diff --git a/src/qseek/exporters/velest.py b/src/qseek/exporters/velest.py index 442429e7..4db07856 100644 --- a/src/qseek/exporters/velest.py +++ b/src/qseek/exporters/velest.py @@ -14,6 +14,9 @@ from qseek.search import Search logger = logging.getLogger(__name__) +KM = 1000.0 + +CONFIDENCE_QUALITY_BINS = [1.0, 0.8, 0.6, 0.4, 0.0] CONTROL_FILE_TPL = """velest parameters are below, please modify according to their documents {ref_lat} {ref_lon} 0 0.0 0 0.00 1 @@ -83,31 +86,38 @@ class Velest(Exporter): async def export(self, rundir: Path, outdir: Path) -> Path: rich.print("Exporting qseek search to VELEST project folder") - min_event_semblance = self.min_event_semblance - min_receivers_number = IntPrompt.ask( - "Minimum number of receivers (P phase)", default=10 + self.min_event_semblance = FloatPrompt.ask( + "Minimum event semblance", + default=self.min_event_semblance, + ) + self.min_receivers_number = IntPrompt.ask( + "Minimum number of receivers (P phase)", + default=self.min_receivers_number, + ) + self.min_distance_to_border = FloatPrompt.ask( + "Minimum distance to border(m)", + default=self.distance_border, ) - min_distance_to_border = FloatPrompt.ask( - "Minimum distance to border(m)", default=500.0 + self.min_p_phase_confidence = FloatPrompt.ask( + "Minimum pick probability for P phase", + default=self.min_p_phase_confidence, ) - min_p_phase_confidence = FloatPrompt.ask( - "Minimum pick probability for P phase", default=0.3 + self.min_s_phase_confidence = FloatPrompt.ask( + "Minimum pick probability for S phase", + default=self.min_s_phase_confidence, ) - min_s_phase_confidence = FloatPrompt.ask( - "Minimum pick probability for S phase", default=0.3 + self.max_traveltime_delay = FloatPrompt.ask( + "Maximum travel time delay", + default=self.max_traveltime_delay, ) - max_traveltime_delay = self.max_traveltime_delay - self.min_receivers_number = min_receivers_number - self.min_p_phase_confidence = min_p_phase_confidence - self.min_s_phase_confidence = min_s_phase_confidence outdir.mkdir() search = Search.load_rundir(rundir) phases = search.image_functions.get_phases() for phase in phases: - if "P" in phase: + if phase.endswith("P"): phase_p = phase - if "S" in phase: + if phase.endswith("S"): phase_s = phase catalog = search.catalog @@ -121,11 +131,11 @@ async def export(self, rundir: Path, outdir: Path) -> Path: phase_file = outdir / "phase_velest.pha" n_earthquakes = 0 for event in catalog: - if event.semblance < min_event_semblance: + if event.semblance < self.min_event_semblance: continue - if event.receivers.n_observations(phase_p) < min_receivers_number: + if event.receivers.n_observations(phase_p) < self.min_receivers_number: continue - if event.distance_border < min_distance_to_border: + if event.distance_border < self.min_distance_to_border: continue observed_arrivals: list[tuple[Receiver, PhaseDetection]] = [] @@ -137,26 +147,26 @@ async def export(self, rundir: Path, outdir: Path) -> Path: observed = detection.observed if ( detection.phase == phase_p - and observed.detection_value <= min_p_phase_confidence + and observed.detection_value <= self.min_p_phase_confidence ): continue if ( detection.phase == phase_s - and observed.detection_value <= min_s_phase_confidence + and observed.detection_value <= self.min_s_phase_confidence ): continue if ( detection.traveltime_delay.total_seconds() - > max_traveltime_delay + > self.max_traveltime_delay ): continue observed_arrivals.append((receiver, detection)) - countp, counts = self.export_phases_slim( + count_p, count_s = self.export_phases_slim( phase_file, event, observed_arrivals ) - self.n_picks_p += countp - self.n_picks_s += counts + self.n_picks_p += count_p + self.n_picks_s += count_s n_earthquakes += 1 self.n_events = n_earthquakes @@ -175,12 +185,11 @@ async def export(self, rundir: Path, outdir: Path) -> Path: dep_velest = [] vp_velest = [] vs_velest = [] - km = 1000.0 - for d, vpi, vsi in zip(dep, vp, vs, strict=False): - if float(d) / km not in dep_velest: - dep_velest.append(float(d) / km) - vp_velest.append(float(vpi) / km) - vs_velest.append(float(vsi) / km) + for d, vpi, vsi in zip(dep, vp, vs, strict=True): + if float(d) / KM not in dep_velest: + dep_velest.append(float(d) / KM) + vp_velest.append(float(vpi) / KM) + vs_velest.append(float(vsi) / KM) velmod_file = outdir / "model.mod" make_velmod_file(velmod_file, vp_velest, vs_velest, dep_velest) @@ -205,7 +214,8 @@ def export_phases_slim( for rec, dectection in observed_arrivals: quality_weight = ( np.digitize( - dectection.observed.detection_value, [1.0, 0.8, 0.6, 0.4, 0.0] + dectection.observed.detection_value, + CONFIDENCE_QUALITY_BINS, ) - 1 ) @@ -218,11 +228,12 @@ def export_phases_slim( traveltime = (dectection.observed.time - event.time).total_seconds() write_out += f" {rec.station:6s} {phase:1s} {quality_weight:1d} {traveltime:7.2f}\n" write_out += "\n" - if count_p == 0 and count_s == 0: - logger.warning("Removing event {event.time}: No phases observed") + if count_p or count_s: with outfile.open("a") as file: file.write(write_out) + else: + logger.warning("Event {event.time}: No phases observed") return count_p, count_s @@ -251,17 +262,22 @@ def velest_location(location: Location) -> str: return velest_lat, velest_lon -def make_velmod_file(modname: Path, vp: list[float], vs: list[float], dep: list[float]): - nlayer = len(dep) +def make_velmod_file( + modname: Path, + velocity_p: list[float], + velocity_s: list[float], + depths: list[float], +): + nlayer = len(depths) vdamp = 1.0 with modname.open("w") as fp: fp.write("initial 1D-model for velest\n") # the second line - indicate the number of layers for Vp fp.write(f"{nlayer} vel,depth,vdamp,phase (f5.2,5x,f7.2,2x,f7.3,3x,a1)\n") - # vp model - for vel, depth in zip(vp, dep, strict=False): + + for vel, depth in zip(velocity_p, depths, strict=True): fp.write(f"{vel:5.2f} {depth:7.2f} {vdamp:7.3f}\n") - # vs model + fp.write("%3d\n" % nlayer) - for vel, depth in zip(vs, dep, strict=False): + for vel, depth in zip(velocity_s, depths, strict=True): fp.write(f"{vel:5.2f} {depth:7.2f} {vdamp:7.3f}\n")