "offshore wind" in tech: + return "offshore wind" + else: + return tech + + +def plot_sector_map( + network, + components=[ + "links", + "generators", + "stores", + ], # "storage_units"], #TODO uncomment after adding storage units + bus_size_factor=2e10, + transmission=False, + geometry=True, +): + n = network.copy() + assign_location(n) + # Drop non-electric buses so they don't clutter the plot + n.buses.drop(n.buses.index[n.buses.carrier != "AC"], inplace=True) + + costs = pd.DataFrame(index=n.buses.index) + + for comp in components: + df_c = getattr(n, comp) + df_c["nice_group"] = df_c.carrier.map(rename_techs_tyndp) + + attr = "e_nom_opt" if comp == "stores" else "p_nom_opt" + + costs_c = ( + (df_c.capital_cost * df_c[attr]) + .groupby([df_c.location, df_c.nice_group]) + .sum() + .unstack() + .fillna(0.0) + ) + costs = pd.concat([costs, costs_c], axis=1) + + print(comp, costs) + costs = costs.groupby(costs.columns, axis=1).sum() + + costs.drop(list(costs.columns[(costs == 0.0).all()]), axis=1, inplace=True) + + new_columns = preferred_order.intersection(costs.columns).append( + costs.columns.difference(preferred_order) + ) + costs = costs[new_columns] + + for item in new_columns: + if item not in tech_colors: + print("Warning!", item, "not in config/plotting/tech_colors") + + costs = costs.stack() # .sort_index() + + n.links.drop( + n.links.index[(n.links.carrier != "DC") & (n.links.carrier != "B2B")], + inplace=True, + ) + + # drop non-bus + to_drop = costs.index.levels[0].symmetric_difference(n.buses.index) + if len(to_drop) != 0: + print("dropping non-buses", list(to_drop)) + costs.drop(to_drop, level=0, inplace=True, axis=0) + + # make sure they are removed from index + costs.index = pd.MultiIndex.from_tuples(costs.index.values) + + # PDF has minimum width, so set these to zero + line_lower_threshold = 500.0 + line_upper_threshold = 1e4 + linewidth_factor = 2e3 + ac_color = "gray" + dc_color = "m" + + # if snakemake.wildcards["lv"] == "1.0": #TODO when we add wildcard lv + # should be zero + line_widths = n.lines.s_nom_opt - n.lines.s_nom + link_widths = n.links.p_nom_opt - n.links.p_nom + title = "Technologies" + + if transmission: + line_widths = n.lines.s_nom_opt + link_widths = n.links.p_nom_opt + linewidth_factor = 2e3 + line_lower_threshold = 0.0 + title = "Technologies" + else: + line_widths = n.lines.s_nom_opt - n.lines.s_nom_min + line_widths = ( + n.lines.s_nom_opt - n.lines.s_nom_opt + ) # TODO when we add wildcard lv + link_widths = n.links.p_nom_opt - n.links.p_nom_min + title = "Transmission reinforcement" + + if transmission: + line_widths = n.lines.s_nom_opt + link_widths = n.links.p_nom_opt + title = "Total transmission" + + line_widths.loc[line_widths < line_lower_threshold] = 0.0 + link_widths.loc[link_widths < line_lower_threshold] = 0.0 + + line_widths.loc[line_widths > line_upper_threshold] = line_upper_threshold + link_widths.loc[link_widths > line_upper_threshold] = line_upper_threshold + + fig, ax = plt.subplots(subplot_kw={"projection": ccrs.PlateCarree()}) + fig.set_size_inches(10.5, 9) + + n.plot( + bus_sizes=costs / bus_size_factor, + bus_colors=tech_colors, + line_colors=ac_color, + link_colors=dc_color, + line_widths=line_widths / linewidth_factor, + link_widths=link_widths / linewidth_factor, + ax=ax, + # boundaries=(-20, 0, 25, 40), + geomap="10m", + color_geomap={"ocean": "lightblue", "land": "oldlace"}, + ) + + handles = make_legend_circles_for( + [5e9, 1e9], scale=bus_size_factor, facecolor="gray" + ) + labels = ["{} b€/a".format(s) for s in (5, 1)] + l2 = ax.legend( + handles, + labels, + loc="upper left", + bbox_to_anchor=(0.33, 1.005), + labelspacing=1.0, + framealpha=1.0, + title="System cost", + fontsize=12, + handler_map=make_handler_map_to_scale_circles_as_in(ax), + ) + ax.add_artist(l2) + + handles = [] + labels = [] + + for s in list(plot_labeles.keys()): + handles.append(plt.Line2D([0], [0], color=tech_colors[s], linewidth=5)) + labels.append("{}".format(s)) + + l1_1 = ax.legend( + handles, + labels, + loc="upper left", + bbox_to_anchor=(0.001, 1.002), + framealpha=1, + labelspacing=0.4, + handletextpad=1.5, + fontsize=10, + ) + + ax.add_artist(l1_1) + + # import matplotlib.patches as mpatches + # red_patch = mpatches.Patch(color='red', label='The red data') + # plt.legend(handles=[red_patch]) + + fig.savefig(snakemake.output.map, transparent=True, bbox_inches="tight") + fig.savefig( + snakemake.output.map.replace("pdf", "png"), + transparent=True, + bbox_inches="tight", + ) + # fig.savefig('plot_map.pdf', transparent=True, + # bbox_inches="tight")#, dpi=300) + + +plot_labeles = { + "onshore wind": "b", + "offshore wind": "c", + "hydroelectricity": "", + "solar": "y", + "power-to-gas": "#FF1493", + "gas-to-power/heat": "orange", + "power-to-heat": "", + "power-to-liquid": "", + "DAC": "", + "electricity distribution grid": "", +} + + +nice_names = { + "OCGT": "Gas", + "OCGT marginal": "Gas (marginal)", + "offwind": "offshore wind", + "onwind": "onshore wind", + "battery": "Battery storage", + "lines": "Transmission lines", + "AC line": "AC lines", + "AC-AC": "DC lines", + "ror": "Run of river", +} + +nice_names_n = { + "offwind": "offshore\nwind", + "onwind": "onshore\nwind", + "OCGT": "Gas", + "H2": "Hydrogen\nstorage", + "OCGT marginal": "Gas (marginal)", + "lines": "transmission\nlines", + "ror": "run of river", +} + + if __name__ == "__main__": if "snakemake" not in globals(): + import os + from _helpers import mock_snakemake - os.chdir(os.path.dirname(os.path.abspath(__file__))) snakemake = mock_snakemake( "plot_network", network="elec", @@ -374,49 +1086,64 @@ def split_costs(n): configure_logging(snakemake) - # load africa shape to identify borders of the image - africa_shape = gpd.read_file(snakemake.input.africa_shape)["geometry"].iloc[0] + if snakemake.rule == "plot_network": - set_plot_style() + # load africa shape to identify borders of the image + africa_shape = gpd.read_file(snakemake.input.africa_shape)["geometry"].iloc[0] - opts = snakemake.params.plotting - map_figsize = opts["map"]["figsize"] - map_boundaries = opts["map"]["boundaries"] + set_plot_style() - if len(map_boundaries) != 4: - map_boundaries = africa_shape.boundary.bounds + opts = snakemake.params.plotting + map_figsize = opts["map"]["figsize"] + map_boundaries = opts["map"]["boundaries"] - n = load_network_for_plots( - snakemake.input.network, - snakemake.input.tech_costs, - snakemake.params.costs, - snakemake.params.electricity, - ) + if len(map_boundaries) != 4: + map_boundaries = africa_shape.boundary.bounds - scenario_opts = snakemake.wildcards.opts.split("-") + n = load_network_for_plots( + snakemake.input.network, + snakemake.input.tech_costs, + snakemake.params.costs, + snakemake.params.electricity, + ) - fig, ax = plt.subplots( - figsize=map_figsize, subplot_kw={"projection": ccrs.PlateCarree()} - ) - plot_map(n, ax, snakemake.wildcards.attr, opts) + scenario_opts = snakemake.wildcards.opts.split("-") - fig.savefig(snakemake.output.only_map, dpi=150, bbox_inches="tight") + fig, ax = plt.subplots( + figsize=map_figsize, subplot_kw={"projection": ccrs.PlateCarree()} + ) + plot_map(n, ax, snakemake.wildcards.attr, opts) + + fig.savefig(snakemake.output.only_map, dpi=150, bbox_inches="tight") - ax1 = fig.add_axes([-0.115, 0.625, 0.2, 0.2]) - plot_total_energy_pie(n, ax1) + ax1 = fig.add_axes([-0.115, 0.625, 0.2, 0.2]) + plot_total_energy_pie(n, ax1) - ax2 = fig.add_axes([-0.075, 0.1, 0.1, 0.45]) - plot_total_cost_bar(n, ax2) + ax2 = fig.add_axes([-0.075, 0.1, 0.1, 0.45]) + plot_total_cost_bar(n, ax2) - ll = snakemake.wildcards.ll - ll_type = ll[0] - ll_factor = ll[1:] - lbl = dict(c="line cost", v="line volume")[ll_type] - amnt = "{ll} x today's".format(ll=ll_factor) if ll_factor != "opt" else "optimal" - fig.suptitle( - "Expansion to {amount} {label} at {clusters} clusters".format( - amount=amnt, label=lbl, clusters=snakemake.wildcards.clusters + ll = snakemake.wildcards.ll + ll_type = ll[0] + ll_factor = ll[1:] + lbl = dict(c="line cost", v="line volume")[ll_type] + amnt = ( + "{ll} x today's".format(ll=ll_factor) if ll_factor != "opt" else "optimal" ) - ) + fig.suptitle( + "Expansion to {amount} {label} at {clusters} clusters".format( + amount=amnt, label=lbl, clusters=snakemake.wildcards.clusters + ) + ) + + fig.savefig(snakemake.output.ext, transparent=True, bbox_inches="tight") + + if snakemake.rule == "plot_sector_network": + + n = pypsa.Network(snakemake.input.network) - fig.savefig(snakemake.output.ext, transparent=True, bbox_inches="tight") + tech_colors = snakemake.config["plotting"]["tech_colors"] + plot_sector_map(n, transmission=False) + plot_transmission_topology(n) + if snakemake.config["sector"]["SMR"]: + plot_smr(n) + plot_h2_infra(n) diff --git a/scripts/plot_summary.py b/scripts/plot_summary.py index 1491b6692..77d1217e6 100644 --- a/scripts/plot_summary.py +++ b/scripts/plot_summary.py @@ -219,7 +219,6 @@ def plot_energy(infn, snmk, fn=None): if "snakemake" not in globals(): from _helpers import mock_snakemake - os.chdir(os.path.dirname(os.path.abspath(__file__))) snakemake = mock_snakemake( "plot_summary", summary="energy", diff --git a/scripts/prepare_airports.py b/scripts/prepare_airports.py new file mode 100644 index 000000000..e69b20438 --- /dev/null +++ b/scripts/prepare_airports.py @@ -0,0 +1,121 @@ +# -*- coding: utf-8 -*- +# SPDX-FileCopyrightText: PyPSA-Earth and PyPSA-Eur Authors +# +# SPDX-License-Identifier: AGPL-3.0-or-later + +import numpy as np +import pandas as pd + +# from _helpers import configure_logging + + +# logger = logging.getLogger(__name__) + + +def download_airports(): + """ + Downloads the world airports as .csv File in addition to runnways + information. + + The following csv file was downloaded from the webpage + https://ourairports.com/data/ + as a .csv file. The dataset contains 74844 airports. + """ + fn = "https://davidmegginson.github.io/ourairports-data/airports.csv" + storage_options = {"User-Agent": "Mozilla/5.0"} + airports_csv = pd.read_csv( + fn, index_col=0, storage_options=storage_options, encoding="utf8" + ) + + fn = "https://davidmegginson.github.io/ourairports-data/runways.csv" + storage_options = {"User-Agent": "Mozilla/5.0"} + runways_csv = pd.read_csv( + fn, index_col=0, storage_options=storage_options, encoding="utf8" + ) + + return (airports_csv, runways_csv) + + +if __name__ == "__main__": + if "snakemake" not in globals(): + from _helpers import mock_snakemake + + snakemake = mock_snakemake("prepare_airports") + # configure_logging(snakemake) + + # run = snakemake.config.get("run", {}) + # RDIR = run["name"] + "/" if run.get("name") else "" + # store_path_data = Path.joinpath(Path().cwd(), "data") + # country_list = country_list_to_geofk(snakemake.config["countries"])' + + # Prepare downloaded data + airports_csv = download_airports()[0].copy() + airports_csv = airports_csv[ + [ + "ident", + "type", + "name", + "latitude_deg", + "longitude_deg", + "elevation_ft", + "continent", + "iso_country", + "iso_region", + "municipality", + "scheduled_service", + "iata_code", + ] + ] + airports_csv.loc[airports_csv["iso_country"].isnull(), "iso_country"] = "NA" + airports_csv = airports_csv.rename(columns={"latitude_deg": "y"}) + airports_csv = airports_csv.rename(columns={"longitude_deg": "x"}) + + runways_csv = download_airports()[1].copy() + runways_csv = runways_csv[ + ["airport_ident", "length_ft", "width_ft", "surface", "lighted", "closed"] + ] + runways_csv = runways_csv.drop_duplicates(subset=["airport_ident"]) + + airports_original = pd.merge( + airports_csv, runways_csv, how="left", left_on="ident", right_on="airport_ident" + ) + airports_original = airports_original.drop("airport_ident", axis=1) + + df = airports_original.copy() + + # Keep only airports that are of type medium and large + df = df.loc[df["type"].isin(["large_airport", "medium_airport"])] + + # Filtering out the military airbases and keeping only commercial airports + df = df[~df.iata_code.isnull()] + + # Keep only airports that have schedules + df = df.loc[df["scheduled_service"].isin(["yes"])] + + df.insert(2, "airport_size_nr", 1) + df.loc[df["type"].isin(["medium_airport"]), "airport_size_nr"] = 1 + df.loc[df["type"].isin(["large_airport"]), "airport_size_nr"] = ( + snakemake.params.airport_sizing_factor + ) + + # Calculate the number of total airports size + df1 = df.copy() + df1 = df1.groupby(["iso_country"]).sum("airport_size_nr") + df1 = df1[["airport_size_nr"]] + df1 = df1.rename(columns={"airport_size_nr": "Total_airport_size_nr"}).reset_index() + + # Merge dataframes to get additional info on runnway for most ports + airports = pd.merge( + df, df1, how="left", left_on="iso_country", right_on="iso_country" + ) + + # Calculate fraction based on size + airports["fraction"] = ( + airports["airport_size_nr"] / airports["Total_airport_size_nr"] + ) + + # Rename columns + airports = airports.rename(columns={"iso_country": "country"}) + + # Save + airports.to_csv(snakemake.output[0], sep=",", encoding="utf-8", header="true") diff --git a/scripts/prepare_db.py b/scripts/prepare_db.py new file mode 100644 index 000000000..88da74e7d --- /dev/null +++ b/scripts/prepare_db.py @@ -0,0 +1,499 @@ +# -*- coding: utf-8 -*- +# SPDX-FileCopyrightText: PyPSA-Earth and PyPSA-Eur Authors +# +# SPDX-License-Identifier: AGPL-3.0-or-later +""" +Created on Sun May 30 18:11:07 2021. + +@author: haz43975 +""" + + +# -*- coding: utf-8 -*- +""" +Created on Tue May 4 10:22:36 2021 + +@author: haz43975 +""" + +import os + +import matplotlib.pyplot as plt +import numpy as np +import pandas as pd +import pypsa + +# %% + +# base_path = os.path.dirname(os.path.realpath(__file__)) +# dataset_paths = {'IGG': os.path.join(base_path, 'IGG', 'data'), +# 'EMAP': os.path.join(base_path, 'EMAP', 'data')} + +if __name__ == "__main__": + if "snakemake" not in globals(): + from _helpers import mock_snakemake + + snakemake = mock_snakemake( + "prepare_db", + simpl="", + clusters="244", + ll="c1.0", + opts="Co2L1", + planning_horizons="2030", + sopts="720H", + discountrate=0.071, + demand="AP", + h2export="0", + ) + + n0 = pypsa.Network(snakemake.input.network) + + tech_colors = snakemake.params.tech_colors + + +# %% +# def summary_h2(n, t): +t = 720 + +n = n0.copy() +# n = pypsa.Network("../results/MA_REALISTIC_2030/postnetworks/elec_s_195_ec_lc1.0_Co2L_3H_2030_0.071_AP_428export.nc") +# n = pypsa.Network("../results/MA_REALISTIC_2030_Q0_NoGreeness/postnetworks/elec_s_198_ec_lc1.0_Co2L_3H_2030_0.071_AP_0export.nc") +# n = pypsa.Network("../results/MA_REALISTIC_2030_Q0_oilnew_13/postnetworks/elec_s_213_ec_lc1.0_Co2L_720H_2030_0.071_AP_0export.nc") +summary_index = (n0.buses.loc[n0.buses.carrier == "AC"].index).sort_values() + +nodes = n.buses.loc[n.buses.carrier == "AC"].index.tolist() +gens = n.generators_t.p.rename_axis(None, axis=1) * t # /1e3 +loads = n.loads_t.p.rename_axis(None, axis=1) * t # /1e3 +stores = n.stores_t.p.rename_axis(None, axis=1) * t # /1e3 +storage = n.storage_units_t.p.rename_axis(None, axis=1) * t # /1e3 + +pipelines_h2 = n.links_t.p0.filter(like="H2 pipeline") +ac_lines = n.lines_t.p0.rename(columns=dict(n.lines.bus0 + " -> " + n.lines.bus1)) + +dc_lines = n.links_t.p0[ + n.links_t.p0.columns.intersection(n.links[n.links.carrier == "DC"].index.tolist()) +].rename( + columns=dict( + n.links[n.links.carrier == "DC"].bus0 + + " -> " + + n.links[n.links.carrier == "DC"].bus1 + ) +) + +summary_h2 = pd.DataFrame(index=n0.buses.loc[n0.buses.carrier == "AC"].index) + +solar = (gens.filter(regex="solar$")).reset_index + +summary_elec = pd.DataFrame(index=n0.buses.loc[n0.buses.carrier == "AC"].index) + +db = pd.DataFrame(columns=["node_id", "carrier", "flow", "tech", "value"]) + +names = {"g": "Generator"} + + +def populate_db(tech_col, carrier, flow, tech, ngv=False): # TODO Add scenario id + global db + dbf = tech_col.copy() + # if tech != 'ac': + # dbf.name=dbf.name.str.replace(' '+tech, '') + dbf = ( + dbf.stack() + .reset_index(level=0) + .rename(columns={"snapshot": "DateTime", 0: "value"}) + .reset_index() + .rename(columns={"index": "node_id"}) + ) + dbf.node_id = dbf.node_id.str.replace(" " + tech, "") + # dbf.columns = ['node_id', 'value'] + dbf["carrier"] = carrier + dbf["flow"] = flow + dbf["tech"] = tech + if flow == "s": + dbf["value"] = dbf["value"] + else: + if ngv == True: + dbf["value"] = -1 * abs(dbf["value"]) + elif ngv == False: + dbf["value"] = abs(dbf["value"]) + + db = db.append(dbf) + + +def add_gen(tech, carrier, reg=False): + if not reg: + tech_col = gens.filter(like=tech) + else: + tech_col = gens.filter(regex=tech + "$") + + # tech_col.columns = tech_col.columns.str.replace(' '+tech, '') + populate_db(tech_col, carrier, "g", tech, ngv=False) + # summary_elec['{0}_g_{1}'.format(carrier, tech.replace(' ', '_'))] = tech_col.sum() + + +def add_load(tech, carrier, reg=False): + global db + if tech == "ac": + ac_labels = loads.stack().reset_index(level=1).level_1 + ac_labels = ac_labels[ac_labels.str.len() < 11].unique() + tech_col = loads.filter(ac_labels.tolist()) + # ac_labels = loads.reset_index()[loads.reset_index().name.str.len()<7].name.tolist() #TODO hard coded + # tech_col = loads[ac_labels] + + # summary_elec['elec_l_ac'] = loads + else: + if reg == False: + tech_col = loads.filter(regex=tech) # + else: + tech_col = loads.filter(regex=tech + "$") # + + populate_db(tech_col, carrier, "l", tech, ngv=True) + + # tech_col.index = tech_col.name.apply(lambda x: x.replace(' '+tech, '')) + # summary_elec['{0}_l_{1}'.format(carrier, tech.replace(' ', '_'))] = -tech_col[0] + + +# Check node_id in db + + +def add_conv(tech, carrier, p, ngv, reg=False): + global db + if p == 0: + links = n.links_t.p0.rename_axis(None, axis=1) * t # /1e3 + elif p == 1: + links = n.links_t.p1.rename_axis(None, axis=1) * t # /1e3 + elif p == 2: + links = n.links_t.p2.rename_axis(None, axis=1) * t # /1e3 + elif p == 3: + links = n.links_t.p3.rename_axis(None, axis=1) * t # /1e3 + else: + links = n.links_t.p4.rename_axis(None, axis=1) * t # /1e3 + + if tech == "battery charger" or tech == "battery discharger": + drop_list = links.filter(like="home battery").columns.tolist() + tech_col = links.drop(drop_list, axis=1).filter(like=tech) + else: + if not reg: + tech_col = links.filter(like=tech) + else: + tech_col = links.filter(regex=tech + "$") + populate_db(tech_col, carrier, "c", tech, ngv) + + +# tech_col.index = tech_col.name.apply(lambda x: x.replace(' '+tech, '')) +# summary_elec['{0}_c_{1}'.format(carrier, tech.replace(' ', '_'))] = -tech_col[0] + + +def add_store(tech, carrier, reg=False): + global db + if not reg: + tech_col = stores.filter(like=tech) + else: + tech_col = stores.filter(regex=tech + "$") + + if tech == "co2 atmosphere" or tech == "co2 stored": + tech_col *= -1 + populate_db(tech_col, carrier, "s", tech) + + +# tech_col.index = tech_col.name.apply(lambda x: x.replace(' '+tech, '')) +# summary_elec['{0}_s_{1}'.format(carrier, tech.replace(' ', '_'))] = tech_col[0] + + +def add_storage( + tech, carrier, reg=False +): # TODO commented out because there is no storage untis + global db + if not reg: + tech_col = storage.filter(like=tech) + else: + tech_col = storage.filter(regex=tech + "$") + populate_db(tech_col, carrier, "s", tech) + # tech_col.index = tech_col.name.apply(lambda x: x.replace(' '+tech, '')) + # summary_elec['{0}_s_{1}'.format(carrier, tech.replace(' ', '_'))] = tech_col[0] + + +def net_flow(co_code, tech, carrier, flow): + global db + if tech == "h2flow": + tech_df = pipelines_h2 + elif tech == "acflow": + tech_df = ac_lines + elif tech == "dcflow": + tech_df = dc_lines + else: + pass + + inflow = tech_df.filter(regex="{}$".format(co_code)).sum(axis=1) * t + outflow = tech_df.filter(like="{} -> ".format(co_code)).sum(axis=1) * t + + dbf = pd.DataFrame() + dbf["DateTime"] = inflow.index.copy() + dbf["node_id"] = co_code + dbf["carrier"] = carrier + dbf["flow"] = flow + dbf["tech"] = tech + dbf["value"] = (inflow - outflow).reset_index(drop=True) # /10**6 + db = db.append(dbf) + return dbf + + +temp = pd.DataFrame(data=nodes) +temp[0].apply(net_flow, args=("h2flow", "h2", "t")) +temp[0].apply(net_flow, args=("acflow", "hv", "t")) +temp[0].apply(net_flow, args=("dcflow", "hv", "t")) + + +add_gen("solar", "hv", reg=True) +add_gen("onwind", "hv") +add_gen("offwind-ac", "hv") +add_gen("offwind-dc", "hv") +add_gen("ror", "hv") + +add_conv("H2 export", "h2", 0, True) + +add_conv("H2 Electrolysis", "hv", 0, True) +add_conv("H2 Fuel Cell", "hv", 1, False) +# add_conv("H2 Export", "hv", 1, False) +add_conv("DAC", "hv", 2, True) +add_conv("helmeth", "hv", 0, True) +add_conv("electricity distribution grid", "hv", 0, True) +add_conv("OCGT", "hv", 1, False) +add_conv("battery charger", "hv", 0, True, reg=True) +add_conv("battery discharger", "hv", 1, False, reg=True) +add_conv("urban central gas CHP", "hv", 1, False, reg=True) +add_conv("urban central gas CHP CC", "hv", 1, False) +add_conv("urban central solid biomass CHP", "hv", 1, False, reg=True) +add_conv("urban central solid biomass CHP CC", "hv", 1, False) + +add_store("battery", "hv", reg=True) +add_store("battery storage", "hv") +add_store("home battery", "hv") + +add_storage("PHS", "hv") # TODO commented out because there is no storage untis +add_storage("hydro", "hv") + + +add_load("H2 for shipping", "h2") +add_load("H2 for industry", "h2") +add_load("land transport fuel cell", "h2") + +add_conv("H2 Electrolysis", "h2", 1, False) +add_conv("H2 Fuel Cell", "h2", 0, True) +add_conv("Fischer-Tropsch", "h2", 0, True) +add_conv("Sabatier", "h2", 1, True) +add_conv("SMR", "h2", 1, False, reg=True) +add_conv("SMR CC", "h2", 1, False) + +add_store("H2", "h2", reg=True) +add_store("H2 Store", "h2") + + +add_gen("solar rooftop", "hv") + +add_conv("electricity distribution grid", "hv", 1, False) +add_conv("BEV charger", "hv", 0, True) +add_conv("V2G", "hv", 1, False) +add_conv("residential rural ground heat pump", "hv", 0, True) +add_conv("residential rural resistive heater", "hv", 0, True) +add_conv("services rural ground heat pump", "hv", 0, True) +add_conv("residential rural resistive heater", "hv", 0, True) +add_conv("urban central air heat pump", "hv", 0, True) +add_conv("urban central resistive heater", "hv", 0, True) +add_conv("home battery charger", "hv", 0, True) +add_conv("home battery discharger", "hv", 1, False) + + +add_load("ac", "hv") +add_load("industry electricity", "hv") + +add_gen("residential rural solar thermal collector", "heat") +add_gen("services rural solar thermal collector", "heat") +add_gen("urban central solar thermal collector", "heat") + +add_load("residential rural heat", "heat") +add_load("services rural heat", "heat") +add_load("urban central heat", "heat") +add_load("low-temperature heat for industry", "heat") + +add_conv("residential rural water tanks charger", "heat", 0, True) +add_conv("services rural water tanks charger", "heat", 0, True) +add_conv("urban central water tanks charger", "heat", 0, True) +add_conv("residential rural ground heat pump", "heat", 1, False) +add_conv("residential rural water tanks discharger", "heat", 1, False) +add_conv("residential rural resistive heater", "heat", 1, False) +add_conv("residential rural gas boiler", "heat", 1, False) +add_conv("services rural ground heat pump", "heat", 1, False) +add_conv("services rural water tanks discharger", "heat", 1, False) +add_conv("services rural resistive heater", "heat", 1, False) +add_conv("services rural gas boiler", "heat", 1, False) +add_conv("urban central air heat pump", "heat", 1, False) +add_conv("urban central water tanks discharger", "heat", 1, False) +add_conv("urban central resistive heater", "heat", 1, False) +add_conv("urban central gas boiler", "heat", 1, False) +add_conv("H2 Fuel Cell", "heat", 2, False) +add_conv("urban central gas CHP", "heat", 2, False) +add_conv("urban central gas CHP CC", "heat", 2, False) +add_conv("urban central solid biomass CHP", "heat", 2, False) +add_conv("urban central solid biomass CHP CC", "heat", 2, False) +add_conv("DAC", "heat", 3, True) +add_conv("Fischer-Tropsch", "heat", 3, False) + + +add_conv("services urban decentral DAC", "co2", 0, False) +add_conv("urban central DAC", "co2", 0, False) + +add_conv("process emissions", "co2", 1, True, True) +add_conv("process emissions CC", "co2", 1, True) +add_conv("co2 vent", "co2", 1, True) + +add_conv("OCGT", "co2", 2, True) +add_conv("biogas to gas", "co2", 2, False) +add_conv("biomass EOP", "co2", 2, True) +add_conv("residential rural gas boiler", "co2", 2, True) +add_conv("services rural gas boiler", "co2", 2, True) +add_conv("residential urban decentral gas boiler", "co2", 2, True) +add_conv("services urban decentral gas boiler", "co2", 2, True) +add_conv("urban central gas boiler", "co2", 2, True) +add_conv("solid biomass for industry CC", "co2", 2, False) +add_conv("gas for industry", "co2", 2, True) +add_conv("gas for industry CC", "co2", 2, True) + + +add_load("industry oil emissions", "co2") +add_load("shipping oil emissions", "co2") +add_load("land transport oil emissions", "co2") +add_load("aviation oil emissions", "co2") +add_load("residential oil emissions", "co2") +add_load("residential biomass emissions", "co2") +add_load("services biomass emissions", "co2") + +# add_store("co2 stored", "co2") +add_store("co2 atmosphere", "co2") + +add_conv("Fischer-Tropsch", "oil", 1, False) + +add_load("naphtha for industry", "oil") +add_load("residential oil", "oil", reg=True) +add_load("rail transport oil", "oil", reg=True) +add_load("agriculture oil", "oil", reg=True) +add_load("shipping oil", "oil", reg=True) +add_load("land transport oil", "oil", reg=True) # mistakenly add oil emissions +add_load("kerosene for aviation", "oil") +add_store("oil Store", "oil", 1) +add_gen("oil", "oil") + +# add_load("gas for industry", "gas") +add_conv("OCGT", "gas", 0, True) +add_conv("residential rural gas boiler", "gas", 0, True) +add_conv("services rural gas boiler", "gas", 0, True) +add_conv("residential urban decentral gas boiler", "gas", 0, True) +add_conv("services urban decentral gas boiler", "gas", 0, True) +add_conv("gas for industry", "gas", 0, True, True) +add_conv("gas for industry CC", "gas", 0, True) +add_conv("urban central gas boiler", "gas", 0, True) + +add_conv("Sabatier", "gas", 1, False) +add_conv("helmeth", "gas", 1, False) + +add_store("gas Store", "gas") +add_gen("gas", "gas") + +add_conv("biogas to gas", "gas", 1, False) + +add_conv("gas for industry", "gas", 1, True) +add_conv("gas for industry CC", "gas", 1, True) + + +add_conv("co2 vent", "co2 stored", 0, True) +# add_conv("CO2 pipeline", "co2 stored", 0, True) +add_conv("DAC", "co2 stored", 1, True) + +add_conv("Fischer-Tropsch", "co2 stored", 2, False) +add_conv("Sabatier", "co2 stored", 2, False) +add_conv("helmeth", "co2 stored", 2, False) +add_conv("process emissions CC", "co2 stored", 2, True) + +add_conv("solid biomass for industry CC", "co2 stored", 3, True) +add_conv("gas for industry CC", "co2 stored", 3, True) + +# add_store("co2 stored") +add_store("co2 stored", "co2 stored") + + +# add +# REMEMBER TO ADD ALL DECENTRAL SHIT +# %% + +# summary_elec['h2_t_pipeline'] = summary_elec.apply(lambda row: h2_net_flow(n0, row.name, 24), axis=1) + +h2_flows = pd.DataFrame(index=pipelines_h2.index.copy(), columns=["node_id", "flow"]) + +# summary_elec['h2_balance'] = summary_elec.sum(axis=1) +# summary_elec=summary_elec.apply(lambda x: round(x, 2)) + +db.reset_index(drop=True, inplace=True) +# round(db).to_csv('db_fraction.csv') +round(db).to_csv(snakemake.output.db) +yearly_agg = round(db.groupby([db.node_id, db.carrier, db.flow, db.tech]).sum() / 1e3) + + +# yearly_agg.to_csv('summary_db.csv') +# yearly_agg.to_csv(snakemake.output.yr_agg) +# %% +def calc_energy_flow(carrier, node_id): + agg = yearly_agg.reset_index() + agg = agg[(agg.carrier == carrier)] + agg.value = agg.value.apply(int) + if node_id == "all": + agg = agg.groupby("tech").sum().reset_index() + else: + agg = agg[agg.node_id.str.contains(node_id)].groupby("tech").sum().reset_index() + return agg + + +def fetch_data_2(carrier, node_id): + agg = db[db.DateTime == "2013-02-01"].drop("DateTime", axis=1) + + return agg[(agg.carrier == carrier) & (agg.node_id == node_id)] + + +def energy_pie(carrier, node_id, sign): + sign_dict = {1: "generation", -1: "consumption"} + agg = yearly_agg.reset_index() + agg = agg[(agg.carrier == carrier) & (agg.value * sign > 0)] + + if node_id == "all": + agg = agg[(agg.carrier == carrier) & (agg.value * sign > 0) & (agg.flow != "t")] + else: + agg = agg[agg.node_id.str.contains(node_id)] + agg = agg.groupby("tech").sum().reset_index() + agg["pct"] = round(agg["value"] / agg.value.sum(), 3) + if agg.pct.sum() < 1: + agg = agg.append( + pd.DataFrame([["other", 0, 1 - agg.pct.sum()]], columns=agg.columns) + ) + agg = agg[agg.pct > 0.009] + + fig1, ax1 = plt.subplots() # figsize=(6, 4)) + ax1.pie( + agg.pct, + labels=agg.tech, + autopct="%1.0f%%", + colors=[tech_colors.get(key) for key in agg.tech.values.tolist()], + explode=[0.05] * len(agg), + ) + ax1.axis("equal") + plt.title( + "Yearly aggregate {0} of {1} at {2} node(s)\n".format( + sign_dict[sign], carrier, node_id + ) + + "Value = {} GWh".format(round(agg.value.sum(), 1)), + # bbox={"facecolor": "0.8", "pad": 5}, + ) + plt.show() + fig1.savefig( + "Yearly_aggregate_{0}_of_{1}_at_{2}_node(s).png".format( + sign_dict[sign], carrier, node_id + ), + dpi=100, + ) diff --git a/scripts/prepare_energy_totals.py b/scripts/prepare_energy_totals.py new file mode 100644 index 000000000..119083f02 --- /dev/null +++ b/scripts/prepare_energy_totals.py @@ -0,0 +1,308 @@ +# -*- coding: utf-8 -*- +# SPDX-FileCopyrightText: PyPSA-Earth and PyPSA-Eur Authors +# +# SPDX-License-Identifier: AGPL-3.0-or-later +import glob +import logging +import os +import sys +from io import BytesIO +from pathlib import Path +from urllib.request import urlopen +from zipfile import ZipFile + +import country_converter as coco +import matplotlib.pyplot as plt +import numpy as np +import pandas as pd +import py7zr +import requests +from _helpers import read_csv_nafix, three_2_two_digits_country + +_logger = logging.getLogger(__name__) + + +def get(item, investment_year=None): + """ + Check whether item depends on investment year. + """ + if isinstance(item, dict): + return item[investment_year] + else: + return item + + +def calculate_end_values(df): + return (1 + df) ** no_years + + +if __name__ == "__main__": + if "snakemake" not in globals(): + from _helpers import mock_snakemake + + snakemake = mock_snakemake( + "prepare_energy_totals", + simpl="", + clusters=32, + demand="EG", + planning_horizons=2030, + ) + + countries = snakemake.params.countries + # countries = ["NG", "BJ"] + investment_year = int(snakemake.wildcards.planning_horizons) + demand_sc = snakemake.wildcards.demand # loading the demand scenrario wildcard + + base_energy_totals = read_csv_nafix("data/energy_totals_base.csv", index_col=0) + growth_factors_cagr = read_csv_nafix( + snakemake.input.growth_factors_cagr, index_col=0 + ) + efficiency_gains_cagr = read_csv_nafix( + snakemake.input.efficiency_gains_cagr, index_col=0 + ) + fuel_shares = read_csv_nafix(snakemake.input.fuel_shares, index_col=0) + district_heating = read_csv_nafix(snakemake.input.district_heating, index_col=0) + + no_years = int(snakemake.wildcards.planning_horizons) - int( + snakemake.params.base_year + ) + growth_factors = calculate_end_values(growth_factors_cagr) + efficiency_gains = calculate_end_values(efficiency_gains_cagr) + + for country in countries: + if country not in efficiency_gains.index: + efficiency_gains.loc[country] = efficiency_gains.loc["DEFAULT"] + _logger.warning( + "No efficiency gains cagr data for " + + country + + " using default data instead." + ) + if country not in growth_factors.index: + growth_factors.loc[country] = growth_factors.loc["DEFAULT"] + _logger.warning( + "No growth factors cagr data for " + + country + + " using default data instead." + ) + if country not in fuel_shares.index: + fuel_shares.loc[country] = fuel_shares.loc["DEFAULT"] + _logger.warning( + "No fuel share data for " + country + " using default data instead." + ) + if country not in district_heating.index: + district_heating.loc[country] = district_heating.loc["DEFAULT"] + _logger.warning( + "No heating data for " + country + " using default data instead." + ) + + efficiency_gains = efficiency_gains[efficiency_gains.index.isin(countries)] + fuel_shares = fuel_shares[fuel_shares.index.isin(countries)] + district_heating = district_heating[district_heating.index.isin(countries)] + growth_factors = growth_factors[growth_factors.index.isin(countries)] + + options = snakemake.params.sector_options + + fuel_cell_share = get( + options["land_transport_fuel_cell_share"], + demand_sc + "_" + str(investment_year), + ) + electric_share = get( + options["land_transport_electric_share"], demand_sc + "_" + str(investment_year) + ) + + hydrogen_shipping_share = get( + options["shipping_hydrogen_share"], demand_sc + "_" + str(investment_year) + ) + + energy_totals = ( + base_energy_totals + * efficiency_gains.loc[countries] + * growth_factors.loc[countries] + ) + + # Residential + efficiency_heat_oil_to_elec = snakemake.params.sector_options[ + "efficiency_heat_oil_to_elec" + ] + efficiency_heat_biomass_to_elec = snakemake.params.sector_options[ + "efficiency_heat_biomass_to_elec" + ] + efficiency_heat_gas_to_elec = snakemake.params.sector_options[ + "efficiency_heat_gas_to_elec" + ] + + energy_totals["electricity residential space"] = ( + base_energy_totals["total residential space"] + + ( + fuel_shares["biomass to elec heat share"] + * fuel_shares["biomass residential heat share"] + * (fuel_shares["space to water heat share"]) + * base_energy_totals["residential biomass"] + * efficiency_heat_biomass_to_elec + ) + + ( + fuel_shares["oil to elec heat share"] + * fuel_shares["oil residential heat share"] + * (fuel_shares["space to water heat share"]) + * base_energy_totals["residential oil"] + * efficiency_heat_oil_to_elec + ) + + ( + fuel_shares["gas to elec heat share"] + * fuel_shares["gas residential heat share"] + * (fuel_shares["space to water heat share"]) + * base_energy_totals["residential gas"] + * efficiency_heat_gas_to_elec + ) + ) + + energy_totals["electricity residential water"] = ( + base_energy_totals["total residential water"] + + ( + fuel_shares["biomass to elec heat share"] + * fuel_shares["biomass residential heat share"] + * (1 - fuel_shares["space to water heat share"]) + * base_energy_totals["residential biomass"] + * efficiency_heat_biomass_to_elec + ) + + ( + fuel_shares["oil to elec heat share"] + * fuel_shares["oil residential heat share"] + * (1 - fuel_shares["space to water heat share"]) + * base_energy_totals["residential oil"] + * efficiency_heat_oil_to_elec + ) + + ( + fuel_shares["gas to elec heat share"] + * fuel_shares["gas residential heat share"] + * (1 - fuel_shares["space to water heat share"]) + * base_energy_totals["residential gas"] + * efficiency_heat_gas_to_elec + ) + ) + + energy_totals["residential heat oil"] = ( + base_energy_totals["residential oil"] + * fuel_shares["oil residential heat share"] + * (1 - fuel_shares["oil to elec heat share"]) + * efficiency_gains["residential heat oil"] + * growth_factors["residential heat oil"] + ) + + energy_totals["residential oil"] = ( + base_energy_totals["residential oil"] + * (1 - fuel_shares["oil residential heat share"]) + * (1 - fuel_shares["oil to elec share"]) + * efficiency_gains["residential oil"] + * growth_factors["residential oil"] + ) + + energy_totals["residential heat biomass"] = ( + base_energy_totals["residential biomass"] + * fuel_shares["biomass residential heat share"] + * (1 - fuel_shares["biomass to elec heat share"]) + * efficiency_gains["residential heat biomass"] + * growth_factors["residential heat biomass"] + ) + + energy_totals["residential biomass"] = ( + base_energy_totals["residential biomass"] + * (1 - fuel_shares["biomass residential heat share"]) + * (1 - fuel_shares["biomass to elec share"]) + * efficiency_gains["residential biomass"] + * growth_factors["residential biomass"] + ) + + energy_totals["residential heat gas"] = ( + base_energy_totals["residential gas"] + * fuel_shares["gas residential heat share"] + * (1 - fuel_shares["gas to elec heat share"]) + * efficiency_gains["residential heat gas"] + * growth_factors["residential heat gas"] + ) + + energy_totals["residential gas"] = ( + base_energy_totals["residential gas"] + * (1 - fuel_shares["gas residential heat share"]) + * (1 - fuel_shares["gas to elec share"]) + * efficiency_gains["residential gas"] + * growth_factors["residential gas"] + ) + + energy_totals["total residential space"] = energy_totals[ + "electricity residential space" + ] + ( + energy_totals["residential heat oil"] + + energy_totals["residential heat biomass"] + + energy_totals["residential heat gas"] + ) * ( + fuel_shares["space to water heat share"] + ) + + energy_totals["total residential water"] = energy_totals[ + "electricity residential water" + ] + ( + energy_totals["residential heat oil"] + + energy_totals["residential heat biomass"] + + energy_totals["residential heat gas"] + ) * ( + 1 - fuel_shares["space to water heat share"] + ) + + energy_totals["electricity residential"] = ( + energy_totals["electricity residential"] + + ( + fuel_shares["oil to elec share"] + * (1 - fuel_shares["oil residential heat share"]) + * base_energy_totals["residential oil"] + ) + + ( + fuel_shares["biomass to elec share"] + * (1 - fuel_shares["biomass residential heat share"]) + * base_energy_totals["residential biomass"] + ) + + ( + fuel_shares["gas to elec share"] + * (1 - fuel_shares["gas residential heat share"]) + * base_energy_totals["residential gas"] + ) + ) + + # Road + energy_totals["total road"] = ( + (1 - fuel_cell_share - electric_share) + * efficiency_gains["total road ice"] + * base_energy_totals["total road"] + + fuel_cell_share + * efficiency_gains["total road fcev"] + * base_energy_totals["total road"] + + electric_share + * efficiency_gains["total road ev"] + * base_energy_totals["total road"] + ) * growth_factors["total road"] + + # Navigation + energy_totals["total domestic navigation"] = ( + (1 - hydrogen_shipping_share) + * efficiency_gains["total navigation oil"] + * base_energy_totals["total domestic navigation"] + + hydrogen_shipping_share + * efficiency_gains["total navigation hydrogen"] + * base_energy_totals["total domestic navigation"] + ) * growth_factors["total domestic navigation"] + + energy_totals["total international navigation"] = ( + (1 - hydrogen_shipping_share) + * efficiency_gains["total navigation oil"] + * base_energy_totals["total international navigation"] + + hydrogen_shipping_share + * efficiency_gains["total navigation hydrogen"] + * base_energy_totals["total international navigation"] + ) * growth_factors["total international navigation"] + + energy_totals["district heat share"] = district_heating["current"] + + energy_totals["electricity services space"] = 0 + energy_totals["electricity services water"] = 0 + + energy_totals.fillna(0).to_csv(snakemake.output.energy_totals) diff --git a/scripts/prepare_gas_network.py b/scripts/prepare_gas_network.py new file mode 100644 index 000000000..59078803e --- /dev/null +++ b/scripts/prepare_gas_network.py @@ -0,0 +1,939 @@ +# -*- coding: utf-8 -*- +# SPDX-FileCopyrightText: PyPSA-Earth and PyPSA-Eur Authors +# +# SPDX-License-Identifier: AGPL-3.0-or-later +""" +Prepare gas network. +""" + +import logging + +logger = logging.getLogger(__name__) + +import os +import zipfile +from pathlib import Path + +import fiona +import geopandas as gpd +import matplotlib.colors as colors +import matplotlib.pyplot as plt +import pandas as pd +from _helpers import content_retrieve, progress_retrieve, two_2_three_digits_country +from build_shapes import gadm +from matplotlib.lines import Line2D +from pyproj import CRS +from pypsa.geo import haversine_pts +from shapely.geometry import LineString, Point +from shapely.ops import unary_union +from shapely.validation import make_valid + +if __name__ == "__main__": + if "snakemake" not in globals(): + from _helpers import mock_snakemake + + snakemake = mock_snakemake( + "prepare_gas_network", + simpl="", + clusters="10", + ) + + # configure_logging(snakemake) + + # run = snakemake.config.get("run", {}) + # RDIR = run["name"] + "/" if run.get("name") else "" + # store_path_data = Path.joinpath(Path().cwd(), "data") + # country_list = country_list_to_geofk(snakemake.config["countries"])' + + +def download_IGGIELGN_gas_network(): + """ + Downloads a global dataset for gas networks as .xlsx. + + The following xlsx file was downloaded from the webpage + https://globalenergymonitor.org/projects/global-gas-infrastructure-tracker/ + The dataset contains 3144 pipelines. + """ + + url = "https://zenodo.org/record/4767098/files/IGGIELGN.zip" + + # Save locations + zip_fn = Path("IGGIELGN.zip") + to_fn = Path("data/gas_network/scigrid-gas") + + logger.info(f"Downloading databundle from '{url}'.") + progress_retrieve(url, zip_fn) + + logger.info(f"Extracting databundle.") + zipfile.ZipFile(zip_fn).extractall(to_fn) + + zip_fn.unlink() + + logger.info(f"Gas infrastructure data available in '{to_fn}'.") + + +def download_GGIT_gas_network(): + """ + Downloads a global dataset for gas networks as .xlsx. + + The following xlsx file was downloaded from the webpage + https://globalenergymonitor.org/projects/global-gas-infrastructure-tracker/ + The dataset contains 3144 pipelines. + """ + url = "https://globalenergymonitor.org/wp-content/uploads/2022/12/GEM-GGIT-Gas-Pipelines-December-2022.xlsx" + GGIT_gas_pipeline = pd.read_excel( + content_retrieve(url), + index_col=0, + sheet_name="Gas Pipelines 2022-12-16", + header=0, + ) + + return GGIT_gas_pipeline + + +def diameter_to_capacity(pipe_diameter_mm): + """ + Calculate pipe capacity in MW based on diameter in mm. + + 20 inch (500 mm) 50 bar -> 1.5 GW CH4 pipe capacity (LHV) 24 inch + (600 mm) 50 bar -> 5 GW CH4 pipe capacity (LHV) 36 inch (900 + mm) 50 bar -> 11.25 GW CH4 pipe capacity (LHV) 48 inch (1200 mm) 80 + bar -> 21.7 GW CH4 pipe capacity (LHV) + + Based on p.15 of + https://gasforclimate2050.eu/wp-content/uploads/2020/07/2020_European-Hydrogen-Backbone_Report.pdf + """ + # slopes definitions + m0 = (1500 - 0) / (500 - 0) + m1 = (5000 - 1500) / (600 - 500) + m2 = (11250 - 5000) / (900 - 600) + m3 = (21700 - 11250) / (1200 - 900) + + # intercept + a0 = 0 + a1 = -16000 + a2 = -7500 + a3 = -20100 + + if pipe_diameter_mm < 500: + return a0 + m0 * pipe_diameter_mm + elif pipe_diameter_mm < 600: + return a1 + m1 * pipe_diameter_mm + elif pipe_diameter_mm < 900: + return a2 + m2 * pipe_diameter_mm + else: + return a3 + m3 * pipe_diameter_mm + + +def inch_to_mm(len_inch): + return len_inch / 0.0393701 + + +def bcm_to_MW(cap_bcm): + return cap_bcm * 9769444.44 / 8760 + + +def correct_Diameter_col(value): + value = str(value) + # Check if the value contains a comma + if "," in value: + # Split the value by comma and convert each part to a float + diameter_values = [float(val) for val in value.split(",")] + # Calculate the mean of the values + return sum(diameter_values) / len(diameter_values) + elif "/" in value: + # Split the value by slash and convert each part to a float + diameter_values = [float(val) for val in value.split("/")] + # Calculate the mean of the values + return sum(diameter_values) / len(diameter_values) + elif "-" in value: + # Split the value by slash and convert each part to a float + diameter_values = [float(val) for val in value.split("-")] + # Calculate the mean of the values + return sum(diameter_values) / len(diameter_values) + else: + # Return the original value for rows without a comma or slash + return float(value) + + +def prepare_GGIT_data(GGIT_gas_pipeline): + df = GGIT_gas_pipeline.copy().reset_index() + + # Drop rows containing "--" in the 'WKTFormat' column + df = df[df["WKTFormat"] != "--"] + + # Keep pipelines that are as below + df = df[df["Status"].isin(snakemake.params.gas_config["network_data_GGIT_status"])] + + # Convert the WKT column to a GeoDataFrame + df = gpd.GeoDataFrame(df, geometry=gpd.GeoSeries.from_wkt(df["WKTFormat"])) + + # Set the CRS to EPSG:4326 + df.crs = CRS.from_epsg(4326) + + # Convert CRS to EPSG:3857 so we can measure distances + df = df.to_crs(epsg=3857) + + # Convert and correct diameter column to be in mm + df.loc[df["DiameterUnits"] == "mm", "diameter_mm"] = df.loc[ + df["DiameterUnits"] == "mm", "Diameter" + ].apply(correct_Diameter_col) + df.loc[df["DiameterUnits"] == "in", "diameter_mm"] = ( + df.loc[df["DiameterUnits"] == "in", "Diameter"] + .apply(correct_Diameter_col) + .apply( + lambda d: inch_to_mm(float(d)) + ) # .apply(lambda ds: pd.Series(ds).apply(lambda d: inch_to_mm(float(d)))) + ) + + # Convert Bcm/y to MW + df["CapacityBcm/y"] = pd.to_numeric(df["CapacityBcm/y"], errors="coerce") + df["capacity [MW]"] = df["CapacityBcm/y"].apply(lambda d: bcm_to_MW(d)) + + # Get capacity from diameter for rows where no capacity is given + df.loc[df["CapacityBcm/y"] == "--", "capacity [MW]"] = df.loc[ + df["CapacityBcm/y"] == "--", "diameter_mm" + ].apply(lambda d: diameter_to_capacity(int(d))) + df["diameter_mm"] = pd.to_numeric( + df["diameter_mm"], errors="coerce", downcast="integer" + ) + df.loc[pd.isna(df["CapacityBcm/y"]), "capacity [MW]"] = df.loc[ + pd.isna(df["CapacityBcm/y"]), "diameter_mm" + ].apply(lambda d: diameter_to_capacity(d)) + + return df + + +def load_IGGIELGN_data(fn): + df = gpd.read_file(fn) + param = df.param.apply(pd.Series) + method = df.method.apply(pd.Series)[["diameter_mm", "max_cap_M_m3_per_d"]] + method.columns = method.columns + "_method" + df = pd.concat([df, param, method], axis=1) + to_drop = ["param", "uncertainty", "method", "tags"] + to_drop = df.columns.intersection(to_drop) + df.drop(to_drop, axis=1, inplace=True) + return df + + +def prepare_IGGIELGN_data( + df, + length_factor=1.5, + correction_threshold_length=4, + correction_threshold_p_nom=8, + bidirectional_below=10, +): # Taken from pypsa-eur and adapted + # extract start and end from LineString + df["point0"] = df.geometry.apply(lambda x: Point(x.coords[0])) + df["point1"] = df.geometry.apply(lambda x: Point(x.coords[-1])) + + conversion_factor = 437.5 # MCM/day to MWh/h + df["p_nom"] = df.max_cap_M_m3_per_d * conversion_factor + + # for inferred diameters, assume 500 mm rather than 900 mm (more conservative) + df.loc[df.diameter_mm_method != "raw", "diameter_mm"] = 500.0 + + keep = [ + "name", + "diameter_mm", + "is_H_gas", + "is_bothDirection", + "length_km", + "p_nom", + "max_pressure_bar", + "start_year", + "point0", + "point1", + "geometry", + ] + to_rename = { + "is_bothDirection": "bidirectional", + "is_H_gas": "H_gas", + "start_year": "build_year", + "length_km": "length", + } + df = df[keep].rename(columns=to_rename) + + df.bidirectional = df.bidirectional.astype(bool) + df.H_gas = df.H_gas.astype(bool) + + # short lines below 10 km are assumed to be bidirectional + short_lines = df["length"] < bidirectional_below + df.loc[short_lines, "bidirectional"] = True + + # correct all capacities that deviate correction_threshold factor + # to diameter-based capacities, unless they are NordStream pipelines + # also all capacities below 0.5 GW are now diameter-based capacities + df["p_nom_diameter"] = df.diameter_mm.apply(diameter_to_capacity) + ratio = df.p_nom / df.p_nom_diameter + not_nordstream = df.max_pressure_bar < 220 + df.p_nom.update( + df.p_nom_diameter.where( + (df.p_nom <= 500) + | ((ratio > correction_threshold_p_nom) & not_nordstream) + | ((ratio < 1 / correction_threshold_p_nom) & not_nordstream) + ) + ) + + # lines which have way too discrepant line lengths + # get assigned haversine length * length factor + df["length_haversine"] = df.apply( + lambda p: length_factor + * haversine_pts([p.point0.x, p.point0.y], [p.point1.x, p.point1.y]), + axis=1, + ) + ratio = df.eval("length / length_haversine") + df["length"].update( + df.length_haversine.where( + (df["length"] < 20) + | (ratio > correction_threshold_length) + | (ratio < 1 / correction_threshold_length) + ) + ) + + # Convert CRS to EPSG:3857 so we can measure distances + df = df.to_crs(epsg=3857) + + return df + + +def get_GADM_filename(country_code): + """ + Function to get the GADM filename given the country code. + """ + special_codes_GADM = { + "XK": "XKO", # kosovo + "CP": "XCL", # clipperton island + "SX": "MAF", # sint maartin + "TF": "ATF", # french southern territories + "AX": "ALA", # aland + "IO": "IOT", # british indian ocean territory + "CC": "CCK", # cocos island + "NF": "NFK", # norfolk + "PN": "PCN", # pitcairn islands + "JE": "JEY", # jersey + "XS": "XSP", # spratly + "GG": "GGY", # guernsey + "UM": "UMI", # united states minor outlying islands + "SJ": "SJM", # svalbard + "CX": "CXR", # Christmas island + } + + if country_code in special_codes_GADM: + return f"gadm41_{special_codes_GADM[country_code]}" + else: + return f"gadm41_{two_2_three_digits_country(country_code)}" + + +def download_GADM(country_code, update=False, out_logging=False): + """ + Download gpkg file from GADM for a given country code. + + Parameters + ---------- + country_code : str + Two letter country codes of the downloaded files + update : bool + Update = true, forces re-download of files + + Returns + ------- + gpkg file per country + """ + + GADM_filename = get_GADM_filename(country_code) + + GADM_inputfile_gpkg = os.path.join( + "data", + "gadm", + GADM_filename, + GADM_filename + ".gpkg", + ) # Input filepath gpkg + + return GADM_inputfile_gpkg, GADM_filename + + +def filter_gadm( + geodf, + layer, + cc, + contended_flag, + output_nonstd_to_csv=False, +): + # identify non standard geodf rows + geodf_non_std = geodf[geodf["GID_0"] != two_2_three_digits_country(cc)].copy() + + if not geodf_non_std.empty: + logger.info( + f"Contended areas have been found for gadm layer {layer}. They will be treated according to {contended_flag} option" + ) + + # NOTE: in these options GID_0 is not changed because it is modified below + if contended_flag == "drop": + geodf.drop(geodf_non_std.index, inplace=True) + elif contended_flag != "set_by_country": + # "set_by_country" option is the default; if this elif applies, the desired option falls back to the default + logger.warning( + f"Value '{contended_flag}' for option contented_flag is not recognized.\n" + + "Fallback to 'set_by_country'" + ) + + # force GID_0 to be the country code for the relevant countries + geodf["GID_0"] = cc + + # country shape should have a single geometry + if (layer == 0) and (geodf.shape[0] > 1): + logger.warning( + f"Country shape is composed by multiple shapes that are being merged in agreement to contented_flag option '{contended_flag}'" + ) + # take the first row only to re-define geometry keeping other columns + geodf = geodf.iloc[[0]].set_geometry([geodf.unary_union]) + + # debug output to file + if output_nonstd_to_csv and not geodf_non_std.empty: + geodf_non_std.to_csv( + f"resources/non_standard_gadm{layer}_{cc}_raw.csv", index=False + ) + + return geodf + + +def get_GADM_layer( + country_list, + layer_id, + geo_crs, + contended_flag, + update=False, + outlogging=False, +): + """ + Function to retrieve a specific layer id of a geopackage for a selection of + countries. + + Parameters + ---------- + country_list : str + List of the countries + layer_id : int + Layer to consider in the format GID_{layer_id}. + When the requested layer_id is greater than the last available layer, then the last layer is selected. + When a negative value is requested, then, the last layer is requested + """ + # initialization of the geoDataFrame + geodf_list = [] + + for country_code in country_list: + # Set the current layer id (cur_layer_id) to global layer_id + cur_layer_id = layer_id + + # download file gpkg + file_gpkg, name_file = download_GADM(country_code, update, outlogging) + + # get layers of a geopackage + list_layers = fiona.listlayers(file_gpkg) + + # get layer name + if (cur_layer_id < 0) or (cur_layer_id >= len(list_layers)): + # when layer id is negative or larger than the number of layers, select the last layer + cur_layer_id = len(list_layers) - 1 + + # read gpkg file + geodf_temp = gpd.read_file( + file_gpkg, layer="ADM_ADM_" + str(cur_layer_id) + ).to_crs(geo_crs) + + geodf_temp = filter_gadm( + geodf=geodf_temp, + layer=cur_layer_id, + cc=country_code, + contended_flag=contended_flag, + output_nonstd_to_csv=False, + ) + + if layer_id == 0: + geodf_temp["GADM_ID"] = geodf_temp[f"GID_{cur_layer_id}"].apply( + lambda x: two_2_three_digits_country(x[:2]) + ) + pd.Series(range(1, geodf_temp.shape[0] + 1)).astype(str) + else: + # create a subindex column that is useful + # in the GADM processing of sub-national zones + # Fix issues with missing "." in selected cases + geodf_temp["GADM_ID"] = geodf_temp[f"GID_{cur_layer_id}"].apply( + lambda x: x if x[3] == "." else x[:3] + "." + x[3:] + ) + + # append geodataframes + geodf_list.append(geodf_temp) + + geodf_GADM = gpd.GeoDataFrame(pd.concat(geodf_list, ignore_index=True)) + geodf_GADM.set_crs(geo_crs) + + return geodf_GADM + + +def gadm( + countries, + geo_crs, + contended_flag, + layer_id=2, + update=False, + out_logging=False, + year=2020, + nprocesses=None, +): + if out_logging: + logger.info("Stage 4/4: Creation GADM GeoDataFrame") + + # download data if needed and get the desired layer_id + df_gadm = get_GADM_layer(countries, layer_id, geo_crs, contended_flag, update) + + # select and rename columns + df_gadm.rename(columns={"GID_0": "country"}, inplace=True) + + # drop useless columns + df_gadm.drop( + df_gadm.columns.difference(["country", "GADM_ID", "geometry"]), + axis=1, + inplace=True, + errors="ignore", + ) + + # renaming 3 letter to 2 letter ISO code before saving GADM file + # solves issue: https://github.com/pypsa-meets-earth/pypsa-earth/issues/671 + # df_gadm["GADM_ID"] = ( + # df_gadm["GADM_ID"] + # .str.split(".") + # .apply(lambda id: three_2_two_digits_country(id[0]) + "." + ".".join(id[1:])) + # ) + # df_gadm.set_index("GADM_ID", inplace=True) + # df_gadm["geometry"] = df_gadm["geometry"].map(_simplify_polys) + df_gadm.geometry = df_gadm.geometry.apply( + lambda r: make_valid(r) if not r.is_valid else r + ) + df_gadm = df_gadm[df_gadm.geometry.is_valid & ~df_gadm.geometry.is_empty] + + return df_gadm + + +def load_bus_region(onshore_path, pipelines): + """ + Load pypsa-earth-sec onshore regions. + + TODO: Think about including Offshore regions but only for states that have offshore pipelines. + """ + bus_regions_onshore = gpd.read_file(onshore_path) + # Convert CRS to EPSG:3857 so we can measure distances + bus_regions_onshore = bus_regions_onshore.to_crs(epsg=3857) + + bus_regions_onshore = bus_regions_onshore.rename({"name": "gadm_id"}, axis=1).loc[ + :, ["gadm_id", "geometry"] + ] + + if snakemake.params.alternative_clustering: + countries_list = snakemake.params.countries_list + layer_id = snakemake.params.layer_id + update = snakemake.params.update + out_logging = snakemake.params.out_logging + year = snakemake.params.year + nprocesses = snakemake.params.nprocesses + contended_flag = snakemake.params.contended_flag + geo_crs = snakemake.params.geo_crs + + bus_regions_onshore = gadm( + countries_list, + geo_crs, + contended_flag, + layer_id, + update, + out_logging, + year, + nprocesses=nprocesses, + ) + + # bus_regions_onshore = bus_regions_onshore.reset_index() + bus_regions_onshore = bus_regions_onshore.rename(columns={"GADM_ID": "gadm_id"}) + # Conversion of GADM id to from 3 to 2-digit + # bus_regions_onshore["gadm_id"] = bus_regions_onshore["gadm_id"].apply( + # lambda x: two_2_three_digits_country(x[:2]) + x[2:] + # ) + bus_regions_onshore = bus_regions_onshore.to_crs(epsg=3857) + + country_borders = unary_union(bus_regions_onshore.geometry) + + # Create a new GeoDataFrame containing the merged polygon + country_borders = gpd.GeoDataFrame(geometry=[country_borders], crs=pipelines.crs) + + return bus_regions_onshore, country_borders + + +def get_states_in_order(pipeline, bus_regions_onshore): + states_p = [] + + if pipeline.geom_type == "LineString": + # Interpolate points along the LineString with a given step size (e.g., 5) + step_size = 10000 + interpolated_points = [ + pipeline.interpolate(i) for i in range(0, int(pipeline.length), step_size) + ] + interpolated_points.append( + pipeline.interpolate(pipeline.length) + ) # Add the last point + + elif pipeline.geom_type == "MultiLineString": + interpolated_points = [] + # Iterate over each LineString within the MultiLineString + for line in pipeline.geoms: + # Interpolate points along each LineString with a given step size (e.g., 5) + step_size = 10000 + interpolated_points_line = [ + line.interpolate(i) for i in range(0, int(line.length), step_size) + ] + interpolated_points_line.append( + line.interpolate(line.length) + ) # Add the last point + interpolated_points.extend(interpolated_points_line) + + # Check each interpolated point against the state geometries + for point in interpolated_points: + for index, state_row in bus_regions_onshore.iterrows(): + if state_row.geometry.contains(point): + gadm_id = state_row["gadm_id"] + if gadm_id not in states_p: + states_p.append(gadm_id) + break # Stop checking other states once a match is found + + return states_p + + +def parse_states(pipelines, bus_regions_onshore): + # Parse the states of the points which are connected by the pipeline geometry object + pipelines["nodes"] = None + pipelines["states_passed"] = None + pipelines["amount_states_passed"] = None + + for pipeline, row in pipelines.iterrows(): + states_p = get_states_in_order(row.geometry, bus_regions_onshore) + # states_p = pd.unique(states_p) + row["states_passed"] = states_p + row["amount_states_passed"] = len(states_p) + row["nodes"] = list(zip(states_p[0::1], states_p[1::1])) + pipelines.loc[pipeline] = row + print( + "The maximum number of states which are passed by one single pipeline amounts to {}.".format( + pipelines.states_passed.apply(lambda n: len(n)).max() + ) + ) + return pipelines + + +def cluster_gas_network(pipelines, bus_regions_onshore, length_factor): + # drop innerstatal pipelines + pipelines_interstate = pipelines.drop( + pipelines.loc[pipelines.amount_states_passed < 2].index + ) + + # Convert CRS to EPSG:3857 so we can measure distances + pipelines_interstate = pipelines_interstate.to_crs(epsg=3857) # 3857 + + # Perform overlay operation to split lines by polygons + pipelines_interstate = gpd.overlay( + pipelines_interstate, bus_regions_onshore, how="intersection" + ) + + column_set = ["ProjectID", "nodes", "gadm_id", "capacity [MW]"] + + if snakemake.params.gas_config["network_data"] == "IGGIELGN": + pipelines_per_state = ( + pipelines_interstate.rename( + {"p_nom": "capacity [MW]", "name": "ProjectID"}, axis=1 + ) + .loc[:, column_set] + .reset_index(drop=True) + ) + elif snakemake.params.gas_config["network_data"] == "GGIT": + pipelines_per_state = pipelines_interstate.loc[:, column_set].reset_index( + drop=True + ) + + # Explode the column containing lists of tuples + df_exploded = pipelines_per_state.explode("nodes").reset_index(drop=True) + + # Create new columns for the tuples + df_exploded.insert(0, "bus1", pd.DataFrame(df_exploded["nodes"].tolist())[1]) + df_exploded.insert(0, "bus0", pd.DataFrame(df_exploded["nodes"].tolist())[0]) + + # Drop the original column + df_exploded.drop("nodes", axis=1, inplace=True) + + # Reset the index if needed + df_exploded.reset_index(drop=True, inplace=True) + + # Custom function to check if value in column 'gadm_id' exists in either column 'bus0' or column 'bus1' + def check_existence(row): + return row["gadm_id"] in [row["bus0"], row["bus1"]] + + # Apply the custom function to each row and keep only the rows that satisfy the condition + df_filtered = df_exploded[df_exploded.apply(check_existence, axis=1)] + df_grouped = df_filtered.groupby(["bus0", "bus1", "ProjectID"], as_index=False).agg( + { + "capacity [MW]": "first", + } + ) + + # Rename columns to match pypsa-earth-sec format + df_grouped = df_grouped.rename({"capacity [MW]": "capacity"}, axis=1).loc[ + :, ["bus0", "bus1", "capacity"] + ] + # df_exploded = df_exploded.loc[:, ['bus0', 'bus1', 'length']] # 'capacity' + + # Group by buses to get average length and sum of capacites of all pipelines between any two states on the route. + grouped = df_grouped.groupby(["bus0", "bus1"], as_index=False).agg( + {"capacity": "sum"} + ) + states1 = bus_regions_onshore.copy() + states1 = states1.set_index("gadm_id") + + # Create center points for each polygon and store them in a new column 'center_point' + states1["center_point"] = ( + states1["geometry"].to_crs(3857).centroid.to_crs(4326) + ) # ----> If haversine_pts method for length calc is used + # states1['center_point'] = states1['geometry'].centroid + + # Create an empty DataFrame to store distances + distance_data = [] + + # Iterate over all combinations of polygons + for i in range(len(states1)): + for j in range(len(states1)): + if i != j: + polygon1 = states1.iloc[i] + polygon2 = states1.iloc[j] + + # Calculate Haversine distance + distance = haversine_pts( + [ + Point(polygon1["center_point"].coords[0]).x, + Point(polygon1["center_point"].coords[-1]).y, + ], + [ + Point(polygon2["center_point"].coords[0]).x, + Point(polygon2["center_point"].coords[-1]).y, + ], + ) # ----> If haversine_pts method for length calc is used + + # Store the distance along with polygon IDs or other relevant information + polygon_id1 = states1.index[i] + polygon_id2 = states1.index[j] + distance_data.append([polygon_id1, polygon_id2, distance]) + + # Create a DataFrame from the distance data + distance_df = pd.DataFrame(distance_data, columns=["bus0", "bus1", "distance"]) + + merged_df = pd.merge(grouped, distance_df, on=["bus0", "bus1"], how="left") + + length_factor = 1.25 + + merged_df["length"] = merged_df["distance"] * length_factor + + merged_df = merged_df.drop("distance", axis=1) + + merged_df["GWKm"] = (merged_df["capacity"] / 1000) * merged_df["length"] + + return merged_df + + +# TODO: Move it to a separate plotting rule! +# def plot_gas_network(pipelines, country_borders, bus_regions_onshore): +# df = pipelines.copy() +# df = gpd.overlay(df, country_borders, how="intersection") + +# if snakemake.params.gas_config["network_data"] == "IGGIELGN": +# df = df.rename({"p_nom": "capacity [MW]"}, axis=1) + +# fig, ax = plt.subplots(1, 1) +# fig.set_size_inches(12, 7) +# bus_regions_onshore.to_crs(epsg=3857).plot( +# ax=ax, color="white", edgecolor="darkgrey", linewidth=0.5 +# ) +# df.loc[(df.amount_states_passed > 1)].to_crs(epsg=3857).plot( +# ax=ax, +# column="capacity [MW]", +# linewidth=2.5, +# # linewidth=df['capacity [MW]'], +# # alpha=0.8, +# categorical=False, +# cmap="viridis_r", +# # legend=True, +# # legend_kwds={'label':'Pipeline capacity [MW]'}, +# ) + +# df.loc[(df.amount_states_passed <= 1)].to_crs(epsg=3857).plot( +# ax=ax, +# column="capacity [MW]", +# linewidth=2.5, +# # linewidth=df['capacity [MW]'], +# alpha=0.5, +# categorical=False, +# # color='darkgrey', +# ls="dotted", +# ) + +# # # Create custom legend handles for line types +# # line_types = [ 'solid', 'dashed', 'dotted'] # solid +# # legend_handles = [Line2D([0], [0], color='black', linestyle=line_type) for line_type in line_types] + +# # Define line types and labels +# line_types = ["solid", "dotted"] +# line_labels = ["Operating", "Not considered \n(within-state)"] + +# # Create custom legend handles for line types +# legend_handles = [ +# Line2D([0], [0], color="black", linestyle=line_type, label=line_label) +# for line_type, line_label in zip(line_types, line_labels) +# ] + +# # Add the line type legend +# ax.legend( +# handles=legend_handles, +# title="Status", +# borderpad=1, +# title_fontproperties={"weight": "bold"}, +# fontsize=11, +# loc=1, +# ) + +# # # create the colorbar +# norm = colors.Normalize( +# vmin=df["capacity [MW]"].min(), vmax=df["capacity [MW]"].max() +# ) +# cbar = plt.cm.ScalarMappable(norm=norm, cmap="viridis_r") +# # fig.colorbar(cbar, ax=ax).set_label('Capacity [MW]') + +# # add colorbar +# ax_cbar = fig.colorbar(cbar, ax=ax, location="left", shrink=0.8, pad=0.01) +# # add label for the colorbar +# ax_cbar.set_label("Natural gas pipeline capacity [MW]", fontsize=15) + +# ax.set_axis_off() +# fig.savefig(snakemake.output.gas_network_fig_1, dpi=300, bbox_inches="tight") + +# TODO: Move it to a separate plotting rule! +# def plot_clustered_gas_network(pipelines, bus_regions_onshore): +# # Create a new GeoDataFrame with centroids +# centroids = bus_regions_onshore.copy() +# centroids["geometry"] = centroids["geometry"].centroid +# centroids["gadm_id"] = centroids["gadm_id"].apply( +# lambda id: three_2_two_digits_country(id[:3]) + id[3:] +# ) +# gdf1 = pd.merge( +# pipelines, centroids, left_on=["bus0"], right_on=["gadm_id"], how="left" +# ) +# gdf1.rename(columns={"geometry": "geometry_bus0"}, inplace=True) +# pipe_links = pd.merge( +# gdf1, centroids, left_on=["bus1"], right_on=["gadm_id"], how="left" +# ) +# pipe_links.rename(columns={"geometry": "geometry_bus1"}, inplace=True) + +# # Create LineString geometries from the points +# pipe_links["geometry"] = pipe_links.apply( +# lambda row: LineString([row["geometry_bus0"], row["geometry_bus1"]]), axis=1 +# ) + +# clustered = gpd.GeoDataFrame(pipe_links, geometry=pipe_links["geometry"]) + +# # Optional: Set the coordinate reference system (CRS) if needed +# clustered.crs = "EPSG:3857" # For example, WGS84 + +# # plot pipelines +# fig, ax = plt.subplots(1, 1) +# fig.set_size_inches(12, 7) +# bus_regions_onshore.to_crs(epsg=3857).plot( +# ax=ax, color="white", edgecolor="darkgrey", linewidth=0.5 +# ) +# clustered.to_crs(epsg=3857).plot( +# ax=ax, +# column="capacity", +# linewidth=1.5, +# categorical=False, +# cmap="plasma", +# ) + +# centroids.to_crs(epsg=3857).plot( +# ax=ax, +# color="red", +# markersize=35, +# alpha=0.5, +# ) + +# norm = colors.Normalize( +# vmin=pipelines["capacity"].min(), vmax=pipelines["capacity"].max() +# ) +# cbar = plt.cm.ScalarMappable(norm=norm, cmap="plasma") + +# # add colorbar +# ax_cbar = fig.colorbar(cbar, ax=ax, location="left", shrink=0.8, pad=0.01) +# # add label for the colorbar +# ax_cbar.set_label("Natural gas pipeline capacity [MW]", fontsize=15) + +# ax.set_axis_off() +# fig.savefig(snakemake.output.gas_network_fig_2, dpi=300, bbox_inches="tight") + + +if not snakemake.params.custom_gas_network: + if snakemake.params.gas_config["network_data"] == "GGIT": + pipelines = download_GGIT_gas_network() + pipelines = prepare_GGIT_data(pipelines) + + elif snakemake.params.gas_config["network_data"] == "IGGIELGN": + download_IGGIELGN_gas_network() + + gas_network = "data/gas_network/scigrid-gas/data/IGGIELGN_PipeSegments.geojson" + + pipelines = load_IGGIELGN_data(gas_network) + pipelines = prepare_IGGIELGN_data(pipelines) + + bus_regions_onshore = load_bus_region(snakemake.input.regions_onshore, pipelines)[0] + bus_regions_onshore.geometry = bus_regions_onshore.geometry.buffer(0) + country_borders = load_bus_region(snakemake.input.regions_onshore, pipelines)[1] + + pipelines = parse_states(pipelines, bus_regions_onshore) + + if len(pipelines.loc[pipelines.amount_states_passed >= 2]) > 0: + # TODO: plotting should be a extra rule! + # plot_gas_network(pipelines, country_borders, bus_regions_onshore) + + pipelines = cluster_gas_network( + pipelines, bus_regions_onshore, length_factor=1.25 + ) + + # Conversion of GADM id to from 3 to 2-digit + # pipelines["bus0"] = pipelines["bus0"].apply( + # lambda id: three_2_two_digits_country(id[:3]) + id[3:] + # ) + + # pipelines["bus1"] = pipelines["bus1"].apply( + # lambda id: three_2_two_digits_country(id[:3]) + id[3:] + # ) + + pipelines.to_csv(snakemake.output.clustered_gas_network, index=False) + + # TODO: plotting should be a extra rule! + # plot_clustered_gas_network(pipelines, bus_regions_onshore) + + average_length = pipelines["length"].mean() + print("average_length = ", average_length) + + total_system_capacity = pipelines["GWKm"].sum() + print("total_system_capacity = ", total_system_capacity) + + else: + print( + "The following countries have no existing Natural Gas network between the chosen bus regions:\n" + + ", ".join(bus_regions_onshore.country.unique().tolist()) + ) + + # Create an empty DataFrame with the specified column names + pipelines = {"bus0": [], "bus1": [], "capacity": [], "length": [], "GWKm": []} + + pipelines = pd.DataFrame(pipelines) + pipelines.to_csv(snakemake.output.clustered_gas_network, index=False) diff --git a/scripts/prepare_heat_data.py b/scripts/prepare_heat_data.py new file mode 100644 index 000000000..54c9dd959 --- /dev/null +++ b/scripts/prepare_heat_data.py @@ -0,0 +1,177 @@ +# -*- coding: utf-8 -*- +# SPDX-FileCopyrightText: PyPSA-Earth and PyPSA-Eur Authors +# +# SPDX-License-Identifier: AGPL-3.0-or-later +import os +from itertools import product + +import numpy as np +import pandas as pd +import pypsa +import pytz +import xarray as xr +from _helpers import mock_snakemake + + +def generate_periodic_profiles(dt_index, nodes, weekly_profile, localize=None): + """ + Give a 24*7 long list of weekly hourly profiles, generate this for each + country for the period dt_index, taking account of time zones and summer + time. + """ + + weekly_profile = pd.Series(weekly_profile, range(24 * 7)) + + week_df = pd.DataFrame(index=dt_index, columns=nodes) + + for node in nodes: + timezone = pytz.timezone(pytz.country_timezones[node[:2]][0]) + tz_dt_index = dt_index.tz_convert(timezone) + week_df[node] = [24 * dt.weekday() + dt.hour for dt in tz_dt_index] + week_df[node] = week_df[node].map(weekly_profile) + + week_df = week_df.tz_localize(localize) + + return week_df + + +def prepare_heat_data(n): + ashp_cop = ( + xr.open_dataarray(snakemake.input.cop_air_total) + .to_pandas() + .reindex(index=n.snapshots) + ) + gshp_cop = ( + xr.open_dataarray(snakemake.input.cop_soil_total) + .to_pandas() + .reindex(index=n.snapshots) + ) + + solar_thermal = ( + xr.open_dataarray(snakemake.input.solar_thermal_total) + .to_pandas() + .reindex(index=n.snapshots) + ) + # 1e3 converts from W/m^2 to MW/(1000m^2) = kW/m^2 + solar_thermal = options["solar_cf_correction"] * solar_thermal / 1e3 + + energy_totals = pd.read_csv( + snakemake.input.energy_totals_name, + index_col=0, + keep_default_na=False, + na_values=[""], + ) + + nodal_energy_totals = energy_totals.loc[pop_layout.ct].fillna(0.0) + nodal_energy_totals.index = pop_layout.index + # # district heat share not weighted by population + district_heat_share = nodal_energy_totals["district heat share"] # .round(2) + nodal_energy_totals = nodal_energy_totals.multiply(pop_layout.fraction, axis=0) + + # copy forward the daily average heat demand into each hour, so it can be multiplied by the intraday profile + daily_space_heat_demand = ( + xr.open_dataarray(snakemake.input.heat_demand_total) + .to_pandas() + .reindex(index=n.snapshots, method="ffill") + ) + + intraday_profiles = pd.read_csv( + snakemake.input.heat_profile, index_col=0 + ) # TODO GHALAT + + sectors = ["residential", "services"] + uses = ["water", "space"] + + heat_demand = {} + electric_heat_supply = {} + for sector, use in product(sectors, uses): + weekday = list(intraday_profiles[f"{sector} {use} weekday"]) + weekend = list(intraday_profiles[f"{sector} {use} weekend"]) + weekly_profile = weekday * 5 + weekend * 2 + intraday_year_profile = generate_periodic_profiles( + daily_space_heat_demand.index.tz_localize("UTC"), + nodes=daily_space_heat_demand.columns, + weekly_profile=weekly_profile, + ) + + if use == "space": + heat_demand_shape = daily_space_heat_demand * intraday_year_profile + else: + heat_demand_shape = intraday_year_profile + + heat_demand[f"{sector} {use}"] = ( + heat_demand_shape / heat_demand_shape.sum() + ).multiply( + nodal_energy_totals[f"total {sector} {use}"] + ) * 1e6 # TODO v0.0.2 + electric_heat_supply[f"{sector} {use}"] = ( + heat_demand_shape / heat_demand_shape.sum() + ).multiply( + nodal_energy_totals[f"electricity {sector} {use}"] + ) * 1e6 # TODO v0.0.2 + + heat_demand = pd.concat(heat_demand, axis=1) + electric_heat_supply = pd.concat(electric_heat_supply, axis=1) + + # subtract from electricity load since heat demand already in heat_demand #TODO v0.1 + # electric_nodes = n.loads.index[n.loads.carrier == "electricity"] + # n.loads_t.p_set[electric_nodes] = ( + # n.loads_t.p_set[electric_nodes] + # - electric_heat_supply.groupby(level=1, axis=1).sum()[electric_nodes] + # ) + + return ( + nodal_energy_totals, + heat_demand, + ashp_cop, + gshp_cop, + solar_thermal, + district_heat_share, + ) + + +if __name__ == "__main__": + if "snakemake" not in globals(): + from _helpers import mock_snakemake + + snakemake = mock_snakemake( + "prepare_heat_data", + simpl="", + clusters="10", + planning_horizons=2030, + demand="DF", + ) + + n = pypsa.Network(snakemake.input.network) + + # Get pop_layout + pop_layout = pd.read_csv( + snakemake.input.clustered_pop_layout, + index_col=0, + keep_default_na=False, + na_values=[""], + ) + + # Add options + options = snakemake.config["sector"] + + # Get Nyears + Nyears = n.snapshot_weightings.generators.sum() / 8760 + + # Prepare transport data + ( + nodal_energy_totals, + heat_demand, + ashp_cop, + gshp_cop, + solar_thermal, + district_heat_share, + ) = prepare_heat_data(n) + + # Save the generated output files to snakemake paths + nodal_energy_totals.to_csv(snakemake.output.nodal_energy_totals) + heat_demand.to_csv(snakemake.output.heat_demand) + ashp_cop.to_csv(snakemake.output.ashp_cop) + gshp_cop.to_csv(snakemake.output.gshp_cop) + solar_thermal.to_csv(snakemake.output.solar_thermal) + district_heat_share.to_csv(snakemake.output.district_heat_share) diff --git a/scripts/prepare_network.py b/scripts/prepare_network.py index 3b92cd31d..9106fc90d 100755 --- a/scripts/prepare_network.py +++ b/scripts/prepare_network.py @@ -87,12 +87,9 @@ def download_emission_data(): with requests.get(url) as rq: with open("data/co2.zip", "wb") as file: file.write(rq.content) - rootpath = os.getcwd() - file_path = os.path.join(rootpath, "data/co2.zip") + file_path = "data/co2.zip" with ZipFile(file_path, "r") as zipObj: - zipObj.extract( - "v60_CO2_excl_short-cycle_org_C_1970_2018.xls", rootpath + "/data" - ) + zipObj.extract("v60_CO2_excl_short-cycle_org_C_1970_2018.xls", "data") os.remove(file_path) return "v60_CO2_excl_short-cycle_org_C_1970_2018.xls" except: @@ -319,7 +316,6 @@ def set_line_nom_max(n, s_nom_max_set=np.inf, p_nom_max_set=np.inf): if "snakemake" not in globals(): from _helpers import mock_snakemake - os.chdir(os.path.dirname(os.path.abspath(__file__))) snakemake = mock_snakemake( "prepare_network", simpl="", @@ -327,6 +323,7 @@ def set_line_nom_max(n, s_nom_max_set=np.inf, p_nom_max_set=np.inf): ll="v0.3", opts="Co2L-24H", ) + configure_logging(snakemake) opts = snakemake.wildcards.opts.split("-") diff --git a/scripts/prepare_ports.py b/scripts/prepare_ports.py new file mode 100644 index 000000000..c1c0e9716 --- /dev/null +++ b/scripts/prepare_ports.py @@ -0,0 +1,104 @@ +# -*- coding: utf-8 -*- +# SPDX-FileCopyrightText: PyPSA-Earth and PyPSA-Eur Authors +# +# SPDX-License-Identifier: AGPL-3.0-or-later +import logging +import os +from pathlib import Path + +import country_converter as coco +import numpy as np +import pandas as pd + +# from _helpers import configure_logging + + +# logger = logging.getLogger(__name__) + + +def download_ports(): + """ + Downloads the world ports index csv File and NOT as shape or other because + it is updated on a monthly basis. + + The following csv file was downloaded from the webpage + https://msi.nga.mil/Publications/WPI + as a csv file that is updated monthly as mentioned on the webpage. The dataset contains 3711 ports. + """ + fn = "https://msi.nga.mil/api/publications/download?type=view&key=16920959/SFH00000/UpdatedPub150.csv" + wpi_csv = pd.read_csv(fn, index_col=0) + + return wpi_csv + + +if __name__ == "__main__": + if "snakemake" not in globals(): + from _helpers import mock_snakemake + + snakemake = mock_snakemake("prepare_ports") + + # configure_logging(snakemake) + + # run = snakemake.config.get("run", {}) + # RDIR = run["name"] + "/" if run.get("name") else "" + # store_path_data = Path.joinpath(Path().cwd(), "data") + # country_list = country_list_to_geofk(snakemake.config["countries"])' + + df = download_ports().copy() + + # Add ISO2 country code for each country + df = df.rename( + columns={ + "Country Code": "country_full_name", + "Latitude": "y", + "Longitude": "x", + "Main Port Name": "name", + } + ) + df["country"] = df.country_full_name.apply( + lambda x: coco.convert(names=x, to="ISO2", not_found=None) + ) + + # Drop small islands that have no ISO2: + df = df[df.country_full_name != "Wake Island"] + df = df[df.country_full_name != "Johnson Atoll"] + df = df[df.country_full_name != "Midway Islands"] + + # Select the columns that we need to keep + df = df.reset_index() + df = df[ + [ + "World Port Index Number", + "Region Name", + "name", + "Alternate Port Name", + "country", + "World Water Body", + "Liquified Natural Gas Terminal Depth (m)", + "Harbor Size", + "Harbor Type", + "Harbor Use", + "country_full_name", + "y", + "x", + ] + ] + + # Drop ports that are very small and that have unknown size (Unknown size ports are in total 19 and not suitable for H2 - checked visually) + ports = df.loc[df["Harbor Size"].isin(["Small", "Large", "Medium"])] + + ports.insert(8, "Harbor_size_nr", 1) + ports.loc[ports["Harbor Size"].isin(["Small"]), "Harbor_size_nr"] = 1 + ports.loc[ports["Harbor Size"].isin(["Medium"]), "Harbor_size_nr"] = 2 + ports.loc[ports["Harbor Size"].isin(["Large"]), "Harbor_size_nr"] = 3 + + df1 = ports.copy() + df1 = df1.groupby(["country_full_name"]).sum("Harbor_size_nr") + df1 = df1[["Harbor_size_nr"]] + df1 = df1.rename(columns={"Harbor_size_nr": "Total_Harbor_size_nr"}) + + ports = ports.set_index("country_full_name").join(df1, how="left") + + ports["fraction"] = ports["Harbor_size_nr"] / ports["Total_Harbor_size_nr"] + + ports.to_csv(snakemake.output[0], sep=",", encoding="utf-8", header="true") diff --git a/scripts/prepare_sector_network.py b/scripts/prepare_sector_network.py new file mode 100644 index 000000000..40b3400bf --- /dev/null +++ b/scripts/prepare_sector_network.py @@ -0,0 +1,2894 @@ +# -*- coding: utf-8 -*- +# SPDX-FileCopyrightText: PyPSA-Earth and PyPSA-Eur Authors +# +# SPDX-License-Identifier: AGPL-3.0-or-later + +# -*- coding: utf-8 -*- +import logging +import os +import re +from types import SimpleNamespace + +import numpy as np +import pandas as pd +import pypsa +import pytz +import ruamel.yaml +import xarray as xr +from _helpers import ( + create_dummy_data, + create_network_topology, + cycling_shift, + locate_bus, + mock_snakemake, + override_component_attrs, + prepare_costs, + safe_divide, + three_2_two_digits_country, + two_2_three_digits_country, +) +from prepare_transport_data import prepare_transport_data + +logger = logging.getLogger(__name__) + +spatial = SimpleNamespace() + + +def add_lifetime_wind_solar(n, costs): + """ + Add lifetime for solar and wind generators. + """ + for carrier in ["solar", "onwind", "offwind"]: + gen_i = n.generators.index.str.contains(carrier) + n.generators.loc[gen_i, "lifetime"] = costs.at[carrier, "lifetime"] + + +def add_carrier_buses(n, carrier, nodes=None): + """ + Add buses to connect e.g. coal, nuclear and oil plants. + """ + + if nodes is None: + nodes = vars(spatial)[carrier].nodes + location = vars(spatial)[carrier].locations + + # skip if carrier already exists + if carrier in n.carriers.index: + return + + if not isinstance(nodes, pd.Index): + nodes = pd.Index(nodes) + + n.add("Carrier", carrier, co2_emissions=costs.at[carrier, "CO2 intensity"]) + + n.madd("Bus", nodes, location=location, carrier=carrier) + + # capital cost could be corrected to e.g. 0.2 EUR/kWh * annuity and O&M + n.madd( + "Store", + nodes + " Store", + bus=nodes, + e_nom_extendable=True, + e_cyclic=True, + carrier=carrier, + ) + + n.madd( + "Generator", + nodes, + bus=nodes, + p_nom_extendable=True, + carrier=carrier, + marginal_cost=costs.at[carrier, "fuel"], + ) + + +def add_generation(n, costs): + """ + Adds conventional generation as specified in config. + + Args: + n (network): PyPSA prenetwork + costs (dataframe): _description_ + + Returns: + _type_: _description_ + """ """""" + + logger.info("adding electricity generation") + + # Not required, because nodes are already defined in "nodes" + # nodes = pop_layout.index + + fallback = {"OCGT": "gas"} + conventionals = options.get("conventional_generation", fallback) + + for generator, carrier in conventionals.items(): + add_carrier_buses(n, carrier) + carrier_nodes = vars(spatial)[carrier].nodes + n.madd( + "Link", + spatial.nodes + " " + generator, + bus0=carrier_nodes, + bus1=spatial.nodes, + bus2="co2 atmosphere", + marginal_cost=costs.at[generator, "efficiency"] + * costs.at[generator, "VOM"], # NB: VOM is per MWel + # NB: fixed cost is per MWel + capital_cost=costs.at[generator, "efficiency"] + * costs.at[generator, "fixed"], + p_nom_extendable=True, + carrier=generator, + efficiency=costs.at[generator, "efficiency"], + efficiency2=costs.at[carrier, "CO2 intensity"], + lifetime=costs.at[generator, "lifetime"], + ) + + +def add_oil(n, costs): + """ + Function to add oil carrier and bus to network. + + If-Statements are required in case oil was already added from config + ['sector']['conventional_generation'] Oil is copper plated + """ + # TODO function will not be necessary if conventionals are added using "add_carrier_buses()" + # TODO before using add_carrier_buses: remove_elec_base_techs(n), otherwise carriers are added double + # spatial.gas = SimpleNamespace() + + spatial.oil = SimpleNamespace() + + if options["oil"]["spatial_oil"]: + spatial.oil.nodes = spatial.nodes + " oil" + spatial.oil.locations = spatial.nodes + else: + spatial.oil.nodes = ["Africa oil"] + spatial.oil.locations = ["Africa"] + + if "oil" not in n.carriers.index: + n.add("Carrier", "oil") + + # Set the "co2_emissions" of the carrier "oil" to 0, because the emissions of oil usage taken from the spatial.oil.nodes are accounted separately (directly linked to the co2 atmosphere bus). Setting the carrier to 0 here avoids double counting. Be aware to link oil emissions to the co2 atmosphere bus. + n.carriers.loc["oil", "co2_emissions"] = 0 + # print("co2_emissions of oil set to 0 for testing") # TODO add logger.info + + n.madd( + "Bus", + spatial.oil.nodes, + location=spatial.oil.locations, + carrier="oil", + ) + + # if "Africa oil" not in n.buses.index: + + # n.add("Bus", "Africa oil", location="Africa", carrier="oil") + + # if "Africa oil Store" not in n.stores.index: + + e_initial = (snakemake.config["fossil_reserves"]).get("oil", 0) * 1e6 + # could correct to e.g. 0.001 EUR/kWh * annuity and O&M + n.madd( + "Store", + [oil_bus + " Store" for oil_bus in spatial.oil.nodes], + bus=spatial.oil.nodes, + e_nom_extendable=True, + e_cyclic=False, + carrier="oil", + e_initial=e_initial, + marginal_cost=costs.at["oil", "fuel"], + ) + + # TODO check non-unique generators + n.madd( + "Generator", + spatial.oil.nodes, + bus=spatial.oil.nodes, + p_nom_extendable=True, + carrier="oil", + marginal_cost=costs.at["oil", "fuel"], + ) + + +def add_gas(n, costs): + spatial.gas = SimpleNamespace() + + if options["gas"]["spatial_gas"]: + spatial.gas.nodes = spatial.nodes + " gas" + spatial.gas.locations = spatial.nodes + spatial.gas.biogas = spatial.nodes + " biogas" + spatial.gas.industry = spatial.nodes + " gas for industry" + if snakemake.config["sector"]["cc"]: + spatial.gas.industry_cc = spatial.nodes + " gas for industry CC" + spatial.gas.biogas_to_gas = spatial.nodes + " biogas to gas" + else: + spatial.gas.nodes = ["Africa gas"] + spatial.gas.locations = ["Africa"] + spatial.gas.biogas = ["Africa biogas"] + spatial.gas.industry = ["gas for industry"] + if snakemake.config["sector"]["cc"]: + spatial.gas.industry_cc = ["gas for industry CC"] + spatial.gas.biogas_to_gas = ["Africa biogas to gas"] + + spatial.gas.df = pd.DataFrame(vars(spatial.gas), index=spatial.nodes) + + gas_nodes = vars(spatial)["gas"].nodes + + add_carrier_buses(n, "gas", gas_nodes) + + +def H2_liquid_fossil_conversions(n, costs): + """ + Function to add conversions between H2 and liquid fossil Carrier and bus is + added in add_oil, which later on might be switched to add_generation. + """ + + n.madd( + "Link", + spatial.nodes + " Fischer-Tropsch", + bus0=spatial.nodes + " H2", + bus1=spatial.oil.nodes, + bus2=spatial.co2.nodes, + carrier="Fischer-Tropsch", + efficiency=costs.at["Fischer-Tropsch", "efficiency"], + capital_cost=costs.at["Fischer-Tropsch", "fixed"] + * costs.at[ + "Fischer-Tropsch", "efficiency" + ], # Use efficiency to convert from EUR/MW_FT/a to EUR/MW_H2/a + efficiency2=-costs.at["oil", "CO2 intensity"] + * costs.at["Fischer-Tropsch", "efficiency"], + p_nom_extendable=True, + p_min_pu=options.get("min_part_load_fischer_tropsch", 0), + lifetime=costs.at["Fischer-Tropsch", "lifetime"], + ) + + +def add_hydrogen(n, costs): + "function to add hydrogen as an energy carrier with its conversion technologies from and to AC" + + n.add("Carrier", "H2") + + n.madd( + "Bus", + spatial.nodes + " H2", + location=spatial.nodes, + carrier="H2", + x=n.buses.loc[list(spatial.nodes)].x.values, + y=n.buses.loc[list(spatial.nodes)].y.values, + ) + + if snakemake.config["sector"]["hydrogen"]["hydrogen_colors"]: + n.madd( + "Bus", + nodes + " grid H2", + location=nodes, + carrier="grid H2", + x=n.buses.loc[list(nodes)].x.values, + y=n.buses.loc[list(nodes)].y.values, + ) + + n.madd( + "Link", + nodes + " H2 Electrolysis", + bus0=nodes, + bus1=nodes + " grid H2", + p_nom_extendable=True, + carrier="H2 Electrolysis", + efficiency=costs.at["electrolysis", "efficiency"], + capital_cost=costs.at["electrolysis", "fixed"], + lifetime=costs.at["electrolysis", "lifetime"], + ) + + n.madd( + "Link", + nodes + " grid H2", + bus0=nodes + " grid H2", + bus1=nodes + " H2", + p_nom_extendable=True, + carrier="grid H2", + efficiency=1, + capital_cost=0, + ) + + else: + n.madd( + "Link", + nodes + " H2 Electrolysis", + bus1=nodes + " H2", + bus0=nodes, + p_nom_extendable=True, + carrier="H2 Electrolysis", + efficiency=costs.at["electrolysis", "efficiency"], + capital_cost=costs.at["electrolysis", "fixed"], + lifetime=costs.at["electrolysis", "lifetime"], + ) + + n.madd( + "Link", + spatial.nodes + " H2 Fuel Cell", + bus0=spatial.nodes + " H2", + bus1=spatial.nodes, + p_nom_extendable=True, + carrier="H2 Fuel Cell", + efficiency=costs.at["fuel cell", "efficiency"], + # NB: fixed cost is per MWel + capital_cost=costs.at["fuel cell", "fixed"] + * costs.at["fuel cell", "efficiency"], + lifetime=costs.at["fuel cell", "lifetime"], + ) + + cavern_nodes = pd.DataFrame() + + if snakemake.config["sector"]["hydrogen"]["underground_storage"]: + if snakemake.config["custom_data"]["h2_underground"]: + custom_cavern = pd.read_csv( + "data/custom/h2_underground_{0}_{1}.csv".format( + demand_sc, investment_year + ) + ) + # countries = n.buses.country.unique().to_list() + countries = snakemake.config["countries"] + custom_cavern = custom_cavern[custom_cavern.country.isin(countries)] + + cavern_nodes = n.buses[n.buses.country.isin(custom_cavern.country)] + + h2_pot = custom_cavern.set_index("id_region")["storage_cap_MWh"] + + h2_capital_cost = costs.at["hydrogen storage underground", "fixed"] + + # h2_pot.index = cavern_nodes.index + + # n.add("Carrier", "H2 UHS") + + n.madd( + "Bus", + nodes + " H2 UHS", + location=nodes, + carrier="H2 UHS", + x=n.buses.loc[list(nodes)].x.values, + y=n.buses.loc[list(nodes)].y.values, + ) + + n.madd( + "Store", + cavern_nodes.index + " H2 UHS", + bus=cavern_nodes.index + " H2 UHS", + e_nom_extendable=True, + e_nom_max=h2_pot.values, + e_cyclic=True, + carrier="H2 UHS", + capital_cost=h2_capital_cost, + ) + + n.madd( + "Link", + nodes + " H2 UHS charger", + bus0=nodes + " H2", + bus1=nodes + " H2 UHS", + carrier="H2 UHS charger", + # efficiency=costs.at["battery inverter", "efficiency"] ** 0.5, + # capital_cost=costs.at["battery inverter", "fixed"], + p_nom_extendable=True, + # lifetime=costs.at["battery inverter", "lifetime"], + ) + + n.madd( + "Link", + nodes + " H2 UHS discharger", + bus0=nodes + " H2 UHS", + bus1=nodes + " H2", + carrier="H2 UHS discharger", + efficiency=1, + # capital_cost=costs.at["battery inverter", "fixed"], + p_nom_extendable=True, + # lifetime=costs.at["battery inverter", "lifetime"], + ) + + else: + h2_salt_cavern_potential = pd.read_csv( + snakemake.input.h2_cavern, index_col=0 + ).squeeze() + h2_cavern_ct = h2_salt_cavern_potential[~h2_salt_cavern_potential.isna()] + cavern_nodes = n.buses[n.buses.country.isin(h2_cavern_ct.index)] + + h2_capital_cost = costs.at["hydrogen storage underground", "fixed"] + + # assumptions: weight storage potential in a country by population + # TODO: fix with real geographic potentials + # convert TWh to MWh with 1e6 + h2_pot = h2_cavern_ct.loc[cavern_nodes.country] + h2_pot.index = cavern_nodes.index + + # distribute underground potential equally over all nodes #TODO change with real data + s = pd.Series(h2_pot.index, index=h2_pot.index) + country_codes = s.str[:2] + code_counts = country_codes.value_counts() + fractions = country_codes.map(code_counts).rdiv(1) + h2_pot = h2_pot * fractions * 1e6 + + # n.add("Carrier", "H2 UHS") + + n.madd( + "Bus", + nodes + " H2 UHS", + location=nodes, + carrier="H2 UHS", + x=n.buses.loc[list(nodes)].x.values, + y=n.buses.loc[list(nodes)].y.values, + ) + + n.madd( + "Store", + cavern_nodes.index + " H2 UHS", + bus=cavern_nodes.index + " H2 UHS", + e_nom_extendable=True, + e_nom_max=h2_pot.values, + e_cyclic=True, + carrier="H2 UHS", + capital_cost=h2_capital_cost, + ) + + n.madd( + "Link", + nodes + " H2 UHS charger", + bus0=nodes, + bus1=nodes + " H2 UHS", + carrier="H2 UHS charger", + # efficiency=costs.at["battery inverter", "efficiency"] ** 0.5, + capital_cost=0, + p_nom_extendable=True, + # lifetime=costs.at["battery inverter", "lifetime"], + ) + + n.madd( + "Link", + nodes + " H2 UHS discharger", + bus0=nodes, + bus1=nodes + " H2 UHS", + carrier="H2 UHS discharger", + efficiency=1, + capital_cost=0, + p_nom_extendable=True, + # lifetime=costs.at["battery inverter", "lifetime"], + ) + + # hydrogen stored overground (where not already underground) + h2_capital_cost = costs.at[ + "hydrogen storage tank type 1 including compressor", "fixed" + ] + nodes_overground = nodes + n.madd( + "Store", + nodes_overground + " H2 Store Tank", + bus=nodes_overground + " H2", + e_nom_extendable=True, + e_cyclic=True, + carrier="H2 Store Tank", + capital_cost=h2_capital_cost, + ) + + # Hydrogen network: + # ----------------- + def add_links_repurposed_H2_pipelines(): + n.madd( + "Link", + h2_links.index + " repurposed", + bus0=h2_links.bus0.values + " H2", + bus1=h2_links.bus1.values + " H2", + p_min_pu=-1, + p_nom_extendable=True, + p_nom_max=h2_links.capacity.values + * 0.8, # https://gasforclimate2050.eu/wp-content/uploads/2020/07/2020_European-Hydrogen-Backbone_Report.pdf + length=h2_links.length.values, + capital_cost=costs.at["H2 (g) pipeline repurposed", "fixed"] + * h2_links.length.values, + carrier="H2 pipeline repurposed", + lifetime=costs.at["H2 (g) pipeline repurposed", "lifetime"], + ) + + def add_links_new_H2_pipelines(): + n.madd( + "Link", + h2_links.index, + bus0=h2_links.bus0.values + " H2", + bus1=h2_links.bus1.values + " H2", + p_min_pu=-1, + p_nom_extendable=True, + length=h2_links.length.values, + capital_cost=costs.at["H2 (g) pipeline", "fixed"] * h2_links.length.values, + carrier="H2 pipeline", + lifetime=costs.at["H2 (g) pipeline", "lifetime"], + ) + + def add_links_elec_routing_new_H2_pipelines(): + attrs = ["bus0", "bus1", "length"] + h2_links = pd.DataFrame(columns=attrs) + + candidates = pd.concat( + { + "lines": n.lines[attrs], + "links": n.links.loc[n.links.carrier == "DC", attrs], + } + ) + + for candidate in candidates.index: + buses = [ + candidates.at[candidate, "bus0"], + candidates.at[candidate, "bus1"], + ] + buses.sort() + name = f"H2 pipeline {buses[0]} -> {buses[1]}" + if name not in h2_links.index: + h2_links.at[name, "bus0"] = buses[0] + h2_links.at[name, "bus1"] = buses[1] + h2_links.at[name, "length"] = candidates.at[candidate, "length"] + + n.madd( + "Link", + h2_links.index, + bus0=h2_links.bus0.values + " H2", + bus1=h2_links.bus1.values + " H2", + p_min_pu=-1, + p_nom_extendable=True, + length=h2_links.length.values, + capital_cost=costs.at["H2 (g) pipeline", "fixed"] * h2_links.length.values, + carrier="H2 pipeline", + lifetime=costs.at["H2 (g) pipeline", "lifetime"], + ) + + # Add H2 Links: + if snakemake.config["sector"]["hydrogen"]["network"]: + h2_links = pd.read_csv(snakemake.input.pipelines) + + # Order buses to detect equal pairs for bidirectional pipelines + buses_ordered = h2_links.apply(lambda p: sorted([p.bus0, p.bus1]), axis=1) + + if snakemake.config["build_osm_network"]["force_ac"]: + # Appending string for carrier specification '_AC' + h2_links["bus0"] = buses_ordered.str[0] + "_AC" + h2_links["bus1"] = buses_ordered.str[1] + "_AC" + + # # Conversion of GADM id to from 3 to 2-digit + # h2_links["bus0"] = ( + # h2_links["bus0"] + # .str.split(".") + # .apply(lambda id: three_2_two_digits_country(id[0]) + "." + id[1]) + # ) + # h2_links["bus1"] = ( + # h2_links["bus1"] + # .str.split(".") + # .apply(lambda id: three_2_two_digits_country(id[0]) + "." + id[1]) + # ) + + # Create index column + h2_links["buses_idx"] = ( + "H2 pipeline " + h2_links["bus0"] + " -> " + h2_links["bus1"] + ) + + # Aggregate pipelines applying mean on length and sum on capacities + h2_links = h2_links.groupby("buses_idx").agg( + {"bus0": "first", "bus1": "first", "length": "mean", "capacity": "sum"} + ) + + if len(h2_links) > 0: + if snakemake.config["sector"]["hydrogen"]["gas_network_repurposing"]: + add_links_elec_routing_new_H2_pipelines() + if snakemake.config["sector"]["hydrogen"]["network_routes"] == "greenfield": + add_links_elec_routing_new_H2_pipelines() + else: + add_links_new_H2_pipelines() + else: + print( + "No existing gas network; applying greenfield for H2 network" + ) # TODO change to logger.info + add_links_elec_routing_new_H2_pipelines() + + if snakemake.config["sector"]["hydrogen"]["hydrogen_colors"]: + nuclear_gens_bus = n.generators[ + n.generators.carrier == "nuclear" + ].bus.values + buses_with_nuclear = n.buses.loc[nuclear_gens_bus] + buses_with_nuclear_ind = n.buses.loc[nuclear_gens_bus].index + + # nn.add("Carrier", "nuclear electricity") + # nn.add("Carrier", "pink H2") + + n.madd( + "Bus", + nuclear_gens_bus + " nuclear electricity", + location=buses_with_nuclear_ind, + carrier="nuclear electricity", + x=buses_with_nuclear.x.values, + y=buses_with_nuclear.y.values, + ) + + n.madd( + "Bus", + nuclear_gens_bus + " pink H2", + location=buses_with_nuclear_ind, + carrier="pink H2", + x=buses_with_nuclear.x.values, + y=buses_with_nuclear.y.values, + ) + + n.generators.loc[n.generators.carrier == "nuclear", "bus"] = ( + n.generators.loc[n.generators.carrier == "nuclear", "bus"] + + " nuclear electricity" + ) + + n.madd( + "Link", + buses_with_nuclear_ind + " nuclear-to-grid", + bus0=buses_with_nuclear_ind + " nuclear electricity", + bus1=buses_with_nuclear_ind, + carrier="nuclear-to-grid", + capital_cost=0, + p_nom_extendable=True, + # lifetime=costs.at["battery inverter", "lifetime"], + ) + + n.madd( + "Link", + buses_with_nuclear_ind + " high-temp electrolysis", + bus0=buses_with_nuclear_ind + " nuclear electricity", + bus1=buses_with_nuclear_ind + " pink H2", + carrier="high-temp electrolysis", + # capital_cost=0, + p_nom_extendable=True, + efficiency=costs.at["electrolysis", "efficiency"] + 0.1, + capital_cost=costs.at["electrolysis", "fixed"] + + costs.at["electrolysis", "fixed"] * 0.1, + lifetime=costs.at["electrolysis", "lifetime"], + ) + + n.madd( + "Link", + buses_with_nuclear_ind + " pink H2", + bus0=buses_with_nuclear_ind + " pink H2", + bus1=buses_with_nuclear_ind + " H2", + carrier="pink H2", + # efficiency=costs.at["battery inverter", "efficiency"] ** 0.5, + capital_cost=0, + p_nom_extendable=True, + # lifetime=costs.at["battery inverter", "lifetime"], + ) + + +def define_spatial(nodes, options): + """ + Namespace for spatial. + + Parameters + ---------- + nodes : list-like + """ + + global spatial + + spatial.nodes = nodes + + # biomass + + spatial.biomass = SimpleNamespace() + + if options["biomass_transport"]: + spatial.biomass.nodes = nodes + " solid biomass" + spatial.biomass.locations = nodes + spatial.biomass.industry = nodes + " solid biomass for industry" + spatial.biomass.industry_cc = nodes + " solid biomass for industry CC" + else: + spatial.biomass.nodes = ["Africa solid biomass"] + spatial.biomass.locations = ["Africa"] + spatial.biomass.industry = ["solid biomass for industry"] + spatial.biomass.industry_cc = ["solid biomass for industry CC"] + + spatial.biomass.df = pd.DataFrame(vars(spatial.biomass), index=nodes) + + # co2 + + spatial.co2 = SimpleNamespace() + + if options["co2_network"]: + spatial.co2.nodes = nodes + " co2 stored" + spatial.co2.locations = nodes + spatial.co2.vents = nodes + " co2 vent" + # spatial.co2.x = (n.buses.loc[list(nodes)].x.values,) + # spatial.co2.y = (n.buses.loc[list(nodes)].y.values,) + else: + spatial.co2.nodes = ["co2 stored"] + spatial.co2.locations = ["Africa"] + spatial.co2.vents = ["co2 vent"] + # spatial.co2.x = (0,) + # spatial.co2.y = 0 + + spatial.co2.df = pd.DataFrame(vars(spatial.co2), index=nodes) + + return spatial + + +def add_biomass(n, costs): + logger.info("adding biomass") + + # TODO get biomass potentials dataset and enable spatially resolved potentials + + # Get biomass and biogas potentials from config and convert from TWh to MWh + biomass_pot = snakemake.config["sector"]["solid_biomass_potential"] * 1e6 # MWh + biogas_pot = snakemake.config["sector"]["biogas_potential"] * 1e6 # MWh + logger.info("Biomass and Biogas potential fetched from config") + + # Convert from total to nodal potentials, + biomass_pot_spatial = biomass_pot / len(spatial.biomass.nodes) + biogas_pot_spatial = biogas_pot / len(spatial.gas.biogas) + logger.info("Biomass potentials spatially resolved equally across all nodes") + + n.add("Carrier", "biogas") + n.add("Carrier", "solid biomass") + + n.madd( + "Bus", spatial.gas.biogas, location=spatial.biomass.locations, carrier="biogas" + ) + + n.madd( + "Bus", + spatial.biomass.nodes, + location=spatial.biomass.locations, + carrier="solid biomass", + ) + + n.madd( + "Store", + spatial.gas.biogas, + bus=spatial.gas.biogas, + carrier="biogas", + e_nom=biogas_pot_spatial, + marginal_cost=costs.at["biogas", "fuel"], + e_initial=biogas_pot_spatial, + ) + + n.madd( + "Store", + spatial.biomass.nodes, + bus=spatial.biomass.nodes, + carrier="solid biomass", + e_nom=biomass_pot_spatial, + marginal_cost=costs.at["solid biomass", "fuel"], + e_initial=biomass_pot_spatial, + ) + + biomass_gen = "biomass EOP" + n.madd( + "Link", + spatial.nodes + " biomass EOP", + bus0=spatial.biomass.nodes, + bus1=spatial.nodes, + # bus2="co2 atmosphere", + marginal_cost=costs.at[biomass_gen, "efficiency"] + * costs.at[biomass_gen, "VOM"], # NB: VOM is per MWel + # NB: fixed cost is per MWel + capital_cost=costs.at[biomass_gen, "efficiency"] + * costs.at[biomass_gen, "fixed"], + p_nom_extendable=True, + carrier=biomass_gen, + efficiency=costs.at[biomass_gen, "efficiency"], + # efficiency2=costs.at["solid biomass", "CO2 intensity"], + lifetime=costs.at[biomass_gen, "lifetime"], + ) + n.madd( + "Link", + spatial.gas.biogas_to_gas, + bus0=spatial.gas.biogas, + bus1=spatial.gas.nodes, + bus2="co2 atmosphere", + carrier="biogas to gas", + capital_cost=costs.loc["biogas upgrading", "fixed"], + marginal_cost=costs.loc["biogas upgrading", "VOM"], + efficiency2=-costs.at["gas", "CO2 intensity"], + p_nom_extendable=True, + ) + + if options["biomass_transport"]: + # TODO add biomass transport costs + transport_costs = pd.read_csv( + snakemake.input.biomass_transport_costs, + index_col=0, + keep_default_na=False, + ).squeeze() + + # add biomass transport + biomass_transport = create_network_topology( + n, "biomass transport ", bidirectional=False + ) + + # costs + countries_not_in_index = set(countries) - set(biomass_transport.index) + if countries_not_in_index: + logger.info( + "No transport values found for {0}, using default value of {1}".format( + ", ".join(countries_not_in_index), + snakemake.config["sector"]["biomass_transport_default_cost"], + ) + ) + + bus0_costs = biomass_transport.bus0.apply( + lambda x: transport_costs.get( + x[:2], snakemake.config["sector"]["biomass_transport_default_cost"] + ) + ) + bus1_costs = biomass_transport.bus1.apply( + lambda x: transport_costs.get( + x[:2], snakemake.config["sector"]["biomass_transport_default_cost"] + ) + ) + biomass_transport["costs"] = pd.concat([bus0_costs, bus1_costs], axis=1).mean( + axis=1 + ) + + n.madd( + "Link", + biomass_transport.index, + bus0=biomass_transport.bus0 + " solid biomass", + bus1=biomass_transport.bus1 + " solid biomass", + p_nom_extendable=True, + length=biomass_transport.length.values, + marginal_cost=biomass_transport.costs * biomass_transport.length.values, + capital_cost=1, + carrier="solid biomass transport", + ) + + # n.madd( + # "Link", + # urban_central + " urban central solid biomass CHP", + # bus0=spatial.biomass.df.loc[urban_central, "nodes"].values, + # bus1=urban_central, + # bus2=urban_central + " urban central heat", + # carrier="urban central solid biomass CHP", + # p_nom_extendable=True, + # capital_cost=costs.at[key, "fixed"] * costs.at[key, "efficiency"], + # marginal_cost=costs.at[key, "VOM"], + # efficiency=costs.at[key, "efficiency"], + # efficiency2=costs.at[key, "efficiency-heat"], + # lifetime=costs.at[key, "lifetime"], + # ) + + # AC buses with district heating + urban_central = n.buses.index[n.buses.carrier == "urban central heat"] + if not urban_central.empty and options["chp"]: + urban_central = urban_central.str[: -len(" urban central heat")] + + key = "central solid biomass CHP" + + n.madd( + "Link", + urban_central + " urban central solid biomass CHP", + bus0=spatial.biomass.df.loc[urban_central, "nodes"].values, + bus1=urban_central, + bus2=urban_central + " urban central heat", + carrier="urban central solid biomass CHP", + p_nom_extendable=True, + capital_cost=costs.at[key, "fixed"] * costs.at[key, "efficiency"], + marginal_cost=costs.at[key, "VOM"], + efficiency=costs.at[key, "efficiency"], + efficiency2=costs.at[key, "efficiency-heat"], + lifetime=costs.at[key, "lifetime"], + ) + + if snakemake.config["sector"]["cc"]: + n.madd( + "Link", + urban_central + " urban central solid biomass CHP CC", + bus0=spatial.biomass.df.loc[urban_central, "nodes"].values, + bus1=urban_central, + bus2=urban_central + " urban central heat", + bus3="co2 atmosphere", + bus4=spatial.co2.df.loc[urban_central, "nodes"].values, + carrier="urban central solid biomass CHP CC", + p_nom_extendable=True, + capital_cost=costs.at[key, "fixed"] * costs.at[key, "efficiency"] + + costs.at["biomass CHP capture", "fixed"] + * costs.at["solid biomass", "CO2 intensity"], + marginal_cost=costs.at[key, "VOM"], + efficiency=costs.at[key, "efficiency"] + - costs.at["solid biomass", "CO2 intensity"] + * ( + costs.at["biomass CHP capture", "electricity-input"] + + costs.at["biomass CHP capture", "compression-electricity-input"] + ), + efficiency2=costs.at[key, "efficiency-heat"] + + costs.at["solid biomass", "CO2 intensity"] + * ( + costs.at["biomass CHP capture", "heat-output"] + + costs.at["biomass CHP capture", "compression-heat-output"] + - costs.at["biomass CHP capture", "heat-input"] + ), + efficiency3=-costs.at["solid biomass", "CO2 intensity"] + * costs.at["biomass CHP capture", "capture_rate"], + efficiency4=costs.at["solid biomass", "CO2 intensity"] + * costs.at["biomass CHP capture", "capture_rate"], + lifetime=costs.at[key, "lifetime"], + ) + + +def add_co2(n, costs): + "add carbon carrier, it's networks and storage units" + + # minus sign because opposite to how fossil fuels used: + # CH4 burning puts CH4 down, atmosphere up + n.add("Carrier", "co2", co2_emissions=-1.0) + + # this tracks CO2 in the atmosphere + n.add( + "Bus", + "co2 atmosphere", + location="Africa", # TODO Ignoed by pypsa check + carrier="co2", + ) + + # can also be negative + n.add( + "Store", + "co2 atmosphere", + e_nom_extendable=True, + e_min_pu=-1, + carrier="co2", + bus="co2 atmosphere", + ) + + # this tracks CO2 stored, e.g. underground + n.madd( + "Bus", + spatial.co2.nodes, + location=spatial.co2.locations, + carrier="co2 stored", + # x=spatial.co2.x[0], + # y=spatial.co2.y[0], + ) + """ + co2_stored_x = n.buses.filter(like="co2 stored", axis=0).loc[:, "x"] + co2_stored_y = n.buses.loc[n.buses[n.buses.carrier == "co2 + stored"].location].y. + + n.buses[n.buses.carrier == "co2 stored"].x = co2_stored_x.values + n.buses[n.buses.carrier == "co2 stored"].y = co2_stored_y.values + """ + + n.madd( + "Link", + spatial.co2.vents, + bus0=spatial.co2.nodes, + bus1="co2 atmosphere", + carrier="co2 vent", + efficiency=1.0, + p_nom_extendable=True, + ) + + # logger.info("Adding CO2 network.") + co2_links = create_network_topology(n, "CO2 pipeline ") + + cost_onshore = ( + (1 - co2_links.underwater_fraction) + * costs.at["CO2 pipeline", "fixed"] + * co2_links.length + ) + cost_submarine = ( + co2_links.underwater_fraction + * costs.at["CO2 submarine pipeline", "fixed"] + * co2_links.length + ) + capital_cost = cost_onshore + cost_submarine + + n.madd( + "Link", + co2_links.index, + bus0=co2_links.bus0.values + " co2 stored", + bus1=co2_links.bus1.values + " co2 stored", + p_min_pu=-1, + p_nom_extendable=True, + length=co2_links.length.values, + capital_cost=capital_cost.values, + carrier="CO2 pipeline", + lifetime=costs.at["CO2 pipeline", "lifetime"], + ) + + n.madd( + "Store", + spatial.co2.nodes, + e_nom_extendable=True, + e_nom_max=np.inf, + capital_cost=options["co2_sequestration_cost"], + carrier="co2 stored", + bus=spatial.co2.nodes, + ) + + # logger.info("Adding CO2 network.") + co2_links = create_network_topology(n, "CO2 pipeline ") + + cost_onshore = ( + (1 - co2_links.underwater_fraction) + * costs.at["CO2 pipeline", "fixed"] + * co2_links.length + ) + cost_submarine = ( + co2_links.underwater_fraction + * costs.at["CO2 submarine pipeline", "fixed"] + * co2_links.length + ) + capital_cost = cost_onshore + cost_submarine + + +def add_aviation(n, cost): + all_aviation = ["total international aviation", "total domestic aviation"] + + aviation_demand = ( + energy_totals.loc[countries, all_aviation].sum(axis=1).sum() # * 1e6 / 8760 + ) + + airports = pd.read_csv(snakemake.input.airports, keep_default_na=False) + airports = airports[airports.country.isin(countries)] + + gadm_level = options["gadm_level"] + + airports["gadm_{}".format(gadm_level)] = airports[["x", "y", "country"]].apply( + lambda airport: locate_bus( + airport[["x", "y"]], + airport["country"], + gadm_level, + snakemake.input.shapes_path, + snakemake.config["cluster_options"]["alternative_clustering"], + ), + axis=1, + ) + # To change 3 country code to 2 + # airports["gadm_{}".format(gadm_level)] = airports["gadm_{}".format(gadm_level)].apply( + # lambda cocode: three_2_two_digits_country(cocode[:3]) + " " + cocode[4:-2]) + + airports = airports.set_index("gadm_{}".format(gadm_level)) + + ind = pd.DataFrame(n.buses.index[n.buses.carrier == "AC"]) + + ind = ind.set_index(n.buses.index[n.buses.carrier == "AC"]) + airports["p_set"] = airports["fraction"].apply( + lambda frac: frac * aviation_demand * 1e6 / 8760 + ) + + airports = pd.concat([airports, ind]) + + # airports = airports.fillna(0) + + airports = airports.groupby(airports.index).sum() + n.madd( + "Load", + spatial.nodes, + suffix=" kerosene for aviation", + bus=spatial.oil.nodes, + carrier="kerosene for aviation", + p_set=airports["p_set"], + ) + + if snakemake.config["sector"]["international_bunkers"]: + co2 = airports["p_set"].sum() * costs.at["oil", "CO2 intensity"] + else: + domestic_to_total = energy_totals["total domestic aviation"] / ( + energy_totals["total international aviation"] + + energy_totals["total domestic aviation"] + ) + + co2 = ( + airports["p_set"].sum() + * domestic_to_total + * costs.at["oil", "CO2 intensity"] + ).sum() + + n.add( + "Load", + "aviation oil emissions", + bus="co2 atmosphere", + carrier="oil emissions", + p_set=-co2, + ) + + +def add_storage(n, costs): + "function to add the different types of storage systems" + n.add("Carrier", "battery") + + n.madd( + "Bus", + spatial.nodes + " battery", + location=spatial.nodes, + carrier="battery", + x=n.buses.loc[list(spatial.nodes)].x.values, + y=n.buses.loc[list(spatial.nodes)].y.values, + ) + + n.madd( + "Store", + spatial.nodes + " battery", + bus=spatial.nodes + " battery", + e_cyclic=True, + e_nom_extendable=True, + carrier="battery", + capital_cost=costs.at["battery storage", "fixed"], + lifetime=costs.at["battery storage", "lifetime"], + ) + + n.madd( + "Link", + spatial.nodes + " battery charger", + bus0=spatial.nodes, + bus1=spatial.nodes + " battery", + carrier="battery charger", + efficiency=costs.at["battery inverter", "efficiency"] ** 0.5, + capital_cost=costs.at["battery inverter", "fixed"], + p_nom_extendable=True, + lifetime=costs.at["battery inverter", "lifetime"], + ) + + n.madd( + "Link", + spatial.nodes + " battery discharger", + bus0=spatial.nodes + " battery", + bus1=spatial.nodes, + carrier="battery discharger", + efficiency=costs.at["battery inverter", "efficiency"] ** 0.5, + marginal_cost=options["marginal_cost_storage"], + p_nom_extendable=True, + lifetime=costs.at["battery inverter", "lifetime"], + ) + + +def h2_hc_conversions(n, costs): + "function to add the conversion technologies between H2 and hydrocarbons" + if options["methanation"]: + n.madd( + "Link", + spatial.nodes, + suffix=" Sabatier", + bus0=spatial.nodes + " H2", + bus1=spatial.gas.nodes, + bus2=spatial.co2.nodes, + p_nom_extendable=True, + carrier="Sabatier", + efficiency=costs.at["methanation", "efficiency"], + efficiency2=-costs.at["methanation", "efficiency"] + * costs.at["gas", "CO2 intensity"], + # costs given per kW_gas + capital_cost=costs.at["methanation", "fixed"] + * costs.at["methanation", "efficiency"], + lifetime=costs.at["methanation", "lifetime"], + ) + + if options["helmeth"]: + n.madd( + "Link", + spatial.nodes, + suffix=" helmeth", + bus0=spatial.nodes, + bus1=spatial.gas.nodes, + bus2=spatial.co2.nodes, + carrier="helmeth", + p_nom_extendable=True, + efficiency=costs.at["helmeth", "efficiency"], + efficiency2=-costs.at["helmeth", "efficiency"] + * costs.at["gas", "CO2 intensity"], + capital_cost=costs.at["helmeth", "fixed"], + lifetime=costs.at["helmeth", "lifetime"], + ) + + if options["SMR CC"]: + if snakemake.config["sector"]["hydrogen"]["hydrogen_colors"]: + n.madd( + "Bus", + nodes + " blue H2", + location=nodes, + carrier="blue H2", + x=n.buses.loc[list(nodes)].x.values, + y=n.buses.loc[list(nodes)].y.values, + ) + + n.madd( + "Link", + spatial.nodes, + suffix=" SMR CC", + bus0=spatial.gas.nodes, + bus1=nodes + " blue H2", + bus2="co2 atmosphere", + bus3=spatial.co2.nodes, + p_nom_extendable=True, + carrier="SMR CC", + efficiency=costs.at["SMR CC", "efficiency"], + efficiency2=costs.at["gas", "CO2 intensity"] + * (1 - options["cc_fraction"]), + efficiency3=costs.at["gas", "CO2 intensity"] * options["cc_fraction"], + capital_cost=costs.at["SMR CC", "fixed"], + lifetime=costs.at["SMR CC", "lifetime"], + ) + + n.madd( + "Link", + nodes + " blue H2", + bus0=nodes + " blue H2", + bus1=nodes + " H2", + carrier="blue H2", + capital_cost=0, + p_nom_extendable=True, + # lifetime=costs.at["battery inverter", "lifetime"], + ) + + else: + n.madd( + "Link", + spatial.nodes, + suffix=" SMR CC", + bus0=spatial.gas.nodes, + bus1=nodes + " H2", + bus2="co2 atmosphere", + bus3=spatial.co2.nodes, + p_nom_extendable=True, + carrier="SMR CC", + efficiency=costs.at["SMR CC", "efficiency"], + efficiency2=costs.at["gas", "CO2 intensity"] + * (1 - options["cc_fraction"]), + efficiency3=costs.at["gas", "CO2 intensity"] * options["cc_fraction"], + capital_cost=costs.at["SMR CC", "fixed"], + lifetime=costs.at["SMR CC", "lifetime"], + ) + + if options["SMR"]: + if snakemake.config["sector"]["hydrogen"]["hydrogen_colors"]: + n.madd( + "Bus", + nodes + " grey H2", + location=nodes, + carrier="grey H2", + x=n.buses.loc[list(nodes)].x.values, + y=n.buses.loc[list(nodes)].y.values, + ) + + n.madd( + "Link", + nodes + " SMR", + bus0=spatial.gas.nodes, + bus1=nodes + " grey H2", + bus2="co2 atmosphere", + p_nom_extendable=True, + carrier="SMR", + efficiency=costs.at["SMR", "efficiency"], + efficiency2=costs.at["gas", "CO2 intensity"], + capital_cost=costs.at["SMR", "fixed"], + lifetime=costs.at["SMR", "lifetime"], + ) + + n.madd( + "Link", + nodes + " grey H2", + bus0=nodes + " grey H2", + bus1=nodes + " H2", + carrier="grey H2", + capital_cost=0, + p_nom_extendable=True, + # lifetime=costs.at["battery inverter", "lifetime"], + ) + + else: + n.madd( + "Link", + nodes + " SMR", + bus0=spatial.gas.nodes, + bus1=nodes + " H2", + bus2="co2 atmosphere", + p_nom_extendable=True, + carrier="SMR", + efficiency=costs.at["SMR", "efficiency"], + efficiency2=costs.at["gas", "CO2 intensity"], + capital_cost=costs.at["SMR", "fixed"], + lifetime=costs.at["SMR", "lifetime"], + ) + + +def add_shipping(n, costs): + ports = pd.read_csv( + snakemake.input.ports, index_col=None, keep_default_na=False + ).squeeze() + ports = ports[ports.country.isin(countries)] + + gadm_level = options["gadm_level"] + + all_navigation = ["total international navigation", "total domestic navigation"] + + navigation_demand = ( + energy_totals.loc[countries, all_navigation].sum(axis=1).sum() # * 1e6 / 8760 + ) + + efficiency = ( + options["shipping_average_efficiency"] / costs.at["fuel cell", "efficiency"] + ) + + # check whether item depends on investment year + shipping_hydrogen_share = get( + options["shipping_hydrogen_share"], demand_sc + "_" + str(investment_year) + ) + + ports["gadm_{}".format(gadm_level)] = ports[["x", "y", "country"]].apply( + lambda port: locate_bus( + port[["x", "y"]], + port["country"], + gadm_level, + snakemake.input["shapes_path"], + snakemake.config["cluster_options"]["alternative_clustering"], + ), + axis=1, + ) + + ports = ports.set_index("gadm_{}".format(gadm_level)) + + ind = pd.DataFrame(n.buses.index[n.buses.carrier == "AC"]) + ind = ind.set_index(n.buses.index[n.buses.carrier == "AC"]) + + ports["p_set"] = ports["fraction"].apply( + lambda frac: shipping_hydrogen_share + * frac + * navigation_demand + * efficiency + * 1e6 + / 8760 + # TODO double check the use of efficiency + ) # TODO use real data here + + ports = pd.concat([ports, ind]).drop("Bus", axis=1) + + # ports = ports.fillna(0.0) + ports = ports.groupby(ports.index).sum() + + if options["shipping_hydrogen_liquefaction"]: + n.madd( + "Bus", + nodes, + suffix=" H2 liquid", + carrier="H2 liquid", + location=spatial.nodes, + ) + + # link the H2 supply to liquified H2 + n.madd( + "Link", + spatial.nodes + " H2 liquefaction", + bus0=spatial.nodes + " H2", + bus1=spatial.nodes + " H2 liquid", + carrier="H2 liquefaction", + efficiency=costs.at["H2 liquefaction", "efficiency"], + capital_cost=costs.at["H2 liquefaction", "fixed"], + p_nom_extendable=True, + lifetime=costs.at["H2 liquefaction", "lifetime"], + ) + + shipping_bus = spatial.nodes + " H2 liquid" + else: + shipping_bus = spatial.nodes + " H2" + + if not ( + snakemake.config["policy_config"]["hydrogen"]["is_reference"] + and snakemake.config["policy_config"]["hydrogen"]["remove_h2_load"] + ): + n.madd( + "Load", + nodes, + suffix=" H2 for shipping", + bus=shipping_bus, + carrier="H2 for shipping", + p_set=ports["p_set"], + ) + + if shipping_hydrogen_share < 1: + shipping_oil_share = 1 - shipping_hydrogen_share + + ports["p_set"] = ports["fraction"].apply( + lambda frac: shipping_oil_share * frac * navigation_demand * 1e6 / 8760 + ) + + n.madd( + "Load", + spatial.nodes, + suffix=" shipping oil", + bus=spatial.oil.nodes, + carrier="shipping oil", + p_set=ports["p_set"], + ) + + if snakemake.config["sector"]["international_bunkers"]: + co2 = ports["p_set"].sum() * costs.at["oil", "CO2 intensity"] + else: + domestic_to_total = energy_totals["total domestic navigation"] / ( + energy_totals["total domestic navigation"] + + energy_totals["total international navigation"] + ) + + co2 = ( + ports["p_set"].sum() + * domestic_to_total + * costs.at["oil", "CO2 intensity"] + ).sum() + + n.add( + "Load", + "shipping oil emissions", + bus="co2 atmosphere", + carrier="shipping oil emissions", + p_set=-co2, + ) + + if "oil" not in n.buses.carrier.unique(): + n.madd("Bus", spatial.oil.nodes, location=spatial.oil.locations, carrier="oil") + if "oil" not in n.stores.carrier.unique(): + # could correct to e.g. 0.001 EUR/kWh * annuity and O&M + n.madd( + "Store", + [oil_bus + " Store" for oil_bus in spatial.oil.nodes], + bus=spatial.oil.nodes, + e_nom_extendable=True, + e_cyclic=True, + carrier="oil", + ) + + if "oil" not in n.generators.carrier.unique(): + n.madd( + "Generator", + spatial.oil.nodes, + bus=spatial.oil.nodes, + p_nom_extendable=True, + carrier="oil", + marginal_cost=costs.at["oil", "fuel"], + ) + + +def add_industry(n, costs): + logger.info("adding industrial demand") + # 1e6 to convert TWh to MWh + + # industrial_demand.reset_index(inplace=True) + + # Add carrier Biomass + + n.madd( + "Bus", + spatial.biomass.industry, + location=spatial.biomass.locations, + carrier="solid biomass for industry", + ) + + if options["biomass_transport"]: + p_set = ( + industrial_demand.loc[spatial.biomass.locations, "solid biomass"].rename( + index=lambda x: x + " solid biomass for industry" + ) + / 8760 + ) + else: + p_set = industrial_demand["solid biomass"].sum() / 8760 + + n.madd( + "Load", + spatial.biomass.industry, + bus=spatial.biomass.industry, + carrier="solid biomass for industry", + p_set=p_set, + ) + + n.madd( + "Link", + spatial.biomass.industry, + bus0=spatial.biomass.nodes, + bus1=spatial.biomass.industry, + carrier="solid biomass for industry", + p_nom_extendable=True, + efficiency=1.0, + ) + if snakemake.config["sector"]["cc"]: + n.madd( + "Link", + spatial.biomass.industry_cc, + bus0=spatial.biomass.nodes, + bus1=spatial.biomass.industry, + bus2="co2 atmosphere", + bus3=spatial.co2.nodes, + carrier="solid biomass for industry CC", + p_nom_extendable=True, + capital_cost=costs.at["cement capture", "fixed"] + * costs.at["solid biomass", "CO2 intensity"], + efficiency=0.9, # TODO: make config option + efficiency2=-costs.at["solid biomass", "CO2 intensity"] + * costs.at["cement capture", "capture_rate"], + efficiency3=costs.at["solid biomass", "CO2 intensity"] + * costs.at["cement capture", "capture_rate"], + lifetime=costs.at["cement capture", "lifetime"], + ) + + # CARRIER = FOSSIL GAS + + # nodes = pop_layout.index + + # industrial_demand['TWh/a (MtCO2/a)'] = industrial_demand['TWh/a (MtCO2/a)'].apply( + # lambda cocode: two_2_three_digits_country(cocode[:2]) + "." + cocode[3:]) + + # industrial_demand.set_index("TWh/a (MtCO2/a)", inplace=True) + + # n.add("Bus", "gas for industry", location="Africa", carrier="gas for industry") + n.madd( + "Bus", + spatial.gas.industry, + location=spatial.gas.locations, + carrier="gas for industry", + ) + + gas_demand = industrial_demand.loc[spatial.nodes, "gas"] / 8760.0 + + if options["gas"]["spatial_gas"]: + spatial_gas_demand = gas_demand.rename(index=lambda x: x + " gas for industry") + else: + spatial_gas_demand = gas_demand.sum() + + n.madd( + "Load", + spatial.gas.industry, + bus=spatial.gas.industry, + carrier="gas for industry", + p_set=spatial_gas_demand, + ) + + n.madd( + "Link", + spatial.gas.industry, + # bus0="Africa gas", + bus0=spatial.gas.nodes, + # bus1="gas for industry", + bus1=spatial.gas.industry, + bus2="co2 atmosphere", + carrier="gas for industry", + p_nom_extendable=True, + efficiency=1.0, + efficiency2=costs.at["gas", "CO2 intensity"], + ) + if snakemake.config["sector"]["cc"]: + n.madd( + "Link", + spatial.gas.industry_cc, + # suffix=" gas for industry CC", + # bus0="Africa gas", + bus0=spatial.gas.nodes, + bus1=spatial.gas.industry, + bus2="co2 atmosphere", + bus3=spatial.co2.nodes, + carrier="gas for industry CC", + p_nom_extendable=True, + capital_cost=costs.at["cement capture", "fixed"] + * costs.at["gas", "CO2 intensity"], + efficiency=0.9, + efficiency2=costs.at["gas", "CO2 intensity"] + * (1 - costs.at["cement capture", "capture_rate"]), + efficiency3=costs.at["gas", "CO2 intensity"] + * costs.at["cement capture", "capture_rate"], + lifetime=costs.at["cement capture", "lifetime"], + ) + + #################################################### CARRIER = HYDROGEN + + if not ( + snakemake.config["policy_config"]["hydrogen"]["is_reference"] + and snakemake.config["policy_config"]["hydrogen"]["remove_h2_load"] + ): + n.madd( + "Load", + nodes, + suffix=" H2 for industry", + bus=nodes + " H2", + carrier="H2 for industry", + p_set=industrial_demand["hydrogen"].apply(lambda frac: frac / 8760), + ) + + # CARRIER = LIQUID HYDROCARBONS + n.madd( + "Load", + spatial.nodes, + suffix=" naphtha for industry", + bus=spatial.oil.nodes, + carrier="naphtha for industry", + p_set=industrial_demand["oil"] / 8760, + ) + + # #NB: CO2 gets released again to atmosphere when plastics decay or kerosene is burned + # #except for the process emissions when naphtha is used for petrochemicals, which can be captured with other industry process emissions + # #tco2 per hour + # TODO kerosene for aviation should be added too but in the right func. + co2_release = [" naphtha for industry"] + # check land transport + + co2 = ( + n.loads.loc[spatial.nodes + co2_release, "p_set"].sum() + * costs.at["oil", "CO2 intensity"] + # - industrial_demand["process emission from feedstock"].sum() + # / 8760 + ) + + n.add( + "Load", + "industry oil emissions", + bus="co2 atmosphere", + carrier="industry oil emissions", + p_set=-co2, + ) + + co2 = ( + industrial_demand["coal"].sum() + * costs.at["coal", "CO2 intensity"] + # - industrial_demand["process emission from feedstock"].sum() + / 8760 + ) + + n.add( + "Load", + "industry coal emissions", + bus="co2 atmosphere", + carrier="industry coal emissions", + p_set=-co2, + ) + + ########################################################### CARRIER = HEAT + # TODO simplify bus expression + n.madd( + "Load", + spatial.nodes, + suffix=" low-temperature heat for industry", + bus=[ + ( + node + " urban central heat" + if node + " urban central heat" in n.buses.index + else node + " services urban decentral heat" + ) + for node in spatial.nodes + ], + carrier="low-temperature heat for industry", + p_set=industrial_demand.loc[spatial.nodes, "low-temperature heat"] / 8760, + ) + + ################################################## CARRIER = ELECTRICITY + + # # remove today's industrial electricity demand by scaling down total electricity demand + for ct in n.buses.country.dropna().unique(): + # TODO map onto n.bus.country + # TODO make sure to check this one, should AC have carrier pf "electricity"? + loads_i = n.loads.index[ + (n.loads.index.str[:2] == ct) & (n.loads.carrier == "AC") + ] + if n.loads_t.p_set.columns.intersection(loads_i).empty: + continue + + # if not snakemake.config["custom_data"]["elec_demand"]: + # # if electricity demand is provided by pypsa-earth, the electricity used + # # in industry is included, and need to be removed from the default elec + # # demand here, and added as "industry electricity" + # factor = ( + # 1 + # - industrial_demand.loc[loads_i, "current electricity"].sum() + # / n.loads_t.p_set[loads_i].sum().sum() + # ) + # n.loads_t.p_set[loads_i] *= factor + # industrial_elec = industrial_demand["current electricity"].apply( + # lambda frac: frac / 8760 + # ) + + # else: + industrial_elec = industrial_demand["electricity"] / 8760 + + n.madd( + "Load", + spatial.nodes, + suffix=" industry electricity", + bus=spatial.nodes, + carrier="industry electricity", + p_set=industrial_elec, + ) + + n.add("Bus", "process emissions", location="Africa", carrier="process emissions") + + # this should be process emissions fossil+feedstock + # then need load on atmosphere for feedstock emissions that are currently going to atmosphere via Link Fischer-Tropsch demand + n.madd( + "Load", + spatial.nodes, + suffix=" process emissions", + bus="process emissions", + carrier="process emissions", + p_set=-( + # industrial_demand["process emission from feedstock"]+ + industrial_demand["process emissions"] + ) + / 8760, + ) + + n.add( + "Link", + "process emissions", + bus0="process emissions", + bus1="co2 atmosphere", + carrier="process emissions", + p_nom_extendable=True, + efficiency=1.0, + ) + + # assume enough local waste heat for CC + if snakemake.config["sector"]["cc"]: + n.madd( + "Link", + spatial.co2.locations, + suffix=" process emissions CC", + bus0="process emissions", + bus1="co2 atmosphere", + bus2=spatial.co2.nodes, + carrier="process emissions CC", + p_nom_extendable=True, + capital_cost=costs.at["cement capture", "fixed"], + efficiency=1 - costs.at["cement capture", "capture_rate"], + efficiency2=costs.at["cement capture", "capture_rate"], + lifetime=costs.at["cement capture", "lifetime"], + ) + + +def get(item, investment_year=None): + """ + Check whether item depends on investment year. + """ + if isinstance(item, dict): + return item[investment_year] + else: + return item + + +""" +Missing data: + - transport + - aviation data + - nodal_transport_data + - cycling_shift + - dsm_profile + - avail_profile +""" + + +def add_land_transport(n, costs): + """ + Function to add land transport to network. + """ + # TODO options? + + logger.info("adding land transport") + + if options["dynamic_transport"]["enable"] == False: + fuel_cell_share = get( + options["land_transport_fuel_cell_share"], + demand_sc + "_" + str(investment_year), + ) + electric_share = get( + options["land_transport_electric_share"], + demand_sc + "_" + str(investment_year), + ) + + elif options["dynamic_transport"]["enable"] == True: + fuel_cell_share = options["dynamic_transport"][ + "land_transport_fuel_cell_share" + ][snakemake.wildcards.opts] + electric_share = options["dynamic_transport"]["land_transport_electric_share"][ + snakemake.wildcards.opts + ] + + ice_share = 1 - fuel_cell_share - electric_share + + logger.info("FCEV share: {}".format(fuel_cell_share)) + logger.info("EV share: {}".format(electric_share)) + logger.info("ICEV share: {}".format(ice_share)) + + assert ice_share >= 0, "Error, more FCEV and EV share than 1." + + # Nodes are already defined, remove it from here + # nodes = pop_layout.index + + if electric_share > 0: + n.add("Carrier", "Li ion") + + n.madd( + "Bus", + spatial.nodes, + location=spatial.nodes, + suffix=" EV battery", + carrier="Li ion", + x=n.buses.loc[list(spatial.nodes)].x.values, + y=n.buses.loc[list(spatial.nodes)].y.values, + ) + + p_set = ( + electric_share + * ( + transport[spatial.nodes] + + cycling_shift(transport[spatial.nodes], 1) + + cycling_shift(transport[spatial.nodes], 2) + ) + / 3 + ) + + n.madd( + "Load", + spatial.nodes, + suffix=" land transport EV", + bus=spatial.nodes + " EV battery", + carrier="land transport EV", + p_set=p_set, + ) + + p_nom = ( + nodal_transport_data["number cars"] + * options.get("bev_charge_rate", 0.011) + * electric_share + ) + + n.madd( + "Link", + spatial.nodes, + suffix=" BEV charger", + bus0=spatial.nodes, + bus1=spatial.nodes + " EV battery", + p_nom=p_nom, + carrier="BEV charger", + p_max_pu=avail_profile[spatial.nodes], + efficiency=options.get("bev_charge_efficiency", 0.9), + # These were set non-zero to find LU infeasibility when availability = 0.25 + # p_nom_extendable=True, + # p_nom_min=p_nom, + # capital_cost=1e6, #i.e. so high it only gets built where necessary + ) + + if electric_share > 0 and options["v2g"]: + n.madd( + "Link", + spatial.nodes, + suffix=" V2G", + bus1=spatial.nodes, + bus0=spatial.nodes + " EV battery", + p_nom=p_nom, + carrier="V2G", + p_max_pu=avail_profile[spatial.nodes], + efficiency=options.get("bev_charge_efficiency", 0.9), + ) + + if electric_share > 0 and options["bev_dsm"]: + e_nom = ( + nodal_transport_data["number cars"] + * options.get("bev_energy", 0.05) + * options["bev_availability"] + * electric_share + ) + + n.madd( + "Store", + spatial.nodes, + suffix=" battery storage", + bus=spatial.nodes + " EV battery", + carrier="battery storage", + e_cyclic=True, + e_nom=e_nom, + e_max_pu=1, + e_min_pu=dsm_profile[spatial.nodes], + ) + + if fuel_cell_share > 0: + if not ( + snakemake.config["policy_config"]["hydrogen"]["is_reference"] + and snakemake.config["policy_config"]["hydrogen"]["remove_h2_load"] + ): + n.madd( + "Load", + nodes, + suffix=" land transport fuel cell", + bus=nodes + " H2", + carrier="land transport fuel cell", + p_set=fuel_cell_share + / options["transport_fuel_cell_efficiency"] + * transport[nodes], + ) + + if ice_share > 0: + if "oil" not in n.buses.carrier.unique(): + n.madd( + "Bus", spatial.oil.nodes, location=spatial.oil.locations, carrier="oil" + ) + ice_efficiency = options["transport_internal_combustion_efficiency"] + + n.madd( + "Load", + spatial.nodes, + suffix=" land transport oil", + bus=spatial.oil.nodes, + carrier="land transport oil", + p_set=ice_share / ice_efficiency * transport[spatial.nodes], + ) + + co2 = ( + ice_share + / ice_efficiency + * transport[spatial.nodes].sum().sum() + / 8760 + * costs.at["oil", "CO2 intensity"] + ) + + n.add( + "Load", + "land transport oil emissions", + bus="co2 atmosphere", + carrier="land transport oil emissions", + p_set=-co2, + ) + + +def create_nodes_for_heat_sector(): + # TODO pop_layout + + # rural are areas with low heating density and individual heating + # urban are areas with high heating density + # urban can be split into district heating (central) and individual heating (decentral) + + ct_urban = pop_layout.urban.groupby(pop_layout.ct).sum() + # distribution of urban population within a country + pop_layout["urban_ct_fraction"] = pop_layout.urban / pop_layout.ct.map(ct_urban.get) + + sectors = ["residential", "services"] + + h_nodes = {} + urban_fraction = pop_layout.urban / pop_layout[["rural", "urban"]].sum(axis=1) + + for sector in sectors: + h_nodes[sector + " rural"] = pop_layout.index + h_nodes[sector + " urban decentral"] = pop_layout.index + + # maximum potential of urban demand covered by district heating + central_fraction = options["district_heating"]["potential"] + # district heating share at each node + dist_fraction_node = ( + district_heat_share["district heat share"] + * pop_layout["urban_ct_fraction"] + / pop_layout["fraction"] + ) + h_nodes["urban central"] = dist_fraction_node.index + # if district heating share larger than urban fraction -> set urban + # fraction to district heating share + urban_fraction = pd.concat([urban_fraction, dist_fraction_node], axis=1).max(axis=1) + # difference of max potential and today's share of district heating + diff = (urban_fraction * central_fraction) - dist_fraction_node + progress = get(options["district_heating"]["progress"], investment_year) + dist_fraction_node += diff * progress + # logger.info( + # "The current district heating share compared to the maximum", + # f"possible is increased by a progress factor of\n{progress}", + # "resulting in a district heating share of", # "\n{dist_fraction_node}", #TODO fix district heat share + # ) + + return h_nodes, dist_fraction_node, urban_fraction + + +def add_heat(n, costs): + # TODO options? + # TODO pop_layout? + + logger.info("adding heat") + + sectors = ["residential", "services"] + + h_nodes, dist_fraction, urban_fraction = create_nodes_for_heat_sector() + + # NB: must add costs of central heating afterwards (EUR 400 / kWpeak, 50a, 1% FOM from Fraunhofer ISE) + + # exogenously reduce space heat demand + if options["reduce_space_heat_exogenously"]: + dE = get(options["reduce_space_heat_exogenously_factor"], investment_year) + # print(f"assumed space heat reduction of {dE*100} %") + for sector in sectors: + heat_demand[sector + " space"] = (1 - dE) * heat_demand[sector + " space"] + + heat_systems = [ + "residential rural", + "services rural", + "residential urban decentral", + "services urban decentral", + "urban central", + ] + + for name in heat_systems: + name_type = "central" if name == "urban central" else "decentral" + + n.add("Carrier", name + " heat") + + n.madd( + "Bus", + h_nodes[name] + " {} heat".format(name), + location=h_nodes[name], + carrier=name + " heat", + ) + + ## Add heat load + + for sector in sectors: + # heat demand weighting + if "rural" in name: + factor = 1 - urban_fraction[h_nodes[name]] + elif "urban central" in name: + factor = dist_fraction[h_nodes[name]] + elif "urban decentral" in name: + factor = urban_fraction[h_nodes[name]] - dist_fraction[h_nodes[name]] + else: + raise NotImplementedError( + f" {name} not in " f"heat systems: {heat_systems}" + ) + + if sector in name: + heat_load = ( + heat_demand[[sector + " water", sector + " space"]] + .groupby(level=1, axis=1) + .sum()[h_nodes[name]] + .multiply(factor) + ) + + if name == "urban central": + heat_load = ( + heat_demand.groupby(level=1, axis=1) + .sum()[h_nodes[name]] + .multiply( + factor * (1 + options["district_heating"]["district_heating_loss"]) + ) + ) + + n.madd( + "Load", + h_nodes[name], + suffix=f" {name} heat", + bus=h_nodes[name] + f" {name} heat", + carrier=name + " heat", + p_set=heat_load, + ) + + ## Add heat pumps + + heat_pump_type = "air" if "urban" in name else "ground" + + costs_name = f"{name_type} {heat_pump_type}-sourced heat pump" + cop = {"air": ashp_cop, "ground": gshp_cop} + efficiency = ( + cop[heat_pump_type][h_nodes[name]] + if options["time_dep_hp_cop"] + else costs.at[costs_name, "efficiency"] + ) + + n.madd( + "Link", + h_nodes[name], + suffix=f" {name} {heat_pump_type} heat pump", + bus0=h_nodes[name], + bus1=h_nodes[name] + f" {name} heat", + carrier=f"{name} {heat_pump_type} heat pump", + efficiency=efficiency, + capital_cost=costs.at[costs_name, "efficiency"] + * costs.at[costs_name, "fixed"], + p_nom_extendable=True, + lifetime=costs.at[costs_name, "lifetime"], + ) + + if options["tes"]: + n.add("Carrier", name + " water tanks") + + n.madd( + "Bus", + h_nodes[name] + f" {name} water tanks", + location=h_nodes[name], + carrier=name + " water tanks", + ) + + n.madd( + "Link", + h_nodes[name] + f" {name} water tanks charger", + bus0=h_nodes[name] + f" {name} heat", + bus1=h_nodes[name] + f" {name} water tanks", + efficiency=costs.at["water tank charger", "efficiency"], + carrier=name + " water tanks charger", + p_nom_extendable=True, + ) + + n.madd( + "Link", + h_nodes[name] + f" {name} water tanks discharger", + bus0=h_nodes[name] + f" {name} water tanks", + bus1=h_nodes[name] + f" {name} heat", + carrier=name + " water tanks discharger", + efficiency=costs.at["water tank discharger", "efficiency"], + p_nom_extendable=True, + ) + + if isinstance(options["tes_tau"], dict): + tes_time_constant_days = options["tes_tau"][name_type] + else: # TODO add logger + # logger.warning("Deprecated: a future version will require you to specify 'tes_tau' ", + # "for 'decentral' and 'central' separately.") + tes_time_constant_days = ( + options["tes_tau"] if name_type == "decentral" else 180.0 + ) + + # conversion from EUR/m^3 to EUR/MWh for 40 K diff and 1.17 kWh/m^3/K + capital_cost = ( + costs.at[name_type + " water tank storage", "fixed"] / 0.00117 / 40 + ) + + n.madd( + "Store", + h_nodes[name] + f" {name} water tanks", + bus=h_nodes[name] + f" {name} water tanks", + e_cyclic=True, + e_nom_extendable=True, + carrier=name + " water tanks", + standing_loss=1 - np.exp(-1 / 24 / tes_time_constant_days), + capital_cost=capital_cost, + lifetime=costs.at[name_type + " water tank storage", "lifetime"], + ) + + if options["boilers"]: + key = f"{name_type} resistive heater" + + n.madd( + "Link", + h_nodes[name] + f" {name} resistive heater", + bus0=h_nodes[name], + bus1=h_nodes[name] + f" {name} heat", + carrier=name + " resistive heater", + efficiency=costs.at[key, "efficiency"], + capital_cost=costs.at[key, "efficiency"] * costs.at[key, "fixed"], + p_nom_extendable=True, + lifetime=costs.at[key, "lifetime"], + ) + + key = f"{name_type} gas boiler" + + n.madd( + "Link", + h_nodes[name] + f" {name} gas boiler", + p_nom_extendable=True, + bus0=spatial.gas.nodes, + bus1=h_nodes[name] + f" {name} heat", + bus2="co2 atmosphere", + carrier=name + " gas boiler", + efficiency=costs.at[key, "efficiency"], + efficiency2=costs.at["gas", "CO2 intensity"], + capital_cost=costs.at[key, "efficiency"] * costs.at[key, "fixed"], + lifetime=costs.at[key, "lifetime"], + ) + + if options["solar_thermal"]: + n.add("Carrier", name + " solar thermal") + + n.madd( + "Generator", + h_nodes[name], + suffix=f" {name} solar thermal collector", + bus=h_nodes[name] + f" {name} heat", + carrier=name + " solar thermal", + p_nom_extendable=True, + capital_cost=costs.at[name_type + " solar thermal", "fixed"], + p_max_pu=solar_thermal[h_nodes[name]], + lifetime=costs.at[name_type + " solar thermal", "lifetime"], + ) + + if options["chp"] and name == "urban central": + # add gas CHP; biomass CHP is added in biomass section + n.madd( + "Link", + h_nodes[name] + " urban central gas CHP", + bus0=spatial.gas.nodes, + bus1=h_nodes[name], + bus2=h_nodes[name] + " urban central heat", + bus3="co2 atmosphere", + carrier="urban central gas CHP", + p_nom_extendable=True, + capital_cost=costs.at["central gas CHP", "fixed"] + * costs.at["central gas CHP", "efficiency"], + marginal_cost=costs.at["central gas CHP", "VOM"], + efficiency=costs.at["central gas CHP", "efficiency"], + efficiency2=costs.at["central gas CHP", "efficiency"] + / costs.at["central gas CHP", "c_b"], + efficiency3=costs.at["gas", "CO2 intensity"], + lifetime=costs.at["central gas CHP", "lifetime"], + ) + if snakemake.config["sector"]["cc"]: + n.madd( + "Link", + h_nodes[name] + " urban central gas CHP CC", + # bus0="Africa gas", + bus0=spatial.gas.nodes, + bus1=h_nodes[name], + bus2=h_nodes[name] + " urban central heat", + bus3="co2 atmosphere", + bus4=spatial.co2.df.loc[h_nodes[name], "nodes"].values, + carrier="urban central gas CHP CC", + p_nom_extendable=True, + capital_cost=costs.at["central gas CHP", "fixed"] + * costs.at["central gas CHP", "efficiency"] + + costs.at["biomass CHP capture", "fixed"] + * costs.at["gas", "CO2 intensity"], + marginal_cost=costs.at["central gas CHP", "VOM"], + efficiency=costs.at["central gas CHP", "efficiency"] + - costs.at["gas", "CO2 intensity"] + * ( + costs.at["biomass CHP capture", "electricity-input"] + + costs.at[ + "biomass CHP capture", "compression-electricity-input" + ] + ), + efficiency2=costs.at["central gas CHP", "efficiency"] + / costs.at["central gas CHP", "c_b"] + + costs.at["gas", "CO2 intensity"] + * ( + costs.at["biomass CHP capture", "heat-output"] + + costs.at["biomass CHP capture", "compression-heat-output"] + - costs.at["biomass CHP capture", "heat-input"] + ), + efficiency3=costs.at["gas", "CO2 intensity"] + * (1 - costs.at["biomass CHP capture", "capture_rate"]), + efficiency4=costs.at["gas", "CO2 intensity"] + * costs.at["biomass CHP capture", "capture_rate"], + lifetime=costs.at["central gas CHP", "lifetime"], + ) + + if options["chp"] and options["micro_chp"] and name != "urban central": + n.madd( + "Link", + h_nodes[name] + f" {name} micro gas CHP", + p_nom_extendable=True, + # bus0="Africa gas", + bus0=spatial.gas.nodes, + bus1=h_nodes[name], + bus2=h_nodes[name] + f" {name} heat", + bus3="co2 atmosphere", + carrier=name + " micro gas CHP", + efficiency=costs.at["micro CHP", "efficiency"], + efficiency2=costs.at["micro CHP", "efficiency-heat"], + efficiency3=costs.at["gas", "CO2 intensity"], + capital_cost=costs.at["micro CHP", "fixed"], + lifetime=costs.at["micro CHP", "lifetime"], + ) + + +def average_every_nhours(n, offset): + # logger.info(f'Resampling the network to {offset}') + m = n.copy(with_time=False) + + snapshot_weightings = n.snapshot_weightings.resample(offset.casefold()).sum() + m.set_snapshots(snapshot_weightings.index) + m.snapshot_weightings = snapshot_weightings + + for c in n.iterate_components(): + pnl = getattr(m, c.list_name + "_t") + for k, df in c.pnl.items(): + if not df.empty: + if c.list_name == "stores" and k == "e_max_pu": + pnl[k] = df.resample(offset.casefold()).min() + elif c.list_name == "stores" and k == "e_min_pu": + pnl[k] = df.resample(offset.casefold()).max() + else: + pnl[k] = df.resample(offset.casefold()).mean() + + return m + + +def add_dac(n, costs): + heat_carriers = ["urban central heat", "services urban decentral heat"] + heat_buses = n.buses.index[n.buses.carrier.isin(heat_carriers)] + locations = n.buses.location[heat_buses] + + efficiency2 = -( + costs.at["direct air capture", "electricity-input"] + + costs.at["direct air capture", "compression-electricity-input"] + ) + efficiency3 = -( + costs.at["direct air capture", "heat-input"] + - costs.at["direct air capture", "compression-heat-output"] + ) + + n.madd( + "Link", + heat_buses.str.replace(" heat", " DAC"), + bus0="co2 atmosphere", + bus1=spatial.co2.df.loc[locations, "nodes"].values, + bus2=locations.values, + bus3=heat_buses, + carrier="DAC", + capital_cost=costs.at["direct air capture", "fixed"], + efficiency=1.0, + efficiency2=efficiency2, + efficiency3=efficiency3, + p_nom_extendable=True, + lifetime=costs.at["direct air capture", "lifetime"], + ) + + +def add_services(n, costs): + nhours = n.snapshot_weightings.generators.sum() + buses = spatial.nodes.intersection(n.loads_t.p_set.columns) + + profile_residential = normalize_by_country( + n.loads_t.p_set[buses].reindex(columns=spatial.nodes, fill_value=0.0) + ).fillna(0) + + p_set_elec = p_set_from_scaling( + "services electricity", profile_residential, energy_totals, nhours + ) + + n.madd( + "Load", + spatial.nodes, + suffix=" services electricity", + bus=spatial.nodes, + carrier="services electricity", + p_set=p_set_elec, + ) + p_set_biomass = p_set_from_scaling( + "services biomass", profile_residential, energy_totals, nhours + ) + + n.madd( + "Load", + spatial.nodes, + suffix=" services biomass", + bus=spatial.biomass.nodes, + carrier="services biomass", + p_set=p_set_biomass, + ) + + # co2 = ( + # p_set_biomass.sum().sum() * costs.at["solid biomass", "CO2 intensity"] + # ) / 8760 + + # n.add( + # "Load", + # "services biomass emissions", + # bus="co2 atmosphere", + # carrier="biomass emissions", + # p_set=-co2, + # ) + p_set_oil = p_set_from_scaling( + "services oil", profile_residential, energy_totals, nhours + ) + + n.madd( + "Load", + spatial.nodes, + suffix=" services oil", + bus=spatial.oil.nodes, + carrier="services oil", + p_set=p_set_oil, + ) + + # TODO check with different snapshot settings + co2 = p_set_oil.sum(axis=1).mean() * costs.at["oil", "CO2 intensity"] + + n.add( + "Load", + "services oil emissions", + bus="co2 atmosphere", + carrier="oil emissions", + p_set=-co2, + ) + + p_set_gas = p_set_from_scaling( + "services gas", profile_residential, energy_totals, nhours + ) + + n.madd( + "Load", + spatial.nodes, + suffix=" services gas", + bus=spatial.gas.nodes, + carrier="services gas", + p_set=p_set_gas, + ) + + # TODO check with different snapshot settings + co2 = p_set_gas.sum(axis=1).mean() * costs.at["gas", "CO2 intensity"] + + n.add( + "Load", + "services gas emissions", + bus="co2 atmosphere", + carrier="gas emissions", + p_set=-co2, + ) + + +def add_agriculture(n, costs): + n.madd( + "Load", + spatial.nodes, + suffix=" agriculture electricity", + bus=spatial.nodes, + carrier="agriculture electricity", + p_set=nodal_energy_totals.loc[spatial.nodes, "agriculture electricity"] + * 1e6 + / 8760, + ) + + n.madd( + "Load", + spatial.nodes, + suffix=" agriculture oil", + bus=spatial.oil.nodes, + carrier="agriculture oil", + p_set=nodal_energy_totals.loc[spatial.nodes, "agriculture oil"] * 1e6 / 8760, + ) + co2 = ( + nodal_energy_totals.loc[spatial.nodes, "agriculture oil"] + * 1e6 + / 8760 + * costs.at["oil", "CO2 intensity"] + ).sum() + + n.add( + "Load", + "agriculture oil emissions", + bus="co2 atmosphere", + carrier="oil emissions", + p_set=-co2, + ) + + +def normalize_by_country(df, droplevel=False): + """ + Auxiliary function to normalize a dataframe by the country. + + If droplevel is False (default), the country level is added to the + column index If droplevel is True, the original column format is + preserved + """ + ret = df.T.groupby(df.columns.str[:2]).apply(lambda x: x / x.sum().sum()).T + if droplevel: + return ret.droplevel(0, axis=1) + else: + return ret + + +def group_by_node(df, multiindex=False): + """ + Auxiliary function to group a dataframe by the node name. + """ + ret = df.T.groupby(df.columns.str.split(" ").str[0]).sum().T + if multiindex: + ret.columns = pd.MultiIndex.from_tuples(zip(ret.columns.str[:2], ret.columns)) + return ret + + +def normalize_and_group(df, multiindex=False): + """ + Function to concatenate normalize_by_country and group_by_node. + """ + return group_by_node( + normalize_by_country(df, droplevel=True), multiindex=multiindex + ) + + +def p_set_from_scaling(col, scaling, energy_totals, nhours): + """ + Function to create p_set from energy_totals, using the per-unit scaling + dataframe. + """ + return ( + 1e6 + / nhours + * scaling.mul(energy_totals[col], level=0).droplevel(level=0, axis=1) + ) + + +def add_residential(n, costs): + # need to adapt for many countries #TODO + + # if snakemake.config["custom_data"]["heat_demand"]: + # heat_demand_index=n.loads_t.p.filter(like='residential').filter(like='heat').dropna(axis=1).index + # oil_res_index=n.loads_t.p.filter(like='residential').filter(like='oil').dropna(axis=1).index + + nhours = n.snapshot_weightings.generators.sum() + + heat_ind = ( + n.loads_t.p_set.filter(like="residential") + .filter(like="heat") + .dropna(axis=1) + .columns + ) + heat_shape_raw = normalize_by_country(n.loads_t.p_set[heat_ind]) + heat_shape = heat_shape_raw.rename( + columns=n.loads.bus.map(n.buses.location), level=1 + ) + heat_shape = heat_shape.T.groupby(level=[0, 1]).sum().T + + n.loads_t.p_set[heat_ind] = 1e6 * heat_shape_raw.mul( + energy_totals["total residential space"] + + energy_totals["total residential water"] + - energy_totals["residential heat biomass"] + - energy_totals["residential heat oil"] + - energy_totals["residential heat gas"], + level=0, + ).droplevel(level=0, axis=1).div(nhours) + + heat_oil_demand = p_set_from_scaling( + "residential heat oil", heat_shape, energy_totals, nhours + ) + heat_biomass_demand = p_set_from_scaling( + "residential heat biomass", heat_shape, energy_totals, nhours + ) + + heat_gas_demand = p_set_from_scaling( + "residential heat gas", heat_shape, energy_totals, nhours + ) + + res_index = spatial.nodes.intersection(n.loads_t.p_set.columns) + profile_residential_raw = normalize_by_country(n.loads_t.p_set[res_index]) + profile_residential = profile_residential_raw.rename( + columns=n.loads.bus.map(n.buses.location), level=1 + ) + profile_residential = profile_residential.T.groupby(level=[0, 1]).sum().T + + p_set_oil = ( + p_set_from_scaling( + "residential oil", profile_residential, energy_totals, nhours + ) + + heat_oil_demand + ) + + p_set_biomass = ( + p_set_from_scaling( + "residential biomass", profile_residential, energy_totals, nhours + ) + + heat_biomass_demand + ) + + p_set_gas = ( + p_set_from_scaling( + "residential gas", profile_residential, energy_totals, nhours + ) + + heat_gas_demand + ) + + n.madd( + "Load", + spatial.nodes, + suffix=" residential oil", + bus=spatial.oil.nodes, + carrier="residential oil", + p_set=p_set_oil, + ) + + # TODO: check 8760 compatibility with different snapshot settings + co2 = p_set_oil.sum(axis=1).mean() * costs.at["oil", "CO2 intensity"] + + n.add( + "Load", + "residential oil emissions", + bus="co2 atmosphere", + carrier="oil emissions", + p_set=-co2, + ) + n.madd( + "Load", + spatial.nodes, + suffix=" residential biomass", + bus=spatial.biomass.nodes, + carrier="residential biomass", + p_set=p_set_biomass, + ) + + n.madd( + "Load", + spatial.nodes, + suffix=" residential gas", + bus=spatial.gas.nodes, + carrier="residential gas", + p_set=p_set_gas, + ) + + # TODO: check 8760 compatibility with different snapshot settings + co2 = p_set_gas.sum(axis=1).mean() * costs.at["gas", "CO2 intensity"] + + n.add( + "Load", + "residential gas emissions", + bus="co2 atmosphere", + carrier="gas emissions", + p_set=-co2, + ) + + for country in countries: + rem_heat_demand = ( + energy_totals.loc[country, "total residential space"] + + energy_totals.loc[country, "total residential water"] + - energy_totals.loc[country, "residential heat biomass"] + - energy_totals.loc[country, "residential heat oil"] + - energy_totals.loc[country, "residential heat gas"] + ) + + heat_buses = (n.loads_t.p_set.filter(regex="heat").filter(like=country)).columns + + safe_division = safe_divide( + n.loads_t.p_set.filter(like=country)[heat_buses], + n.loads_t.p_set.filter(like=country)[heat_buses].sum().sum(), + ) + n.loads_t.p_set.loc[:, heat_buses] = np.where( + ~np.isnan(safe_division), + safe_division * rem_heat_demand * 1e6 / nhours, + 0.0, + ) + + # Revise residential electricity demand + buses = n.buses[n.buses.carrier == "AC"].index.intersection(n.loads_t.p_set.columns) + + profile_pu = normalize_by_country(n.loads_t.p_set[buses]).fillna(0) + n.loads_t.p_set.loc[:, buses] = p_set_from_scaling( + "electricity residential", profile_pu, energy_totals, nhours + ) + + +# def add_co2limit(n, Nyears=1.0, limit=0.0): +# print("Adding CO2 budget limit as per unit of 1990 levels of", limit) + +# countries = n.buses.country.dropna().unique() + +# sectors = emission_sectors_from_opts(opts) + +# # convert Mt to tCO2 +# co2_totals = 1e6 * pd.read_csv(snakemake.input.co2_totals_name, index_col=0) + +# co2_limit = co2_totals.loc[countries, sectors].sum().sum() + +# co2_limit *= limit * Nyears + +# n.add( +# "GlobalConstraint", +# "CO2Limit", +# carrier_attribute="co2_emissions", +# sense="<=", +# constant=co2_limit, +# ) + + +def add_custom_water_cost(n): + for country in countries: + water_costs = pd.read_csv( + "resources/custom_data/{}_water_costs.csv".format(country), + sep=",", + index_col=0, + ) + water_costs = water_costs.filter(like=country, axis=0).loc[spatial.nodes] + electrolysis_links = n.links.filter(like=country, axis=0).filter( + like="lectrolysis", axis=0 + ) + + elec_index = n.links[ + (n.links.carrier == "H2 Electrolysis") + & (n.links.bus0.str.contains(country)) + ].index + n.links.loc[elec_index, "marginal_cost"] = water_costs.values + # n.links.filter(like=country, axis=0).filter(like='lectrolysis', axis=0)["marginal_cost"] = water_costs.values + # n.links.filter(like=country, axis=0).filter(like='lectrolysis', axis=0).apply(lambda x: water_costs[x.index], axis=0) + # print(n.links.filter(like=country, axis=0).filter(like='lectrolysis', axis=0).marginal_cost) + + +def add_rail_transport(n, costs): + p_set_elec = nodal_energy_totals.loc[spatial.nodes, "electricity rail"] + p_set_oil = (nodal_energy_totals.loc[spatial.nodes, "total rail"]) - p_set_elec + + n.madd( + "Load", + spatial.nodes, + suffix=" rail transport oil", + bus=spatial.oil.nodes, + carrier=" rail transport oil", + p_set=p_set_oil * 1e6 / 8760, + ) + + n.madd( + "Load", + spatial.nodes, + suffix=" rail transport electricity", + bus=spatial.nodes, + carrier=" rail transport electricity", + p_set=p_set_elec * 1e6 / 8760, + ) + + +if __name__ == "__main__": + if "snakemake" not in globals(): + # from helper import mock_snakemake #TODO remove func from here to helper script + snakemake = mock_snakemake( + "prepare_sector_network", + simpl="", + clusters="19", + ll="c1.0", + opts="Co2L", + planning_horizons="2030", + sopts="72H", + discountrate="0.071", + demand="AB", + ) + + # Load population layout + pop_layout = pd.read_csv(snakemake.input.clustered_pop_layout, index_col=0) + + # Load all sector wildcards + options = snakemake.config["sector"] + + # Load input network + overrides = override_component_attrs(snakemake.input.overrides) + n = pypsa.Network(snakemake.input.network, override_component_attrs=overrides) + + # Fetch the country list from the network + # countries = list(n.buses.country.unique()) + countries = snakemake.config["countries"] + # Locate all the AC buses + nodes = n.buses[ + n.buses.carrier == "AC" + ].index # TODO if you take nodes from the index of buses of n it's more than pop_layout + # clustering of regions must be double checked.. refer to regions onshore + + # Add location. TODO: move it into pypsa-earth + n.buses.location = n.buses.index + + # Set carrier of AC loads + n.loads.loc[nodes, "carrier"] = "AC" + + Nyears = n.snapshot_weightings.generators.sum() / 8760 + + # Fetch wildcards + investment_year = int(snakemake.wildcards.planning_horizons[-4:]) + demand_sc = snakemake.wildcards.demand # loading the demand scenrario wildcard + pop_layout = pd.read_csv(snakemake.input.clustered_pop_layout, index_col=0) + + # Prepare the costs dataframe + costs = prepare_costs( + snakemake.input.costs, + snakemake.params.costs["USD2013_to_EUR2013"], + snakemake.params.costs["fill_values"], + Nyears, + ) + + # Define spatial for biomass and co2. They require the same spatial definition + spatial = define_spatial(pop_layout.index, options) + + if snakemake.config["foresight"] in ["myopic", "perfect"]: + add_lifetime_wind_solar(n, costs) + + # TODO logging + + nodal_energy_totals = pd.read_csv( + snakemake.input.nodal_energy_totals, + index_col=0, + keep_default_na=False, + na_values=[""], + ) + energy_totals = pd.read_csv( + snakemake.input.energy_totals, + index_col=0, + keep_default_na=False, + na_values=[""], + ) + # Get the data required for land transport + # TODO Leon, This contains transport demand, right? if so let's change it to transport_demand? + transport = pd.read_csv(snakemake.input.transport, index_col=0, parse_dates=True) + + avail_profile = pd.read_csv( + snakemake.input.avail_profile, index_col=0, parse_dates=True + ) + dsm_profile = pd.read_csv( + snakemake.input.dsm_profile, index_col=0, parse_dates=True + ) + nodal_transport_data = pd.read_csv( # TODO This only includes no. of cars, change name to something descriptive? + snakemake.input.nodal_transport_data, index_col=0 + ) + + # Load data required for the heat sector + heat_demand = pd.read_csv( + snakemake.input.heat_demand, index_col=0, header=[0, 1], parse_dates=True + ).fillna(0) + # Ground-sourced heatpump coefficient of performance + gshp_cop = pd.read_csv( + snakemake.input.gshp_cop, index_col=0, parse_dates=True + ) # only needed with heat dep. hp cop allowed from config + # TODO add option heat_dep_hp_cop to the config + + # Air-sourced heatpump coefficient of performance + ashp_cop = pd.read_csv( + snakemake.input.ashp_cop, index_col=0, parse_dates=True + ) # only needed with heat dep. hp cop allowed from config + + # Solar thermal availability profiles + solar_thermal = pd.read_csv( + snakemake.input.solar_thermal, index_col=0, parse_dates=True + ) + gshp_cop = pd.read_csv(snakemake.input.gshp_cop, index_col=0, parse_dates=True) + + # Share of district heating at each node + district_heat_share = pd.read_csv(snakemake.input.district_heat_share, index_col=0) + + # Load data required for aviation and navigation + # TODO follow the same structure as land transport and heat + + # Load industry demand data + industrial_demand = pd.read_csv( + snakemake.input.industrial_demand, index_col=0, header=0 + ) # * 1e6 + + ########################################################################## + ############## Functions adding different carrires and sectors ########### + ########################################################################## + + add_co2(n, costs) # TODO add costs + + # TODO This might be transferred to add_generation, but before apply remove_elec_base_techs(n) from PyPSA-Eur-Sec + add_oil(n, costs) + + add_gas(n, costs) + add_generation(n, costs) + + add_hydrogen(n, costs) # TODO add costs + + add_storage(n, costs) + + H2_liquid_fossil_conversions(n, costs) + + h2_hc_conversions(n, costs) + add_heat(n, costs) + add_biomass(n, costs) + + add_industry(n, costs) + + add_shipping(n, costs) + + # Add_aviation runs with dummy data + add_aviation(n, costs) + + # prepare_transport_data(n) + + add_land_transport(n, costs) + + # if snakemake.config["custom_data"]["transport_demand"]: + add_rail_transport(n, costs) + + # if snakemake.config["custom_data"]["custom_sectors"]: + add_agriculture(n, costs) + add_residential(n, costs) + add_services(n, costs) + + sopts = snakemake.wildcards.sopts.split("-") + + for o in sopts: + m = re.match(r"^\d+h$", o, re.IGNORECASE) + if m is not None: + n = average_every_nhours(n, m.group(0)) + break + + # TODO add co2 limit here, if necessary + # co2_limit_pu = eval(sopts[0][5:]) + # co2_limit = co2_limit_pu * + # # Add co2 limit + # co2_limit = 1e9 + # n.add( + # "GlobalConstraint", + # "CO2Limit", + # carrier_attribute="co2_emissions", + # sense="<=", + # constant=co2_limit, + # ) + + if options["dac"]: + add_dac(n, costs) + + if snakemake.config["custom_data"]["water_costs"]: + add_custom_water_cost(n) + + n.export_to_netcdf(snakemake.output[0]) + + # TODO changes in case of myopic oversight diff --git a/scripts/prepare_transport_data.py b/scripts/prepare_transport_data.py new file mode 100644 index 000000000..48e3bbcf7 --- /dev/null +++ b/scripts/prepare_transport_data.py @@ -0,0 +1,254 @@ +# -*- coding: utf-8 -*- +# SPDX-FileCopyrightText: PyPSA-Earth and PyPSA-Eur Authors +# +# SPDX-License-Identifier: AGPL-3.0-or-later +import os + +import numpy as np +import pandas as pd +import pypsa +import pytz +import xarray as xr + + +def transport_degree_factor( + temperature, + deadband_lower=15, + deadband_upper=20, + lower_degree_factor=0.5, + upper_degree_factor=1.6, +): + """ + Work out how much energy demand in vehicles increases due to heating and + cooling. + + There is a deadband where there is no increase. Degree factors are % + increase in demand compared to no heating/cooling fuel consumption. + Returns per unit increase in demand for each place and time + """ + + dd = temperature.copy() + + dd[(temperature > deadband_lower) & (temperature < deadband_upper)] = 0.0 + + dT_lower = deadband_lower - temperature[temperature < deadband_lower] + dd[temperature < deadband_lower] = lower_degree_factor / 100 * dT_lower + + dT_upper = temperature[temperature > deadband_upper] - deadband_upper + dd[temperature > deadband_upper] = upper_degree_factor / 100 * dT_upper + + return dd + + +def generate_periodic_profiles(dt_index, nodes, weekly_profile, localize=None): + """ + Give a 24*7 long list of weekly hourly profiles, generate this for each + country for the period dt_index, taking account of time zones and summer + time. + """ + + weekly_profile = pd.Series(weekly_profile, range(24 * 7)) + + week_df = pd.DataFrame(index=dt_index, columns=nodes) + + for node in nodes: + timezone = pytz.timezone(pytz.country_timezones[node[:2]][0]) + tz_dt_index = dt_index.tz_convert(timezone) + week_df[node] = [24 * dt.weekday() + dt.hour for dt in tz_dt_index] + week_df[node] = week_df[node].map(weekly_profile) + + week_df = week_df.tz_localize(localize) + + return week_df + + +def prepare_transport_data(n): + """ + Function to prepare the data required for the (land) transport sector. + """ + + energy_totals = pd.read_csv( + snakemake.input.energy_totals_name, + index_col=0, + keep_default_na=False, + na_values=[""], + ) # TODO change with real numbers + + nodal_energy_totals = energy_totals.loc[pop_layout.ct].fillna(0.0) + nodal_energy_totals.index = pop_layout.index + # # district heat share not weighted by population + # district_heat_share = nodal_energy_totals["district heat share"].round(2) + nodal_energy_totals = nodal_energy_totals.multiply(pop_layout.fraction, axis=0) + + # Get overall demand curve for all vehicles + + traffic = pd.read_csv( + snakemake.input.traffic_data_KFZ, skiprows=2, usecols=["count"] + ).squeeze("columns") + + # Generate profiles + transport_shape = generate_periodic_profiles( + dt_index=n.snapshots.tz_localize("UTC"), + nodes=pop_layout.index, + weekly_profile=traffic.values, + ) + + nodal_transport_shape = transport_shape / transport_shape.sum().sum() + transport_shape = transport_shape / transport_shape.sum() + + transport_data = pd.read_csv( + snakemake.input.transport_name, index_col=0, keep_default_na=False + ) + + nodal_transport_data = transport_data.reindex(pop_layout.ct, fill_value=0.0) + + nodal_transport_data.index = pop_layout.index + nodal_transport_data["number cars"] = ( + pop_layout["fraction"] * nodal_transport_data["number cars"] + ) + nodal_transport_data.loc[ + nodal_transport_data["average fuel efficiency"] == 0.0, + "average fuel efficiency", + ] = transport_data["average fuel efficiency"].mean() + + # electric motors are more efficient, so alter transport demand + + plug_to_wheels_eta = options.get("bev_plug_to_wheel_efficiency", 0.2) + battery_to_wheels_eta = plug_to_wheels_eta * options.get( + "bev_charge_efficiency", 0.9 + ) + + efficiency_gain = ( + nodal_transport_data["average fuel efficiency"] / battery_to_wheels_eta + ) + + # get heating demand for correction to demand time series + temperature = xr.open_dataarray(snakemake.input.temp_air_total).to_pandas() + + # correction factors for vehicle heating + dd_ICE = transport_degree_factor( + temperature, + options["transport_heating_deadband_lower"], + options["transport_heating_deadband_upper"], + options["ICE_lower_degree_factor"], + options["ICE_upper_degree_factor"], + ) + + dd_EV = transport_degree_factor( + temperature, + options["transport_heating_deadband_lower"], + options["transport_heating_deadband_upper"], + options["EV_lower_degree_factor"], + options["EV_upper_degree_factor"], + ) + + # divide out the heating/cooling demand from ICE totals + # and multiply back in the heating/cooling demand for EVs + ice_correction = (transport_shape * (1 + dd_ICE)).sum() / transport_shape.sum() + + if snakemake.config["custom_data"]["transport_demand"]: + energy_totals_transport = nodal_energy_totals["total road"] + + transport = transport_shape.multiply(energy_totals_transport) * 1e6 * Nyears + else: + energy_totals_transport = ( + nodal_energy_totals["total road"] + + nodal_energy_totals["total rail"] + - nodal_energy_totals["electricity rail"] + ) + transport = ( + (transport_shape.multiply(energy_totals_transport) * 1e6 * Nyears) + .divide(efficiency_gain * ice_correction) + .multiply(1 + dd_EV) + ) + + # derive plugged-in availability for PKW's (cars) + + traffic = pd.read_csv( + snakemake.input.traffic_data_Pkw, skiprows=2, usecols=["count"] + ).squeeze("columns") + + avail_max = options.get("bev_avail_max", 0.95) + avail_mean = options.get("bev_avail_mean", 0.8) + + avail = avail_max - (avail_max - avail_mean) * (traffic - traffic.min()) / ( + traffic.mean() - traffic.min() + ) + + avail_profile = generate_periodic_profiles( + dt_index=n.snapshots.tz_localize("UTC"), + nodes=pop_layout.index, + weekly_profile=avail.values, + ) + + dsm_week = np.zeros((24 * 7,)) + + dsm_week[(np.arange(0, 7, 1) * 24 + options["bev_dsm_restriction_time"])] = options[ + "bev_dsm_restriction_value" + ] + + dsm_profile = generate_periodic_profiles( + dt_index=n.snapshots.tz_localize("UTC"), + nodes=pop_layout.index, + weekly_profile=dsm_week, + ) + + return ( + nodal_energy_totals, + transport, + avail_profile, + dsm_profile, + nodal_transport_data, + ) + + +if __name__ == "__main__": + if "snakemake" not in globals(): + from _helpers import mock_snakemake + + snakemake = mock_snakemake( + "prepare_transport_data", + simpl="", + clusters="74", + demand="AB", + planning_horizons=2030, + ) + + n = pypsa.Network(snakemake.input.network) + + # Get population layout + pop_layout = pd.read_csv( + snakemake.input.clustered_pop_layout, + index_col=0, + keep_default_na=False, + na_values=[""], + ) + + # Add options + options = snakemake.config["sector"] + + # Get Nyears + Nyears = n.snapshot_weightings.generators.sum() / 8760 + + # Prepare transport data + ( + nodal_energy_totals, + transport, + avail_profile, + dsm_profile, + nodal_transport_data, + ) = prepare_transport_data(n) + + # Save the generated output files to snakemake paths + + # Transport demand per node per timestep + transport.to_csv(snakemake.output.transport) + + # Available share of the battery to be used by the grid + avail_profile.to_csv(snakemake.output.avail_profile) + + # Restrictions on state of charge of EVs + dsm_profile.to_csv(snakemake.output.dsm_profile) + + # Nodal data on number of cars + nodal_transport_data.to_csv(snakemake.output.nodal_transport_data) diff --git a/scripts/prepare_transport_data_input.py b/scripts/prepare_transport_data_input.py new file mode 100644 index 000000000..cffa163e2 --- /dev/null +++ b/scripts/prepare_transport_data_input.py @@ -0,0 +1,158 @@ +# -*- coding: utf-8 -*- +# SPDX-FileCopyrightText: PyPSA-Earth and PyPSA-Eur Authors +# +# SPDX-License-Identifier: AGPL-3.0-or-later +import logging +import os +import shutil +from pathlib import Path + +import country_converter as coco +import numpy as np +import pandas as pd + +# from _helpers import configure_logging + + +# logger = logging.getLogger(__name__) + + +def download_number_of_vehicles(): + """ + Downloads the Number of registered vehicles as .csv File. + + The following csv file was downloaded from the webpage + https://apps.who.int/gho/data/node.main.A995 + as a .csv file. + """ + fn = "https://apps.who.int/gho/athena/data/GHO/RS_194?filter=COUNTRY:*&ead=&x-sideaxis=COUNTRY;YEAR;DATASOURCE&x-topaxis=GHO&profile=crosstable&format=csv" + storage_options = {"User-Agent": "Mozilla/5.0"} + + # Read the 'Data' sheet directly from the csv file at the provided URL + try: + Nbr_vehicles_csv = pd.read_csv( + fn, storage_options=storage_options, encoding="utf8" + ) + print("File read successfully.") + except Exception as e: + print("Failed to read the file:", e) + return pd.DataFrame() + + Nbr_vehicles_csv = Nbr_vehicles_csv.rename( + columns={ + "Countries, territories and areas": "Country", + "Number of registered vehicles": "number cars", + } + ) + + # Add ISO2 country code for each country + cc = coco.CountryConverter() + Country = pd.Series(Nbr_vehicles_csv["Country"]) + Nbr_vehicles_csv["country"] = cc.pandas_convert( + series=Country, to="ISO2", not_found="not found" + ) + + # # Remove spaces, Replace empty values with NaN + Nbr_vehicles_csv["number cars"] = ( + Nbr_vehicles_csv["number cars"].str.replace(" ", "").replace("", np.nan) + ) + + # Drop rows with NaN values in 'number cars' + Nbr_vehicles_csv = Nbr_vehicles_csv.dropna(subset=["number cars"]) + + # convert the 'number cars' to integer + Nbr_vehicles_csv["number cars"] = Nbr_vehicles_csv["number cars"].astype(int) + + return Nbr_vehicles_csv + + +def download_CO2_emissions(): + """ + Downloads the CO2_emissions from vehicles as .csv File. + + The dataset is downloaded from the following link: https://data.worldbank.org/indicator/EN.CO2.TRAN.ZS?view=map + It is until the year 2014. # TODO: Maybe search for more recent years. + """ + url = ( + "https://api.worldbank.org/v2/en/indicator/EN.CO2.TRAN.ZS?downloadformat=excel" + ) + + # Read the 'Data' sheet directly from the Excel file at the provided URL + try: + CO2_emissions = pd.read_excel(url, sheet_name="Data", skiprows=[0, 1, 2]) + print("File read successfully.") + except Exception as e: + print("Failed to read the file:", e) + return pd.DataFrame() + + CO2_emissions = CO2_emissions[ + ["Country Name", "Country Code", "Indicator Name", "2014"] + ] + + # Calculate efficiency based on CO2 emissions from transport (% of total fuel combustion) + CO2_emissions["average fuel efficiency"] = (100 - CO2_emissions["2014"]) / 100 + + # Add ISO2 country code for each country + CO2_emissions = CO2_emissions.rename(columns={"Country Name": "Country"}) + cc = coco.CountryConverter() + Country = pd.Series(CO2_emissions["Country"]) + CO2_emissions["country"] = cc.pandas_convert( + series=Country, to="ISO2", not_found="not found" + ) + + # Drop region names that have no ISO2: + CO2_emissions = CO2_emissions[CO2_emissions.country != "not found"] + + return CO2_emissions + + +if __name__ == "__main__": + if "snakemake" not in globals(): + from _helpers import mock_snakemake + + snakemake = mock_snakemake("prepare_transport_data_input") + + # configure_logging(snakemake) + + # run = snakemake.config.get("run", {}) + # RDIR = run["name"] + "/" if run.get("name") else "" + # store_path_data = Path.joinpath(Path().cwd(), "data") + # country_list = country_list_to_geofk(snakemake.config["countries"])' + + # Downloaded and prepare vehicles_csv: + vehicles_csv = download_number_of_vehicles().copy() + + # Downloaded and prepare CO2_emissions_csv: + CO2_emissions_csv = download_CO2_emissions().copy() + + if vehicles_csv.empty or CO2_emissions_csv.empty: + # In case one of the urls is not working, we can use the hard-coded data + src = os.getcwd() + "/data/temp_hard_coded/transport_data.csv" + dest = snakemake.output.transport_data_input + shutil.copy(src, dest) + else: + # Join the DataFrames by the 'country' column + merged_df = pd.merge(vehicles_csv, CO2_emissions_csv, on="country") + merged_df = merged_df[["country", "number cars", "average fuel efficiency"]] + + # Drop rows with NaN values in 'average fuel efficiency' + merged_df = merged_df.dropna(subset=["average fuel efficiency"]) + + # Convert the 'average fuel efficiency' to float + merged_df["average fuel efficiency"] = merged_df[ + "average fuel efficiency" + ].astype(float) + + # Round the 'average fuel efficiency' to three decimal places + merged_df.loc[:, "average fuel efficiency"] = merged_df[ + "average fuel efficiency" + ].round(3) + + # Save the merged DataFrame to a CSV file + merged_df.to_csv( + snakemake.output.transport_data_input, + sep=",", + encoding="utf-8", + header="true", + index=False, + ) diff --git a/scripts/prepare_urban_percent.py b/scripts/prepare_urban_percent.py new file mode 100644 index 000000000..65e683dac --- /dev/null +++ b/scripts/prepare_urban_percent.py @@ -0,0 +1,105 @@ +# -*- coding: utf-8 -*- +# SPDX-FileCopyrightText: PyPSA-Earth and PyPSA-Eur Authors +# +# SPDX-License-Identifier: AGPL-3.0-or-later +import os + +import country_converter as coco +import pandas as pd +import py7zr +import requests + +# from _helpers import configure_logging + + +# logger = logging.getLogger(__name__) + + +def download_urban_percent(): + """ + Downloads the United Nations "Total and urban population, annual" .7z File + and extracts it as csv File. + + The above file was downloaded from the webpage + https://unctadstat.unctad.org/datacentre/ + as a .7z file. The dataset contains urban percent for most countries from 1950 and predictions until 2050. + """ + url = "https://unctadstat-api.unctad.org/api/reportMetadata/US.PopTotal/bulkfile/355/en" + + # Make a GET request to the URL + response = requests.get(url) + + # Check if the request was successful (status code 200) + if response.status_code == 200: + # Extract the filename from the Content-Disposition header + content_disposition = response.headers.get("Content-Disposition") + if content_disposition: + filename = content_disposition.split("filename=")[1].strip('"') + else: + filename = "downloaded_file.csv.7z" # Provide a default filename if Content-Disposition header is not present + + # Write the content of the response to a file + with open(filename, "wb") as f: + f.write(response.content) + + print(f"Urban percent downloaded successfully as {filename}") + + # Extract the downloaded .7z file + with py7zr.SevenZipFile(filename, "r") as archive: + archive.extractall() + + print(f"Urban percent extracted successfully") + + # Read the extracted CSV file + csv_filename = os.path.splitext(filename)[ + 0 + ] # Remove the .7z extension to get the CSV filename + urban_percent_orig = pd.read_csv(csv_filename) + + print("Urban percent CSV file read successfully:") + + # Remove the downloaded .7z and .csv files + os.remove(filename) + os.remove(csv_filename) + + else: + print(f"Failed to download file: Status code {response.status_code}") + + return urban_percent_orig + + +if __name__ == "__main__": + if "snakemake" not in globals(): + from _helpers import mock_snakemake + + snakemake = mock_snakemake("prepare_urban_percent") + + df = download_urban_percent().copy() + + # Select the columns that we need to keep + df = df[ + [ + "Year", + "Economy Label", + "Absolute value in thousands", + "Urban population as percentage of total population", + ] + ] + + # Keep only years above 2020 + df = df.loc[(df["Year"] >= 2020)] + + # Add ISO2 country code for each country + cc = coco.CountryConverter() + Economy_Label = pd.Series(df["Economy Label"]) + df["country"] = cc.pandas_convert( + series=Economy_Label, to="ISO2", not_found="not found" + ) + + # Drop isos that were not found: + df = df.loc[df["country"] != "not found"] + + df = df.set_index("country") + + # Save + df.to_csv(snakemake.output[0], sep=",", encoding="utf-8", header="true") diff --git a/scripts/retrieve_databundle_light.py b/scripts/retrieve_databundle_light.py index 1583cc245..cf6e4c3b9 100644 --- a/scripts/retrieve_databundle_light.py +++ b/scripts/retrieve_databundle_light.py @@ -93,7 +93,6 @@ create_country_list, create_logger, progress_retrieve, - sets_path_to_root, ) from google_drive_downloader import GoogleDriveDownloader as gdd from tqdm import tqdm @@ -511,7 +510,7 @@ def download_and_unzip_hydrobasins( file_path=file_path, resource=resource, destination=destination, - headers=[("User-agent", "Mozilla/5.0")], + headers={"User-agent": "Mozilla/5.0"}, hot_run=hot_run, unzip=True, disable_progress=disable_progress, @@ -800,7 +799,6 @@ def merge_hydrobasins_shape(config_hydrobasin, hydrobasins_level): "hybas_{0:s}_lev{1:02d}_v1c.shp".format(suffix, hydrobasins_level) for suffix in config_hydrobasin["urls"]["hydrobasins"]["suffixes"] ] - gpdf_list = [None] * len(files_to_merge) logger.info("Merging hydrobasins files into: " + output_fl) for i, f_name in tqdm(enumerate(files_to_merge)): @@ -813,28 +811,24 @@ def merge_hydrobasins_shape(config_hydrobasin, hydrobasins_level): if __name__ == "__main__": if "snakemake" not in globals(): - os.chdir(os.path.dirname(os.path.abspath(__file__))) + from _helpers import mock_snakemake snakemake = mock_snakemake("retrieve_databundle_light") + # TODO Make logging compatible with progressbar (see PR #102, PyPSA-Eur) configure_logging(snakemake) - sets_path_to_root("pypsa-earth") - - rootpath = os.getcwd() + rootpath = "." tutorial = snakemake.params.tutorial countries = snakemake.params.countries logger.info(f"Retrieving data for {len(countries)} countries.") - disable_progress = not snakemake.config.get("retrieve_databundle", {}).get( - "show_progress", True - ) - # load enable configuration config_enable = snakemake.config["enable"] # load databundle configuration config_bundles = load_databundle_config(snakemake.config["databundles"]) + disable_progress = not config_enable["progress_bar"] bundles_to_download = get_best_bundles( countries, config_bundles, tutorial, config_enable diff --git a/scripts/simplify_network.py b/scripts/simplify_network.py index 16e362844..502cf1b9d 100644 --- a/scripts/simplify_network.py +++ b/scripts/simplify_network.py @@ -976,8 +976,8 @@ def merge_isolated_nodes(n, threshold, aggregation_strategies=dict()): if "snakemake" not in globals(): from _helpers import mock_snakemake - os.chdir(os.path.dirname(os.path.abspath(__file__))) snakemake = mock_snakemake("simplify_network", simpl="") + configure_logging(snakemake) n = pypsa.Network(snakemake.input.network) diff --git a/scripts/solve_network.py b/scripts/solve_network.py index f83b47478..a9bbfbaa1 100755 --- a/scripts/solve_network.py +++ b/scripts/solve_network.py @@ -1,580 +1,1032 @@ -# -*- coding: utf-8 -*- -# SPDX-FileCopyrightText: PyPSA-Earth and PyPSA-Eur Authors -# -# SPDX-License-Identifier: AGPL-3.0-or-later - -# -*- coding: utf-8 -*- -""" -Solves linear optimal power flow for a network iteratively while updating -reactances. - -Relevant Settings ------------------ - -.. code:: yaml - - solving: - tmpdir: - options: - formulation: - clip_p_max_pu: - load_shedding: - noisy_costs: - nhours: - min_iterations: - max_iterations: - skip_iterations: - track_iterations: - solver: - name: - -.. seealso:: - Documentation of the configuration file ``config.yaml`` at - :ref:`electricity_cf`, :ref:`solving_cf`, :ref:`plotting_cf` - -Inputs ------- - -- ``networks/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}.nc``: confer :ref:`prepare` - -Outputs -------- - -- ``results/networks/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}.nc``: Solved PyPSA network including optimisation results - - .. image:: /img/results.png - :width: 40 % - -Description ------------ - -Total annual system costs are minimised with PyPSA. The full formulation of the -linear optimal power flow (plus investment planning) -is provided in the -`documentation of PyPSA `_. -The optimization is based on the ``pyomo=False`` setting in the :func:`network.lopf` and :func:`pypsa.linopf.ilopf` function. -Additionally, some extra constraints specified in :mod:`prepare_network` are added. - -Solving the network in multiple iterations is motivated through the dependence of transmission line capacities and impedances on values of corresponding flows. -As lines are expanded their electrical parameters change, which renders the optimisation bilinear even if the power flow -equations are linearized. -To retain the computational advantage of continuous linear programming, a sequential linear programming technique -is used, where in between iterations the line impedances are updated. -Details (and errors made through this heuristic) are discussed in the paper - -- Fabian Neumann and Tom Brown. `Heuristics for Transmission Expansion Planning in Low-Carbon Energy System Models `_), *16th International Conference on the European Energy Market*, 2019. `arXiv:1907.10548 `_. - -.. warning:: - Capital costs of existing network components are not included in the objective function, - since for the optimisation problem they are just a constant term (no influence on optimal result). - - Therefore, these capital costs are not included in ``network.objective``! - - If you want to calculate the full total annual system costs add these to the objective value. - -.. tip:: - The rule :mod:`solve_all_networks` runs - for all ``scenario`` s in the configuration file - the rule :mod:`solve_network`. -""" -import os -import re -from pathlib import Path - -import numpy as np -import pandas as pd -import pypsa -from _helpers import configure_logging, create_logger -from pypsa.descriptors import get_switchable_as_dense as get_as_dense -from pypsa.linopf import ( - define_constraints, - define_variables, - get_var, - ilopf, - join_exprs, - linexpr, - network_lopf, -) - -logger = create_logger(__name__) - - -def prepare_network(n, solve_opts): - if "clip_p_max_pu" in solve_opts: - for df in (n.generators_t.p_max_pu, n.storage_units_t.inflow): - df.where(df > solve_opts["clip_p_max_pu"], other=0.0, inplace=True) - - load_shedding = solve_opts.get("load_shedding") - if load_shedding: - n.add("Carrier", "Load") - buses_i = n.buses.query("carrier == 'AC'").index - if not np.isscalar(load_shedding): - load_shedding = 8e3 # Eur/kWh - # intersect between macroeconomic and surveybased - # willingness to pay - # http://journal.frontiersin.org/article/10.3389/fenrg.2015.00055/full) - # 1e2 is practical relevant, 8e3 good for debugging - n.madd( - "Generator", - buses_i, - " load", - bus=buses_i, - carrier="load", - sign=1e-3, # Adjust sign to measure p and p_nom in kW instead of MW - marginal_cost=load_shedding, - p_nom=1e9, # kW - ) - - if solve_opts.get("noisy_costs"): - for t in n.iterate_components(n.one_port_components): - # TODO: uncomment out to and test noisy_cost (makes solution unique) - # if 'capital_cost' in t.df: - # t.df['capital_cost'] += 1e1 + 2.*(np.random.random(len(t.df)) - 0.5) - if "marginal_cost" in t.df: - t.df["marginal_cost"] += 1e-2 + 2e-3 * ( - np.random.random(len(t.df)) - 0.5 - ) - - for t in n.iterate_components(["Line", "Link"]): - t.df["capital_cost"] += ( - 1e-1 + 2e-2 * (np.random.random(len(t.df)) - 0.5) - ) * t.df["length"] - - if solve_opts.get("nhours"): - nhours = solve_opts["nhours"] - n.set_snapshots(n.snapshots[:nhours]) - n.snapshot_weightings[:] = 8760.0 / nhours - - return n - - -def add_CCL_constraints(n, config): - agg_p_nom_limits = config["electricity"].get("agg_p_nom_limits") - - try: - agg_p_nom_minmax = pd.read_csv(agg_p_nom_limits, index_col=list(range(2))) - except IOError: - logger.exception( - "Need to specify the path to a .csv file containing " - "aggregate capacity limits per country in " - "config['electricity']['agg_p_nom_limit']." - ) - logger.info( - "Adding per carrier generation capacity constraints for " "individual countries" - ) - - gen_country = n.generators.bus.map(n.buses.country) - # cc means country and carrier - p_nom_per_cc = ( - pd.DataFrame( - { - "p_nom": linexpr((1, get_var(n, "Generator", "p_nom"))), - "country": gen_country, - "carrier": n.generators.carrier, - } - ) - .dropna(subset=["p_nom"]) - .groupby(["country", "carrier"]) - .p_nom.apply(join_exprs) - ) - minimum = agg_p_nom_minmax["min"].dropna() - if not minimum.empty: - minconstraint = define_constraints( - n, p_nom_per_cc[minimum.index], ">=", minimum, "agg_p_nom", "min" - ) - maximum = agg_p_nom_minmax["max"].dropna() - if not maximum.empty: - maxconstraint = define_constraints( - n, p_nom_per_cc[maximum.index], "<=", maximum, "agg_p_nom", "max" - ) - - -def add_EQ_constraints(n, o, scaling=1e-1): - float_regex = "[0-9]*\.?[0-9]+" - level = float(re.findall(float_regex, o)[0]) - if o[-1] == "c": - ggrouper = n.generators.bus.map(n.buses.country) - lgrouper = n.loads.bus.map(n.buses.country) - sgrouper = n.storage_units.bus.map(n.buses.country) - else: - ggrouper = n.generators.bus - lgrouper = n.loads.bus - sgrouper = n.storage_units.bus - load = ( - n.snapshot_weightings.generators - @ n.loads_t.p_set.groupby(lgrouper, axis=1).sum() - ) - inflow = ( - n.snapshot_weightings.stores - @ n.storage_units_t.inflow.groupby(sgrouper, axis=1).sum() - ) - inflow = inflow.reindex(load.index).fillna(0.0) - rhs = scaling * (level * load - inflow) - lhs_gen = ( - linexpr( - (n.snapshot_weightings.generators * scaling, get_var(n, "Generator", "p").T) - ) - .T.groupby(ggrouper, axis=1) - .apply(join_exprs) - ) - lhs_spill = ( - linexpr( - ( - -n.snapshot_weightings.stores * scaling, - get_var(n, "StorageUnit", "spill").T, - ) - ) - .T.groupby(sgrouper, axis=1) - .apply(join_exprs) - ) - lhs_spill = lhs_spill.reindex(lhs_gen.index).fillna("") - lhs = lhs_gen + lhs_spill - define_constraints(n, lhs, ">=", rhs, "equity", "min") - - -def add_BAU_constraints(n, config): - ext_c = n.generators.query("p_nom_extendable").carrier.unique() - mincaps = pd.Series( - config["electricity"].get("BAU_mincapacities", {key: 0 for key in ext_c}) - ) - lhs = ( - linexpr((1, get_var(n, "Generator", "p_nom"))) - .groupby(n.generators.carrier) - .apply(join_exprs) - ) - define_constraints(n, lhs, ">=", mincaps[lhs.index], "Carrier", "bau_mincaps") - - maxcaps = pd.Series( - config["electricity"].get("BAU_maxcapacities", {key: np.inf for key in ext_c}) - ) - lhs = ( - linexpr((1, get_var(n, "Generator", "p_nom"))) - .groupby(n.generators.carrier) - .apply(join_exprs) - ) - define_constraints(n, lhs, "<=", maxcaps[lhs.index], "Carrier", "bau_maxcaps") - - -def add_SAFE_constraints(n, config): - peakdemand = ( - 1.0 + config["electricity"]["SAFE_reservemargin"] - ) * n.loads_t.p_set.sum(axis=1).max() - conv_techs = config["plotting"]["conv_techs"] - exist_conv_caps = n.generators.query( - "~p_nom_extendable & carrier in @conv_techs" - ).p_nom.sum() - ext_gens_i = n.generators.query("carrier in @conv_techs & p_nom_extendable").index - lhs = linexpr((1, get_var(n, "Generator", "p_nom")[ext_gens_i])).sum() - rhs = peakdemand - exist_conv_caps - define_constraints(n, lhs, ">=", rhs, "Safe", "mintotalcap") - - -def add_operational_reserve_margin_constraint(n, config): - reserve_config = config["electricity"]["operational_reserve"] - EPSILON_LOAD = reserve_config["epsilon_load"] - EPSILON_VRES = reserve_config["epsilon_vres"] - CONTINGENCY = reserve_config["contingency"] - - # Reserve Variables - reserve = get_var(n, "Generator", "r") - lhs = linexpr((1, reserve)).sum(1) - - # Share of extendable renewable capacities - ext_i = n.generators.query("p_nom_extendable").index - vres_i = n.generators_t.p_max_pu.columns - if not ext_i.empty and not vres_i.empty: - capacity_factor = n.generators_t.p_max_pu[vres_i.intersection(ext_i)] - renewable_capacity_variables = get_var(n, "Generator", "p_nom")[ - vres_i.intersection(ext_i) - ] - lhs += linexpr( - (-EPSILON_VRES * capacity_factor, renewable_capacity_variables) - ).sum(1) - - # Total demand at t - demand = n.loads_t.p.sum(1) - - # VRES potential of non extendable generators - capacity_factor = n.generators_t.p_max_pu[vres_i.difference(ext_i)] - renewable_capacity = n.generators.p_nom[vres_i.difference(ext_i)] - potential = (capacity_factor * renewable_capacity).sum(1) - - # Right-hand-side - rhs = EPSILON_LOAD * demand + EPSILON_VRES * potential + CONTINGENCY - - define_constraints(n, lhs, ">=", rhs, "Reserve margin") - - -def update_capacity_constraint(n): - gen_i = n.generators.index - ext_i = n.generators.query("p_nom_extendable").index - fix_i = n.generators.query("not p_nom_extendable").index - - dispatch = get_var(n, "Generator", "p") - reserve = get_var(n, "Generator", "r") - - capacity_fixed = n.generators.p_nom[fix_i] - - p_max_pu = get_as_dense(n, "Generator", "p_max_pu") - - lhs = linexpr((1, dispatch), (1, reserve)) - - if not ext_i.empty: - capacity_variable = get_var(n, "Generator", "p_nom") - lhs += linexpr((-p_max_pu[ext_i], capacity_variable)).reindex( - columns=gen_i, fill_value="" - ) - - rhs = (p_max_pu[fix_i] * capacity_fixed).reindex(columns=gen_i, fill_value=0) - - define_constraints(n, lhs, "<=", rhs, "Generators", "updated_capacity_constraint") - - -def add_operational_reserve_margin(n, sns, config): - """ - Build reserve margin constraints based on the formulation given in - https://genxproject.github.io/GenX/dev/core/#Reserves. - """ - - define_variables(n, 0, np.inf, "Generator", "r", axes=[sns, n.generators.index]) - - add_operational_reserve_margin_constraint(n, config) - - update_capacity_constraint(n) - - -def add_battery_constraints(n): - nodes = n.buses.index[n.buses.carrier == "battery"] - if nodes.empty or ("Link", "p_nom") not in n.variables.index: - return - link_p_nom = get_var(n, "Link", "p_nom") - lhs = linexpr( - (1, link_p_nom[nodes + " charger"]), - ( - -n.links.loc[nodes + " discharger", "efficiency"].values, - link_p_nom[nodes + " discharger"].values, - ), - ) - define_constraints(n, lhs, "=", 0, "Link", "charger_ratio") - - -def add_RES_constraints(n, res_share): - lgrouper = n.loads.bus.map(n.buses.country) - ggrouper = n.generators.bus.map(n.buses.country) - sgrouper = n.storage_units.bus.map(n.buses.country) - cgrouper = n.links.bus0.map(n.buses.country) - - logger.warning( - "The add_RES_constraints functionality is still work in progress. " - "Unexpected results might be incurred, particularly if " - "temporal clustering is applied or if an unexpected change of technologies " - "is subject to the obtimisation." - ) - - load = ( - n.snapshot_weightings.generators - @ n.loads_t.p_set.groupby(lgrouper, axis=1).sum() - ) - - rhs = res_share * load - - res_techs = [ - "solar", - "onwind", - "offwind-dc", - "offwind-ac", - "battery", - "hydro", - "ror", - ] - charger = ["H2 electrolysis", "battery charger"] - discharger = ["H2 fuel cell", "battery discharger"] - - gens_i = n.generators.query("carrier in @res_techs").index - stores_i = n.storage_units.query("carrier in @res_techs").index - charger_i = n.links.query("carrier in @charger").index - discharger_i = n.links.query("carrier in @discharger").index - - # Generators - lhs_gen = ( - linexpr( - (n.snapshot_weightings.generators, get_var(n, "Generator", "p")[gens_i].T) - ) - .T.groupby(ggrouper, axis=1) - .apply(join_exprs) - ) - - # StorageUnits - lhs_dispatch = ( - ( - linexpr( - ( - n.snapshot_weightings.stores, - get_var(n, "StorageUnit", "p_dispatch")[stores_i].T, - ) - ) - .T.groupby(sgrouper, axis=1) - .apply(join_exprs) - ) - .reindex(lhs_gen.index) - .fillna("") - ) - - lhs_store = ( - ( - linexpr( - ( - -n.snapshot_weightings.stores, - get_var(n, "StorageUnit", "p_store")[stores_i].T, - ) - ) - .T.groupby(sgrouper, axis=1) - .apply(join_exprs) - ) - .reindex(lhs_gen.index) - .fillna("") - ) - - # Stores (or their resp. Link components) - # Note that the variables "p0" and "p1" currently do not exist. - # Thus, p0 and p1 must be derived from "p" (which exists), taking into account the link efficiency. - lhs_charge = ( - ( - linexpr( - ( - -n.snapshot_weightings.stores, - get_var(n, "Link", "p")[charger_i].T, - ) - ) - .T.groupby(cgrouper, axis=1) - .apply(join_exprs) - ) - .reindex(lhs_gen.index) - .fillna("") - ) - - lhs_discharge = ( - ( - linexpr( - ( - n.snapshot_weightings.stores.apply( - lambda r: r * n.links.loc[discharger_i].efficiency - ), - get_var(n, "Link", "p")[discharger_i], - ) - ) - .groupby(cgrouper, axis=1) - .apply(join_exprs) - ) - .reindex(lhs_gen.index) - .fillna("") - ) - - # signs of resp. terms are coded in the linexpr. - # todo: for links (lhs_charge and lhs_discharge), account for snapshot weightings - lhs = lhs_gen + lhs_dispatch + lhs_store + lhs_charge + lhs_discharge - - define_constraints(n, lhs, "=", rhs, "RES share") - - -def extra_functionality(n, snapshots): - """ - Collects supplementary constraints which will be passed to - ``pypsa.linopf.network_lopf``. - - If you want to enforce additional custom constraints, this is a good location to add them. - The arguments ``opts`` and ``snakemake.config`` are expected to be attached to the network. - """ - opts = n.opts - config = n.config - if "BAU" in opts and n.generators.p_nom_extendable.any(): - add_BAU_constraints(n, config) - if "SAFE" in opts and n.generators.p_nom_extendable.any(): - add_SAFE_constraints(n, config) - if "CCL" in opts and n.generators.p_nom_extendable.any(): - add_CCL_constraints(n, config) - reserve = config["electricity"].get("operational_reserve", {}) - if reserve.get("activate"): - add_operational_reserve_margin(n, snapshots, config) - for o in opts: - if "RES" in o: - res_share = float(re.findall("[0-9]*\.?[0-9]+$", o)[0]) - add_RES_constraints(n, res_share) - for o in opts: - if "EQ" in o: - add_EQ_constraints(n, o) - add_battery_constraints(n) - - -def solve_network(n, config, opts="", **kwargs): - solver_options = config["solving"]["solver"].copy() - solver_name = solver_options.pop("name") - cf_solving = config["solving"]["options"] - track_iterations = cf_solving.get("track_iterations", False) - min_iterations = cf_solving.get("min_iterations", 4) - max_iterations = cf_solving.get("max_iterations", 6) - - # add to network for extra_functionality - n.config = config - n.opts = opts - - if cf_solving.get("skip_iterations", False): - network_lopf( - n, - solver_name=solver_name, - solver_options=solver_options, - extra_functionality=extra_functionality, - **kwargs, - ) - else: - ilopf( - n, - solver_name=solver_name, - solver_options=solver_options, - track_iterations=track_iterations, - min_iterations=min_iterations, - max_iterations=max_iterations, - extra_functionality=extra_functionality, - **kwargs, - ) - return n - - -if __name__ == "__main__": - if "snakemake" not in globals(): - from _helpers import mock_snakemake - - os.chdir(os.path.dirname(os.path.abspath(__file__))) - snakemake = mock_snakemake( - "solve_network", - simpl="", - clusters="54", - ll="copt", - opts="Co2L-1H", - ) - configure_logging(snakemake) - - tmpdir = snakemake.params.solving.get("tmpdir") - if tmpdir is not None: - Path(tmpdir).mkdir(parents=True, exist_ok=True) - opts = snakemake.wildcards.opts.split("-") - solve_opts = snakemake.params.solving["options"] - - n = pypsa.Network(snakemake.input[0]) - if snakemake.params.augmented_line_connection.get("add_to_snakefile"): - n.lines.loc[n.lines.index.str.contains("new"), "s_nom_min"] = ( - snakemake.params.augmented_line_connection.get("min_expansion") - ) - n = prepare_network(n, solve_opts) - - n = solve_network( - n, - config=snakemake.config, - opts=opts, - solver_dir=tmpdir, - solver_logfile=snakemake.log.solver, - ) - n.meta = dict(snakemake.config, **dict(wildcards=dict(snakemake.wildcards))) - n.export_to_netcdf(snakemake.output[0]) - logger.info(f"Objective function: {n.objective}") - logger.info(f"Objective constant: {n.objective_constant}") +# -*- coding: utf-8 -*- +# SPDX-FileCopyrightText: PyPSA-Earth and PyPSA-Eur Authors +# +# SPDX-License-Identifier: AGPL-3.0-or-later + +# -*- coding: utf-8 -*- +""" +Solves linear optimal power flow for a network iteratively while updating +reactances. + +Relevant Settings +----------------- + +.. code:: yaml + + solving: + tmpdir: + options: + formulation: + clip_p_max_pu: + load_shedding: + noisy_costs: + nhours: + min_iterations: + max_iterations: + skip_iterations: + track_iterations: + solver: + name: + +.. seealso:: + Documentation of the configuration file ``config.yaml`` at + :ref:`electricity_cf`, :ref:`solving_cf`, :ref:`plotting_cf` + +Inputs +------ + +- ``networks/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}.nc``: confer :ref:`prepare` + +Outputs +------- + +- ``results/networks/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}.nc``: Solved PyPSA network including optimisation results + + .. image:: /img/results.png + :width: 40 % + +Description +----------- + +Total annual system costs are minimised with PyPSA. The full formulation of the +linear optimal power flow (plus investment planning) +is provided in the +`documentation of PyPSA `_. +The optimization is based on the ``pyomo=False`` setting in the :func:`network.lopf` and :func:`pypsa.linopf.ilopf` function. +Additionally, some extra constraints specified in :mod:`prepare_network` are added. + +Solving the network in multiple iterations is motivated through the dependence of transmission line capacities and impedances on values of corresponding flows. +As lines are expanded their electrical parameters change, which renders the optimisation bilinear even if the power flow +equations are linearized. +To retain the computational advantage of continuous linear programming, a sequential linear programming technique +is used, where in between iterations the line impedances are updated. +Details (and errors made through this heuristic) are discussed in the paper + +- Fabian Neumann and Tom Brown. `Heuristics for Transmission Expansion Planning in Low-Carbon Energy System Models `_), *16th International Conference on the European Energy Market*, 2019. `arXiv:1907.10548 `_. + +.. warning:: + Capital costs of existing network components are not included in the objective function, + since for the optimisation problem they are just a constant term (no influence on optimal result). + + Therefore, these capital costs are not included in ``network.objective``! + + If you want to calculate the full total annual system costs add these to the objective value. + +.. tip:: + The rule :mod:`solve_all_networks` runs + for all ``scenario`` s in the configuration file + the rule :mod:`solve_network`. +""" +import logging +import os +import re +from pathlib import Path + +import numpy as np +import pandas as pd +import pypsa +from _helpers import configure_logging, create_logger, override_component_attrs +from pypsa.descriptors import get_switchable_as_dense as get_as_dense +from pypsa.linopf import ( + define_constraints, + define_variables, + get_var, + ilopf, + join_exprs, + linexpr, + network_lopf, +) +from pypsa.linopt import define_constraints, get_var, join_exprs, linexpr + +logger = create_logger(__name__) +pypsa.pf.logger.setLevel(logging.WARNING) + + +def prepare_network(n, solve_opts): + if "clip_p_max_pu" in solve_opts: + for df in ( + n.generators_t.p_max_pu, + n.generators_t.p_min_pu, + n.storage_units_t.inflow, + ): + df.where(df > solve_opts["clip_p_max_pu"], other=0.0, inplace=True) + + if "lv_limit" in n.global_constraints.index: + n.line_volume_limit = n.global_constraints.at["lv_limit", "constant"] + n.line_volume_limit_dual = n.global_constraints.at["lv_limit", "mu"] + + if solve_opts.get("load_shedding"): + n.add("Carrier", "Load") + n.madd( + "Generator", + n.buses.index, + " load", + bus=n.buses.index, + carrier="load", + sign=1e-3, # Adjust sign to measure p and p_nom in kW instead of MW + marginal_cost=1e2, # Eur/kWh + # intersect between macroeconomic and surveybased + # willingness to pay + # http://journal.frontiersin.org/article/10.3389/fenrg.2015.00055/full + p_nom=1e9, # kW + ) + + if solve_opts.get("noisy_costs"): + for t in n.iterate_components(): + # if 'capital_cost' in t.df: + # t.df['capital_cost'] += 1e1 + 2.*(np.random.random(len(t.df)) - 0.5) + if "marginal_cost" in t.df: + np.random.seed(174) + t.df["marginal_cost"] += 1e-2 + 2e-3 * ( + np.random.random(len(t.df)) - 0.5 + ) + + for t in n.iterate_components(["Line", "Link"]): + np.random.seed(123) + t.df["capital_cost"] += ( + 1e-1 + 2e-2 * (np.random.random(len(t.df)) - 0.5) + ) * t.df["length"] + + if solve_opts.get("nhours"): + nhours = solve_opts["nhours"] + n.set_snapshots(n.snapshots[:nhours]) + n.snapshot_weightings[:] = 8760.0 / nhours + + if snakemake.config["foresight"] == "myopic": + add_land_use_constraint(n) + + return n + + +def add_CCL_constraints(n, config): + agg_p_nom_limits = config["electricity"].get("agg_p_nom_limits") + + try: + agg_p_nom_minmax = pd.read_csv(agg_p_nom_limits, index_col=list(range(2))) + except IOError: + logger.exception( + "Need to specify the path to a .csv file containing " + "aggregate capacity limits per country in " + "config['electricity']['agg_p_nom_limit']." + ) + logger.info( + "Adding per carrier generation capacity constraints for " "individual countries" + ) + + gen_country = n.generators.bus.map(n.buses.country) + # cc means country and carrier + p_nom_per_cc = ( + pd.DataFrame( + { + "p_nom": linexpr((1, get_var(n, "Generator", "p_nom"))), + "country": gen_country, + "carrier": n.generators.carrier, + } + ) + .dropna(subset=["p_nom"]) + .groupby(["country", "carrier"]) + .p_nom.apply(join_exprs) + ) + minimum = agg_p_nom_minmax["min"].dropna() + if not minimum.empty: + minconstraint = define_constraints( + n, p_nom_per_cc[minimum.index], ">=", minimum, "agg_p_nom", "min" + ) + maximum = agg_p_nom_minmax["max"].dropna() + if not maximum.empty: + maxconstraint = define_constraints( + n, p_nom_per_cc[maximum.index], "<=", maximum, "agg_p_nom", "max" + ) + + +def add_EQ_constraints(n, o, scaling=1e-1): + float_regex = "[0-9]*\.?[0-9]+" + level = float(re.findall(float_regex, o)[0]) + if o[-1] == "c": + ggrouper = n.generators.bus.map(n.buses.country) + lgrouper = n.loads.bus.map(n.buses.country) + sgrouper = n.storage_units.bus.map(n.buses.country) + else: + ggrouper = n.generators.bus + lgrouper = n.loads.bus + sgrouper = n.storage_units.bus + load = ( + n.snapshot_weightings.generators + @ n.loads_t.p_set.groupby(lgrouper, axis=1).sum() + ) + inflow = ( + n.snapshot_weightings.stores + @ n.storage_units_t.inflow.groupby(sgrouper, axis=1).sum() + ) + inflow = inflow.reindex(load.index).fillna(0.0) + rhs = scaling * (level * load - inflow) + lhs_gen = ( + linexpr( + (n.snapshot_weightings.generators * scaling, get_var(n, "Generator", "p").T) + ) + .T.groupby(ggrouper, axis=1) + .apply(join_exprs) + ) + lhs_spill = ( + linexpr( + ( + -n.snapshot_weightings.stores * scaling, + get_var(n, "StorageUnit", "spill").T, + ) + ) + .T.groupby(sgrouper, axis=1) + .apply(join_exprs) + ) + lhs_spill = lhs_spill.reindex(lhs_gen.index).fillna("") + lhs = lhs_gen + lhs_spill + define_constraints(n, lhs, ">=", rhs, "equity", "min") + + +def add_BAU_constraints(n, config): + ext_c = n.generators.query("p_nom_extendable").carrier.unique() + mincaps = pd.Series( + config["electricity"].get("BAU_mincapacities", {key: 0 for key in ext_c}) + ) + lhs = ( + linexpr((1, get_var(n, "Generator", "p_nom"))) + .groupby(n.generators.carrier) + .apply(join_exprs) + ) + define_constraints(n, lhs, ">=", mincaps[lhs.index], "Carrier", "bau_mincaps") + + maxcaps = pd.Series( + config["electricity"].get("BAU_maxcapacities", {key: np.inf for key in ext_c}) + ) + lhs = ( + linexpr((1, get_var(n, "Generator", "p_nom"))) + .groupby(n.generators.carrier) + .apply(join_exprs) + ) + define_constraints(n, lhs, "<=", maxcaps[lhs.index], "Carrier", "bau_maxcaps") + + +def add_SAFE_constraints(n, config): + peakdemand = ( + 1.0 + config["electricity"]["SAFE_reservemargin"] + ) * n.loads_t.p_set.sum(axis=1).max() + conv_techs = config["plotting"]["conv_techs"] + exist_conv_caps = n.generators.query( + "~p_nom_extendable & carrier in @conv_techs" + ).p_nom.sum() + ext_gens_i = n.generators.query("carrier in @conv_techs & p_nom_extendable").index + lhs = linexpr((1, get_var(n, "Generator", "p_nom")[ext_gens_i])).sum() + rhs = peakdemand - exist_conv_caps + define_constraints(n, lhs, ">=", rhs, "Safe", "mintotalcap") + + +def add_operational_reserve_margin_constraint(n, config): + reserve_config = config["electricity"]["operational_reserve"] + EPSILON_LOAD = reserve_config["epsilon_load"] + EPSILON_VRES = reserve_config["epsilon_vres"] + CONTINGENCY = reserve_config["contingency"] + + # Reserve Variables + reserve = get_var(n, "Generator", "r") + lhs = linexpr((1, reserve)).sum(1) + + # Share of extendable renewable capacities + ext_i = n.generators.query("p_nom_extendable").index + vres_i = n.generators_t.p_max_pu.columns + if not ext_i.empty and not vres_i.empty: + capacity_factor = n.generators_t.p_max_pu[vres_i.intersection(ext_i)] + renewable_capacity_variables = get_var(n, "Generator", "p_nom")[ + vres_i.intersection(ext_i) + ] + lhs += linexpr( + (-EPSILON_VRES * capacity_factor, renewable_capacity_variables) + ).sum(1) + + # Total demand at t + demand = n.loads_t.p.sum(1) + + # VRES potential of non extendable generators + capacity_factor = n.generators_t.p_max_pu[vres_i.difference(ext_i)] + renewable_capacity = n.generators.p_nom[vres_i.difference(ext_i)] + potential = (capacity_factor * renewable_capacity).sum(1) + + # Right-hand-side + rhs = EPSILON_LOAD * demand + EPSILON_VRES * potential + CONTINGENCY + + define_constraints(n, lhs, ">=", rhs, "Reserve margin") + + +def update_capacity_constraint(n): + gen_i = n.generators.index + ext_i = n.generators.query("p_nom_extendable").index + fix_i = n.generators.query("not p_nom_extendable").index + + dispatch = get_var(n, "Generator", "p") + reserve = get_var(n, "Generator", "r") + + capacity_fixed = n.generators.p_nom[fix_i] + + p_max_pu = get_as_dense(n, "Generator", "p_max_pu") + + lhs = linexpr((1, dispatch), (1, reserve)) + + if not ext_i.empty: + capacity_variable = get_var(n, "Generator", "p_nom") + lhs += linexpr((-p_max_pu[ext_i], capacity_variable)).reindex( + columns=gen_i, fill_value="" + ) + + rhs = (p_max_pu[fix_i] * capacity_fixed).reindex(columns=gen_i, fill_value=0) + + define_constraints(n, lhs, "<=", rhs, "Generators", "updated_capacity_constraint") + + +def add_operational_reserve_margin(n, sns, config): + """ + Build reserve margin constraints based on the formulation given in + https://genxproject.github.io/GenX/dev/core/#Reserves. + """ + + define_variables(n, 0, np.inf, "Generator", "r", axes=[sns, n.generators.index]) + + add_operational_reserve_margin_constraint(n, config) + + update_capacity_constraint(n) + + +def add_battery_constraints(n): + nodes = n.buses.index[n.buses.carrier == "battery"] + if nodes.empty or ("Link", "p_nom") not in n.variables.index: + return + link_p_nom = get_var(n, "Link", "p_nom") + lhs = linexpr( + (1, link_p_nom[nodes + " charger"]), + ( + -n.links.loc[nodes + " discharger", "efficiency"].values, + link_p_nom[nodes + " discharger"].values, + ), + ) + define_constraints(n, lhs, "=", 0, "Link", "charger_ratio") + + +def add_RES_constraints(n, res_share): + lgrouper = n.loads.bus.map(n.buses.country) + ggrouper = n.generators.bus.map(n.buses.country) + sgrouper = n.storage_units.bus.map(n.buses.country) + cgrouper = n.links.bus0.map(n.buses.country) + + logger.warning( + "The add_RES_constraints functionality is still work in progress. " + "Unexpected results might be incurred, particularly if " + "temporal clustering is applied or if an unexpected change of technologies " + "is subject to the obtimisation." + ) + + load = ( + n.snapshot_weightings.generators + @ n.loads_t.p_set.groupby(lgrouper, axis=1).sum() + ) + + rhs = res_share * load + + res_techs = [ + "solar", + "onwind", + "offwind-dc", + "offwind-ac", + "battery", + "hydro", + "ror", + ] + charger = ["H2 electrolysis", "battery charger"] + discharger = ["H2 fuel cell", "battery discharger"] + + gens_i = n.generators.query("carrier in @res_techs").index + stores_i = n.storage_units.query("carrier in @res_techs").index + charger_i = n.links.query("carrier in @charger").index + discharger_i = n.links.query("carrier in @discharger").index + + # Generators + lhs_gen = ( + linexpr( + (n.snapshot_weightings.generators, get_var(n, "Generator", "p")[gens_i].T) + ) + .T.groupby(ggrouper, axis=1) + .apply(join_exprs) + ) + + # StorageUnits + lhs_dispatch = ( + ( + linexpr( + ( + n.snapshot_weightings.stores, + get_var(n, "StorageUnit", "p_dispatch")[stores_i].T, + ) + ) + .T.groupby(sgrouper, axis=1) + .apply(join_exprs) + ) + .reindex(lhs_gen.index) + .fillna("") + ) + + lhs_store = ( + ( + linexpr( + ( + -n.snapshot_weightings.stores, + get_var(n, "StorageUnit", "p_store")[stores_i].T, + ) + ) + .T.groupby(sgrouper, axis=1) + .apply(join_exprs) + ) + .reindex(lhs_gen.index) + .fillna("") + ) + + # Stores (or their resp. Link components) + # Note that the variables "p0" and "p1" currently do not exist. + # Thus, p0 and p1 must be derived from "p" (which exists), taking into account the link efficiency. + lhs_charge = ( + ( + linexpr( + ( + -n.snapshot_weightings.stores, + get_var(n, "Link", "p")[charger_i].T, + ) + ) + .T.groupby(cgrouper, axis=1) + .apply(join_exprs) + ) + .reindex(lhs_gen.index) + .fillna("") + ) + + lhs_discharge = ( + ( + linexpr( + ( + n.snapshot_weightings.stores.apply( + lambda r: r * n.links.loc[discharger_i].efficiency + ), + get_var(n, "Link", "p")[discharger_i], + ) + ) + .groupby(cgrouper, axis=1) + .apply(join_exprs) + ) + .reindex(lhs_gen.index) + .fillna("") + ) + + # signs of resp. terms are coded in the linexpr. + # todo: for links (lhs_charge and lhs_discharge), account for snapshot weightings + lhs = lhs_gen + lhs_dispatch + lhs_store + lhs_charge + lhs_discharge + + define_constraints(n, lhs, "=", rhs, "RES share") + + +def add_land_use_constraint(n): + if "m" in snakemake.wildcards.clusters: + _add_land_use_constraint_m(n) + else: + _add_land_use_constraint(n) + + +def _add_land_use_constraint(n): + # warning: this will miss existing offwind which is not classed AC-DC and has carrier 'offwind' + + for carrier in ["solar", "onwind", "offwind-ac", "offwind-dc"]: + existing = ( + n.generators.loc[n.generators.carrier == carrier, "p_nom"] + .groupby(n.generators.bus.map(n.buses.location)) + .sum() + ) + existing.index += " " + carrier + "-" + snakemake.wildcards.planning_horizons + n.generators.loc[existing.index, "p_nom_max"] -= existing + + n.generators.p_nom_max.clip(lower=0, inplace=True) + + +def _add_land_use_constraint_m(n): + # if generators clustering is lower than network clustering, land_use accounting is at generators clusters + + planning_horizons = snakemake.config["scenario"]["planning_horizons"] + grouping_years = snakemake.config["existing_capacities"]["grouping_years"] + current_horizon = snakemake.wildcards.planning_horizons + + for carrier in ["solar", "onwind", "offwind-ac", "offwind-dc"]: + existing = n.generators.loc[n.generators.carrier == carrier, "p_nom"] + ind = list( + set( + [ + i.split(sep=" ")[0] + " " + i.split(sep=" ")[1] + for i in existing.index + ] + ) + ) + + previous_years = [ + str(y) + for y in planning_horizons + grouping_years + if y < int(snakemake.wildcards.planning_horizons) + ] + + for p_year in previous_years: + ind2 = [ + i for i in ind if i + " " + carrier + "-" + p_year in existing.index + ] + sel_current = [i + " " + carrier + "-" + current_horizon for i in ind2] + sel_p_year = [i + " " + carrier + "-" + p_year for i in ind2] + n.generators.loc[sel_current, "p_nom_max"] -= existing.loc[ + sel_p_year + ].rename(lambda x: x[:-4] + current_horizon) + + n.generators.p_nom_max.clip(lower=0, inplace=True) + + +def add_h2_network_cap(n, cap): + h2_network = n.links.loc[n.links.carrier == "H2 pipeline"] + if h2_network.index.empty or ("Link", "p_nom") not in n.variables.index: + return + h2_network_cap = get_var(n, "Link", "p_nom") + subset_index = h2_network.index.intersection(h2_network_cap.index) + lhs = linexpr( + (h2_network.loc[subset_index, "length"], h2_network_cap[subset_index]) + ).sum() + # lhs = linexpr((1, h2_network_cap[h2_network.index])).sum() + rhs = cap * 1000 + define_constraints(n, lhs, "<=", rhs, "h2_network_cap") + + +def H2_export_yearly_constraint(n): + res = [ + "csp", + "rooftop-solar", + "solar", + "onwind", + "onwind2", + "offwind", + "offwind2", + "ror", + ] + res_index = n.generators.loc[n.generators.carrier.isin(res)].index + + weightings = pd.DataFrame( + np.outer(n.snapshot_weightings["generators"], [1.0] * len(res_index)), + index=n.snapshots, + columns=res_index, + ) + res = join_exprs( + linexpr((weightings, get_var(n, "Generator", "p")[res_index])) + ) # single line sum + + load_ind = n.loads[n.loads.carrier == "AC"].index.intersection( + n.loads_t.p_set.columns + ) + + load = ( + n.loads_t.p_set[load_ind].sum(axis=1) * n.snapshot_weightings["generators"] + ).sum() + + h2_export = n.loads.loc["H2 export load"].p_set * 8760 + + lhs = res + + include_country_load = snakemake.config["policy_config"]["yearly"][ + "re_country_load" + ] + + if include_country_load: + elec_efficiency = ( + n.links.filter(like="Electrolysis", axis=0).loc[:, "efficiency"].mean() + ) + rhs = ( + h2_export * (1 / elec_efficiency) + load + ) # 0.7 is approximation of electrloyzer efficiency # TODO obtain value from network + else: + rhs = h2_export * (1 / 0.7) + + con = define_constraints(n, lhs, ">=", rhs, "H2ExportConstraint", "RESproduction") + + +def monthly_constraints(n, n_ref): + res_techs = [ + "csp", + "rooftop-solar", + "solar", + "onwind", + "onwind2", + "offwind", + "offwind2", + "ror", + ] + allowed_excess = snakemake.config["policy_config"]["hydrogen"]["allowed_excess"] + + res_index = n.generators.loc[n.generators.carrier.isin(res_techs)].index + + weightings = pd.DataFrame( + np.outer(n.snapshot_weightings["generators"], [1.0] * len(res_index)), + index=n.snapshots, + columns=res_index, + ) + + res = linexpr((weightings, get_var(n, "Generator", "p")[res_index])).sum( + axis=1 + ) # single line sum + res = res.groupby(res.index.month).sum() + + electrolysis = get_var(n, "Link", "p")[ + n.links.index[n.links.index.str.contains("H2 Electrolysis")] + ] + weightings_electrolysis = pd.DataFrame( + np.outer( + n.snapshot_weightings["generators"], [1.0] * len(electrolysis.columns) + ), + index=n.snapshots, + columns=electrolysis.columns, + ) + + elec_input = linexpr((-allowed_excess * weightings_electrolysis, electrolysis)).sum( + axis=1 + ) + + elec_input = elec_input.groupby(elec_input.index.month).sum() + + if snakemake.config["policy_config"]["hydrogen"]["additionality"]: + res_ref = n_ref.generators_t.p[res_index] * weightings + res_ref = res_ref.groupby(n_ref.generators_t.p.index.month).sum().sum(axis=1) + + elec_input_ref = ( + n_ref.links_t.p0.loc[ + :, n_ref.links_t.p0.columns.str.contains("H2 Electrolysis") + ] + * weightings_electrolysis + ) + elec_input_ref = ( + -elec_input_ref.groupby(elec_input_ref.index.month).sum().sum(axis=1) + ) + + for i in range(len(res.index)): + lhs = res.iloc[i] + "\n" + elec_input.iloc[i] + rhs = res_ref.iloc[i] + elec_input_ref.iloc[i] + con = define_constraints( + n, lhs, ">=", rhs, f"RESconstraints_{i}", f"REStarget_{i}" + ) + + else: + for i in range(len(res.index)): + lhs = res.iloc[i] + "\n" + elec_input.iloc[i] + + con = define_constraints( + n, lhs, ">=", 0.0, f"RESconstraints_{i}", f"REStarget_{i}" + ) + # else: + # logger.info("ignoring H2 export constraint as wildcard is set to 0") + + +def add_chp_constraints(n): + electric_bool = ( + n.links.index.str.contains("urban central") + & n.links.index.str.contains("CHP") + & n.links.index.str.contains("electric") + ) + heat_bool = ( + n.links.index.str.contains("urban central") + & n.links.index.str.contains("CHP") + & n.links.index.str.contains("heat") + ) + + electric = n.links.index[electric_bool] + heat = n.links.index[heat_bool] + + electric_ext = n.links.index[electric_bool & n.links.p_nom_extendable] + heat_ext = n.links.index[heat_bool & n.links.p_nom_extendable] + + electric_fix = n.links.index[electric_bool & ~n.links.p_nom_extendable] + heat_fix = n.links.index[heat_bool & ~n.links.p_nom_extendable] + + link_p = get_var(n, "Link", "p") + + if not electric_ext.empty: + link_p_nom = get_var(n, "Link", "p_nom") + + # ratio of output heat to electricity set by p_nom_ratio + lhs = linexpr( + ( + n.links.loc[electric_ext, "efficiency"] + * n.links.loc[electric_ext, "p_nom_ratio"], + link_p_nom[electric_ext], + ), + (-n.links.loc[heat_ext, "efficiency"].values, link_p_nom[heat_ext].values), + ) + + define_constraints(n, lhs, "=", 0, "chplink", "fix_p_nom_ratio") + + # top_iso_fuel_line for extendable + lhs = linexpr( + (1, link_p[heat_ext]), + (1, link_p[electric_ext].values), + (-1, link_p_nom[electric_ext].values), + ) + + define_constraints(n, lhs, "<=", 0, "chplink", "top_iso_fuel_line_ext") + + if not electric_fix.empty: + # top_iso_fuel_line for fixed + lhs = linexpr((1, link_p[heat_fix]), (1, link_p[electric_fix].values)) + + rhs = n.links.loc[electric_fix, "p_nom"].values + + define_constraints(n, lhs, "<=", rhs, "chplink", "top_iso_fuel_line_fix") + + if not electric.empty: + # backpressure + lhs = linexpr( + ( + n.links.loc[electric, "c_b"].values * n.links.loc[heat, "efficiency"], + link_p[heat], + ), + (-n.links.loc[electric, "efficiency"].values, link_p[electric].values), + ) + + define_constraints(n, lhs, "<=", 0, "chplink", "backpressure") + + +def add_co2_sequestration_limit(n, sns): + co2_stores = n.stores.loc[n.stores.carrier == "co2 stored"].index + + if co2_stores.empty or ("Store", "e") not in n.variables.index: + return + + vars_final_co2_stored = get_var(n, "Store", "e").loc[sns[-1], co2_stores] + + lhs = linexpr((1, vars_final_co2_stored)).sum() + rhs = ( + n.config["sector"].get("co2_sequestration_potential", 5) * 1e6 + ) # TODO change 200 limit (Europe) + + name = "co2_sequestration_limit" + define_constraints( + n, lhs, "<=", rhs, "GlobalConstraint", "mu", axes=pd.Index([name]), spec=name + ) + + +def set_h2_colors(n): + blue_h2 = get_var(n, "Link", "p")[ + n.links.index[n.links.index.str.contains("blue H2")] + ] + + pink_h2 = get_var(n, "Link", "p")[ + n.links.index[n.links.index.str.contains("pink H2")] + ] + + fuelcell_ind = n.loads[n.loads.carrier == "land transport fuel cell"].index + + other_ind = n.loads[ + (n.loads.carrier == "H2 for industry") + | (n.loads.carrier == "H2 for shipping") + | (n.loads.carrier == "H2") + ].index + + load_fuelcell = ( + n.loads_t.p_set[fuelcell_ind].sum(axis=1) * n.snapshot_weightings["generators"] + ).sum() + + load_other_h2 = n.loads.loc[other_ind].p_set.sum() * 8760 + + load_h2 = load_fuelcell + load_other_h2 + + weightings_blue = pd.DataFrame( + np.outer(n.snapshot_weightings["generators"], [1.0] * len(blue_h2.columns)), + index=n.snapshots, + columns=blue_h2.columns, + ) + + weightings_pink = pd.DataFrame( + np.outer(n.snapshot_weightings["generators"], [1.0] * len(pink_h2.columns)), + index=n.snapshots, + columns=pink_h2.columns, + ) + + total_blue = linexpr((weightings_blue, blue_h2)).sum().sum() + + total_pink = linexpr((weightings_pink, pink_h2)).sum().sum() + + rhs_blue = load_h2 * snakemake.config["sector"]["hydrogen"]["blue_share"] + rhs_pink = load_h2 * snakemake.config["sector"]["hydrogen"]["pink_share"] + + define_constraints(n, total_blue, "=", rhs_blue, "blue_h2_share") + + define_constraints(n, total_pink, "=", rhs_pink, "pink_h2_share") + + +def add_existing(n): + if snakemake.wildcards["planning_horizons"] == "2050": + directory = ( + "results/" + + "Existing_capacities/" + + snakemake.config["run"].replace("2050", "2030") + ) + n_name = ( + snakemake.input.network.split("/")[-1] + .replace(str(snakemake.config["scenario"]["clusters"][0]), "") + .replace(str(snakemake.config["costs"]["discountrate"][0]), "") + .replace("_presec", "") + .replace(".nc", ".csv") + ) + df = pd.read_csv(directory + "/electrolyzer_caps_" + n_name, index_col=0) + existing_electrolyzers = df.p_nom_opt.values + + h2_index = n.links[n.links.carrier == "H2 Electrolysis"].index + n.links.loc[h2_index, "p_nom_min"] = existing_electrolyzers + + # n_name = snakemake.input.network.split("/")[-1].replace(str(snakemake.config["scenario"]["clusters"][0]), "").\ + # replace(".nc", ".csv").replace(str(snakemake.config["costs"]["discountrate"][0]), "") + df = pd.read_csv(directory + "/res_caps_" + n_name, index_col=0) + + for tech in snakemake.config["custom_data"]["renewables"]: + # df = pd.read_csv(snakemake.config["custom_data"]["existing_renewables"], index_col=0) + existing_res = df.loc[tech] + existing_res.index = existing_res.index.str.apply(lambda x: x + tech) + tech_index = n.generators[n.generators.carrier == tech].index + n.generators.loc[tech_index, tech] = existing_res + + +def extra_functionality(n, snapshots): + """ + Collects supplementary constraints which will be passed to + ``pypsa.linopf.network_lopf``. + + If you want to enforce additional custom constraints, this is a good location to add them. + The arguments ``opts`` and ``snakemake.config`` are expected to be attached to the network. + """ + opts = n.opts + config = n.config + if "BAU" in opts and n.generators.p_nom_extendable.any(): + add_BAU_constraints(n, config) + if "SAFE" in opts and n.generators.p_nom_extendable.any(): + add_SAFE_constraints(n, config) + if "CCL" in opts and n.generators.p_nom_extendable.any(): + add_CCL_constraints(n, config) + reserve = config["electricity"].get("operational_reserve", {}) + if reserve.get("activate"): + add_operational_reserve_margin(n, snapshots, config) + for o in opts: + if "RES" in o: + res_share = float(re.findall("[0-9]*\.?[0-9]+$", o)[0]) + add_RES_constraints(n, res_share) + for o in opts: + if "EQ" in o: + add_EQ_constraints(n, o) + add_battery_constraints(n) + + if ( + snakemake.config["policy_config"]["hydrogen"]["temporal_matching"] + == "h2_yearly_matching" + ): + if snakemake.config["policy_config"]["hydrogen"]["additionality"] == True: + logger.info( + "additionality is currently not supported for yearly constraints, proceeding without additionality" + ) + logger.info("setting h2 export to yearly greenness constraint") + H2_export_yearly_constraint(n) + + elif ( + snakemake.config["policy_config"]["hydrogen"]["temporal_matching"] + == "h2_monthly_matching" + ): + if not snakemake.config["policy_config"]["hydrogen"]["is_reference"]: + logger.info("setting h2 export to monthly greenness constraint") + monthly_constraints(n, n_ref) + else: + logger.info("preparing reference case for additionality constraint") + + elif ( + snakemake.config["policy_config"]["hydrogen"]["temporal_matching"] + == "no_res_matching" + ): + logger.info("no h2 export constraint set") + + else: + raise ValueError( + 'H2 export constraint is invalid, check config["policy_config"]' + ) + + if snakemake.config["sector"]["hydrogen"]["network"]: + if snakemake.config["sector"]["hydrogen"]["network_limit"]: + add_h2_network_cap( + n, snakemake.config["sector"]["hydrogen"]["network_limit"] + ) + + if snakemake.config["sector"]["hydrogen"]["set_color_shares"]: + logger.info("setting H2 color mix") + set_h2_colors(n) + + add_co2_sequestration_limit(n, snapshots) + + +def solve_network(n, config, solving={}, opts="", **kwargs): + set_of_options = solving["solver"]["options"] + cf_solving = solving["options"] + + solver_options = solving["solver_options"][set_of_options] if set_of_options else {} + solver_name = solving["solver"]["name"] + + track_iterations = cf_solving.get("track_iterations", False) + min_iterations = cf_solving.get("min_iterations", 4) + max_iterations = cf_solving.get("max_iterations", 6) + + # add to network for extra_functionality + n.config = config + n.opts = opts + + if cf_solving.get("skip_iterations", False): + network_lopf( + n, + solver_name=solver_name, + solver_options=solver_options, + extra_functionality=extra_functionality, + **kwargs, + ) + else: + ilopf( + n, + solver_name=solver_name, + solver_options=solver_options, + track_iterations=track_iterations, + min_iterations=min_iterations, + max_iterations=max_iterations, + extra_functionality=extra_functionality, + **kwargs, + ) + return n + + +if __name__ == "__main__": + if "snakemake" not in globals(): + from _helpers import mock_snakemake + + snakemake = mock_snakemake( + "solve_network", + simpl="", + clusters="54", + ll="copt", + opts="Co2L-1H", + ) + + configure_logging(snakemake) + + tmpdir = snakemake.params.solving.get("tmpdir") + if tmpdir is not None: + Path(tmpdir).mkdir(parents=True, exist_ok=True) + opts = snakemake.wildcards.opts.split("-") + solving = snakemake.params.solving + + is_sector_coupled = "sopts" in snakemake.wildcards.keys() + + if is_sector_coupled: + overrides = override_component_attrs(snakemake.input.overrides) + n = pypsa.Network(snakemake.input.network, override_component_attrs=overrides) + else: + n = pypsa.Network(snakemake.input.network) + + if snakemake.params.augmented_line_connection.get("add_to_snakefile"): + n.lines.loc[n.lines.index.str.contains("new"), "s_nom_min"] = ( + snakemake.params.augmented_line_connection.get("min_expansion") + ) + + if ( + snakemake.config["custom_data"]["add_existing"] + and snakemake.wildcards.planning_horizons == "2050" + and is_sector_coupled + ): + add_existing(n) + + if ( + snakemake.config["policy_config"]["hydrogen"]["additionality"] + and not snakemake.config["policy_config"]["hydrogen"]["is_reference"] + and snakemake.config["policy_config"]["hydrogen"]["temporal_matching"] + != "no_res_matching" + and is_sector_coupled + ): + n_ref_path = snakemake.config["policy_config"]["hydrogen"]["path_to_ref"] + n_ref = pypsa.Network(n_ref_path) + else: + n_ref = None + + n = prepare_network(n, solving["options"]) + + n = solve_network( + n, + config=snakemake.config, + solving=solving, + opts=opts, + solver_dir=tmpdir, + solver_logfile=snakemake.log.solver, + ) + n.meta = dict(snakemake.config, **dict(wildcards=dict(snakemake.wildcards))) + n.export_to_netcdf(snakemake.output[0]) + logger.info(f"Objective function: {n.objective}") + logger.info(f"Objective constant: {n.objective_constant}") diff --git a/test/config.custom.yaml b/test/config.custom.yaml index 6caf4ef67..a596a932d 100644 --- a/test/config.custom.yaml +++ b/test/config.custom.yaml @@ -3,8 +3,7 @@ # SPDX-License-Identifier: CC0-1.0 ### CHANGES TO CONFIG.TUTORIAL.YAML ### -retrieve_databundle: # required to be "false" for nice CI test output - show_progress: false +version: 0.5.0 run: name: "custom" diff --git a/test/config.landlock.yaml b/test/config.landlock.yaml index c56bdd968..913211f29 100644 --- a/test/config.landlock.yaml +++ b/test/config.landlock.yaml @@ -3,8 +3,7 @@ # SPDX-License-Identifier: CC0-1.0 ### CHANGES TO CONFIG.TUTORIAL.YAML ### -retrieve_databundle: # required to be "false" for nice CI test output - show_progress: false +version: 0.5.0 countries: ["BW"] diff --git a/test/config.monte_carlo.yaml b/test/config.monte_carlo.yaml index b51e53819..034dd51cd 100644 --- a/test/config.monte_carlo.yaml +++ b/test/config.monte_carlo.yaml @@ -3,8 +3,7 @@ # SPDX-License-Identifier: CC0-1.0 ### CHANGES TO CONFIG.TUTORIAL.YAML ### -retrieve_databundle: # required to be "false" for nice CI test output - show_progress: false +version: 0.5.0 monte_carlo: options: diff --git a/test/config.test1.yaml b/test/config.test1.yaml new file mode 100644 index 000000000..792f60767 --- /dev/null +++ b/test/config.test1.yaml @@ -0,0 +1,54 @@ +# SPDX-FileCopyrightText: PyPSA-Earth and PyPSA-Eur Authors +# +# SPDX-License-Identifier: AGPL-3.0-or-later + +version: 0.5.0 +tutorial: true + +run: + name: test1 + shared_cutouts: true + +scenario: + clusters: # number of nodes in Europe, any integer between 37 (1 node per country-zone) and several hundred + - 4 + ll: + - "c1" + +countries: ["NG", "BJ"] + + +electricity: + extendable_carriers: + Store: [] + Link: [] + + co2limit: 7.75e7 + +export: + h2export: [120] # Yearly export demand in TWh + store: true # [True, False] # specifies whether an export store to balance demand is implemented + store_capital_costs: "no_costs" # ["standard_costs", "no_costs"] # specifies the costs of the export store "standard_costs" takes CAPEX of "hydrogen storage tank type 1 including compressor" + +existing_capacities: + grouping_years_power: [1960, 1965, 1970, 1975, 1980, 1985, 1990, 1995, 2000, 2005, 2010, 2015, 2020, 2025, 2030] + grouping_years_heat: [1980, 1985, 1990, 1995, 2000, 2005, 2010, 2015, 2019] # these should not extend 2020 + threshold_capacity: 10 + default_heating_lifetime: 20 + conventional_carriers: + - lignite + - coal + - oil + - uranium + +sector: + solid_biomass_potential: 10 # TWh/a, Potential of whole modelled area + gadm_level: 2 +snapshots: + # arguments to pd.date_range + start: "2013-03-1" + end: "2013-03-7" + +solving: + solver: + name: gurobi diff --git a/test/config.test_myopic.yaml b/test/config.test_myopic.yaml new file mode 100644 index 000000000..bede7c639 --- /dev/null +++ b/test/config.test_myopic.yaml @@ -0,0 +1,540 @@ +# SPDX-FileCopyrightText: PyPSA-Earth and PyPSA-Eur Authors +# +# SPDX-License-Identifier: AGPL-3.0-or-later + +version: 0.5.0 +logging_level: INFO +tutorial: true + +results_dir: results/ +summary_dir: results/ +costs_dir: data/ #TODO change to the equivalent of technology data + +run: + name: "test_myopic" # use this to keep track of runs with different settings + name_subworkflow: "tutorial" # scenario name of the pypsa-earth subworkflow + shared_cutouts: true # set to true to share the default cutout(s) across runs; Note: value false requires build_cutout to be enabled +foresight: myopic + +# option to disable the subworkflow to ease the analyses +disable_subworkflow: true + +scenario: + simpl: # only relevant for PyPSA-Eur + - "" + clusters: # number of nodes in Europe, any integer between 37 (1 node per country-zone) and several hundred + - 4 + planning_horizons: # investment years for myopic and perfect; or costs year for overnight + - 2030 + ll: + - "c1" + opts: + - "Co2L" + sopts: + - "24H" + demand: + - "DF" + + +policy_config: + hydrogen: + temporal_matching: "no_res_matching" #either "h2_yearly_matching", "h2_monthly_matching", "no_res_matching" + spatial_matching: false + additionality: false # RE electricity is equal to the amount required for additional hydrogen export compared to the 0 export case ("reference_case") + allowed_excess: 1.0 + is_reference: false # Whether or not this network is a reference case network, relevant only if additionality is _true_ + remove_h2_load: false #Whether or not to remove the h2 load from the network, relevant only if is_reference is _true_ + path_to_ref: "" # Path to the reference case network for additionality calculation, relevant only if additionality is _true_ and is_reference is _false_ + re_country_load: false # Set to "True" to force the RE electricity to be equal to the electricity required for hydrogen export and the country electricity load. "False" excludes the country electricity load from the constraint. + +cluster_options: + alternative_clustering: true + +countries: ['NG', 'BJ'] + +demand_data: + update_data: true # if true, the workflow downloads the energy balances data saved in data/demand/unsd/data again. Turn on for the first run. + base_year: 2019 + + other_industries: false # Whether or not to include industries that are not specified. some countries have has exageratted numbers, check carefully. + aluminium_year: 2019 # Year of the aluminium demand data specified in `data/AL_production.csv` + + +enable: + retrieve_cost_data: true # if true, the workflow overwrites the cost data saved in data/costs again + retrieve_irena: true #If true, downloads the IRENA data + +fossil_reserves: + oil: 100 #TWh Maybe reduntant + + +export: + h2export: [120] # Yearly export demand in TWh + store: true # [True, False] # specifies wether an export store to balance demand is implemented + store_capital_costs: "no_costs" # ["standard_costs", "no_costs"] # specifies the costs of the export store "standard_costs" takes CAPEX of "hydrogen storage tank type 1 including compressor" + export_profile: "ship" # use "ship" or "constant" + ship: + ship_capacity: 0.4 # TWh # 0.05 TWh for new ones, 0.003 TWh for Susio Frontier, 0.4 TWh according to Hampp2021: "Corresponds to 11360 t H2 (l) with LHV of 33.3333 Mwh/t_H2. Cihlar et al 2020 based on IEA 2019, Table 3-B" + travel_time: 288 # hours # From Agadir to Rotterdam and back (12*24) + fill_time: 24 # hours, for 48h see Hampp2021 + unload_time: 24 # hours for 48h see Hampp2021 + +custom_data: + renewables: [] # ['csp', 'rooftop-solar', 'solar'] + elec_demand: false + heat_demand: false + industry_demand: false + industry_database: false + transport_demand: false + water_costs: false + h2_underground: false + add_existing: false + custom_sectors: false + gas_network: false # If "True" then a custom .csv file must be placed in "resources/custom_data/pipelines.csv" , If "False" the user can choose btw "greenfield" or Model built-in datasets. Please refer to ["sector"] below. + + +costs: # Costs used in PyPSA-Earth-Sec. Year depends on the wildcard planning_horizon in the scenario section + version: v0.6.2 + lifetime: 25 #default lifetime + # From a Lion Hirth paper, also reflects average of Noothout et al 2016 + discountrate: [0.071] #, 0.086, 0.111] + # [EUR/USD] ECB: https://www.ecb.europa.eu/stats/exchange/eurofxref/html/eurofxref-graph-usd.en.html # noqa: E501 + USD2013_to_EUR2013: 0.7532 + + # Marginal and capital costs can be overwritten + # capital_cost: + # onwind: 500 + marginal_cost: + solar: 0.01 + onwind: 0.015 + offwind: 0.015 + hydro: 0. + H2: 0. + battery: 0. + + emission_prices: # only used with the option Ep (emission prices) + co2: 0. + + lines: + length_factor: 1.25 #to estimate offwind connection costs + + +industry: + reference_year: 2015 + +solar_thermal: + clearsky_model: simple + orientation: + slope: 45. + azimuth: 180. + +existing_capacities: + grouping_years_power: [1960, 1965, 1970, 1975, 1980, 1985, 1990, 1995, 2000, 2005, 2010, 2015, 2020, 2025, 2030] + grouping_years_heat: [1980, 1985, 1990, 1995, 2000, 2005, 2010, 2015, 2019] # these should not extend 2020 + threshold_capacity: 10 + default_heating_lifetime: 20 + conventional_carriers: + - lignite + - coal + - oil + - uranium + +sector: + gas: + spatial_gas: true # ALWAYS TRUE + network: false # ALWAYS FALSE for now (NOT USED) + network_data: GGIT # Global dataset -> 'GGIT' , European dataset -> 'IGGIELGN' + network_data_GGIT_status: ['Construction', 'Operating', 'Idle', 'Shelved', 'Mothballed', 'Proposed'] + hydrogen: + network: true + H2_retrofit_capacity_per_CH4: 0.6 + network_limit: 2000 #GWkm + network_routes: gas # "gas or "greenfield". If "gas" -> the network data are fetched from ["sector"]["gas"]["network_data"]. If "greenfield" -> the network follows the topology of electrical transmission lines + gas_network_repurposing: true # If true -> ["sector"]["gas"]["network"] is automatically false + underground_storage: false + hydrogen_colors: false + set_color_shares: false + blue_share: 0.40 + pink_share: 0.05 + coal: + shift_to_elec: true # If true, residential and services demand of coal is shifted to electricity. If false, the final energy demand of coal is disregarded + + + international_bunkers: false #Whether or not to count the emissions of international aviation and navigation + + oil: + spatial_oil: true + + district_heating: + potential: 0.3 #maximum fraction of urban demand which can be supplied by district heating + #increase of today's district heating demand to potential maximum district heating share + #progress = 0 means today's district heating share, progress=-1 means maxumzm fraction of urban demand is supplied by district heating + progress: 1 + # 2020: 0.0 + # 2030: 0.3 + # 2040: 0.6 + # 2050: 1.0 + district_heating_loss: 0.15 + reduce_space_heat_exogenously: true # reduces space heat demand by a given factor (applied before losses in DH) + # this can represent e.g. building renovation, building demolition, or if + # the factor is negative: increasing floor area, increased thermal comfort, population growth + reduce_space_heat_exogenously_factor: 0.29 # per unit reduction in space heat demand + # the default factors are determined by the LTS scenario from http://tool.european-calculator.eu/app/buildings/building-types-area/?levers=1ddd4444421213bdbbbddd44444ffffff11f411111221111211l212221 + # 2020: 0.10 # this results in a space heat demand reduction of 10% + # 2025: 0.09 # first heat demand increases compared to 2020 because of larger floor area per capita + # 2030: 0.09 + # 2035: 0.11 + # 2040: 0.16 + # 2045: 0.21 + # 2050: 0.29 + + tes: true + tes_tau: # 180 day time constant for centralised, 3 day for decentralised + decentral: 3 + central: 180 + boilers: true + oil_boilers: false + chp: true + micro_chp: false + solar_thermal: true + heat_pump_sink_T: 55 #Celsius, based on DTU / large area radiators; used un build_cop_profiles.py + time_dep_hp_cop: true #time dependent heat pump coefficient of performance + solar_cf_correction: 0.788457 # = >>>1/1.2683 + bev_plug_to_wheel_efficiency: 0.2 #kWh/km from EPA https://www.fueleconomy.gov/feg/ for Tesla Model S + bev_charge_efficiency: 0.9 #BEV (dis-)charging efficiency + transport_heating_deadband_upper: 20. + transport_heating_deadband_lower: 15. + ICE_lower_degree_factor: 0.375 #in per cent increase in fuel consumption per degree above deadband + ICE_upper_degree_factor: 1.6 + EV_lower_degree_factor: 0.98 + EV_upper_degree_factor: 0.63 + bev_avail_max: 0.95 + bev_avail_mean: 0.8 + bev_dsm_restriction_value: 0.75 #Set to 0 for no restriction on BEV DSM + bev_dsm_restriction_time: 7 #Time at which SOC of BEV has to be dsm_restriction_value + v2g: true #allows feed-in to grid from EV battery + bev_dsm: true #turns on EV battery + bev_energy: 0.05 #average battery size in MWh + bev_availability: 0.5 #How many cars do smart charging + transport_fuel_cell_efficiency: 0.5 + transport_internal_combustion_efficiency: 0.3 + industry_util_factor: 0.7 + + biomass_transport: true # biomass transport between nodes + biomass_transport_default_cost: 0.1 #EUR/km/MWh + solid_biomass_potential: 40 # TWh/a, Potential of whole modelled area + biogas_potential: 0.5 # TWh/a, Potential of whole modelled area + + efficiency_heat_oil_to_elec: 0.9 + efficiency_heat_biomass_to_elec: 0.9 + efficiency_heat_gas_to_elec: 0.9 + + dynamic_transport: + enable: false # If "True", then the BEV and FCEV shares are obtained depening on the "Co2L"-wildcard (e.g. "Co2L0.70: 0.10"). If "False", then the shares are obtained depending on the "demand" wildcard and "planning_horizons" wildcard as listed below (e.g. "DF_2050: 0.08") + land_transport_electric_share: + Co2L2.0: 0.00 + Co2L1.0: 0.01 + Co2L0.90: 0.03 + Co2L0.80: 0.06 + Co2L0.70: 0.10 + Co2L0.60: 0.17 + Co2L0.50: 0.27 + Co2L0.40: 0.40 + Co2L0.30: 0.55 + Co2L0.20: 0.69 + Co2L0.10: 0.80 + Co2L0.00: 0.88 + land_transport_fuel_cell_share: + Co2L2.0: 0.01 + Co2L1.0: 0.01 + Co2L0.90: 0.01 + Co2L0.80: 0.01 + Co2L0.70: 0.01 + Co2L0.60: 0.01 + Co2L0.50: 0.01 + Co2L0.40: 0.01 + Co2L0.30: 0.01 + Co2L0.20: 0.01 + Co2L0.10: 0.01 + Co2L0.00: 0.01 + + land_transport_fuel_cell_share: # 1 means all FCEVs HERE + BU_2030: 0.00 + AP_2030: 0.004 + NZ_2030: 0.02 + DF_2030: 0.01 + AB_2030: 0.01 + BU_2050: 0.00 + AP_2050: 0.06 + NZ_2050: 0.28 + DF_2050: 0.08 + + land_transport_electric_share: # 1 means all EVs # This leads to problems when non-zero HERE + BU_2030: 0.00 + AP_2030: 0.075 + NZ_2030: 0.13 + DF_2030: 0.01 + AB_2030: 0.01 + BU_2050: 0.00 + AP_2050: 0.42 + NZ_2050: 0.68 + DF_2050: 0.011 + + co2_network: true + co2_sequestration_potential: 200 #MtCO2/a sequestration potential for Europe + co2_sequestration_cost: 10 #EUR/tCO2 for sequestration of CO2 + hydrogen_underground_storage: true + shipping_hydrogen_liquefaction: false + shipping_average_efficiency: 0.4 #For conversion of fuel oil to propulsion in 2011 + + shipping_hydrogen_share: #1.0 + BU_2030: 0.00 + AP_2030: 0.00 + NZ_2030: 0.10 + DF_2030: 0.05 + AB_2030: 0.05 + BU_2050: 0.00 + AP_2050: 0.25 + NZ_2050: 0.36 + DF_2050: 0.12 + + gadm_level: 1 + h2_cavern: true + marginal_cost_storage: 0 + methanation: true + helmeth: true + dac: true + SMR: true + SMR CC: true + cc_fraction: 0.9 + cc: true + space_heat_share: 0.6 # the share of space heating from all heating. Remainder goes to water heating. + airport_sizing_factor: 3 + + min_part_load_fischer_tropsch: 0.9 + + conventional_generation: # generator : carrier + OCGT: gas + #Gen_Test: oil # Just for testing purposes + +# snapshots are originally set in PyPSA-Earth/config.yaml but used again by PyPSA-Earth-Sec +snapshots: + # arguments to pd.date_range + start: "2013-03-1" + end: "2013-03-7" + inclusive: "left" # end is not inclusive + +# atlite: +# cutout: ./cutouts/africa-2013-era5.nc + +build_osm_network: # TODO: To Remove this once we merge pypsa-earth and pypsa-earth-sec + force_ac: false # When true, it forces all components (lines and substation) to be AC-only. To be used if DC assets create problem. + +solving: + #tmpdir: "path/to/tmp" + options: + formulation: kirchhoff + clip_p_max_pu: 1.e-2 + load_shedding: true + noisy_costs: true + skip_iterations: true + track_iterations: false + min_iterations: 4 + max_iterations: 6 + + solver: + name: cbc + + mem: 30000 #memory in MB; 20 GB enough for 50+B+I+H2; 100 GB for 181+B+I+H2 + +plotting: + map: + boundaries: [-11, 30, 34, 71] + color_geomap: + ocean: white + land: whitesmoke + costs_max: 10 + costs_threshold: 0.2 + energy_max: 20000 + energy_min: -20000 + energy_threshold: 15 + vre_techs: + - onwind + - offwind-ac + - offwind-dc + - solar + - ror + renewable_storage_techs: + - PHS + - hydro + conv_techs: + - OCGT + - CCGT + - Nuclear + - Coal + storage_techs: + - hydro+PHS + - battery + - H2 + load_carriers: + - AC load + AC_carriers: + - AC line + - AC transformer + link_carriers: + - DC line + - Converter AC-DC + heat_links: + - heat pump + - resistive heater + - CHP heat + - CHP electric + - gas boiler + - central heat pump + - central resistive heater + - central CHP heat + - central CHP electric + - central gas boiler + heat_generators: + - gas boiler + - central gas boiler + - solar thermal collector + - central solar thermal collector + tech_colors: + SMR CC: "darkblue" + gas for industry CC: "brown" + process emissions CC: "gray" + CO2 pipeline: "gray" + onwind: "dodgerblue" + onshore wind: "#235ebc" + offwind: "#6895dd" + offshore wind: "#6895dd" + offwind-ac: "c" + offshore wind (AC): "#6895dd" + offwind-dc: "#74c6f2" + offshore wind (DC): "#74c6f2" + wave: '#004444' + hydro: '#3B5323' + hydro reservoir: '#3B5323' + ror: '#78AB46' + run of river: '#78AB46' + hydroelectricity: 'blue' + solar: "orange" + solar PV: "#f9d002" + solar thermal: coral + solar rooftop: '#ffef60' + OCGT: wheat + OCGT marginal: sandybrown + OCGT-heat: '#ee8340' + gas boiler: '#ee8340' + gas boilers: '#ee8340' + gas boiler marginal: '#ee8340' + gas-to-power/heat: 'brown' + gas: brown + natural gas: brown + SMR: '#4F4F2F' + oil: '#B5A642' + oil boiler: '#B5A677' + lines: k + transmission lines: k + H2: m + H2 liquefaction: m + hydrogen storage: m + battery: slategray + battery storage: slategray + home battery: '#614700' + home battery storage: '#614700' + Nuclear: r + Nuclear marginal: r + nuclear: r + uranium: r + Coal: k + coal: k + Coal marginal: k + Lignite: grey + lignite: grey + Lignite marginal: grey + CCGT: '#ee8340' + CCGT marginal: '#ee8340' + heat pumps: '#76EE00' + heat pump: '#76EE00' + air heat pump: '#76EE00' + ground heat pump: '#40AA00' + power-to-heat: 'red' + resistive heater: pink + Sabatier: '#FF1493' + methanation: '#FF1493' + power-to-gas: 'purple' + power-to-liquid: 'darkgreen' + helmeth: '#7D0552' + DAC: 'deeppink' + co2 stored: '#123456' + CO2 sequestration: '#123456' + CC: k + co2: '#123456' + co2 vent: '#654321' + agriculture heat: '#D07A7A' + agriculture machinery oil: '#1e1e1e' + agriculture machinery oil emissions: '#111111' + agriculture electricity: '#222222' + solid biomass for industry co2 from atmosphere: '#654321' + solid biomass for industry co2 to stored: '#654321' + solid biomass for industry CC: '#654321' + gas for industry co2 to atmosphere: '#654321' + gas for industry co2 to stored: '#654321' + Fischer-Tropsch: '#44DD33' + kerosene for aviation: '#44BB11' + naphtha for industry: '#44FF55' + land transport oil: '#44DD33' + water tanks: '#BBBBBB' + hot water storage: '#BBBBBB' + hot water charging: '#BBBBBB' + hot water discharging: '#999999' + # CO2 pipeline: '#999999' + CHP: r + CHP heat: r + CHP electric: r + PHS: g + Ambient: k + Electric load: b + Heat load: r + heat: darkred + rural heat: '#880000' + central heat: '#b22222' + decentral heat: '#800000' + low-temperature heat for industry: '#991111' + process heat: '#FF3333' + heat demand: darkred + electric demand: k + Li ion: grey + district heating: '#CC4E5C' + retrofitting: purple + building retrofitting: purple + BEV charger: grey + V2G: grey + land transport EV: grey + electricity: k + gas for industry: '#333333' + solid biomass for industry: '#555555' + industry electricity: '#222222' + industry new electricity: '#222222' + process emissions to stored: '#444444' + process emissions to atmosphere: '#888888' + process emissions: '#222222' + oil emissions: '#666666' + industry oil emissions: '#666666' + land transport oil emissions: '#666666' + land transport fuel cell: '#AAAAAA' + biogas: '#800000' + solid biomass: '#DAA520' + today: '#D2691E' + shipping: '#6495ED' + shipping oil: "#6495ED" + shipping oil emissions: "#6495ED" + electricity distribution grid: 'y' + solid biomass transport: green + H2 for industry: "#222222" + H2 for shipping: "#6495ED" + biomass EOP: "green" + biomass: "green" + high-temp electrolysis: "magenta" diff --git a/test/config.tutorial_noprogress.yaml b/test/config.tutorial_noprogress.yaml deleted file mode 100644 index a726a9c68..000000000 --- a/test/config.tutorial_noprogress.yaml +++ /dev/null @@ -1,7 +0,0 @@ -# SPDX-FileCopyrightText: PyPSA-Earth and PyPSA-Eur Authors -# -# SPDX-License-Identifier: CC0-1.0 - -### CHANGES TO CONFIG.TUTORIAL.YAML ### -retrieve_databundle: # required to be "false" for nice CI test output - show_progress: false