Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

run_vit_b_quant.py runs slower than run_bit_b.py #898

Open
jerryzh168 opened this issue Sep 17, 2024 · 9 comments
Open

run_vit_b_quant.py runs slower than run_bit_b.py #898

jerryzh168 opened this issue Sep 17, 2024 · 9 comments
Assignees

Comments

@jerryzh168
Copy link
Contributor

jerryzh168 commented Sep 17, 2024

run_vit_b_quant.py
elapsed_time: 11.0519150390625 milliseconds

run_bit_b.py
elapsed_time: 1.2272755432128906 milliseconds

this is with int8_dynamic_activation_int8_weight

@jerryzh168
Copy link
Contributor Author

jerryzh168 commented Sep 17, 2024

it seems torch==2.4.0 does not have the drop (with unwrap_tensor_subclass)

run_vit_b_quant.py
elapsed_time: 1.288721923828125 milliseconds

run_bit_b.py
elapsed_time: 1.561510772705078 milliseconds

int8_weight_only
run_vit_b_quant.py
elapsed_time: 1.3892197265625 milliseconds

run_bit_b.py
elapsed_time: 1.543534698486328 milliseconds

@bdhirsh
Copy link
Contributor

bdhirsh commented Sep 17, 2024

hmm. This might be a good example of "subclass runtime overhead" given the fact that you're pointing out that you see the slowdown goes away on 2.4.0 when using unwrap_tensor_subclasses. But it would be nice to have a profiler trace that actually shows us that most of the time is spent in python overhead and not e.g. compile generating a slower artifact. @jerryzh168 any chance you can get a profile output? Also cc @IvanKobzarev

@IvanKobzarev
Copy link

Yeah, will try to repro and profile it.

@jerryzh168
Copy link
Contributor Author

jerryzh168 commented Sep 18, 2024

we'll be able to cherry-pick the change until 9/30

@HDCharles
Copy link
Contributor

hmm. This might be a good example of "subclass runtime overhead" given the fact that you're pointing out that you see the slowdown goes away on 2.4.0 when using unwrap_tensor_subclasses. But it would be nice to have a profiler trace that actually shows us that most of the time is spent in python overhead and not e.g. compile generating a slower artifact. @jerryzh168 any chance you can get a profile output? Also cc @IvanKobzarev

@bdhirsh i thought compile would trace through the subclass, you're saying there's still a bunch of overhead for subclasses even after compile?

@IvanKobzarev
Copy link

IvanKobzarev commented Sep 20, 2024

Found the problem. The main regression is because of dynamo fails to compile fullgraph=True, as a result compiles it partially with graph break on every MultiHeadAttention call and that causes a bad perf.

The compilation fails because compile path picks multi head attention "fast-path".

https://github.com/pytorch/pytorch/blob/main/torch/nn/modules/activation.py#L1286 - there is a manual check to avoid fastpath (native_multi_head_attention) if one of the arguments has torch_function handling.

But this check fail for Subclasses during compilation and compilation tries to compile fastpath via aten.native_multi_head_attention and results in NYI for subclass.

If to take not-fast-path during compilation - benchmark for me shows 1.21ms back

So there is no significant runtime overhead for subclasses, just compilation issue of MultiHeadAttention when there is a subclass as a parameter.

Now thinking on the fix how to make ao subclasses to take only non-fast-path for MultiHeadAttention during compilation.

@IvanKobzarev IvanKobzarev self-assigned this Sep 20, 2024
@cpuhrsch
Copy link
Contributor

@IvanKobzarev - You should be able to use https://pytorch.org/docs/main/backends.html#torch.backends.mha.set_fastpath_enabled to disable the fast path.

@IvanKobzarev
Copy link

@cpuhrsch Thanks, this helps.
@jerryzh168 , I've verified, adding torch.backends.mha.set_fastpath_enabled(False) to run_vit_b_quant.py at the top gets back performance without unwrap_tensor_subclasses

elapsed_time:  1.216195556640625  milliseconds

I will leave it to you where to put torch.backends.mha.set_fastpath_enabled(False) in AO, that AO-quantized models will not take mha.fastpath.

@cpuhrsch
Copy link
Contributor

I'd add this setting into the run_vit_b_quant.py example script. We might also want to consider adding a warning to PyTorch when the fast path is enabled and subclasses are used (i.e. one of the arguments has a torch_function).

jerryzh168 added a commit to jerryzh168/ao that referenced this issue Sep 24, 2024
…torch.compile

Summary:
Recently we found a perf drop in quantized vit due to pytorch#898 (comment)
This PR add a temp fix until we figure out the longer term fix.

I think ideally we should figure out why the tensor subclass check failed in torch.compile (https://github.com/pytorch/pytorch/blob/e4d294221b140fdbb49a64f297bc60c9fcc2f80e/torch/nn/modules/activation.py#L1286) and fix that

Test Plan:
python tutorials/quantize_vit/run_vit_b_quant.py

Reviewers:

Subscribers:

Tasks:

Tags:
jerryzh168 added a commit that referenced this issue Sep 24, 2024
…#926)

Add temporary workaround to recover the perf for quantized vit under torch.compile

Summary:
Recently we found a perf drop in quantized vit due to #898 (comment)
This PR add a temp fix until we figure out the longer term fix.

I think ideally we should figure out why the tensor subclass check failed in torch.compile (https://github.com/pytorch/pytorch/blob/e4d294221b140fdbb49a64f297bc60c9fcc2f80e/torch/nn/modules/activation.py#L1286) and fix that

Test Plan:
python tutorials/quantize_vit/run_vit_b_quant.py

Reviewers:

Subscribers:

Tasks:

Tags:
jainapurva pushed a commit that referenced this issue Sep 25, 2024
…#926)

Add temporary workaround to recover the perf for quantized vit under torch.compile

Summary:
Recently we found a perf drop in quantized vit due to #898 (comment)
This PR add a temp fix until we figure out the longer term fix.

I think ideally we should figure out why the tensor subclass check failed in torch.compile (https://github.com/pytorch/pytorch/blob/e4d294221b140fdbb49a64f297bc60c9fcc2f80e/torch/nn/modules/activation.py#L1286) and fix that

Test Plan:
python tutorials/quantize_vit/run_vit_b_quant.py

Reviewers:

Subscribers:

Tasks:

Tags:
weifengpy pushed a commit to weifengpy/ao that referenced this issue Sep 26, 2024
…pytorch#926)

Add temporary workaround to recover the perf for quantized vit under torch.compile

Summary:
Recently we found a perf drop in quantized vit due to pytorch#898 (comment)
This PR add a temp fix until we figure out the longer term fix.

I think ideally we should figure out why the tensor subclass check failed in torch.compile (https://github.com/pytorch/pytorch/blob/e4d294221b140fdbb49a64f297bc60c9fcc2f80e/torch/nn/modules/activation.py#L1286) and fix that

Test Plan:
python tutorials/quantize_vit/run_vit_b_quant.py

Reviewers:

Subscribers:

Tasks:

Tags:
weifengpy added a commit that referenced this issue Oct 1, 2024
…th torch.compile (#904)

* [float8] improve eager numerics for dynamic scales

* leave torch.linalg.vector_norm for another PR

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* cuda

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* remove _data and investigate

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* remove _data comment

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* upcast to float32 is enough

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* explain why float32

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* _data parity

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* handle sm8.9

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* fix transformer unit test

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* print if error

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* Add tutorial for trainable tensor subclass (#908)

Summary: The new tutorial provides an example of how to implement
a trainable tensor subclass that wraps quantized data. This extends
the existing `MyDTypeTensor` with a few necessary steps to ensure
proper gradient updates, namely:

1. Define a differentiable constructor
2. Define backward pass for ops of interest (e.g. torch.nn.functional.linear)
3. Handle special ops used by the optimizer (e.g. aten.add, aten.add_)

Test Plan:
python tutorials/developer_api_guide/my_trainable_tensor_subclass.py

* Introducing 1-bit quantization for Llama in torchchat (#910)

Differential Revision: D63052325

Pull Request resolved: #911

* Rename Floating point to fp8 (#909)

* [float8] fix typo in bitwise_identical unit test (#918)

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* Adding example for quantized tensor + tensor parallelism (#785)

* [WIP] Adding example for quantized tensor + tensor parallelism

Summary:
This PR adds an example of how quantized tensor subclass can work with DTensor: https://github.com/pytorch/pytorch/blob/main/torch/distributed/_tensor/README.md

End goal is to rewrite https://github.com/sgl-project/sglang/blob/main/python/sglang/srt/models/llama2.py with normal llama2 implementation and show case with DTensor + AffineQuantizedTensor + torch.compile we can get on par performance with the custom tensor parallel implementation

Test Plan:
torchrun --standalone --nnodes=1 --nproc-per-node=4 tutorials/developer_api_guide/tensor_parallel.py

Reviewers:

Subscribers:

Tasks:

Tags:

* tensor parallel file

* Use DTensor.from instead of distribute_tensor

* implementing aten.slice.Tensor (WIP)

* working

* some shape fix and use more quant primitive ops

* Add rowwise test

* make rowwise sharding work

* compile still not working yet

* fake tensor didn't pick up shape changes from transpose

* backend='eager'

* change transpose to non-inplace op

* add error message

* works now with torch nightly

* remove print

* ruff

* Clean up

* Fix device id

---------

Co-authored-by: Ke Wen <[email protected]>

* rename cuda mode -> gpu mode (#925)

* Add workaround to recover the perf for quantized vit in torch.compile (#926)

Add temporary workaround to recover the perf for quantized vit under torch.compile

Summary:
Recently we found a perf drop in quantized vit due to #898 (comment)
This PR add a temp fix until we figure out the longer term fix.

I think ideally we should figure out why the tensor subclass check failed in torch.compile (https://github.com/pytorch/pytorch/blob/e4d294221b140fdbb49a64f297bc60c9fcc2f80e/torch/nn/modules/activation.py#L1286) and fix that

Test Plan:
python tutorials/quantize_vit/run_vit_b_quant.py

Reviewers:

Subscribers:

Tasks:

Tags:

* clean up device checks in float8 unit test files (#923)

Summary:

While working on rowwise scaling I noticed that some of the CUDA
device capability checks we had in the test files did not make sense,
cleaning this up.

Test Plan:

tests pass on my H100

CI, it should skip less tests now since CI only has CUDA capability 8, 9

Reviewers:

Subscribers:

Tasks:

Tags:

* [low-bit optim] Change 8-bit and FP8 optim block size from 2048 to 256 to match new bnb v0.44 (#927)

* Float8 autoquant weight only (#866)

* Fix failing FP6 benchmark (#931)

* Remove two if statements in fp8 padding (#935)

Reviewed By: vkuzo

Differential Revision: D63051205

Pull Request resolved: #935
Approved by: https://github.com/vkuzo

* [Distributed] Improve sharding example (#937)

* [Distributed] Improve sharding example

* Add comment

* Add composable QAT quantizer (#938)

Summary: This is a utility for users who wish to apply multiple
QAT quantizers to their models. In the near future, we expect
to add an embedding QAT quantizer that composes with the
existing linear QAT quantizers.

Test Plan:
python test/quantization/test_qat.py -k test_composable_qat_quantizer

* resolve conflict with latest main

Differential Revision: D63048850

Pull Request resolved: #912

* Add torchchat quantizer

Differential Revision: D62394341

Pull Request resolved: #897

* Add compile tests to test suite (#906)

* Add compile tests to test suite

Summary:
This is a follow up PR addressing #839 (comment)
We can add more compiler related tests in the future.

Next
* refactor a bit to use quantize_ API directly
* use the test suite in existing API tests

Test Plan:
python torchao/testing/utils.py

Reviewers:

Subscribers:

Tasks:

Tags:

* rename

* add result check

* Fix up CMakeLists and reorganize some code locations

Differential Revision: D62711903

Pull Request resolved: #948

* [float8] all-reduce amax on dp mesh instead of global pg (#933)

* [float8] all-reduce amax on dp mesh instead of global pg

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* liner

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* improve comments

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* move hp tensor inside if

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* linter

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* linter

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* linter

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* linter

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* linter

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* int8 dynamic quant + bsr support (#821)

This PR, adds in int8 dynamicquant + bsr support.

Changes:
* Use i8i8 -> bf16 matmul to maintain accuracy
* Added a block sparse layout type to AffineQuantizedTensor + check/impl.  
* Cleaned up benchmark.py script and add a single line `benchmark.sh` file for acceleration numbers
* Updated eval.py and added a single line `evaluate.sh` file for accuracy numbers
* Lots of lint formatting and README updates
* torch.compile now working and is correct

* fixing some issues with our support for 70/405B models (#941)

Summary: download and convert scripts needed to be updated alongside
model.py config files

Test Plan: python generate.py --checkpoint_path ../../../checkpoints/meta-llama/Meta-Llama-3.1-70B/model.pth

Reviewers:

Subscribers:

Tasks:

Tags:

* Update INT8 mixed-precision training test to be less flaky (#950)

* Add executorch parallel

Differential Revision: D62711909

Pull Request resolved: #953

* test CI

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* better comment on why upcasting

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* control seed

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* move unit test to test_compile

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* fix typo

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* float64 upcasting after allreduce

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* use LinearMMConfig

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

---------

Co-authored-by: andrewor14 <[email protected]>
Co-authored-by: Vaishnavi Gupta <[email protected]>
Co-authored-by: Apurva Jain <[email protected]>
Co-authored-by: Jerry Zhang <[email protected]>
Co-authored-by: Ke Wen <[email protected]>
Co-authored-by: Mark Saroufim <[email protected]>
Co-authored-by: Vasiliy Kuznetsov <[email protected]>
Co-authored-by: Thien Tran <[email protected]>
Co-authored-by: Tobias van der Werff <[email protected]>
Co-authored-by: Shuqi Yang <[email protected]>
Co-authored-by: Scott Roy <[email protected]>
Co-authored-by: Jesse Cai <[email protected]>
Co-authored-by: HDCharles <[email protected]>
melvinebenezer pushed a commit to melvinebenezer/ao that referenced this issue Oct 3, 2024
…pytorch#926)

Add temporary workaround to recover the perf for quantized vit under torch.compile

Summary:
Recently we found a perf drop in quantized vit due to pytorch#898 (comment)
This PR add a temp fix until we figure out the longer term fix.

I think ideally we should figure out why the tensor subclass check failed in torch.compile (https://github.com/pytorch/pytorch/blob/e4d294221b140fdbb49a64f297bc60c9fcc2f80e/torch/nn/modules/activation.py#L1286) and fix that

Test Plan:
python tutorials/quantize_vit/run_vit_b_quant.py

Reviewers:

Subscribers:

Tasks:

Tags:
melvinebenezer pushed a commit to melvinebenezer/ao that referenced this issue Oct 7, 2024
…th torch.compile (pytorch#904)

* [float8] improve eager numerics for dynamic scales

* leave torch.linalg.vector_norm for another PR

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* cuda

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* remove _data and investigate

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* remove _data comment

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* upcast to float32 is enough

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* explain why float32

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* _data parity

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* handle sm8.9

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* fix transformer unit test

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* print if error

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* Add tutorial for trainable tensor subclass (pytorch#908)

Summary: The new tutorial provides an example of how to implement
a trainable tensor subclass that wraps quantized data. This extends
the existing `MyDTypeTensor` with a few necessary steps to ensure
proper gradient updates, namely:

1. Define a differentiable constructor
2. Define backward pass for ops of interest (e.g. torch.nn.functional.linear)
3. Handle special ops used by the optimizer (e.g. aten.add, aten.add_)

Test Plan:
python tutorials/developer_api_guide/my_trainable_tensor_subclass.py

* Introducing 1-bit quantization for Llama in torchchat (pytorch#910)

Differential Revision: D63052325

Pull Request resolved: pytorch#911

* Rename Floating point to fp8 (pytorch#909)

* [float8] fix typo in bitwise_identical unit test (pytorch#918)

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* Adding example for quantized tensor + tensor parallelism (pytorch#785)

* [WIP] Adding example for quantized tensor + tensor parallelism

Summary:
This PR adds an example of how quantized tensor subclass can work with DTensor: https://github.com/pytorch/pytorch/blob/main/torch/distributed/_tensor/README.md

End goal is to rewrite https://github.com/sgl-project/sglang/blob/main/python/sglang/srt/models/llama2.py with normal llama2 implementation and show case with DTensor + AffineQuantizedTensor + torch.compile we can get on par performance with the custom tensor parallel implementation

Test Plan:
torchrun --standalone --nnodes=1 --nproc-per-node=4 tutorials/developer_api_guide/tensor_parallel.py

Reviewers:

Subscribers:

Tasks:

Tags:

* tensor parallel file

* Use DTensor.from instead of distribute_tensor

* implementing aten.slice.Tensor (WIP)

* working

* some shape fix and use more quant primitive ops

* Add rowwise test

* make rowwise sharding work

* compile still not working yet

* fake tensor didn't pick up shape changes from transpose

* backend='eager'

* change transpose to non-inplace op

* add error message

* works now with torch nightly

* remove print

* ruff

* Clean up

* Fix device id

---------

Co-authored-by: Ke Wen <[email protected]>

* rename cuda mode -> gpu mode (pytorch#925)

* Add workaround to recover the perf for quantized vit in torch.compile (pytorch#926)

Add temporary workaround to recover the perf for quantized vit under torch.compile

Summary:
Recently we found a perf drop in quantized vit due to pytorch#898 (comment)
This PR add a temp fix until we figure out the longer term fix.

I think ideally we should figure out why the tensor subclass check failed in torch.compile (https://github.com/pytorch/pytorch/blob/e4d294221b140fdbb49a64f297bc60c9fcc2f80e/torch/nn/modules/activation.py#L1286) and fix that

Test Plan:
python tutorials/quantize_vit/run_vit_b_quant.py

Reviewers:

Subscribers:

Tasks:

Tags:

* clean up device checks in float8 unit test files (pytorch#923)

Summary:

While working on rowwise scaling I noticed that some of the CUDA
device capability checks we had in the test files did not make sense,
cleaning this up.

Test Plan:

tests pass on my H100

CI, it should skip less tests now since CI only has CUDA capability 8, 9

Reviewers:

Subscribers:

Tasks:

Tags:

* [low-bit optim] Change 8-bit and FP8 optim block size from 2048 to 256 to match new bnb v0.44 (pytorch#927)

* Float8 autoquant weight only (pytorch#866)

* Fix failing FP6 benchmark (pytorch#931)

* Remove two if statements in fp8 padding (pytorch#935)

Reviewed By: vkuzo

Differential Revision: D63051205

Pull Request resolved: pytorch#935
Approved by: https://github.com/vkuzo

* [Distributed] Improve sharding example (pytorch#937)

* [Distributed] Improve sharding example

* Add comment

* Add composable QAT quantizer (pytorch#938)

Summary: This is a utility for users who wish to apply multiple
QAT quantizers to their models. In the near future, we expect
to add an embedding QAT quantizer that composes with the
existing linear QAT quantizers.

Test Plan:
python test/quantization/test_qat.py -k test_composable_qat_quantizer

* resolve conflict with latest main

Differential Revision: D63048850

Pull Request resolved: pytorch#912

* Add torchchat quantizer

Differential Revision: D62394341

Pull Request resolved: pytorch#897

* Add compile tests to test suite (pytorch#906)

* Add compile tests to test suite

Summary:
This is a follow up PR addressing pytorch#839 (comment)
We can add more compiler related tests in the future.

Next
* refactor a bit to use quantize_ API directly
* use the test suite in existing API tests

Test Plan:
python torchao/testing/utils.py

Reviewers:

Subscribers:

Tasks:

Tags:

* rename

* add result check

* Fix up CMakeLists and reorganize some code locations

Differential Revision: D62711903

Pull Request resolved: pytorch#948

* [float8] all-reduce amax on dp mesh instead of global pg (pytorch#933)

* [float8] all-reduce amax on dp mesh instead of global pg

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* liner

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* improve comments

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* move hp tensor inside if

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* linter

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* linter

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* linter

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* linter

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* linter

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* int8 dynamic quant + bsr support (pytorch#821)

This PR, adds in int8 dynamicquant + bsr support.

Changes:
* Use i8i8 -> bf16 matmul to maintain accuracy
* Added a block sparse layout type to AffineQuantizedTensor + check/impl.  
* Cleaned up benchmark.py script and add a single line `benchmark.sh` file for acceleration numbers
* Updated eval.py and added a single line `evaluate.sh` file for accuracy numbers
* Lots of lint formatting and README updates
* torch.compile now working and is correct

* fixing some issues with our support for 70/405B models (pytorch#941)

Summary: download and convert scripts needed to be updated alongside
model.py config files

Test Plan: python generate.py --checkpoint_path ../../../checkpoints/meta-llama/Meta-Llama-3.1-70B/model.pth

Reviewers:

Subscribers:

Tasks:

Tags:

* Update INT8 mixed-precision training test to be less flaky (pytorch#950)

* Add executorch parallel

Differential Revision: D62711909

Pull Request resolved: pytorch#953

* test CI

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* better comment on why upcasting

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* control seed

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* move unit test to test_compile

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* fix typo

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* float64 upcasting after allreduce

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* use LinearMMConfig

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

---------

Co-authored-by: andrewor14 <[email protected]>
Co-authored-by: Vaishnavi Gupta <[email protected]>
Co-authored-by: Apurva Jain <[email protected]>
Co-authored-by: Jerry Zhang <[email protected]>
Co-authored-by: Ke Wen <[email protected]>
Co-authored-by: Mark Saroufim <[email protected]>
Co-authored-by: Vasiliy Kuznetsov <[email protected]>
Co-authored-by: Thien Tran <[email protected]>
Co-authored-by: Tobias van der Werff <[email protected]>
Co-authored-by: Shuqi Yang <[email protected]>
Co-authored-by: Scott Roy <[email protected]>
Co-authored-by: Jesse Cai <[email protected]>
Co-authored-by: HDCharles <[email protected]>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

5 participants