From 50e38bc1ae1f7ec5a4bdcb08374d7f24c5df0ae8 Mon Sep 17 00:00:00 2001 From: pytorchbot Date: Thu, 11 Jan 2024 20:06:07 +0000 Subject: [PATCH] auto-generating sphinx docs --- .../tutorials_python.zip | Bin 279481 -> 279481 bytes .../tutorials_jupyter.zip | Bin 345827 -> 345827 bytes _images/sphx_glr_coding_ddpg_001.png | Bin 29577 -> 28807 bytes _images/sphx_glr_coding_ddpg_thumb.png | Bin 17727 -> 17437 bytes _images/sphx_glr_coding_ppo_001.png | Bin 56891 -> 57217 bytes _images/sphx_glr_coding_ppo_thumb.png | Bin 15854 -> 15719 bytes _images/sphx_glr_dqn_with_rnn_001.png | Bin 21247 -> 30166 bytes _images/sphx_glr_dqn_with_rnn_thumb.png | Bin 14523 -> 19305 bytes _images/sphx_glr_rb_tutorial_001.png | Bin 9573 -> 10473 bytes _images/sphx_glr_rb_tutorial_002.png | Bin 9655 -> 10550 bytes _images/sphx_glr_rb_tutorial_thumb.png | Bin 7602 -> 8056 bytes _images/sphx_glr_torchrl_envs_001.png | Bin 8989 -> 10007 bytes _images/sphx_glr_torchrl_envs_002.png | Bin 110325 -> 107756 bytes _images/sphx_glr_torchrl_envs_thumb.png | Bin 6271 -> 6823 bytes _modules/torchrl/data/datasets/openx.html | 8 +- .../torchrl/data/replay_buffers/samplers.html | 8 +- _sources/sg_execution_times.rst.txt | 46 +- _sources/tutorials/coding_ddpg.rst.txt | 4 +- _sources/tutorials/coding_dqn.rst.txt | 74 +- _sources/tutorials/coding_ppo.rst.txt | 6 +- _sources/tutorials/dqn_with_rnn.rst.txt | 6 +- _sources/tutorials/multi_task.rst.txt | 4 +- _sources/tutorials/multiagent_ppo.rst.txt | 4 +- _sources/tutorials/pendulum.rst.txt | 4 +- _sources/tutorials/pretrained_models.rst.txt | 6 +- _sources/tutorials/rb_tutorial.rst.txt | 42 +- _sources/tutorials/sg_execution_times.rst.txt | 46 +- _sources/tutorials/torchrl_demo.rst.txt | 2 +- _sources/tutorials/torchrl_envs.rst.txt | 22 +- searchindex.js | 2 +- sg_execution_times.html | 48 +- tutorials/coding_ddpg.html | 36 +- tutorials/coding_dqn.html | 700 ++--- tutorials/coding_ppo.html | 44 +- tutorials/dqn_with_rnn.html | 22 +- tutorials/multi_task.html | 4 +- tutorials/multiagent_ppo.html | 22 +- tutorials/pendulum.html | 2502 ++++++++--------- tutorials/pretrained_models.html | 72 +- tutorials/rb_tutorial.html | 42 +- tutorials/sg_execution_times.html | 48 +- tutorials/torchrl_demo.html | 2 +- tutorials/torchrl_envs.html | 22 +- 43 files changed, 1928 insertions(+), 1920 deletions(-) diff --git a/_downloads/315c4c52fb68082a731b192d944e2ede/tutorials_python.zip b/_downloads/315c4c52fb68082a731b192d944e2ede/tutorials_python.zip index bd8a1257091b863d34a45817f1a24be143ecf0dd..e478102d431f5ed96f9331bd9266659cb2343bad 100644 GIT binary patch delta 197 zcmdnlF1WK@kSD;KnMH&F1On%5|sb|h+BfUl!rk`^*Z!OA9WeS?R zS>c9G7SqYO+x?sv)7zNz=WXA9f|0w5DQ({NBTh`=Sxm>~ZI@lkB-O5+~smO#^|PjO_i2AV$oq9cnH(DdoNPC)+2xzoLz qSZslYPw#XBs!N+U{RoIYHgEcWCl+&{$jKcF}=vz?&rjq-p1scy?y%$M(!%6=Irf9oS4G1m~LlpmtD&w)x~6-v)$61c}^VD z=A7-f8esWXcU0NMvY@c;k- diff --git a/_downloads/a5659940aa3f8f568547d47752a43172/tutorials_jupyter.zip b/_downloads/a5659940aa3f8f568547d47752a43172/tutorials_jupyter.zip index 63e601d04af3b2fc95b3bfedd170871b2675d998..1b5e7ead764293e5f09e209ed5eb2a67662a709a 100644 GIT binary patch delta 198 zcmaFdEBd%slqbNOnMH&F1PbPCoV?n9}BLPxfId?qxbQZ~Kj#Og#-u((|{cMKK?p!=$iayY6>p z<7TGB1>2LVSoWM`Dws1}!G+ZsX#Dh47gigf@zWQ(u-XBQpZ?f|)fQ;{bR}0HUw_{8 sBv)1kpyAV(xB}H3n>YOth?br|UBQjj3TX257&oB0#0AsmxUsqe01%@}vj6}9 delta 198 zcmaFdEBd%slqbNOnMH&F1g2(g6Y$}Lw8C`3lgG$Al=<1(%m85&9{!v^M3C) z^UwUuC^PJR_Fn5=_kG=Yop2=uX)JUybO;23^;Skg83KX#gFxVxQIWx4UX9JKgJ1m4 zlA6vcc4p3QhK{BXc|&J=YddFa3!`VQrjAY)cD7usysX^J&ptXk+dB!cvDy6J8(8fe z&Dn?o`G&zm(ClTjoFEV!L)bsKBGEz%2*mE}t;8Eu_l*4oH)qv}_U@IX!F)G7c3-+4A6Df~%{hst`$VxiJbo2lnZd_y7MNrpiMg88WMMI9Y!y zCN9pACMVScd)l?MYeVLrKdMH?#vJJwB3WDKNJr~^37uVCq?F>|@%gPWl!8*h=!EEZ z9(wu^adC0D9$t24=D}rd*cu<1X=#INYik>yswjcWY`Pa%7#J%5R#KxpJvYUT2A=W% z-NM@WC2UWqnm^PX9UY@$sEMy{Zj63vM(p3K!FJV{x?sEYr&uLJ6uP+m@s)=I` z>um4{2yikoGC6W-oC+-z-`_q1kJQ`!Eew70<_$7^JX77-r832(**Dm--1&7cT;#j1 zFTec1lI|=~E7eJRyxS7J_Pu9oxeMqsar~P${`5UW^k(}xqeiLR>(>w#?P`;SdKW2a zJY3v(qd%p(f>P0B8;O@UYq6rWht0Pq_cxP2wDGB^6y4oxRfg>lYuNlM&4yNwd#JX$ zi1kg@x}&+Rr{l0G1=i&=iNN_B8rRJA4Gj%VS>@&BVQ}MikBpQ}Pi`?W*y=-iVyQ;L zaG#TKnxMMu{xNJ1LPJDC;_x^z$;%4|>cl}JK3ogW_1Ie^6UIc9prB^!d{2o|5gtEb<%hAy(Wb`h$Ey*h> zJ((!c*t$Jz8S#1mmlQJvlE4WPvFXX}&sL$Kq2(I)#B}!bZ22hI+Oo!q+`I&DOkMByMe|NqSrKEAaX({Wi5|`rthAot{`Qidfnn!c*+_5ia;DqjN+ese!A5@)g|KHLeYQ8};Wh7)cf!tiA(v@CfqI#q zysRwxlJBiebBmd|)8F76e0=<$AATgVXkS$H3?#D*94s`HUGamXT>F}$#~AL8oyNd^ z=-VrV(?_3ksPTkA%W;bsY|0OVUwyZ+ytZ?s;dBEV@p_{yIVd!AZEH&!$eM$L1L7fi zsqcGjYTK}1-8dyBCH1@9u%mHJL(e1F<8<@*{&MN`r~^m;oFWhfr@(Hh8PfQ0^SANw z;r6?BO$@MFz2kF!etx-Bc7Mx>Z*WK8-qVu-wk_euHWVs$*FDXH=385c$lZ}R5vxvW zSy>HV?K!G}VHBlc^7{IEV=OpM!b3EK_MFRlb&H_sLt!sZx0f2}EjY>b=>jzf{r?a_*0Dms`ur2JP+brTi_=UcP);cIR(=Tm7y~ zQ9)tzY-jw}$1$2ikH{{u@d9~_vnu`s?N~@Mt1ek&S38h1o7Ww<$D;-JjtvTh-re87 zqgl-UHjgR}4cHN;-to&ryvRgy7<$JO8Wz?oih5R64g?sIF+~~>7|15*d(ua*Rbhg5 z*m#OPrRzrN@9#hFG$L$bZmxgoh@amiE>#<)JD#2{@Z<5S9vBFh`;h@mu)9-bigI$8p*U2m>u!bi?HwHq+SSa^yJP7^WA&1xXmZ}< zk1;L47*LO{)?!a*%(FRcX1QJWXS)J%L}WZY1;j%zIRs{xf|G-(F>*!f zwvBoTa8qGV8y>e9jBy#$XuzaPDKD*QCr&6H;<(Is?GEc>&tK&5WwQmGJv}+2i zrb?Z+NB!yKKPTFMaNkTb-=3>sLqNgKS1VBu3JMy{6-R-GhnE$?@asG1CoX#T8ko|` z%E}9RdVC@xbw~Q@xs@6mgTB+4wa=NkJrdGyfJ0<}OG`_m5O5A-RQpDvF434YWR?d6 zb+$VZ32b2_qO5LmN%8${hK1As`m%^VLmFl9$`e0H*TU}k% zZ1Suc<2d<@mak{ecds?*L80KG{lX~h2M@CG}}HRbM_>cGn?kaYTm`t zDwd+h2N!X2;J5ofEN*FX&(c4+U<+o*d`7#ttqR=T>ZU40SNF#-y9pekbVsob`>{G- zQ^&tcPi??1!Lmsx^QMa+^?@hyKnm}s{1Wlm>z-3++B!4B)}+Gdcko5kl;i?m)e=FA zf&KpJH21=P9vz|zS$J!}Q0w;e&mmg1&eZ|6=0kmQIQUeVapepNuPuezH&tqO_Beq1 zoaVz6);#2djH=7PD>m<)r}NmfTk|-r_u@jjW2qGHZ_d%MvFTV@V?v*Lh5?Lu-b^44 zRz*$)t-V#LJx1#}j^JIHL!suKo7MsQqWw5u>)`!xy#<3hNK$%{wnKdY*l@^1kHxs3T)2z;o3aQ_r?PDmef7h!>1y$Z{Jc2 z31zIWn*jWZicw)FFKEB(X|oMx%}+{8 z)y<14SK!^m&BPSh+baW87vQN*o>GZ;^O2I03f-TLb6fll>IlVA`Dr8x69bd_dfism znm@|Z+EuUNG_FvTr|y28of54aXeNJ(-h&XRxmW*#q3-eF)|W3A#QR8l!=JH3%F&O` zpYi?r&B34lIQ0bA+?f*`kOn{Lk*9TE_N6|38ylZK+d>Oe6uflab;`A9C4yIANlzz2Y$*8_6z;^}n)b#^-7x zezE7rkeR!sTIA3Gv!>34D`bADwJ1J2k%?jz6yOqKo(jv(Roj$ZefGV-IR@zd)35`1 zb1+>B7NIqc|T{Y=j}VN05Vm2o?8M%AmRS_B#B9*z~%2G zCOHpg$wWU071A!RVJ-&vS?{AZ6zBcfB;W(|)t@x^v%-0O^0VI-MIk#!X}}^9!hWX* zNgvua0Sc>d-p^Eabay(!WjoIYbDlsvT0nY0llr{mA0O_4`@sOK=LMe2BbFD$gU4$< zr<>_^%4K@O1&Z0jwGL}hSDcu6TCE2{7+02iuA0|8%+MhRof<*sTM}=C(t8h}plYSB z22`UoGAjLE!EcAl(S5w-p1(&+^)c+xx%xtG@`5x|4w$@-A9@bG)iesSH^Re;y)%|v zJ=P~|(o9)!39|rxd*@qquwf*%5cco^2mn^DJo8jQY#HXS3Tb+iHXCDV)c-0dN+Q)0 zW$&i#9~2lpA$)CzONJ0gEOtIeeF;BUPds^-JqAOUP6(slVy7tLjW^Oz2)wJN5D}3u z0#C`mBYv&d{48vMakzyTeBAihpLH$w{$0#k6+T6zv^jbCaZOklN&nOov0oJCJ*K^6 z%7Y&3y)b`*EBvt(9sWE!It^ocBZ|SLcj_eJ&2UiM$Gq|IFd4L;n#|z6|1tv*Q_&^# zEvp)Vc)GXu88x*(h+dhABF9Gnnhx!{gpNA0SF&Yj;v~!py5ceDF2Ifonvj?^H11UW zyV;fW=2y{2XNp){e0+pB4frk>@Zk0Pd%kqAgwD*@=!_1ca))qR*y08Z+gu2YRXhOV zdriBC7rHh6#wfE2`Mol>dnFLl10qEbUXf6Wv!0xvH*NOn1J5M|L6X%+=}2jdT8xQr z9XSkWpnu);6o%(;2A9PIX7>&Repl;q!(Yu+7^g>;RkON`ei96Pm2!~(j7Wps_SJ9{ zN9iwixmia>ZuzcoPjfpB4RXcYexm@CxVq)e=@*koSM6(>r>~Ke9@dEwn?yqYQaMtv z-SZAoVNL3Y8;6IvX*bjRtKH%sSEgEMQd9V4f(%p=WIrif+Bs`{+gEf30az*&2@(~* zqZH_9^j`K@u1z2{Ku8?LO=qWAFE&%q}^DyyM!i%rr93CLUdqn%$PxpzG#&U+r1;Ob`cjC)4r zF+&jY75hy!nTEIg#J0hm_h7#1hU49QFrLE8RZ>;R*Q0Ms$l}CrWH4Xs1&!DSU$MZT zoHr>eX<#n$5^}W7G7;X`uh-H{#Py0T2J;|lY62y`T?sDn3&Yft5Vqj$**I790_PB) zcTozoG`8CbgeZIopC!K*JwvW8bsn11`;1y44wGL5dJciE1O=uxrrNBSE7{;S*55)B zfG_jCeW%1%XH$WYsC`uoDAm9#{j%_9|8!y)_X+m>*6R*mgPQic_vL3x29+?dns3z> zJ)q<2k&0xDcP=77jV+r>w*Suu*49uK9&l!(T`0;taW=6-=b2&hemCd6C$wZM65fY6 z;#M5kXL8dsQcSp3i^49#pOEj&B1x;P#OSxGLx=y19AQBOxe~|v5xKdRobwY*%~^YG zYfg8)d!DW>kZa`l1|NC*=za8KOZpN3ng06zbv(QZT;l3j5f$bY@?FPruVt#U;0sDl zpiZ@^NOP-N&~*y`W}>WJrOMaY+8Y1WB!cX3`v%)as3j2d%eMTvEpx~`O zylN~*TUK=CGAng1aNhe>Qy&-VUxBIyz$X$)=~BAy6qs75Qwzv-#0F;2E1v+^173$) zXnFtg7KJFf6uphhR`g$5`<-lmJCYxtX6#}qf~&YSiNr1_n4TrL7du)EZX5)et$lT0`!$R74`t>2n0Rzvw&R03_q_3~J^)Y}#0@ zUAI-)LWtC8BF}v5ag_4y8%rT(rl#?qJ~_^WlH@!HvmXhfhWV{QTRSh}YL|emC=dG1 zIECn6(yp3wa8;}9)3jup!ABCr3=p=0sL_Bkt@Qe**X4m&%Oh~Ps5m$yw_%ZyPDY*# zak4)^g#4VbtxlZ1SeW7-76vQJIezES(_Pj)^N>mJS8c3~b9%2s1~*Tb9Wi9ac5)l; z9vPt6z-Xo@bc_g6_U28iZ|W>pj&Lckl)HxtDs;$4ODjn`D)Y5OPs4evxB$8a0EV;3vrk#m?xJ1fRq5YCM6@j!|UAzJPa&? zkgfzae0-SAEW3g#&fPf$6$?Q1aXn!`7oIgNPdc^&WQZX6ikPr8J>49#UTjSJ#m$1U z?0OfFb4fgU0@ri=o7k`o-(ct!Pf8eH7mDcNnvN9q#6Zw!O`TI&{kF*K_yDIm+|~g1 zm0;pj9-9w~4j?9l(`@$U2U!)@%Orx&Gw_*} z&?%VPc8t~WyX)*^Sb^>krvelj4T&Jg&?bI;Y*5wEzKrxlm291Kx1VLj6+@3Cb>4cPAc^RDK>U7Y zTCN-#Gh8@LG7w|8K5$u>Y-&c{d(#{MuQjiDYB=gfbcNi}wgK|Q7uhghs&jS`>jm&^ z?2F?I%D-KSz5E0J3keoB$j?p`RUuu%6Sb5f%t3J#apeefi|EJNKzOU?)f9pw^YStJ zy;%);JOy~O!(+e=Z-}(6e7=T%0GN=_NUB{T} z*Yh$c2BPEAdinxke1ZaDEP}9bv`gt)s#hU!r^%q>7xY00*P&i=PVwhMFF(BZkkCY~ zS$MWSm%rqRBG{0=0U~B92G)(=0=lRW`heafCkGAfORk>&TFICN&x4j?vW<3xcS0Rs zaa(ndi>Iw`9`)BhfbDQyU9~OX=j?OEtm!WW*FAs6I{;EsJ)>Q_Q2u0R{|dtgfb8F> zNxvmycaQYQeNboZ88#*P^rll6DAE>t+VUo}O_$1l2Bq3(f0}>2oj)%j-2GSQFJ_S& zkAEO78J8VP&F>AfOTOy#aUVaLsRHZ77#{ zlPr*@@N!2UAQ1FX5xzc_o3IVZ6&2I;keSE8pX&(60v`XE&r7lJWTHL~BDC}s+svtt z`PT8(XEf$dqCk9g{gW=t_$t*R`Pu%(ZmkEwun)W}W1S8j!lwM&Jz8N2YU|waFFz@Q zn`hdM47X`&ONG}>TE9P(U#I}j<{q@+g{N6}iP=nqZ!9>)DS!>BVkK$?vFxYcl~@YT zSL=cBPOn47meNK|o=n@6Z!>7#F;80qRCmy>QztKDv1h*JtaUL3;6|R&OWnB?+W-Cy zWbgOOoL;qJNQ7JYmDto{`wuq0m?>{mCuH$qBoNNlmXu9WnnK0M08$EhzjMh07zFI; zjtj`(DaaPC5S_D8feX2&lxx8MjUTN*x2pb$ZJph>PY)thQ>NgaQ`Q#F>b4`&N=aWu zU*0EYy%o+8VX?cAW`PajU42!*&;zq9dXF1<9)SE#dxU}wCg z=jySvC&Qgu_k7%nNKD)&WA`TQ0&co0zOnc5gVzzW=mB5w z4C06jEEwARGNNG&Jgg3m68;;BQW+$rPBs!xC>qOw8^z-p1+zE0b-nWo$M7Mut%=Bi zX0XBd&%~GWE^5HHuFrz*6J(HR`;5-noszwcD!Xm)AuiJvlp#{s?Z(lnGiB)hEQOBM zOt1?Ki~dH<>8%3CrDMeTrX+sUitGxpby1SN3L`&@2Y9wz7@Aof+d`xk9Vx$x-(e}7 zjj%>T4k8rW%*I(LX&&DpDXl{%>M)S+A#dK>J0=*19Hj{ZUE~;~XTo+AppC5UeT`gG zYVDliUHn0S1WLuVGov0uXA0t<&JA#QI&XC_zzM{wQC}As|7aC&0Vk2)nJGKGo{$vd z!r9~eUEZ&(YgyuY&6q>w@2XD(Y=?(nhoyAi$S}3h9ayNjNI_g!JqW@(nQ%|AR!%2t z?lPT-;d5h9AbK{7r?9>YyPuX19oZMfrQV+fWpe?AX$b(xDq;0g(UJLRddQUC#fIex zUBE{~rFA=S_d~edvw1G052Cw#57%l}EAPuUNz&itlg#Y9>SZ2kUThq6Z&;8J8(Qax zjRFZy012*#&S2KGz-KPOC6My?f1&MDo)#YG4} zK>s4vM{XerSPC?&02L+C^Stp%nh9j5g8n1`|FEZT=FAvRBbc7tg)(q~aHJag8S(a( zBm<#Y@P@(tDK3 znfpibW^Qxed&vBmmcUz9hH=_@Mz)=4t}kW-bf@=5b8WRs%g9Wf zDGFcW?<%U6Q<;xf&UgtVArsO>#k^R>Q-uh}E!dhL?r=|1$gE!mzWpxjoa{uJLfrfW zO7&TTwd-6h@1q(^ME%bd5Up7A2#$DHCYAA0nE&}clqzR0jgZs|HQ{Vy8F?c?n=0DR zL6+)>=LuaQp(Su|XxV#f(6z{Q^+66~U~}7i3IGj?@X5Q&Zt-S3I36PY@t*d)J(=ZwXTO689WoXd{o9>jBxfi>(G)D7TI4l>u%$3Jht`b2ct@z zb9q~MMu|dQB$5&U?Dh9>&f=gw4U+Tkb?!JzhbRd$ciEB(2;M{7B?NCvEZ^(szluO6 zY(H)iTWR>zi1!f|M{SLzr9)KVPyg0y1Ammdh=F$rBD)>l0S+h4P9%AKuS6d-i$wI3 zjd<-6a>||^ZhTFctuOe2Fyf;!vK2Pp!OHFZvX(-jj^5Rs&mi}Yvn|?%5JH-xQ--@2 zc9Aok+Lzp|F`0Gbibvan@~Lv8bi<8kyEj`20lb zimXeL&&M?#)C%^!$O0%gZ3Wt%>+{ovI4h$KW*?ofo8Wp2qhjA-a@~p*)=)Hrht>KS zza^c&yhg70!DCydlI&G>IjBweEfKqWsYlMUIw|ih=~K6G?R<972j~nxC1%wdcF~y> zc6ewv9l8A=#~l%AKi{Fj5f!UwxbB?iaQmZ!_YM^hW;ls!2 zGbCp3-#_K#Zc`|4F(OG`&~k<5syr@Rd-Av#cU&oEOFb3j+yq$4M3>0YlQ2V?4QfdN z=sAW8wB{9?21bj*-qH!2tX_*f)?W;D5T`Vv^VKGPbN^6{cr9u?SyrzKzu(#@Pw(#D zO((Kv{>8Y7MEsUlAvX80XgRm1MnV8B8Y-5!GGMhPYDsdx;?E{Mf7yb zBMH4mo@`qg{?6I#4DxzlqnX8(Sa&QPXBSEY4;seNsNC<|AdgR%S1R+q>N3^(@=?8x zAQ!IG=d=o(>w;c%Il_`I5b(L3SZFwYL`d75a&mN-Fc8| z9V>z8^Y_}L@AFqoDPEt|mw~1moK)O@v-8~|#-=Se-6&6|%LGn{~7>Pw8>gF%|{*5LMA0kC%PXoN7}W`$VN%2*w=@-A1EkPrF?G@@42Ksd--aXsyk zmD+^lx5BIX{<@*pgmVWJ93q7ZAO}k=**GFseqem%@pBnD=tqLCvj>%fg9B~isNmIy z!N#RasO<97q*nOIZ<{au2|v6x@@(&X^?64`-%)9F8=GI9f7)a712?$41#&fF$@ z)g`}s?k5QHExqB512`e4O-%EVtR`3)=|@C%wlUpYUjn_wR4L_@K2%txP@&73RkLtH z*sqHolrsb!lPAukI7Bw<&!H8wd%%Tw zChsfcIERTY3D1X|;Q9l@;=ffWbe!{ILOZD}zh9zcFL@T3&S(jBsLOsfHZ~?9y;b%i zgU=x#-L5$e%ocH)_9w!ph%)Gb@-fw!O?w9y&&l}kc+{15ldOSZ>d@%QtCwn|M8a6) zg>U-Nw)qL~#G@57_E=4{XIvPADd|+4JlN}?2n@sFTK)v)BJ+4_0#bbp1VcR zYWFUqf3Tww0w|B~m_Pe2boNNrKlw^P&3}5|Re{dDVy*M*mo1V7!L$sIt|{rz8x>xj zy;W&G;6~lekDr1T$2TbyF2mOEmg=n1=rGOfTAWltkP&1+(mUfCT!oGLJd6?L9M_y zcl6e&$QAThN_#CUosQ%_=dE`=^4GhGJl~2aDrs_>D!?fj|ykeKiAl{n7#Y}`)`KIRWnFnK9_)pI3v z19fANjX}MB#LjfOn2HsVlV|bPYY6g0l|z=ivk$F55apTKY)<)vL(Z(U;)xH6#Qn-P zs6@u^GvAFA%su|t?47~nPrMqw z?dgys(ETu7$bG?>h`v4-Z}XCJ)y|o@CO$do-9418+cxxkq-yF?Vg3`k0d6sbY^{uz z9VCD2Z-y)Y;`6x*-rX_Y-NdZb8tQM~h+JLq@9ghqDD>4^8+FGdFaZCx5>Xb5d68#p zJ>4}>6EoJ-|GurO`RPJLlR3#NC;Tl=M^ucX6%e1){!o}P5-!Bua}`t^ndzS*kHOzP z?BKZ(*8!HyP(S9dm2>?WjUl zOKUGF`Hb_K5CrGfkM4w;sn(uV{&x~ScLQ*XcMiN}_;RGb#ReD&fA{W?Yn8KPfnuct zbj}i{L+t-_h+Ew(CJCi^zLhOSc6oX8S7`yB=EvKV_PsZ8naE>RxsTR+D-NJ9_6f9k zXU?oat_&K!=P9D*38~4F%AP!-_~UO!svq`khUkijC>^zCO7O|0B;uT;NHZA(r@Ct; z8&WH7*dZYCJ2719PDH!CmB4d5UAu69dgb^W!nUNA;{St@oV+*M2Q*vk*cLl%@;fD_l zw#UrFer3_dqlRpWbZpMcUi(5py`ze?L7y$^1BW5vP2Ch?Ad>c)$7cEuurp>4>tksl?1zYqjpv7aXR3h8xtRbBDysm1a0iT5P9OqjKnql9X4NTh&{%QL**~15T z1RoY4;*7r~p3-Q)U{ki*Y~YM4jC|!argA#ByEP78QDPjguab7P0 zWlr6xVZQ~W2#!Rak{16lMDelwT$f*=Vp0?o>K}+PSTFQUt>r4r< z@`GC=1SYoR)?)F`mU5B(p=<1uI z&>9_t)?E#}qXa4V%T_Cu{zE6gSQ!55lp=0w+UzOH7~gi;47%#guh6hCUD}mZrOK;D zV$;zH#r-D6&@l<4`WpC1Q5T7RLC@J4yL?AbA5d}Cu1h6W++TjDrg^W=2gR)S!E8Pd zWuO7c6n;~>M!u~z-*a>8bpX5v*X~#&Za+Hwk_mNPFQaOR4p#~@3&9-1wR4Vnna#%_ zfuDwV^=$E(^eRy?G|H>o@I|<E2w_BNmARa-3=#@1%+qcbe9V+^Euvfy> zmb_;!Thh%ofKJ``xL@2D3kjPuK^}J&!fc}lK=Jw1yXG1(c4%I1T=whLX4@pphM$18 z7^smS|oRO{>1LCmb_$W7&x=5S}6XvhTeew7Am2E zri95)##N`=KPEixs>!6JPh@WKl`TYlY2Ww~RX;Wa&dFor9TvcAN-+AB?u%6?tz$&9AClZm;Tu}R&T~-ubKRT z0)tMr4iCTaZ6CpKzM1avd5UXwk=rq+El6||(atX$salH*4W!t@mf%I;MvZCy99TLt zioYl@J)Rzv|Go$%@`IbwSictB@Q`6LH#BDJ&PKv-_?Ouj~Z%e+bH!X9x4+ zR2R7N-+QUzHDBGMjzAkS)2*bqOl2_g*231)|HT&dDN%bmAqw|_OE`48$Jft9F{%cF zHx|k?YP?B6V|R6HZ8d=_%A}^l?y%z%F-1?+f!{&4f3_PdzvJp1($mk)@hm;V2uDf{ zmO{ST(MAg%#;av09xiRHgLJ8UMWg^*AAU1nlgDJ__4Ks7=NZhddbG52rik}efnx@? zb(s*KIRMg!pBvL2mPt-gdlPl;EqWV82FwQn{2d?Xw!qw1>u02mbg?C^CwMkMGfcK- z-F;SA3m#la{Qj0mo%k+wcR9Xw1@(cbD6bglM1+CRl@e7{tS%bV_oBl~@YKU^@nvJU^LlTGI;8$vPK_g4Aa3 zkMK9QEV-2|w3hgIo3Hu<5si~SvbN;;91&_7PccyN$FGevF>JpdWVW1z-7;80$6PpY zuT{RPvs)J%Z^fNT8yI=(F(YBodHku4LkR^%*+?nQ1hW1;+h`?8VZL`q_^ zbRC8FZ=|Y|$V-`q-nmVxU31CoYxdwM?xWHyN&u!1tHzB0Ni!xRcj(~h(Y0>5O$>OZ z3X4FHopg1s*V@VS-qB`k11Mjdzc61XxDjUCcXs0BPp}+o^ZwHk{+EsBplw$t!@iPB z4@s#p^q~tkz6FC7E6~^eJJ!d4v&r8sDe$ElmEy8-4lgWW?&J8BqtaOeURUHQ$)+a( z<4%t!J(J$d&T!z^L>B3q)5G2g)I1}ptJXCrLBE|Cu$$tUPO*Zr#+Ps6W7fVthFs@S zzUy(PPUw?ZA|gz?HLzNxLE!g2fEN~dh~BY^Rf^LtUIK-FFiit0NvZ5P3`t*p-3E>A z>QTT6fs*tfMM;~5glq^PK!s1r% zSF4`=K{u6b)X{>XI$fY__po0jJz{3RL`>dWJ-e;R8$xeaX7SpnjtDfk7h&|UlQJBM0iO`LhOD4ojCoa)x;G0R{)A9T_c28GO=7zo`+g zKKJ!jJHBA(0EucBm^Y9>@9Ckcha&R|9q>JvQh4*?IaWpwnU<$pB^kEm@s5^@@u{a% zCZIix7vi4xhmupum$rc_FBh!&dkK?$J6C${eWZO4wAI9aXx#8dI8N&b>67r=VC6T1 zzBz=TEjmPx@cDPHZPZx&3#x}koY98ITf)N}Km(JUvPL~iM`~`f|A-{F3)zY#&Foit z5FrX#(oC9DdzkP3n%4TSGy{e#B{K4EY}lP~gF0K&bYUgW8ql+Pv2-E@QG;}05LgI& zkd=LSq({TRVCo0MSd@uYs2wToQF?LZ_;hXodgBxuN}XL35olc|0YQJ5fltJx+_iIl z5pSfD4-d!z{(Xrp=ik4p@0Yz?C8Sw3*p6lQ$}x^^C2h(bXowl;q+w;AUJ7M=-$o%P zXRhImK9)NM_-G6~l8k->DQqLRr?4s|s9C{iLx7e6`L0zNVliI8VLM;@7Eh5>zHw=NuSd6eOE`a$6T`GX1R~s&x=T9?4(HBHqnW>+z2J9wc7`IKj z1ATrvV$l*&2G#el$7hESTBsw#beynNI(G|d%ylDTQslJm`IXX)#;n&CT3Z!s@eSI)K z9gNX1rROz7YR5p6#R!|^Lv#vhZO#UheA`#ZI*)!}NEFiJ;|DT}Kgss1V;P+A+kgKK zfDL3GtJADv-HGRnXpB0e8iZ11`&0D<$Y1J&AOCtD=8jOP3;&ee0Fpo_?>IRZ9#&X+ z)k=Bz<~D_*r{yu*_;`B{6AVyJm3TSO9f3xtrj2Xhco+drp*%bwBbuJ9_c80%CxSX3 z9tDN>%;{QBtlK0wW);wJ?0AV<23Zn8ZP@DgRXXZM7xWQVk3;Hz&3WBgKrK%k*4uPe zVDg)*u`7I=KnK}dXt=D{I%&|&2y-vKxqPk3>^(uO@ICbHe(oc$(v1KpSQA&I%KwQ% zGamSPx)-Gg*sihbzu>Q?Y*r*B(7!8N^wM_=|wK-vEN6$9ey>ziL#2ztCE!k*l~ zI*Th6oYDjj8xtZ3ned)GfpKSR!7KRzf%Ip_I|)q3`@qp#j3YEZpGZSXa~WY+zXsj| zL#zZ6f#Uc9ju}wCii?XOiER2=`*Sr2_78U+oSYHnhEuQ_@JyvS5aZM4>rHZO3cgn1 z%Xt-MK;=Z3I6x01eywByf_eNo@pe`)BotbbcMItX}O zb)w!}><|2?S={|Tu44v_R0n#0uKG6p=y;@6rv`yCY+273v73-EHQ%-0U%zlCNpf=8ic67wZ zo(6Zz;R9S$RMg;YB_N9prg98>{T>0K)F;_(edg;YgJ$u=3qoY!W;?R}?-c06ePI!ffAmqo3^Hmc5G-yG3EZ zFag}dQxSlP5s4ZSn9Jl4VY)Zz?_<_B%Gy9WtX2aJa{^tGV^zA_s##??Oe&EKz;da8 zKKk~juqgs~hjkQe=BmE})w}l120Ctku{UGYTmZUTSJ&47se$za{%sFTq9y7Yiz2(S z&;3ASFJ3OnZ6p&&vO5_=y>y?ym1;Nm@$ zm6gGaEt@mcVU~6|9G@QEezg-#y;P?UD5(48f?FNnwlZjxQowl6Q@0Y*()g5=x=R-hmA z(_);?Jd;ilFj1VghBqd)?Y;sh2e?F0$XI0MMqTL9N8#>y(^6pWOJXYIk9+EGv^4*?Ny0kT`Y+o3`<*{h7>>aNnFsZq(!E*(Cc z%EMrBrZyAUq;)|c7=pF^J_j;jFb_|4VKqpJWdtgH@B~dQd^U*ofP*UpoF|Mn3|Njz z&E6h2=YM;ECiO2idBLD2-U=hi?_ue6M>816$BAvPNNMA5`5Qs}+sAJ;9Bi4K$GSH! zR-_-$Px(Pt3WJ!nb7Uko{<*YrgR2e9gRg@@m^U@Cx%*w`GEg7l%^1J=62&L@bz~rU z$?CPJ^xJn8glTVzzV8b7XE^aqEk8ehH0KS%Y_-kb@8e-%>#==^ys^Pyd{-+R(-*Ju zGlCZN1&9)e`shJwLGQS$@XW%(0!E#$wwdDuuwmPHECr}m87}C!@c~vskoNwLJ%4+X zS8@lC`<4*pBrx=63u~^?;lIc?bD(<_xveD6O>nsdT*^j@z9Zm~ThauF)n-}pc8pT} zYlHlSxqjxCOThK7A_ML(Xf~w+AONFAV$MaUDLnWL777h0OEcaD3nE3LK+WXt$B<*#*di(se?hW?~VcpIgfSTicKOkTp8-SKRj1#A%q_nu! zt(5$B~HW7A3eD4k!quyhUO2L?;r(Ag=jDQ1=PeNK~LB&yeWk&v3kuU62N4LCVK_#^S;7@|Pl;S1W-bsNdrF!wz(GXtYp!n)&N8Gx_94^tpM{S6*= zYqWnHEq+;pr8K3VU%^s>|1c1D_cxhy<4Onxs7OJa939=y#-y)TLaAz3Lda|XmNv*J zDi#6~fc5OJaDaLIYv7A7y6Ede00d0a*;AtxxCB$40s~`}0O0cWeUSPNqRNN#Czl()ydWrmyqf-VYhNk-nBVuB&&%3P9V8wt}Q`0&|wf{i`C+eR5mC7AhB@(Z20U~`ug`yDel+mKj+;}iqOsnhITSGg!F(dqK14nu69O~dDzZ>4dF{bO0K z9193k;7%?OC*=$roPg0NNpu=_RRQiNz82P}*!K0gmC-Vw;Rqk;%H7eymwCkBg~6Kg z4pZX)Y09U8P=vwoU)Zz^DkW&eX)qCR|GN`CCcuB`O{T5EfWOCOTSQHpEg(-M#yu0I z`j+S_hd2uxY3%d?*=ZO-kR9Z|pd~=Z zWqkv0b`~H<2yX|oI((4*gb}F!-)TxwFpM7O4QRp2gAWvNay)$DGAsYyAUPDnZbBWD z7(6~lInbFg3kDz=q*A0HICKRG@jobyI)(q;re zfv_1$lHByg)JP}}%#Hl#Djk(*?JYiRnCZCeknaL-c!-lHg-=Zv0BHKZkMks;*?M3f z+&vi-DYxMP>^Rm8z>ekX`}(f6VNK=dEO$H8fiy^O^J}^5h;N3FTa@_jm|)3p49IUY zavW9J0pW>tU6bFNX94(gBru^)qnuINKp66Xn)@@Zwg(JqghxviexiYe@{GjjfDYmS zM#q6Yu@pRw(nL1>EA9y|w-4{-3r0r>-Y-f#0ePV<7)%CVxDeDOKonK#$^@p%2b;?e zxbjrq;;yqG<>9_|5Qja2mi8Iu&HriaJfNcJmbDE?jsku|2FZdX$vKNC2#S&C|S7Gda|O_B%(=&|(1C+>~CMtZIl)*nQk z{@Wyi>Q(C4ID1i--lYssOTRoiM02I)4gqDVNP?CgIhp|o|d_OVf zjR<7)e|Wj=x*gP)_Y&tvbNC5hf<|JHF^dJ^il!vE-#W6y@#s*SB^a~4moSUWkg=y1 ze8&TXap`0BX#wq}AJqZ^LTf##n07*5YCd{I$HwsF4HThp5M#z^DO!7~5TMX%D;eDF z{+>h`POglxhuGo!3ltk1K(PULa5C4ys_%zPt46gBR#_0lAe$A8kYWW0ZRwEjJ<*$XJG3a}Z41H25Aq zwdYG1)2aL)_d->alr6c^M`nz8<~mtlTx&lDM7f$1d&UN(+@P5et3P>o6};LAL#QS` zngXy0Yv(S1r`|yVDpNn6=gTBT<@Mr;#!o)1wOSg0iSdyC0s$>h1FF%9YEkbDuZ@Hv zcTkQvIz(k$ZAGpzjlw;m>67PM?MGxK|CmCeCDl~Ow|Y)8Eu_$Y{$bU+(Nm0}iV2Zu z9W>pX_YX=V=0K~$6l%`EVkZlSlqsDh8}2E6Ol5BgGh#RG@tp9ljNHe5(XDfM`<*!B zr=?5CArg}iuaUcXgAw9_lk&wi?;J?Erd)mk*<#gOuONtj z6no(mrm#?eQR3G9c3W%kB*8LK^U2IU1qPMRj8;zv16z{`2l!})vJ#p8C886I1gCZ; zs0r2=b2E7)CHoiX!RVjSCkYn}za*u6k6(L@(XxW0#&K>x@pOViyPn?QRddkdTso8kk4$ zs>H-Z&-A$G$5+octL^Tp?ev^}PII_VS?JeM>f4sV78H}&w~Qtu0mgE(&>)c>UY1=P3eofppc!Xcm*K9X7dp0`2YX-fX~L zoqbgd)#l2ViByhj!_m|q0zIYY!Iit-oO)Y05W7Rl!zIkVDOURQckisiUG z&R{ygetG2f;oB{7C?9|X*%v^|)Aaez8x%cmb#UQny(K1FnQ$_GboGW*WV(!dIBamu zw zy+)A7%l=Z}=TnN($B%SoO9?NVw*q|ORbiq)Xljwy+>`kvu3gx-XT9SYe!%Ec&07ZO zF?SwX@#u$HP{B50T22n6t;o~M&Ab*_O}=L@ws+cj95BlF*ZV}xCxx6vz%0BJ3qJsDlxdiL)Gw;c|-(#sEX+XegG(RB(Zo!Ee@ArD51F1hBx5 ztu&-uh_RM5 zo6R`#aA-0L`0kbl2?7QMU$HH=nqV9YEjNFXDZG(NuydNY`1e(gizl&JbE9?qbUC~g zi#yB00y=KkZ5yA_?QOrr;y~;2p&=iRR6rqi?R4=>bh#`l-{~3!QAvG^oSRFttIpF9 zhvWc(Vnn;`R3iG9k*9RjZxYA4axbc$(W|*_LoIi`wQ&ngYedmL5+>>|ZH@eZ|H{5@ zXLQ7WxUI;=7K*0DNMRN{ShN52j7&%|Uofr!zRb90jl98>c^0Z|{fD;hehPDQ7re0O zbc!xGCTD?L5$?2?y1%@<6~mZvObi<79Yh`5B;l4 zeH_t6#^IF`FZh@Yk?K1Z^J+z9b%;TC_$L<~ zUsF-ALJaZ^L;n1UP*%2U*TW#mEEDldxXBL^;NMN>>1Ul_LJme^XuA9_LJ7;-wzFnt zPk_Vr{`80eZ}{+!1PQK(r=Sv!n%czx(RKO(G1vex?b;JQ+V{Vk!PKiflBJavJe#b4 zKx14g6+BzpYJJj}&>>j`kFwDxV=}b?Xv}*7^`oB&Rp~0P50gnkL=F zi)k(V9BY+RTH%K3u9g=rqRV6IHKrh8VQ_qkI#wxFyLawfwF9ZqAygT+ z`Ug8YJkpsn$Uh&^Ti~5OoU9Z?^xfdaRa5*t;~IGh2Qta0hA~XuR)%uKD_3oUc zC*hUEG@G!yfn-QCjv`8I+E;=L$Tr{@_NI0?A(4Ug&126Nc)f?+L>_0;4cO7wP?%ciljhVYd)g3h0GRFyq=fGbj7s;~YMpqY! z1FOKA`993Fpld->4sAngMl9qD z&WqHDJJqK2udJq>aO2@sD1R1DN+=wR1XYs)A)I5g%9s`2I0_xEFenS;;MlXNRBj!} z{$dhDBB>o#ysvDK-`D;U|E|;ZXF9*E+bV__6r98WY=YynBgfZld|Su1uT7MxJlKE_ zk_!o5;QW$+kYC;RH>^-E2WhyEwMr|nb2|k^7Lk#sOy3AW0U#ps^d_3&L#`*3yIs<} z9;xKwQA~wt){oeQ@|IBAizSOTiFupJM>Gjb?L%r6TVN{}UiN)_)wDX|%@T zAv>tp=OhpA`_8Mp_r)ZUK~A8f)iIS`_$1>*ha40ph&C4fYBj1{dJD<6OvJXlT<|;0 zK5%etnvS0S%LP+KrGl<3t$8_U230;lbmLB>x>Uv{6g9YeA`T=+x0R&Y0o`QuaZo#+ zi9O~g>yx~SDfv;_s)3h2sV8Z^lzH77lU!!}eb*Z~@hQ`;aODPL#2qmB06y4J3V7=D zuqeEWJvse4c~G~NT0EcXGO}De3Px_Cw8gJs%Qg;TK_Z8H;HO57LuQpv1Ja5Je}n6F zRJ#I?UJ>b7Qz+_&TOM^y{ffhZZ8ok@iWMGUg#k4U!ydgDl!SI9 z#D7rTI}4gETITqOl8_!bEG&`AYl1lD7S#_S6h*GXWr&rmZ0TvGTHPo9{=37iZeIzw z@)=u3My&^}7=uJdce7LfobjLP3lP=N*f=Xum0E|aVSJGT%(lzKL-dnaTMtn;(ek0@ z;T>@piUGg(!{H zExJJo5NeoG=ZTLRSS`A+cv1<1;1X+@kXeM}Wz`?evf=sHhrCk5kvo(oL_NlRDn#e=03HlEhUKJ#E9=bz zPeDyVLN;yy*-=qX8~aT}?_^0iiY zHcMc$U)2txMu&fdh(32i!XW*$I40TCM-qPm$m?D29mh~wZz;s$xe5OA!C=3ncPoAK|9pgL+3h zKw?lQFjeDHWmPr&IC>`W&$%QPQ8p#1?%BIeGW!K2+w7clbHc4hjV*m6W-E^h8`jzQ zofHoQ*(L1Kc&GaOZwaABtb|bSYbcJhU{Ak*&ZER^jRR0wwtZj75&P!vp!F~?-@B;- zS`UFuki^Q*Q6CvnlQMi^73KSs%yfHAYJzx|C*fI4?eI)>}G~M_s?bA z!d>4FF#`r)N;(!v=TlSf=z(^SJX^>mwL=tW2hrSvhXASLm4Z)ii%>0L%x85w$Fz&S z*?VvmV-3b?uBsRkXUSLFJeTqnm$C@l-BTe$P+#|q0ys0P>Ao$$vdyf%*gC8ktH`&2jvUe6amxLJNnHISvy!Ff+UnmV2noxfR$^mfZhM*C2Aoz8KvXXgs z8+Uj1vLNkrxQ{qr&&u6T2)4IdC}=x-14gJ1J3{aG2$f?l_Sz>*?TK5z^d)eQMM=0Cs#qbnp7J{nSq*B?h;%lXm$iu?P0HWh?~v4n?8eNsrCT`+-(Qj9^mGn=s`=>*>jMR1FE}8vD+=na-fW;?83`#c^=5s1 z4dr8(EGvr=lgWry%SA2AFKF7;iN$D%JQRyIs9W>|Rzcv2wPl6O^5)GmAff8b*4WsH z72`FW0)-&O@Jbuz)`E{sBh*ix+BpmDUBIr1QDUfpI()O?*D(9CFIGN$m<}T~<`w$- z^%+Jfbmy>3!)0`lJy}#_+cBclQ0h8xj3_nq1PiZ*lM9MX{eTV0M65~Ci3u?BB2Z|D za(>LqX`;0D@Plnt?b@A1NRS~(ZgmZfO*q&&kX{WZXZQfBnZ^4u#>U3BcE9&bEI2*7ZvPjGr-6l`nBr4eEol`(fIK47^Eb4*25^ZuT z5yTN%G55Lu>^Ij{cj%JO2HAXkG}$FJUN`3if|=(bk#)4a3lU-@k#P~b8vM0kF)P$Zy@HIF z;h`zwa1!J2ZHTRz(GN}N?-)}qFm{OlxI8XnJt}_by((>D_*rl}a~4gDnX3i_wbXmZiDE_)2T&MLwk-i&RdoHH zJ?LZ`m)lc-?9D4k-$4iZpYR?vkl z7(4dlMpjtJC}qJ|s2$xJb@Aw5Ks(h3f1Hcs7|ML|@%ilyfsud*fLM9Qm~`?$-T1{^ zpJ-8fmbBxs3I4iD99gU{GBYGe1S(~PLszm1e*Pv6(PDz=>;!~b$f{b(Z~Dp)>mC{t zcJTm%9@qV=qpuWAZubF?Tssv6Q_dsdJ&t6VI!53LI=8OmlR}aF^L#L?=?e=(nR^M@A{{DQRyS=b>15r0yFh;Xg)3Rj=@opxJ z^avk%rdu~wdcl@7aLD~KzeaCOfQ;-n;R}1j1N@TTRC^Cwe-Se4?k+QqI@JO7kV2L2bQKLZ4{xZe zb2a=JA<3SdC>T50z`#=(ab%&EdIJEd6Y7KqeYM`_eWZ%p_8vJSwQl4^K&ZbTbbT>x z7O#OLfebc5qQ}YlI-)qrpg`%Ldo=kYwjTU$)a`V4L{d)+V5$bYuYNsx{+JR(*-7~k zA_5PxFb1N2eJofpjOxgB<#B7lz;5gVR*$~%DrjuI{zBm_BeJGww1M*436pT6MW!`J z*enyyj<#DN1#!ut#O{$5R_tPi4cXvCo(jXtT9}Oyz{Aa-M9fFU{sEv(MW8$ZcAp`Q zDxzMj5uRm-2e-+a zl2ttfH5EwWBV)^Cg|2>V;_^}73SR4`%Q-3LquYn1w>CK`Ve6#+Wvt;=% zL0V2B73@pZSdpKJSGg>$4fQA7*Fv!(bALQVJ{{1N*%TPrV^8t79CqF1iv_ zmy&<#kNAn7@||E?0K`ZBGy#Z>L!rpjP^uLs?7SynrQXei6;Zi=2< zmNeSs5(q#!OCneh)?YgJpoQ*TJyjJbjhSz;cQTO6(2+mp{^P$iYr+-$`1YSN912r_7D~6YRO1jVdAmFVxwl z`U(D*cORl%;6AfryBaiqyPp)+NS39+TVme`m_`*92FcTT5&t>l47U3E;Q_emAVlNC z=xhMjK!m*pH+=+qB0~pKh%~;_wZfK7%cfS#{Q020sLE1A_JBB0OaIDTRG-7X=y_#c zi2mmZe2ow7mx0RcUIrEBYQ8@&Q4ipOreRyY>(LnyK&32(TV2im=Or5bF38)5p`N6Y zXL^RdDTix7|G9=y{0og)Yb?oOw`D{;@eBPfbTn($V@I``b6mOFf&Xnlv)kd;+4ZIu zSnsYH>ugbb+DSI86syjAVr;`7XEr?=djdIdQ8zd2R9P)*AqM?Wzt9PcDC7e5bYSmp znu5KXyswAaOZ`n<8KmD+z%su!3}+(rXN6o#aG3%;!Q--~3~s#Kha)?f>vULKK6UYu zeu&k>?9UXCG8FS^#HI{|{+$1pe`F2Jk*on*c&5b{(Q|*6K{M?hWCV04U*$5lo*fVI zrcy?B;?3OH#p=cXk31ocHfm6owtktCuA3=C8`NUKoJ=jIk>5WmZxqI-JSL5ogR~c_ z7#sAMq9}5rQVYD_Yb0Gh3`@2BGMr=Rp94Nj*@pr7)F1lxi%5>x@*b=KYaHy|ccC$7 z4HpQ>mr~Oq1QtI~8!{mYBG5E}3?+~S9SiUY3H9=?^Fea~@bY2N51>vG0^jlR1O^R5 z1$-SivMP!iL}wl#dc)M58tZ^#xpxRwJ%L>L_R9Bd4N!4qGxh^r7WP-{Uzc!ERYmxE z$~?8B3Wi~wU0peMW3wnB=^_7G{ zEjl3~p+gbgtzH-P-{l9Yy&b*Cwj{rbVI*j&rGOFFbD@gF-b*5#S!1N_omgZ z!63T7xz(eD+z)KuipXk#Dl?*9Tf%a;jG3kh{kaKT482;$SyE_r!*1uOL|dE$Y% zLb|+nTyO6cZJukT>73XGC(_`;z8cj?S0BGN|7GXv-cNf?#Lc zI5%kc{`U*8Bw63tLE3>d!wp_I!>ab5U+NyQmN%e_hg{Z%BxER&-~ZV*CMgK|a74m3 zj27@t$ov>rp)>koNBTj`^5$5bOm=oQ;Dq7m(RZbQYQC`XegxZ|6EL-2Uw!c?da56k z3>t%QPXH*#0m|*bgp~*U_5mReLD0U25z|fN*C!??e|e+gR^8^OvteU+9ZYXbYvPK` zYH6659>Pu*c02EvyyM)fwn&k^=ys z#szm1Fb+IyfrsaSwq>uqw=xBLrWt@vr=S-De9a6(ITn*Q2ENYDh5n#lPxxw+8Jeiv!_)%^h@3AZHhq8n__m^zBv4v)d$|7ycvz6b zx~;I)DYngou5MhQXUzfFY&%;m!hG8ZHWVw+$3*H(tnZ0sNIQ4PRSr3Cr=-vyz#wGo z41&d3IXXJpF0SAI6m)-eKCmIzunhQmIZLHGGn(!9_lX#B1vCJiavm%RhK4Nj3igsu z9mnexocasTiKNbJ>gW)j78U(G!L@pOrY#ma#LSi*8|1jwA0PRqNjPbMjo`cXiX2kE zbI@i%Og72H31nzt&LJHaaGZzA!XQuDmv@afG~PQLIxo0E!-0;YV=5}DTrlJN#x4nALz@HeSDf4d6msf^)#PBlCnmC`{aU+ZoYr z2N?9VNtF;N<=cOKeYN@H#~;4@Lc+Yf5pXpS!9%oG9!JMtNDg{Siil*4BQck|*B;h-&BI-j*?Fra}(|5!vYB?;v;&lLs0L;Ipx@`T6-7!O8%o6R@(1 z&|>KY=erDej$H-mi4N8Rvsy_=3rn1dJ@EaJmx~~({`)_(K}R1k$d6bR(m;`w0q%t9 zzW2*a{cg{^Ll%HxxwVq2I~TxPN1X*6Jx%iVr!u>aO;%u@1xzX*8N9i{kkaW7!Y-@< zyH?ObsI^DwSR3raqv)A_^!r~1KxKY}|K3tW<_e;44_!)74_g)@(Yb)C1)8MYglPg? zcYBulsxT+#iSoToHbc}yf~Q^fS2%h=!s9P%Yipqc zZu7fS@l|Nz@T31t2b4n4D+S2I#Fjwpg_f2LT%>m^*eZkpfyj>@yb(IAv=kKAUxH-~ z{4puqB6+ZQ9!vdQ)xAQiU=3lA+So`EBapOV0=s}~c$gw;_n@y&K0GOy?;TjOMssKvP}|VZ@E(R| z8*mYbvZ4jKxmyrZGK3t1ikP^>@Xd{HM*zitFE1;56g?-IBy17T5-3MR!Dw4G%%asO ze|)&L4P*Tsq=Z+1$t>`PrT#Jeo*P&?Rxo_|O2zOIw1-D6XhT6$Gr=4o?k z|DSEiuwLH(+S5!E7ur-rUwxs0G$MQ1`<51*EnIGH?#ZPkEr{*`q>d~g{`(wL27Zqy zPjgJ6IXF2pj-G)HD=Jl~i}WHe!$X0VuU2xF8KUhXoQl4R0$^(wELI>dbECdYutOD1)f-KFgd)SJ;~!;8t9y~NK+E2 z$$nl#1KOPtQ&4d8@bIi{z>@202t2Mkz(e3$7*PbgM@#_;F)_|Wk_mbe+&K}BchH&) zxnaD+&>+I33T+1=Fz*;xb>JbwRC^9VJ{)nU{?6Bt98z3m3fHaU!OSPj{fpYIR|mcZX?6#K#Ms}+Ui<&s%lki?-u=I4*Z(p# c=ZR literal 29577 zcmaI81yodD_%=FpmvjpVNSAbjgn+aNNOyO4NDB&xfV7~1lG5GMB_N%W(j5cC-NWzu zzWcxTu61WEmdiQk?6c#2pEsY0QCC&K!KA>1Kp;3T6rXECAc!Fl2*L_FD)@$fd|@5@ zBkUok>!Iar<>77WW(j#|>fz$x?BQT*_SnnP&E3}7iH}o|^BMbN8xIc`cM&cw$NzH! zr?ZLwd{~;7f7TQ7}ZWk|}OKbaN?k{@#Xis(atS+ngapC)I z8!B!8evVum8{(n<+2H*9Qv)pBvgz0sXs8mgv~)qVhq`oZh}3oqDmvp^kKb0CP;*5h zIb`1c^q)&x{S4N;=~cYwdYOS2OH3KVR zh=73Ln42{OewjudMIBu2?ka-Bf~!7c#8TiY0bV}hQ*d?7^#A|iU-R1#`6~U=Oo_nH zA3or#FeQ(>!ru-{9JXTM=TG6a954}BzB(6s&lOUrmct|>GPg|zf2|-pCuf4&#=zpy zv~K_cHU9>m!5%6)Ehz z4g7zcz}h&gPDvjcZGg+-=>7Fp4o|uYr?~qZ2j)s)PLNVhEb;N>Wuab`mBU z?fX;urr5Ymf?CvTC`W_?43gaoR+o|CZ#Wts8{3!{!`<528c{1@tl@f%c(vqz$Ya)x z9*Ik>v_Dsq&TWbq8XBsSEjGJt1AjkyBsO{Hzo{SBM_qVewrMI%-&C_=`z_4+lNg`b zO`=OmO8zM`99->+YS_y5f2#NMNk>P=Guz*9Q`lY`9s32-APS_bsALKy(un)vlaVRb z*iBu*pogcD_gi!;#ae}rXlO=$S`HSy`auF7^!PU!b9HrfTi!oBY`NZ-_%!@L?rh|91L05Fc8G_c`(FEPSy@a&1Y91cX zAm+c`t;P#3nH(;)O#XQNzPkEZqsLC?_g6n=Y8@%FL_F6HnhrO+V+g0kdX>3ap65se z&QzMC88&*DuC#|fVPb;qpYrkY`fO!+r%42g*#9Y61viUbuP0yU1fLEIrt_GiYJF2N zU2OC$C@A0#hTZPMvZ;r^l7^`&Dz=+ds{gd;XQSZ)n+UzwZ~8a=j#4lo)yS{->DsL2 zxAtZQ7`uX{{CxPS69~vf0=vrZ7A_ol=MP5ccu6f8kPljxPlb@il;Po z&HVJ~SF)PKi&Fg>bUZv}A)&Mu|4Z0k; De;fBAPoGAQjg8rlZ~;9X;tDodZsj<< z2193x`+xfOGGjA%X>c%3KAvK6>~d3)GZ3Z1=XlM>*Vpx8ZW`W7;!IH(-WZg zD_P!4d3ICZk&%(de!S-TSyfejEg~Ty@tP__g{eem7f1YFKC&k6v$8S5+4=cbjePkM z{TkMLo*z>KKx%B3nj1p<%f38+>0`q9F(LFF7WY2q%;}wEP2+`X zNYVNEd5>A;?cY+P{Tc?IZ?4@uk}JlcoI4e8v_ zpqV2Uq2o4ufV`O+0B~mOT^V{4s2S+!R-Ma7Uj5LC2N?K>l5+53f1aG%q@BNfo%mBP zjsH8>zrQL?IuI`omq)?bkAU;Wd871e0}C8Upf3>ktHa=XWfc|d%F0T1!^Sf%LfOnn zXZ*7)gqJiBhl)Kt-4krx`)gw!04ipe>&a?s8yj)}aAIO(Z|41P01AnND>eYvyq5z7 z0d^Ibc16l%lE78}=JIg#?s8e}baNO37x$ZaZ^9K6O6p4jNghr|D~gi>_QTZF^a(RF zAq9oL2XpPL$z5;78Vb}kp3~*sW>FHGBejk-mSjlysi=|B2ebp(|Kiipz zdTr#p@qM)6&!L($G;Yus!9$OUu$l^^r7$d&cF!1F>oDxuz6qGyno|O;B&)=rAxXc+jy$RNYig(~<%V<3C_e0;QN0fl(;~*5l}yhkd1gZJC|Yzv zf)&6D`QE-lwvdr8y2Sn%?9-F2_I+mu748Y+#o!RTaf%@#$+>G6t1J48?MXPxI8nw+ zQ@rqPUQ=fc8TrKw@ly-mOub|_IOk;#pki0@Y#$SO7e_qrbNx~9*DCfoGrv0;3ore>l-P4nB@ z;B`)p|0at8U{g}(j}<{0!+yr^@x6_E9raO*yMd4j*8gzR+81qzq1bE6C zY2#S6!`vb%KnLp|6HC2*gpY7J9NyT{@fiyXh9lWhW@!f2_*b`72cU(*SEUqmboAVy zyPKhOKC~ZGN)2usWRgL*#G}gqpRKCW|MtE|Is&q!QRieB78VBfZ*%z`CTMGGD<8lX zsgB^mzZ5j~*WKoh7JB?o&=l77A;ZxDZXM{KIV}ja-kvBksid_ZEH;tz+YyDM;;f|_ z2f<-+C{y?}c55_^C;St~8_hf!l=fEsc?H_QZg6Y5fFp$@?2186@~)a-IhIaEAj8^N zLg~c|I(GJV>+2RWva<0B?&h^B5w!B*!-y$P;Sv*cj~C$Eu}06!$0zJ}_B4g{Rp;{Z zGAwr(RhV3k_7^k0%C}uVI~^So;FZ9|1(^OVNmx4)-Ur~NOsGk|?25z@_Sz%c7)7bhoqz=%-hn%k{>XbfzBB0OG}8M zUOpYZK5i>Dw!-uba}@S1NoRh%Dib|@87niA5tr84R^Y|6D^$a2Ej((G=koHXz=CWM zzqhuwp2(F(GBY!STWmh-5sRTTo)V*$&+c0z<4xX&w_9akws5R)UY5|*)a)A`X5`~b ze)kR=_(;?@rNRt22u+Q4`=;BE&{=S{F6UBXgsJV}ijpXk>|MU}MJ_HnK7ROqrpg-6 zeRBxG1lZN{Cg3r96X@VZa)i!ab|vQQzv=b# zMf;2`C;|Yz{!#KyW0YC^qeqWAfl2Ex(#WsSFRiwliUm>tU|qq+=4m(@-Z!(J*lL^c zFyJzoSL$wq3$W?erTQtEnN$+6EAxX^s1x|kTTc26nF7&^8D`4ug4>OaoIy+yA4z!uT^-IiRBSq4?eIg7ImGjzK1auG7t=A( z(FzTJ*tK|!Oh*v^fR$VDN@o=2^;(-;gf6<9`g!*$K7%hjS_lDL)M=x|zQMiiTBWepBV@t6V7+_FTYb|1WQ2GL^wlcw3|(hVKJoTePr^_ zu);gu@ERuLUL)ji3z?k1^&xgHll7Avshyu(SK3 zmXPEpgKME;0n+$|uhQDMz~jFLDH~hS_KkniI%k>~i;2vK#J9;k?^XxK8)9LxZ5_fl z01fPi2D&}jM_!9jVX`?#ew!NQi`UUgYcjVuc29|(z$=m!9Zf{Q#l;1J2Vvm&Lx5`x zJm7Gx7!dI=FoXl4C!nE8NKH+J2MpW&|IXfi_Nm#m;&8MS%}Ld}4|OAo3uR z3c?`T0=H-1L;u>$VRTb_BQ|JYM49|*aXBVKelFFPuAUbGUw#3)9y^Jfo7=kty435d zD}&PkV_=yub1`!b{Sb%t?Asn~Z(xZtNoD!RKkVb{ywa6!p0L=il?e4y&I*gJOw)>s zKxk_x*yA-FZODdqYv|aPa{c-8#ov_sa9a6L#_2I#_(fgT5I4puQV$BWtR-ZX3d`8Q zBt@Oi9cbzZAKPBr1&%-oL-0CZB0ea1Sajm%jdd$3}hiYV%3IqxOUGSN%rXWs|YpkdL3E;yLG zg9Gow(Lne}X)YiOz3(uj4e7@+vu+<+`jGD6!3(C@pbD1fPJtJJP}R=dC&6Oj#;hn| z`(TtCaKWY1?~52+pQKz^gzC^*ZP1SA|J%-cDHL_gZytfbWqUpqR?Wx#6^qKi^uNbY ziKSTTk8H?Vu~}agWiKFPGkeoxOuvY3zTeIf@Wx`VplY635oa70~*t(7DJR) zqsbxRtw?R^Lan$=o*~`&{~d!i0nhmVKFfg?*QJ0(hY`6z%7KPc-zPv!kr#HVsyT*x=UNb!+~ z0=hTY?9^B~aS!4kmVlW{M9t+~zZ+t^X@x{SHG3HcPLsP_>5#xO>#P3(vo+K^$Z2N9`T zcSYf5V~hLv@gti=H^vpJ%<|6I9v$>}fYfw6xIM`p?i>&Zu6v-k06Uka^36VIZ@%vE zn{n_$y(@^mH-eulD2Q^m5Jk^oiL_y4EkRU{=AT?yK`g$KXQ_bgE=_X~*rKo&4Tg!4 zavIccy0gA6dsklW3_Aucq3>D@v!asHP4Dz52wK_L*zScG86&p0ZIY6cF>r8Nb{5u5 z{7E~#@uZxXK9=DjS;;E0Jb<83#K(_Bot>Rdjcq=pGT#t^6HU*``hCo3`M*d<#y`;Y zgT8my2RZI4u5RZ#E<(PeH%~PNA1nvw=uTvaGl)x>fu-F5|LU@nn3KcQ|J8WI+K{;H>fjWNv?j4dBM_2zOa~_9qUiudIVe{&d z!H9;IW-Fm7_^${x|C%aU3swJq@J?0LP}B|H`1q35Vzbsp0{tFGtG)HKeGFvaItw$m zzBR;!>>265bEFIul7zRfxWcW=U7pa>pVWbQi2Fcg-eZhyl0%QV4m%eJK4f_Amjf^U zSPINU0w@QRec_ZPt;KY!j=P1~pwZ?*01Lk$K0PSxcuXdQb}O@brJpv5z)8dRpbHb~ z2t=3KUpcVfVCGrUtwK~B@Cs|m9)y|&AO@7xHxB4`k|!O|?-r~J4uOZKR<$8N#9 zcQ+l>yh@nHhwR2lPN58h9-TErF4sHXZNZ2kcF%zA{@N=lGA!PVS9LRN!5&rf2!`Qu?vG4kV0#iW0WyxhZ;0P}&Im6_4mdk3zg9(X! zhiO8yK zj*C|k#*4F}Ne_U@YxH4*74x(Z*k!I|JA#(Fe=#2Sa4Eb?c+$aW(nnu3j>4{Yw2!ZQ z&oiSv0-T1xVh9Nj4vHw<@?((6cosMo)O_o!drPFt@qpkgPgp}xw-@WF9KYK?oheRh z$vw>&JN9fx&S(p9MwRhue1K3YRg^IZQ*w;p!Cl}}pD&SNS>gT2!?d9i6YcY~xa^_D zhIHp8|J|vCGWIx_3Nz@nY{$sg3vq5AI%JaYiFpuDjUEa<95cw^QYgxHsIoT}10m=e z_z=+9sYO z9vt{1bRP?=O8{_G3UMLQJvns})`xA}$Sb(#C#)O^|96!be4hkArJiiZA`u!*z1bgk5 zB7N~>oN6l@o-ee&QNFCao{^KeZ6=p2BB;~hM3vf$d14+OQ!fNo_KHa?WUI;U>5OHX zic9b5*ghe*e^-Lu(JQrjk8uF)oc23qKCM?9Pa)2iWeQ){q`RL-AvGdC)dYC})e`4q z8~xX8s$OL&h2W$pD3;KWtiqkqsh}uKo^RuNf$y{CmcUeSI$0+QAscUel=bf;YOYfQ zck>X_NP)$poPhqm=m)`wnZ3j;Q>e%he53Y+#}~i`L;rcv96TiY!26+Mxm9JTxD*JQ zD|zZq4zb%Q63r?%TTPy@LeZ(AdxP9^!71fP2n8w$3p!ZR>x-J)Ia&UAtlJ_)-jfnFZ#!52eJS4F`{N|87B8^SmPQAiapQPkJJ z6+;>!I4Dir_v%pbP@DrK5MxPV4Ca8$0@zMf>*-<(81&8w0-MM~<@iq2_V1L!pcS$H z)PlEx-n>n={K`$taG8SR;bS5HQ<-!xuKM28!c7~6(bq{ri6gW?2 zLO-T{1-CA$8muvXVLinuKU)C2Y3c_?%+Y35I(`~b&C2}`D(+d-jot)9$?z!90FA)=Qr^K+;n`9^Mv|rpc ze`YLtMC{zgu(0@XXj4{dYLbW*B#ufVCAD7Vi!&*Hp)oep*&XJ=Q1&*BO6?o#k=b-ze&$sL@>*XU@KU->rrSQz&p%Z4jjbKOCJ zk|n(%Q@O!lTa%Y7wUK?~$vte>y*Pbcw=A&73)*jSk*R8Wn;ZG|>i%>cRjtC|l3e1A zJ90>!|5X0TOW0q2CXq~9ukNasZ#rWZ0HTwA5+qtUzTfmcBpA+WpkJ zGd(a*@I-(UBV*W0R<@5m8vtHU3J%`NEN6|6S9WCBVkgHUUBR<}MLbpKh?sqo6{_g( zrXIY7saf_L2H#tnvziQ!PLvjBB@OzOhlg4Yrm@d2ziFqnwM^dSt)yU|HyNDV#$aAF zZ5}z@xvgSnHKw;5vz*C;LU)QxqT(gHwO$Jw-1=hxw_Q+R08mvP(kLZGe zpZfT29JqC09k&%jf0r?F@`QIJ3%Wj`%Tf<^X2NxnnNUi^^>us=kZb*|dzZLA0N7 zE>1a5Ry(`T9B9&N(@U9?j?M*6rI*PXiA=60riPZNdMB3m+a1EnBL(v#!kHYKxr0e3 zg2hLWN?DI@4Qr@RKGT=w=HAK4wmYqj%6529vb#cl0Zv*L!g)h!d&U;3v(Ay0Bb zbn^EvvHfxdQ}?X5iY+>k0?GdTeDqc3j)lPQn$;*;ay3*!)t^?^;sY0-!omPBw3Pv) zdNk<`DO*i{tbBeb$t$pVG^sJ4c7_>3ZVP2`qEaL))R5C*yRNmi(l&{dUpz4u6z{){ zSAX~O4c!(Nt(K}5J;DfCn#jG*zxex#tE;oO!|m>}vLOz*6};CcpHmOdzK`~KO>Iv+ z`8;p`G1sbCojxoetM+!|`1087HdlUOxfxM_viYQo#^~Ae-52v#8LG)1?JW0pBL7s$4|A8wCane?*psihbYrL_gDc$s0B4; z5yp^zj6+{(kvQiOy@IVP^@O8i9nrB(548G>Uh~mus&l@9yr&lZb+p=5tX=#F0RaJ& zj3PjpB5`kTw~b(dIwcN$eU|g0C2ZNKHiu!3Z6@#;HA0|u$p6ml57_2w5jRrBr6d|V zGhA!po)1PGdlZHZQ+c8SZ#Bxfyb~?Z{OFjs(ndk-Qf=wETcp3E?Zxb8hLRa~5@Rkt zI5e(?w&F@g^;>*_Z8)x){pA$7J(pWZ86;^BgkG4|=wI(ujn1_A3m&%JOAs=ttjt>H z@QZw2g$WVeRs&p69_HlsAV8MuNY4VffXqclkMA<)OR-3BEW;0WmLMM+EA^V(UdmOs07aktRAPX|aVJx(>nuQ{8?MpEjyDh`l{8iF{Xg0>(r zn#OC1NiE`$3wjVdcK^gP=L95yDi;Oyu#2y3hjgpa?YBIWORZW0v5H5r4+V>21}fP2 zwswTsdFbi8`)h89^U|C5+lrTOwn{Ch)`o(Lgc)V;gnT&Tv+wH?#0$0FCA@mPrOE5- zu_;g@usxg0j`aBx*W@XGUmIeYcF`7rD>FEyawcKn^u9j(^3s%)6gefO0b<&NB7^6T zN4-EmaAhOY*b&p6N6*@Mw4t6yY*EfTIq33FrTj#vs+`{34iZd%bLp65M1c+i}4381Wzj%hNxcpOi!l zQL+WssiL~D$Ig6xdcOWc_RIa>d1Btzw0s984n7cf8awGKrNjcu4PJ`@rcGy2OOF!D zi;ELrKR^FxKa1!>TO-=$;JQv6J6n$1o2|lnb{bQU1WH?=?A~F)Yj|o7YKgA{hCy4v z_GB?3C$K&BJmBykG~eZJk&fNG_}_(`-MQpE34PBG z@d|_(C+BO)2slTVu0sh_Bb@AGQCv}i8)bf9`zvRB%yiiAFHh+VEL&h3O`}J%{}>?6 zQ$LInos`qPX-)QG3g|@(quJaWv!q6HBu68#NXxD>2U6Jn?%Luh&SSl5+=5HHi1SUU6E^$3C|*BHn?` zpC*S4B5O*zgAY09428dyi4NS89OOC1KmCU7s9&%}!V@;XkNk+3SWa7e(o_5rB$lcj z=Rbj>IFIGPM@r7%Y%{5e6ZR$Y(MDNPpMUfFL%)qW4vNQ3(Alu6(7ML?L3s{46K6HT zAE}jrvB2{9szld8V0&I@j$x2CWY%G=p{xcTbF;-=aNkY;&3xIvo(~)G<$uQ4+bL`8 z$jHx^Do;#LHve@y^_%AHcw#{X$WzFsN-5e3wM~OaVn;V$%a9aoPmx|_rrPiq z{TLJ2^gc;G1G$s#52XM<-<^yN0PHJq#xGR7TUYN$N%yRr12B8S0uDyNRze`t$Mz_xIJA&x_z zvCU+qlvx`yee34<;6?JyBNS=yo$C2}rV`;HE;PcUOPwOl29M%5pMj-h zU~i8CrgWP>NSv8dNUbCN?hRE{P+XTq7#@^A7x*!B!ne&WMTWm5u)l4XJcp$Nc%+k! zG^v^`yPs;ui zF^}o*`z*0?7ld$7{K@XQ$*wrMu@V1gS?P6sTK2HHv2&MM&A9kC>=w#YK9MA?@A~v_ z8}6N?OMmA*DX^TlJjJ=KzRxuEP2$=(IwXJ7KTz|#R-Wj6b*Y{1CoyV8g?epk=ZlRqjgmL(G-z2^NbD{dYJFYwO@` zW9?QOwi-PWM7L*|`??^+T>?3`Q=+pg>>-H?e@>M{T=E!sX7k^3`6YASxW>+WIoLK* z6*&_eDk~l`w}ENT>M=mP(qmS0eC92BWwH@U-*UHc%CDf?y2ajVWc3TrPSGdVIWY^W zKcIm6hk0|yrfwsI!q8(4+n|0vDPfzq65V%CyX6_3{eE^vDZsL9*wv(G)2jS;XL zYY=l5r^$k8`6Txx)!IgbHv;TFb&V$5SDwraIl|S}uiwPza3}N99<;_8(1QK45}1z) zLjs57E2Gr$p+~)xVcn{;1ZvWCPuySJHs=%8BRabB*K#cxhJ%51#FBK{SS4zoYOxvp zCIKJoodPajgV=}7?Z$!azzF0q)=!d&`knA08zWb;eB7?3If`CgGEco%J`o#G6mRk=V z$Km?!!(B(yb5qFD-mCYl8XdU4i=Fr+E3z9;p+Q^op2X_w&czT+_+lEGoAY*?T($-; z{>BrUT-<%wzsh2Qd+NX~_+M#&)lydBTdM3b&Evhx;A9bHp62u_ z!b5&E0mVcyE_UHn`8%W}lCovew_Yj;B(4gqAt$MMD{8?aaND8;np6U){9Yn(NzPn` z-?g?^pW=!}3|swe@D&yQ{6TexJ9ufwaGB+h)*Y=U{O;<;xXw*s_z_ST-|Zh9D);AC zFI#l15+dN9t(_Go&S2E(-o`kh_4MO%$Un^7zGY1WqIL3LRa^NOF&?#(MkKPHb~EG+?gGgs3ylI;-a(O zch3(F?TY{7y&3rjf%|Rw*3QhLmp6YfZ!hYET4$-E`jKfb;_^InrA&W$7EyeaIXV?c zPD&pf$7(FsTes7OFy;VFNvwT!T_21D(k3Mf{s|H}jw=qa?hcepas@uGd`yTx+9RgF zINA`ea36WuGWpd3>;2G-l2t;=pQ+eWmkic~Vb*DY2V}El6wc@0qf%$Pn;i?u1U&hQ z(}kyR8-cgz6V%#L{oc+v>(A7eSo*TAE1&e@H-B0yeBjBxu4o|^VyWx6rrp%l-9crg zJ&7!tOSNg+H;ih8+El1qZ}q*y8RuJrkLE5{nIiG=vXvQFyGLy=;?AE3QYi5GDiR_F zw&?ml4P7FH!Dzi$(uHsRK^Drb6rPP&nAhQ0t4_!}hsc$I3|QHBjR^G3`zFR$U&5l* zMhY(9p5Im_bVTFJ@RCXUpjn{jVuH@h5Qf7d z`8d{|xW^^8$si$>c6msmoq)OK;l^~CU_APZf%HUD@;Ei0eLj$cmWwb4*J1m2vgb(| z3E1?QuGcV zyhN}Av38p#D7BmA&@H^{du;5L^>Y+|iL#u$lZNrQ|?_u||DYriJO~$CA$Z=E5pV36J$L<=4wWYd|Fb zcl`8V2HyZTrj}pjTU&SVok3(+ZS_?zB-M2X%~~Z{XHSatgrBj~js%Nn3yS0!FemqS zuaFR@OEi-M5spvztL`}%VanT4T%Zi>4zEZ;v=-x-4XI+| zN=`oDnvz;lw=0u_x!hk;$J$$D=aJgT?8x*duc5LF+$-dc@hR?Nh9^Db)M{_jw$Y_t zL*!s8V03mcONCTx^zs?^Ppvt31HyP2beZOrCmWIG3$TmPfZ7}M*#;ebZI)j{XrGVO zGg#kV`MMt&P{5N70?zl{-Np$YvNsy#gnP{_L8zxV(3fY_!0mTViTPi%1l%!Kx%J97 zkBu5^LaZ0()XOKN4>tKZ>*V4-DyjIQ0XCbHmzO8#|5+v_DM<#jBZGcj)r|2J2jT3# zXs)^sY1uE+xr3Q-Y-LJ+AKbOhISA++i1&g3NZ3t+I)qh2T5P(8#L@m^pRpzbBVQDG zTeb<%mTSR+D3mLg;8RR&Ta83B&e~UVpj>hsEJ+K`sME^Vevzqs3}sGQGqIu-s_PAs zs~CM&ZlG6MSK^<*_f%{ik)&u@qUtuHBFN|A&0Qm|0W;ST%GFm8 z>O)|FBUKlN5>I!Kp}wd6A*fDGPx{KV`kQNQxF|WD3tzGKr7|CssJ1bU2a6KWgBS>) z`&Ga&K?2hZR(?)hdh5$CNcgO62V2{51MA zU+HP@yyLMic&vzLcMeFD@0m{iw48&))ZDfZJ+7$@fIU*@VgdfdGIxPxyZr1rl!M+mrk($~93*XXo~>F6jMq5X(%5N5%volh-uJq* zq)19YOA(mu+ju>3r5FfbVd6Iw~o;_6)ZWQP&4}MDMbik`HUM zkyk=>Qa}LtN!c0aQ+CSW+o`DQwNwU+%^7C51wyUJLXkhY2HnGk4OO!a4nhH;$3O5u zqW$e{uk#O@9$81$iDoyR!rAl=vlL zpE~n;zcmDjT!&!-l6|38u5Mg+rJ(r+Zy*4BeFYoW(dKZ?!b0mE zd3#7(#YJJ*igK1=YOJDPfS&ncWc`op5AF<;X=Q4|gG1WHA1pS(t~0tSfU;m5aNJ`| zlOyCxKR({L)v1-P!bH=OPXWA~4uCRlq?vThH|@TS0asY&n+H$mIN~sS5YxGf=z!Ti z7&}2zFLWTIy>xCLRjb_q>7|t|M=MZ!pvkUG5nX;WJe{HXA;o^^u9_0pc%|#r1^vC< zrO31~3}S}b4i9jMR7;{>P(MDlp<^U&&@AQ-R*JYW2X)e9{d`SiDjyV=t76d=7^@Qa-n*gqx%5c`u9f27H%K z@2oX_9gmIvPzmA9Snnk`ypD%Dm4=jik1zCo`tYe|(zEx6(-dHyut+;G*vj_I&msJ&#^Ro4+7yTCSyefJW+zeT&DNMhk&OLZ2=GFjtN z5O%-*XB(X(h~!+_Uh#>Th2WpD%~q|xBX)XYIzQToR?TznWy!gpCbBjx$Dp`2vIjYY zZ1ZE-d3hR`B>qUNxZ!qYpH(P)qr|f+ahES^kfTM^4q8V=JpXmS#UO;a;pJ9=z6QS+ z4iJWaZFs{2#ZC4)vhNoPJVyI6{^R22#OIut|Xm}sd; zOxtIu3peT=#;@0%9mL#1TXXJ}iq(UI0&BB?Vqp%kU_O@8)+XAWE`N>iaW^T;-g0Px zdT7xPGlZa&ji=U~V+d8ntwP^%Xx=N<`_mz_#B7jfX^@A|sCTJca_oq(Mu%NZrQNbH zQ;EdTr@t5CsxO)RO#{Jc{Y$~}?(?msQY#p>ZZoT#^U1e1yy53K{4kBuo`e;b^Oi$v zueT0HDbkF&X+OkD(g1d)0d5Ka`n4rEDil|AHra7%5@mjaBv9~U0xr{%&tDvcW`jh~ z&Yu8+sbpHb;{!}+cUVH*$Mx`59P}fOM#PHMBNU@I%~6Jhdrfm6L4j*WmA}5ph+KAH zdw3>*J@HtQcC$Bd>x9-`<0~0nO|i_bU5~RLMtZ?J2e=*{W6c8eI070lz{DxM{I8v%-2DrA!%R6Ug_sTB&Oz#JtmX3PVwH&V3$O9Q0$ z2#7p3)F**@ZADKAfok|MNq6>Iv9tFF$4bp|12RH1!EetMS7E!iN7v7OaV+%?v{)lR z?>z3E-lXJluo?LqiZa*UtFQv_9=e=YOZNB0Ne7vU6BB?>#aft$ZL{g?b^!7iS{FLO zqs6-HA0pn@&=+tsXYOSpozkKz3w(6MzH19L*=iKjHdvl%5WV)Bz@Tx^O0UeaC;wk_ zu63NhI8-y^JqDx^kp~>zrV^l4UN;6FN-7SX$;k(%gof!owMP?G*Df0fRt{p)WmAzL zXbSnZ;rk_!KXpFt@(>hU;cm&%@HZjOjhRDBc3Sej=szjji$XVzmpcGMRBFL>;Z`a1>E|Zya9xj{Ad-3w zYUpB^?vXB_YF50PaNMsJrP$J(snqnD5f~+=SIYHUn@6M*Rq3^>WD|dA|C-6;nk)n0 z7>r%;wwLQfEDw@%?(KhaK;4#26&Ih{xY!9?(l}0!PU)+EMv5Z12n1t?_C>k0lWSyX zBj0|n-thz0PvzepTtSal2Hmqo5E9Td>;7V(Z_{|9u43l|do}g2AtH3xDJZf6$Y2!p zadU$QEi;!9Vy@SYdiJ4y9LcLVQPx_m!M+j8i%lVT%SU0--l6n|a?-nuPu4!WN*{5t z`huO5tZ=;pt3QDXl1KB`Cxoc{tT&F^zel>J16LNl&=xc|BV zviCoIEbI#xo!_kc3B5wN1$o;vaeo13)y&7DqR`mU;VjW7MM%%YRI)?IFq&c#-5L5WFDbS)hq7<8ln z@q!=sFotCim~Smc)-;8-rC(pDkAXIs9QXYR_D`u8v$SqsAgDM*gStXfb2t886pzrO zaDz;*UhoxS`DM{yh!yCe;MDBSv|_7wZoQ5q;n1%DXbqSW3aYBOfQzu%OB?)zy#)P$ z_EFvH)_zY@;6FZiVj!S(6a5}oIOW;tI+VE>EOIekb2fMgSxfi=oD9$RK+hn*6E8o( zgp0ltGyvt_{KJ0&FM(exQXtRvtD+mbz@~%n3+UyavAg>}RiG@kWJL(Fi6#cuNKp0_ z31gY6sQq3xk#bO%)}!^LiS+X(cqZIt1?n2e$#I-H6K z+V`F-9{+(agOs!oc$2K>PX*eat&l)ibO5zDU$o2&r>kkyvav?qh?^yIU1!0a+mXelOR6dv|dtte9tZLWM&#^ z?-upBcF0%r)w=!<0hoR-QQIhIqIB2s%)ad3JNFvF?hU)OgdNa@0QGLM$y=+^OfHs~ z?boQ}y$YZr%{F;+c`vx40rF{rP<)py`pos+1okR8+VUXrk*FWINglpGWdY#%)+%$@ zrTjVEIS0*x@mzvb43o=I8ZNg+xjgi=Vu|E@mP?-2G2`t> zAQdG#IFYB1=(CLs0nKQNFKd=xYu7sHdF{`kNNH+5A}1$L5Q+E6Wg=!szdZZ|iY?tB z-aDgc%QnV^Q(Y@TuY^c*TVyK90UZkih~vW2d8;vuaqYjKcq4uPguc1q|L@46mty2K z3}Uy4BTFJ};u^h-3z!KFEud|Nl<5ETnE3L}0$)7RRTrUozjj`?(hLOxic*`$y|i%N z=-J_Nj@N$m;TIy6o;B&Az#{ zvTa?aw8}P3Mx%?+^IgV`O64EAf(~Vtl7afr1{6|fOQtK9))g5-NJ!W}G*qCH&I`Ct zOMbhhw=JPLfTKcBpShC#<;NI)g+0i;b8j|f4K<0$&Wz3vA(gVheM^dgV)qU%v+b5L&;-2+ zT~-Lo!S{FYy3@QBj)?S#HGi5^{5M!wa}Aph6=L{9HiBGF$78p%U{M z(qEqF|P-9adPe$wBZ_EPOnFOLUuo`CWS5aAMtDxe)Bq2c0_lJ>rF zZjp0w;XZ7Ia`M~%DKKbo10odNmqLLT4g>4}^n_dNWKr3Z7obBpIW7hl?eWElsx*D} zuT@b~h3C)J0S6iIB>+LScYZ#jsOYIej{Ng=?K@*?qFS{Co(-SvMUia(ON}WlTAL6?`HA2IxkLPP0{{oJ-`NX%E z)ef^sfOO3Zcux}dx9+%9LMufR(a{EPq=c|W}NeXQ~5751QJAsi5oq4v%WtYnzbN}A?{VxwJEG<|6x(7BP*nr1Vqmq)PLc`?EAY*K0i7MNFXe&kVPIgG0*1VHnL#>(LV`MA0{;H} zyKL9<|5dTyg{JnZWsAK4@Bw0vLf_NPX-|noq^E0n4g$JRi4wp5AcG&2XSY-Vh@hca zj+Jd%W|1^C*|GBHP4RrOI(r|0qUo=>cRi+q?FEH}#;zM&YG!8iK|w*&cOn`Z8iFm} z73U{yD^)+M|D;CWA|+$!zmKf2(LHjWfr_h$BHgt`=B~*XCeyEN?aP(&<~h7qrWfFR z0djOhR#m3F>F*Mb-%|-7FEo1E1M2DEt$A|)TR=H1ty}uyIA5C}^0GCaQt+goIR~GT zau5Wg*TC@XEVoI5pRs5-_z_G`Ke>x@IgEDiBGiDvR2zjA1@vF;X|VJ*;fu&k{L6|> z6U0Rcy}`ZVk-)fgAQJP=ZNpnR!Ky%``bS1KcM5Yr6N5;JUR9*va=?T}VLvGuS>Hl~ zyDg9#e!EGNtD{x;uOI*sS{@@-ARu_?wtw6#W*}zA70N6C8gye7fo~JS6c%khwCoj2 z&73^zDKfkLbb9>*-3kawQMNu;bX8`b0e$?@?$cERcf+u+E6scbvk-uy0jk>Dpx zKwy4_Dh+r+XVTE)SW=VYWRre=fm9;6yLIPg3hB#_pys{qI-hQi7JS}vE|Cjr9`GxdQkL_oY}kL;9<-p`yjZ2@TNb%cb} z9cs|gT?wfMThRJ?>&A@`a=>GWt$I32r33NapOXXGKLjC{m3HDB_X`qs`V&$n!e_zA zodX>U!5yJr0aXn<4Tp{~UX>Y_#ND^vDFZWip@6nF=NEAB+YHE3@))_G4r@R63v}F!HF~Iq&&Pz*$7<`G|$K0&4CcE{nmw*|kEVpXTMdcxFNi z^F+aILQ{Xvaxe=IV<45L{6kMt(r}vwdV>EH?X)O)doL(Fy?%c@fAo31K3!d0*LfZ1ah~UKyvHEWh|bpdk#dTDnT;iQ78Z%O zBv&W&{9%Q9p^Ngl+GrX7C~A)%?y1Ku5NRCYc8B1T`PULX>MVor^_yEWwW{%oC7rp} z3D^;@WaXOp#@-+|I4?eHrN=CLswxK@oD(W5?a2Y9m*L#E7hjE`#!nv$@e5*4y|5SG zn={S22Q5AAA2sKH!I=UU&BW+Cg+XFz$w1NyKY)DxvR>BYXy6ECHXv^)#K4355al z@f1gYIC*@(5?GdKufu^-xxze|+tATiV5M0o_yBb%I95h+AZ@|(+Aa{ zdRs@RR)mIT0_X8xG={E$weQu=3$J_Iro{l)zQ;DF#jo#i8N#2;=+0u9v^GQzJ15y{ zAbxSZ@R7(vf;h2;<|&2jSie_EbsHK~j!`Xk#n?L;&;!Vv8a@NMMllVyN*I7Ub;0Vq zc`XnNv<)FUqBNl}!g@NT$}?;;hpsZQw%zbx;4GUT$Tz^xcgXr#7pkLK#PudUFvr*& ztCgwUHg;@%C&TU*&#Mpq8@eG~S%sUo_~5u_yqF*))^!8-SU}HOI-#IzdsLJbxWDLM zK;oTtI`CzBwK5ccEY*(56?6Q9FnTv-$a7+=~KVUq%VlbR*(LZaInF~+e_)6 zhu8kxL1<{T*w5JWPe?ya01VAxj86hj-R~&#E{fI)OB>D#tx@@C2A4Lyj|MF_mrBpo zwzfS>JO;S8E(4Z`NNwOxGc#ZBv@FU$jov)LvtO4+1P$wG-}-q=SN*NndO#}2z(HkV z(^jE{l8qO;vF6kwmUV1xi%;Z6JrZs-Std;7PK=0Xi^7XAuOi;7@0OSSKkwpnjW{J!*K`7eDw54vxqWgqBes4K7Z#9OdQxM_1yCbu*kDk--B;b+|9;<}bLIK{tO4NXpq9nXJ@*p_Z=!%Z&k^8Dinwe7~K}cZo z^Loo9mSr@4*q*wP-k2*Bo$BboMV@7D_IQliZ-r5tIIe9g#7_nZ`@I)xJ(Ilil4Ml} zW>|~;ZI_(85$dxp78@Q%l=%cgXy(*hSr^HN5^XBkzDNfDxyNgyj{*Al{z@X%oq%!M zJ5IKoy0dd6et*IZQRb`w7XoaXOim)uUshNyOdf0yeEf`y*UyJBSq#f zZcwDBv?WceK~};Cyd_yV>bo?OUtN45zXGKmb%rm_{2@7d9l1j`IvvNmp`iEZ9T(90 zwwxiA82Zsq zA9Nb#MW9!7nR)W*%SeA;{(3fwllcK{sTXEG_2vv~J%48wa9GvWTIxKW`?NG0$<0P( zXQ1grob3WsFiJ{Yoy=mN{qk3*oZZ=gK6%%JKDB)rkSgD1+rDPqdMDkD7?+BZUj2DrNCyn~DGjhH@T{$c+hH zaNW)N31T1Y`bYb^8sfQ}&60X^jI>gV%srEDK&u{59B+GF-cU?;VwQXBeEw!+7mq)j zu3;+IzKKQO0I{% z?!ojb`0)s=>Q7k2yYYHPBFg?|PL12I-@?k*#~U4k*S``_eFDPy+Xi*e4>hy0wW*r> zZ>(puSih!29SxQYOWY_JD=CAj!+Vc_VYPpWZis%Yx(b+nfzxP)>3fIn8W1s^E1$Q9 z(krgxe+Aw;D=Xwfc?XAF==I1OMS(O&Dt<%=p^%;sRe}T|l6OtSmP-G57uNa$*h?9dF{L`~J3Vk9S#>+=sn!YND{45B18U0pBW@fI~Yo_u#^c z6tzM#X#nOC6d3Q|SAMz3>ppoX*ACB90-0G!>eB(A}N> z@zo3GPpRK~9JYLZ;uU-$g}{S-yg1U%3&PyM<>_qU0ycBm?=-=K6I@1k_k`#{K5Zf+ zgz+`BY-_25=^(X8Sk2j+_)GQtfxr8N#gVaJRpf)`gmFw;!X(+C< z4YS~iIq(8C0_V;-@a_#v#Pz@BR8_SAXeJKvTj~Wv$Fn*C}^Y} zkQ2jO>jno^oesV=k{K8&1;t8pc6N5qP8f0XTjvT=Bf=rqze%q)?(`}$t^fRxKg$HV zdM_gx#Q8wf@TH*rcA4qi++0X{db(WE(@;;+bUavZ6Ke5lePNGUM1I1<3nk@^CKL=k zi5xaydk^$PR;LZceFGNbq65)@4ouEf)0%^`Eg&$6hmd1{20}}zEZNXZKv;6zWqqw?!(VF$STd#_EVpQD%Ho^ zTc%$y%B6dg64b^p(b^67@*x{+^YPPz)abKD?WF~7iHCM2+4l~&?;?rNb@MNsgvBze zPIpIkNe!qzNeEa7X3^8L-rccj_cDy+@gg|nX&737CJcg)Jdb0X$0XkMpUAD?!J6;d zo)bZF+mJ4K-OT5j2C^(LS-XbFANt~dR2YiVt;OHOl2r_RndPwL zooT=qala7wY+>cFy0Q|Q@wrlFWBrw%kFFf<Lf z>bGqg2z=fdNgVS>$HB2F#@^r)f11&Uh)S!*cLoic30HsPc7!guU*yc|IM>L6Gwsc^ z6qTOxi|J&vL78A#J~l&idT@ivuZB%Q7ZGxSN0ciO|A*RC*ch-dWHa{hQpeU$EI3HU z1PvS+`S}4a0NK!-N$A@`Dr)b@Z10-EA*%qi5>6(15II9!36a0poqW3S17ojWBElkj zNTxn@4oR7B)`Fe~nyY4PEJw$k1jynTD{L|{>=Hu-vOr@`nQ-SsCJ&;-WjO1 zK=w1tPdcPYi65QdC9Jo8%%o8Nl)BzdP%KFfAmKUMLZm%B1^k09d`TCNFYNBWSkTLk z?{!HD#yz2wlWF;!cKM%Qxug~@~5qA>R@<8w4 zuh0xfbQM84lwXoWsUUOLl!TlD9wjT(PXN0b9yxUjHw5$lEARySr`c($Ozn|Ru9Wy^ z$hTQgc6WAccZ_!jzfXTW^zf+e+x5)ZIEWb~qom|j2s1$V!`}nLkGvQ>yNxk(d!G#a zeb}AEDR;M94XhO74fkIw_QN7aO!@HBTJ1GvZY3w9y^mXy1(>$br~Z74poihWc()L0 zIEWagCTBEpVn@Y+I_{1cYSP1+UoM{H+Ap(}_*?A=oDj}d@YVn)R1{Bt**qwB9M284wyJ}iV?yuq zB)$56y2qZ+bFTp>9Tn|9I&X;rDT|QzH|z15pxiBYSTH3(^&#SS?*xt+bS@i;sBlKf z>Z*3ef?yziwr`;F@`Z`$-kiK=!H-krMwiAIc@6egSCKCmx|!2+4j`PNPoV-`eS~og zM#=Atw$wRIe1Sf|#yUtRg+ssGcuNNl3m{Wa4X?YA^ z$^NPx&+RGkE(=vLGqbhN8Kp;y_&td93=ixw7Trkkrt! z#H7lZ2DF<%%sm(7TUTf;lp>)?2t_xpH&*vANG@*p6<0)WhnSlBN=RNwJPGiMBz3{# zfmT#%~>V#{UYL(IaslH<61MObbn)v&2`Pi+uB7oNH z011(|hKGDypB+s`zt;l3gSkid?3}@`70?)4EZ;KU$JCEW;vG$F{Kmy&R_dcj$rdAh zdY4YM9>C37Tr;uJX}YsT5EYn1RAPtms7_T=_!2$imQeC}zSbxUnVK^vwzKrsW=xL` z_%Q%mWZlfPulQ=!??%RxX{uA}P8NHPi|i(gCL!~!b;*9GNufZ5oTsnZV~xqua`6kIozpMp@L??A4wmU#oYhsk!0>7*HugpBGVnV)E{J zXMwztIjDOVAcCIW6<^#QGwq~Wp}&nmo3A7P&QOKgO0o{f1`@nOcCar`MFBSv6sLBd zKv`6?BBD13uY7AuCq=pKpk?mKuJ@d2Oh>JjM@8#Ee$OFhvGv-REVm$#5Z9NgQURez z=|7kyM~f=v+A=od9s#Lkm2rv@=)kUIZ^(f7!zD#s#e6g87)ed2r zhlZVG6TFg0J-hlE6|}V^9cO1#x>}b0#V!!Ie3wnXmL%ly#v;k2Jn<)k*}TOuE}}Vi zU|vulT~5c0+Y6dC-sMEx4?aIJlXfaiQ+mCqSi81ecqH8rgjApcX3$#RgNNyU-#VJ8OOpB540AwZ1Nw|s^o z9&ivj6^G?*-NJLi)nv-EL3XY5495uZfGtlkxkHkj8%NnqF;4&PRj02(G7*<)f3_5! zpe0QykHLN&RkwKP9%Bi71p&M=R46lFYsn5TmmRXdnXDmbFdz5Otd&M{7Oc7G?VUn2 z+U~2^c4xiE zI{eUc*_+4X$h0+Waz{ka?*3Yz~-4#veuWD{hYh3H-B^K}W(AHG^v;VE&|+LXUph9_vJA0%f;W)<+*#B^yyC z5i?lGzrjLYkqUImT~|Hr(N)8Afc|f%-^hZHK}bF9Nkl_gGjoS?N;UCvVHDCYb=hZM zHKkogmR<>se>5jmbkSw45H~HBe7%`6qPHU)|xO?k(@ROa3XH_(hc$p2|(HR%J%TFmg)(IGPFo? zY%>s1t(p=IMN-`sf=#YKF%UMl1TPN_K?w`t-s)xKGe083~pWR zifu96L^J5D1Gyb!QdS;032OgfXm(BAC*dCP3WmV}9t0Eydt}v@YH(k^*vqTYnCaSQ z>g5(VeTAoVL#A976zzH49Y|Pa>Fs}i<@P>_L@|2%8j+c zNbN+v$ui(aCg33uDJ<#+kis(gWSHy~3y0a=?fTiOADJgFU`AnG|2mSMYc)JsZPZ@# zyQTp$J=%Giz^oRl;Rw=5pdg)ASv_8}H_mjDO?cq$F;fvJ36xn0CDWjD2|g&4WxxSK zFINa;LxN5+%qR~FMgmZASIRO+KgLM6$DK4|DHRUU0 zyV}DZchAjCj+M+&4dD8~`Q!E6U}eNwgD6YwDw+?wu{5?qCa{is#YZHuUm}e;+gdi~f#L!$=1b{8CUMI|H%TI3J40Ef^A_eD zg2jWqoVeX{9~@psgCHtPI>$nX}v=N?U}`m|F8&YL0Q7W>Czu$U3^CTBEWp}2`pB~3I`6A<6u z<4w0~|KPZbI+x@T(zP%2P6#T7PQa!P+R8T^^Qh(^e-H|I;emXll#KJP;)_1oSPhT? zoPLjJ!nej;v_%(OK;(=~Ytw+xe~O8z8?dW8Wu|eUhH(4GD!ppS~!-vYh4Bj3dv zdJyfxlo2aaR_k$x%Q`4fWYTr6eDVsaBaO*UHC~-_OCz5Xp*(<@S#OJD+Z+!hk4;Dj zPEQ}xsonO&?lW;$|LQYkM9KC*0^m_*GgEL9sU?3T_p1BWyTMU_>L`#@QhWmV`Q}{r z{fUMr_EOnU7ufy%8-5;wdjpwVfSf2s&UG-NNK63643IB%AJ;1Gi9Q7#{jBolike;ut7K2+SdGIHAY`7j_X_j`s zV8))cOhnFs?txgUrwE83pzNW!>o8m%1Mnb3LO7U=9>M%TBO0Jb4fCGx-|=Nc_tn!& zZG#)v( z#IhE`W;W*lOL0yAg=^HDO*HBr(?N(1In=0s{~|WyBrZn=YG3 zIqxVsx189XB1^AJxe$H7tw(PX^XEoOzWRF_vj5T&Ox(HlyTqgU6e1}G$Ar6@`NG4( z8{hXMnN@o#NEz;V#hyn&EtVL&m>Y1Md zU9A1}sQkKy7_&BBfrN5Ux`m>mfm-wZ_jboR2qMD} zr@gZChP|e2d)=N7)F;%PKrfO;9`^&a zL>q8zU1}>8@mKAUcMx`=H~XPUKyTV-cilYjswgWgbyCD4t3sE6b7{)QJ>!e0QUj4 zTv<`YKi)n~&CQhH&2V{cP2iyhgT`vk)Pm##iR$dg?457xPbVcy1{~hJeGAw=+OM

Dj4wFag z*AEU3!Xqbzex-?}jcT|2<4069c>i3FLq34KL<9gfAvgR7H>78E|H+nz%N|s75Q`fy zK~jmoECa4IfF7*vEgXhLvFb4p$ivvuc*LHnia+>?r0>@N90vaoP4Fb}-Cq{Yyi>vX ztQnNstFHa^GXPJDs*Uz5!qr3xYzD>FWQYR>NVmY!zzY^JSEQVZ2XO8h3w>F~!Tta= zl@J*0ivq4mgH>C=x_3)#l7d$V3m~?^gUJ~ncK1Q3W{LnCMq+j$S}$4xS-|3kwS%&f=9U>@-{4EtP3f z{ZK*C#g>}eyejp3{vzVF0JaXtNl0GbX^8}YER~BE%H`vZ z07$EYxyc5MQNe@7+p}G%P-WR)`0+6rUl|*GgG2{<6ZfJdHk2@h;FYXENu?1~~HC;POtweNj@uT%U{udw0A+Z*&lKtXYIyOg*E*he(@Z&kbu|H|BZf-tA5+1!oVs_|_8qQost%Fd2TlZJ48#<=_O8KbSkp%F03zRzoOLzkAnY zQJZr+zwCtW4O$X9v_vs+ztqG61NX#DcXuJfQilxqMtf07oz{b8PTjDOld8>1fv7Wn zXn44QNSM9%bd2KsV9DZHY<_#^9+>dh4wv%+viz-l*eL;<9)Iqd-G+HRu8-HBQRNzx zJOvChUV+cPI|7jf>>io=EMp|2WIJ#w^L96xz!j$0y7O0Y`(yYGV9|uL;2`QTse8h4 z;R61%W?Arz$@i?XY>Nfy>h4#!RvPU}HkwXr^b}dCf@8-Ww{wYGox)?tNDDcQI=G!F zbDnOc{1U~~4IVUJ0AdEi8Ge9SHla|7^?^s}8M;{_X!(PoIA!-EH!Lxc8mwqgCf*Uq z*fDfo1p@`*@%PdnHl)~y;*yfu_`4sl+&UDk)scI>nJvISVbKuqa_L68Jy zcPdw}kigH+FLSCK{0&r~&E<8tg~GS#d4-Ss+lHXy9R9+#5ODx44TRTr?YLToU?NXz zNXR7dS^Y|T+TYREmZ6a@1;sgdawoTxM|1>S@?cWa0{%e7ce_p2cL$2^f((DWOwMp) zW|UMrxVO}SWrsXih(H~?2=RUZO)wkSqmGV_dU|^oKislIg0!l-x=@c(LD5YVM1tM| z2SHcj_J`Y70b6da$&A|hrmevXux>C|Py~8J1pv&EO&h!czt~H|)_t!x={k{#x){Vd z251y1vp<=D@52FTX*xkWM15$32^`gsj|{vO`WIgx3^)ie`uw^H|JM>FjZuOO5gs|+ z2aXjjU8&-r(cOu)fmnfvxFjS*1QWGd4p0Lhn!SkBwk2U2ze%(|`O_jnuaWAH`wD_mIsq|PtacUIttQ7d92HeMfy zgd_m5X9CHk&Pz(BX2^xW*JY91XuSw#C~-t5s3=aIiuLnT0e&}V&JkzdmxP?}SK-G8 zSqL017HZm)!5{3h!6%z~NG|G#Rn{ll(?DSmg+CQY$^dJPPW$|71waN@%p@2h7F%#0 zV1!*Tj9rJ4s_IlvhTL8YSnRL}2_>|)Dzztacf%*I|Bzp!0zP8zK<m6HB2PliJ%KEm;r5AcrfaHC3G` z6zaz(TkWCzT8tfJ1|p-aJMHo8ko)Kjh~JJ=aT(cs(9VwR?C$QqU2J`02*9&Q0!e^% z(feS%abJ_U*_edWMX2Hm6d&`SIDd(u^vQ{5n6r*mVMad zzl4DfskL@@FTL+T!OhGlBUgvq;&f~m`ALxC!+|LYK;mAwga7~?e16wy zrM~|DO=(l$41uZA*_B$XFSy?zo^@7DW$+#59*x#RIMD$_Cop{QZ<{V7dr+b^7@hk|XkK_PS>Vp%0WabX{5dD$ z>$5RT|@(Y^}PXpf!t4SL;1mETEY^-fK*kzugSe+m7t{&g|az+$PyisUPL=%IH zEwUQQZWzrLgCh&_i-SfNgPWvKB?UiaNFYeSkx3-V1c1L-V$h{xA=c>ewSHxol1 zgjPOf$-$GYxZ=Kne0O~uJ8Aj(YUd;!deV{u36I5pzoyghkOo|dwaIq*UsL~887ms^ z8JbwwDow=K={@Jgjr$SwFf_3&MFRt(#>PfpRv~K^JU9dd>$;spFzy?M%uy*{Um=*l zF2=xtoZ_OQHx;uVEG;b~1#+>%(7G*>Q&TZ9FvQ&5TNYGwgGS8@^YWl7W+SAgi{82t z{Jy5wfm>_Fk`%3hR1g*Ze)Hx{-lV1OfpazlYhbcadT?w^lRpI9UDLyZcXoDm$9WN% zfGf+vbq4%Vr`6fYNy>?!h9~%PJJasF)il+={rz+n6KIIOQ}jYSn6iNBy-hp6dxF8i z!6+jBl)rzCvlOYhGNbeINI!ECKy`I>L0ufL=KA|Xfgu!5D(mS*8rDdcOrzuC_HU&c zp*(O!4%s$yFX84jHQ{6{mfTGy_v6Z_sGt*Yef}HGy^>d38|QJp&1yN37ZUkV@#iar zobqCx{7tx^5-uZ4vLGW`W@d}??a|K*4dIoQ3|EJX((>|1va+%l`;b^lxfEp;m9F2o zMk7VCiQ2WsuMQU)$*HJ9N^(3SW@gmS&d%KL_DX2!=}q^hz6m^>^elPqS2fr!XZYM- zv0Bg2^u-VjpKT56{BWdnaB#rF#XW~~J|%~R!D$#agJFt_z9J(dlaP?$X!s&2`BthB zJ+!B*qUPrZb91U6KYm>7P8OajDaXSe#|B)W+wYO*UEcU%kV#;+ckH1Z+YP>#S#4my zZgf#3ZYdzra*eoOz7`V~f5&4_3WjOg8-}j$v6Z~!JgtC4$P*V4fk35@Az^FFRMUQj z0OlXr%*;$(LqkPPO4t`f31Hf?6{!tcox47BB_ zHy#pHNfyaxtY{cEsn&?i9;;esx+rgKd6iLgBe*rPyKjW$<7{-g{h} z=&zXfW5=gKXuf7QCu^U~&CkaDo)T@BThY<}-raj|kEB=XHOC~=Yq42QkbVselvPlm z1e>$AmW9uG7fQt0nZwG;N}B;^YI=Hd&)Io@4jIgBmvNq4Diiqa(T^Qs90u)QozIVU zA3uInXGBxL6m}Q1Rq$ujYdYC0$z^jpS~~a28-mt$VaGZOX0>aJkc3-HMnFJ-LqX~L z%vC}3ZT?`PF%pwn@nl*_*x}$0>(g0kCr46p&l)K=ck0c}O~|xWz4_=mI6wl6*6j*> zH9M!$q>M}y_|;yhs>~tR{arb+Gl~>JXviQI{%Nqn1m|7g>W?Y%Rz6HD$!nG16*$P# z>yf(Jbt=3wii@0lS30twJR3;0^WlQVA)Y_hK)RKS{k(o{Z_kcX{s9k?CzkV5J;PTt zu?KY8xcWU#B8KqVJ97xs{VcPHao9px5Smaybu~(8&t$=HEjRAF*SxrgH9@k&YrD<0 zpWdr)R%FY-t&z`F>GiKZKe;uUa)e_I{P=M2Rt+NZc?pq z7&iaZnPOpMzf#uG8GL%YuUkC)JpVm-T=+Tb!5czS;M$g*k%7-?%AJlSV=B=QKuh11 zu}c?Ep84|FCuq4oSMSbu#&`a91q$3B)Q{u}=iZ+0ysrKD8$q*DThz*mcCqP;>3ELd zNH%}!`uciE#Z*UpQ~*Z`D|8=|KQe0f`f2sNZnjie_6IlzE-#^gKqLRLiH3XrgNZFZ znSU+|cFfwf{u2|**4Ea4emGHU8Mt7#xgFbTTb^Dm+EH_GB&DU{#SjY)fxyS>eN$UL zZ9krRO{JA6gjel>K5|-nhXcXa^|4doPexmhRo@m}L7CuosBNvrSuk{1u;V2}0SmXg z*vw4C@47i9$NbG@e@@`};he$fCt;PQ+|F3G$N4Dte1{h|#K4Wn$mepF_n2h8tVkr| zLt(HSv19T;397gUiauA#p5HPY*;2(02gJ`dZ+frg?q9|HcQZtEbo8W@6bumUzoi-u zRqE8^YYy1+5Q5{Dn3*{o@ER7J`@6flkjvWkXsm(Tf2^}EU2FezlvCb99*DkHS#;*2 zb(iS-Jzi2!Qr6i(m@qIg!O4Hgs}{LFDP4iE+)L({|7O*-w9disC!4?Fej1zgHNcbGPNi_;tJaub+u&}V~Cfz}+%gmIN zzYph^M9ob&Q-h9JT&isHzO2d6{Q2hko-D|oo;Ge9Yi_}%%fua@f$$Y^TsxGQDgG>oNBm)Y-1U=PMqK{u>;#1r_>e=g3;^S`_E)ZjL>hL0#vR#OWc{FDHF z>WR;Y)ZX8yanye;>cNGS4*M#=ni_MxQfP3*^yr^_%IH5i-G*x>Vtgzt33>S_2ov@c zUPJ*JI=VwsbYVs^R#=-$CKMTKts|fM=C9gLar+iShGtk+2M*Szdjh$-ta+I-ix`HQVN@^Xq%K+?6bITCzTONyR*>7 zrC>m?i>qC;7j*3zH=hc?g!%5c%Ocx7-lMr0%%zAD70%~ql)F-_brp%|CUC-2F$Mn_ ztF`1Hyb(K;5X)MRwnIU;Wn=lNg;5qy6@#s%rnjTcpK_wCO3KJMfKa#^G-hf%uYO}z z2PPMal)WTNLzu+k>aQyvbVCCQ_nJN3r&RaruYTP=pU@1D`CjYa5^7`oE%Y)#WJPK3 zckz^i!{)&b?)3Q?i>MpS+G2_XHK;Ss4@Ys0)k8^o`3_k})=h~m9=A!Mjj=gmG*cYIUO#AMoq0ZXz1hwZ`g zV8$}UVKnJj{`vCZG4c`V7)J?GG!ar`!!f}+)}7OiaM=wXOC?R3L+asglVLY0>h8yo zM5w_Ze?o5KJ4n^m5VFXm07?M1^{Rt0MrjpwI4Xf0tgw=>LHonzYSgd6J*4;4jhOJl z_61XY!$w4##jnaJLLQ$GwqqR3V^U|7bvLpJh~clnPNA5SNUMF5aQDm0)MT~9ni@ms z=+KXZO1Z|&x^u4N(O1lpMJh1n@sdd~Ju z_Qk;MNL=#r60VyFx5kDSKBDkF+FKU!#@QzZ2zqQWW+}SAjwO*;tu=XF({Y7gS6A2m zbhmHaZ}n~gs^vizqWL3t2^D+Z{`7U;WLdWS4O~gV$yDdnG?N4u73HC)i1{3p_larkO-tl%-uk+Cf>iULnCgy-Gt8V zb|vGUVxL*|&}_`L6nR}xs6De$pK`*f&eNc2nV9;_>$A@qK`wnyP97c^DPD5_i29>| zW^-r9w0?eIXvn&(l#$-F$j0w-i(BLt3-1&mNTMS9gFCBUb|S9OYCrZ~-Gyv8&;B7l zrS^PWy0qjM!8IyzL<+2xZgPa)HTzok(~qtPe;kG&c0X^;nOgorXDRMjamzUHWmg(? z=72WA{^7=fjg3v0&T-g!wx4tKx`*KJBP+|50i2QsfAWbc$??dVh$!WF>{0iR1O6GZ zIWgZK(d%?=SYbTD(pX`NB^w~b3m;yCf*Q01e?D`8Pz?tMXGw#Zt=NCDH~s2Q(-(q$ zNR3_H2qRPLYk3{y3fqw29+L|_kW$1r#5@#;n0*}l!#niiaa?SN6D9PZ!&%<_$<$IL z(3z5Wz>O8o|KYG9_4KeKTyM83bkzCm8xa|)3Q9DV%8jJ9ijQvNU19L;S1PFcT$8B+h(9mzS4}tpQa?|IZs$R5-LXwQzd_nT~Y#798CEnQuB`GpTf;4qqZ0SAG7M8JRP~Q$+b@qeREXX$TIl1 z6I^}rW>tahjykNm4^jxdi!OvPi77p6em$_5`2t#p65TynOZ$a>nQ$;JVOCS74bdq1 z3x-OHvI^`am@D!Ky|@%tj-wOhjKSAZ;*+nyK|ww9Fc(^^A4>DlS)>w{l8_;d-xfi^ z8c?aeiN*@63H!XEI|{)^MXU}k%$!xE5D;nX$a&dlrAP2Z{d(j3buR}$DP4QLQzqaB z!;~V*0M07#Z{TUI(>D;7xX7p9I;o+x(w;iXWqLp2qR99BB46&(b`0{y%{axL3v}mseXc<=LeCVP) z2$~ojiK1tQ_F(<$=$o^W7r+1Tl4&zS)6+eEweoDA7;{3)Ph zd2Lk!E0E#7X0fL?9r`D8uCMZ9{w9C3G4Ug%RT++|p;PADVcos55a zcKr7~LDHF>dn|m>Ay$ux%U6VRf1y5#2hLOCVj*n8^>(^szIn;eIO?0NOd?2pom)&n zd?+}Y-`$56vMaYks{#0{g8W z6sH+~bB%~eIfr^{nc!{xszHu88~&m`bJxX`w~i_s02elD&)8eaV=^hDl@3>P+Ozgi zXmrH%zm&T4Oux)JCMFvE5{(vf<=nYw(bh0hkP=fwom(p;P#)wCCDsXNc(dA1ZVj0Z z(G;G!&>7FNz7&X;mN~^Sve!L;ymg~sj~C^O$QK=8rnZ(!36hY->1551PuodO*MGM= zEl=b}0z6gU%YSF9i4%2ptDohcPdAYIk{yV+C{a$da{vu(vg>3V6YSz9CW(U7PO#*t z5x_%Y#_95~G5jchupGfPNyd29{)!Lz@Z;#g0MnPc9jqK#granf#eegeMqSlej!lG2 z=KGT$KVK?ZAE20{TJ=W->~u1VN8+(8YP=^|MZ}(G*|eH~1-17>>TkUm)h})=2En;y zuB>F0ODWN6D!K;)((c5xap&rqYSOk=jC!#twR<9DUgz{>b^I*59L_e_LkC@l17Xc) z`=@N%RpSzYA$zaYW@3D7TMc2id9*n(ha63MhpVUc#a#O3tlhn)O^#YCiB#wqs&a6) z@L>m;D=4eqUE!mzfPu$b?-PE))~df%Mi(Zc-8L4**7-df6pFVy$rnYyEMF|AO0!pI z4(;5D%=)cgZ^DXmM5i7z8pam?FC}GyXPr&wrJ0(+eO0XQVqUC4&PhQonyX2|x8{2Li zTxP|8y0I8DNa&8TuA18l%CJfd9{HBh&=BvWJQthQBJODnvUg$1J zgxdQ&fAVZVAQxgtV=2s^jP*09q2NFeXkr47S8T9LNr{mGhnd=SH-GYEiT8xi&?a`M z?rU-0^?tj0esDQ((NXr^a@G-)f<+Se^O@9{a<}ZA%xIx%Ywix5dLZiW{er*R)&ONw zBa`~I=GxMPaC+1m`a{!^w7`s=TpRCWiiuwvHtesM>EcNdqr8cJW`U9pN=pD$u(&*X z$c~VvbTj8$Cri2Xdv<0;HGY(AOtE>-28lyFF-cz|Qfj&{^6vXyBI2nM^bptR66t+= zHVg&}K}r{)zUvR&Wi$dmxiF)pdXR1Pp=xyYE?72Y;lhJskDV0GJ8ndEum(pzlpl^5 z-mxE=jtV$xNXMqBXU7|x494or%EFB4?&v9YIX3og&SQ!i?d5WkS8$2&;a~}zHsj$b) zv%iqwBwGJu<>t3}`c_q2`vnAK#gBGA_=B#%{`}1bZlY;dQv2CPHFwU^pBi#3RTxnA zn4mE{W%-W03+pYtxrk1TO-2pvheLHCNfoS|$4}hgT%0^b3H9mIxc?0BOJAcVS;{)$7%R*PW+&bfP^pr>UEJ*Q1o_M9?Ax{Y$H$EIYIONQ)_nw9d z5qphU?DwmhF|e?D!L$50{(0YWIj1+d=gS||ym&|xA*K-R#(cn4r({E@=Z&>NoDc=puKg4yJw1JMdwZ%-Iu>Vi zd8zoqDY;LLo=O7x8zSt=!O z=t&;zqv$dV=gnymj@QtSTMB4CnVC84PUMHEsQ`!@bh!ZW(QdFr4@DtbFDuF6+fq*k z^h$~{&jeqiBM-$Rl7grW5BJ`qq z^zv8FTEF9U+_dVv23Yv%Aa(9ZiST3izkk+IQX90Z!a6k1KA+YPsjk07_mrLV`Y~~3 z{aK9sAVB~nPV8pjezW&1YR060S4ubSO>ezFpK8>#((ZVLtL|7@8zCN?3?<;LAzl5C z5VD>=Ry?FR{zzimk6*bnuaZ5vFL1xps?ib;m7UT#O;8e5l#0ew>3W!EAZh&*th&)7bu1 z$NDa3JwR8sJrPdlx|LKQ9JNbA_#96&BjDNRs#IR>G0ke}AOSpLDgpt4cP|lNU9O zi5hf#6%rA@*G5cri6RpmlmD0&k0*zg-?u6h73vaQVxvmqGN!k&UB!kKSeRwA3z53tDx9|UkBuc;EXPdOBp4oE;dfaWGnAY-Gs$ZT3o|sOQD#yp`MaSaP*sZu&4B@q=xID+onMnG1$=Mx6xM`=ffzga#H>xd}}1g=?bgS z2uyjE*f7{m+OK`N-P5QL_(l%xOKAJpc80rv<3Es&eu$z8xJ>kcTHvBNFz7YZysezoIiDe0%?WzA;jLd>B zQNaMNIUBP1Ch`!46^5HG#DWb{i>Zx1KS9jlJXXf`7O5go~C?E?JTa^oq315B&T&o~U(BJnie75>w`e z!Sh#hMAUO6fKLqib?uvdc=*q^B*UzN7<+gYYfoE?KaQf0J#5u+n{z+Vl{Go_Cwu`w z%-K!jJ4WBlY5j!mK=`SB9(8Tm*tzef--JOkz{ZVipFQU3e2LP4pW!3T7pg|q+z_(t zfqgJq@mIuz62w`DO<^qp>GaoiZ}#fm?AN_{i)M;k;8UB!k{D3?%oDI!-2GbUa zf`SDqThnQX!7#XFqNrglf|)q@^WQ06|GS+r_H{;voXJp-xy%`4|_^8$4!VuMD^n+*&HKJ18!LoAJjc_Zbn zn*QNG;A9$lFuI@w^Mxi3#EG<0=>FJB-~ihm%?AGc9RB7C;`{M$y>=+{!+6eqk^42zx8Q5#o{Hga|13#NsRYNmPi*0fB-3Rg5y&couf?q5{=6=(4%~wDbjO2UEKF958gyCN z7-I?Pk7@Ouu$U`L-5Whq?`C@oI}*8$7(cDt83?$W!7}Z;`$Br%6N+k$opmADdp}hp z)(?tA+LuNmr|oG@{3=|}E?1z>hHd6EwF1-vcq;a33dFO5CzlyN_3FtYp;FO^?C891 zGO03|a@6)AV8DM>xEhiaU|j-DxX72H~^5vE%`Lq*jrL_bA_QAg@byDuVHgg$9eJ@qT6Y5?=r0_6FS_h65shO)8=Kpjh7R2b+y^`x zQk!DU_bPu1w5)6ObzBiCMemLzXMY^`>;xV0HS=nWVa1w~X`AQBg5IcXVL(hB4oJ8I zE2O>>k3SN{9=M}nn0}H}-?4k&VtsahL+IM5#wmlues+c2fwxQ^J}>9DU6XtGZEQ_o z;}BbNt?aUGK3i){n97y9GTp+-BLP&@_viF=v$?mc;x{w`cuMIos_r}-@`OqyMA2t2}q?o0`cW`^OOi=bT0h|IlkmwYx zkiX5kepNcRBlC_W41gP-bqxd1=@E*y0P#>vMfNV1mRq>#V3bhO+@E*%3vS-^&oe}v z!t?3;eYKY0sNnhjV1Sc7A*e~Z{`MYMMohG?%v|ZP~e`pEc<~01HQk(Mm_u^*R|GKbzbUyFkN4N?b}Is) zg?6OKqCE~EF zdNQDs!a&7L5qWrfvSP_|13rBEh>t0hIpsS{u*?l)W4tH(8k1pfl!nx{u z&zPT|9~2a%tf?8&vu3}ehTvDs{wsOBn-aB$`nm@)9`GJQ-p~NbHx$V=ZHLAMm7vTY zmv9t3JZZwux8vSd^A_OI!8!oWQUD$v{>WQ*?f7mLW$ul(Q>YDDU;enb|MfBd5hH`B zXThlG0dpzT%xZylOROH^W_d;R$ALI9AVevkfzqyWl%dxZ>62lR>W;|Fdru8%R#wvPxav~y7s6scS@$vECzGV8UFx^SBCu`9s zD|mR1R1ytAwUzX7oBhmDY>B=s8(Cx$3L65UG|h4bb6@P%-1 z!v;43`b$?9cjFE1QN&xuxE|7EqBuJEW9f4ov88!QHXW$L$OpDaCL7v|R8_dx!D zYv@h}v<_r|*>7oC9UlUO=fS~eI(nt$K?X9iS3pJp6hdSDBz_}+M4sHgELl1}S?f{P z)J#ZE-y2JP?;W6sD!v^+`AW#=4V~lP^-vM|NH4BtP|@G8kl!PIauYM!o`b%9I3L#m zXD^%2WxX4bx!1a}fCeGsS;u#A&-o1WXL0H2^CyCmDlL1(nY&9r*iHMQ^3_Td+d-!c z*l)nnPTFUVW^&j2J^RKG@k@R95W#O0bAs(-9>9w-x3axJbzR=+-_?9guO;r86&&q_ zSX$+TR+O4>C25=6x7gw3CUmz;e$;j>^g>4WMHBd4i`GofF1Tm6(P`BlpOi=zH@rdo+R zA|f{lXiyCidZm9fiu}CYCfFX&Rr>hxJ-hh`5S45-l+=!a)_ktUXuRpmB9O1VNM-K&~&j(oV-97~6u3s< z1l`_j#HMrF;D9aI{fP~okdVPf7yfu+jV`T$FvbT}j!M)lU?IF+RW~Wzv!weJW1gTF z7c8i%n%XTuD|j8&-{>`cUYp1l|4yHOLM+<>$lC=v*Egg!XDW+)*KIH5GCo+p$SA;yr6a~S*iR*v_-Y=l=} zS(F@X0)j$9&VIc{WikE*HDb;V=&dEURUb!uId_r{^y=G85M?==f8cyP@X8!f5QH5> zr}~#=-(Hll38&*Uk_xt#=k?L3(eoW7z)%KRMl^{VpCJs)Z{y?AjssGpf9i!}%lMPa>=k%}4-}6X zbou;%FTCV}aI7vF%_?rz@lor7o=GO9=iSnJzwz{{Nc=P>b#OXTuTJ1rgfj{Ga1_F%K8J40u3>FoPyh7~n7JBvsp4Dc zZBjvpIZ|3Q67rX8?DM@EIR$A2Xz3t7H~B`l`Wx_Nq7h8AY=7v-ABk^brJx*aJDx9(=U3k#Wgmi$J`zZ#Lqi%@by9c=Q&Uv)? z;C(%e4kgOrruHofh{TE+4v*M@{2(j^&Dftl*QILve$od(O|UB)d>vcV&bt3YRHQ(k zVuPt`0FpJP_SXy!wNJJ*-Xe*fUYERP}a9Wop#;V|bLF&Ua$bathAz z(rWRpDnrfG^8W=bgzL&%7lpTa27?~|Wu8fadKEtbwtG`U+3^idZ17Z}HMKQ5ZM@V! zLdBR=Kqo?jHJ`y)gfFgs-2sn-6uO}Y*4&jfg;YM^6(K_$NLYY>L$hY<{}qHvnh)D9 zjDO_|>a1oUY%S{7`ID@d52g?aOrf$~-aDzEFu3x;s3l!9Hit5_fBv#T z_yp8WpDZjYh{WNpC-&CPJXmhv|D3RRKML^pI2}jDIN-#jYO1Mz0UL-%$xwx~^WhAU zd&&OwaB8kc?%QZ791BdLym1D+Q#$W!C2e7XgP(4*uHHbcAP#kJM%cR#=wXnp>ORl2 z^~I9JYTnK&O444 zzpoRPWEnBCzw0D5e}kn_ExUOP9!F?+q;P1PbjJPY?Z*nI7bTO?A>*gvwf9%sn#y{| zc@~ZUwQDE<{{j1?;hB@_4nRaBx(&&Z3sMdqQc?VdF{@``(6{8871;hjnHmQ$WN2ss zq3>v;!^U6NYJO=cbq%Gnd?J1k50;-#0hNTPB%`E;t5~$3xAmUHx9BSA4}Tn6()>th zC`uYqHsQz(FvQa*DzG~edf>U=@k|S31bit>`%{9gR5@H^laP!T`CKWuZEJXLwbWc= zN7#xuNukTA&jo4BIJSswz0&KvK(AT06I{TMX`zkl@Yn*Vh2pItASMCQ_?cg`d#CLT zfD18(C6ufq11-d|`hTbritNd^^PHY2cIr0@`|A=>~Mn93FW!` zhODl3TeEZ^pyC-J1Pyf8x?yDgpsG*j-O``sjVYkx=dT~W`KTqd7?Ye}WEjZG;vc!t z5<|@QTMzW%T(`G?mCwPS45vN*Y%)4NA9axPC#t5;4^X*lU-%4>x07qV=@` z!`CG*Ug=I1$XDL+W>zLxHxbfxYwi@u6(m>i_5TkvI(Lq5{A?ts8_K$0z>#zN2~|+7 zTb3_Y41O0 z$r5|6a?4?AB%rJTft$_lkcm+7+dRqYD$v)jRlQ&A-o&nUh!5^r8)ybsN$Mgh)N#@C zd-7d=i?olgl*O3_Rpr%B^%a?K8+rWiea~-(r!L`?2{&pGvD(vV5&9T|T(y3|Lb|Fs zt*QAe@S{VFv0W)g!kXE<>`;psKFdJPs8@q;^rSSf&y~2v)uK4EcZ7% zHUo?*fjTCDc#0qL7|MYFo}1^OuupVH=zUA!eMiIdsd14V;5i--3rK(@WO-gBx9&gH z1rhotfq2^Zpsm)2wX*fyXUB+b`Kbai_rF6Z?GIb8nk~`5zuiDe(9=SWloIV?0_l_@TeGK7t0d9L za2Tk$)cIo|@!(@x!6n_B$!Iw+ky73HH6XsmV|0H_cT(Ux?-cBI3yqkG+0X!S_{6M_ z1@9ik84pH|s;kCgWp+B(V45<=rnUF%PeyjqkY?MCJa|?kT(mb@&+lNCkZo)O?Tl3U z+4aq;P9eYLwhP7C58O; zd{Trkg?`g{`Pem*RV*!w|Bmo{;QM{XC$g8js_0ulIE<=raH9R&v%!b(w)3EJ+M6(Q z&9{M2fETQS<;y)QCNx@sZBg=1<#kxAQ7fBuR5WlRdAI_&> z6+6)qmDz9TpQGDBp+fXUp%2!+@Btz;Cfw_ z6Q>|1dAD_jZ3z=;@yAGm1s11F*{m!!W z{PL-X;&W}hXQ2Z_8eUa~vC( zKyFQ~nrv9I6>h^mFhaYtJSq*AR0S+4S|@HcikenH7aXFr$QU#DmJA9#!d7zQat=b2A`XC=}6p7#px=na8tEP><||LH$9bx9%VV> z+~s4GK>O*7g7r)&uLwZD z-PyhN^FwrB9@R=$!dbA($;K2`^-OvzPL_vjkC-5~p}xBd)$sc9=zx3JR8IlgJy}`! z`|D$i>!an(onee&vC{HsnY3E0D?gNBTmKKwncEeUzk0;^Rjr&(x-IT!VhZVEnd5eH z{c=F(o3%BZdJX^uASQ*2Us?qc8wSJ`5@g9IZelbul+8MuDV_E$8lz)IW&RjzfuABk z2qz;i|B@z=i1;p|ny2?K8Ph(%3FFSLG*Wom(=ZUC=m?i)m;Odpj5YZ@PO)7%2vX9= zEX8NNdqI&yD5!{nTA+CQ@IevKvmm`A5euXN^N41R;b;glfjj7zfp-V_da=$F_S?5_ z2Y>3sqj$w_nB@rduZ6t5b8U>`*Peq=Af?&mlFM$AUNNcaPK)=8VRdiVO2s)+EqW7h zu)j{`sqyD5dPoESXOQp1sr1#+veyS*?W(zuLX^zWzMInxS~|M-Y;51xxL{ET{|>~H z6AF2!m6p=X8U~{I4x&N#7=AhCxX9`?`?3S4Wvoln5@^1gRkW?Q&4Zql`iveh#bkQs^jOkzEf|j#D3&y&@}5$ zg}i>7{P|D%aPe!&_U0{`aFZ^iBfK8}CY1|IA}N2(Lf0kp4fMB;R1pOyz+F-QWsyss z3e#z4Oz@k?Q|73-&6=}VnA%19TcC?^qgMaaqv7{9Q1(!raR@Ds5|rVd?ZJA?F7}%e z*ty3{e?je%^5jhDqzskn7Pa<0X3{yT-WcIxH}-G++3p2+woJR9IzWIC=9KJPW%K#d z?f=jlM|^Cj;-a2JMC%OBVfFU+-@d#ssn@WPH|`cpBoFRU+Hz=*s^l%La)gJbjA?-a zcN;ei?aXy(-Sw1LplCGU!p4aSayS+Uy`? zkyVt2Fkfw+*DT*wK6Anr8upv*u_9TM{C->2EpW$?xF>&F4p_$@KmFKX5$SKQe~Jk$CXWNIHC?!h8?2^v zzd-PdpR5CPV;3eY{jJ5fn%muGP9pRq!hRG$KG;x-R(v5>++K_#SG!ZyM0T8qR$z9K zwM`e#*(?e?0OwzAI?+!`Mb5PW58lEA7F1Wx6ANPrnuj zUu*hfAzXrdkhB#|Oz_UQ<<8Dn(Vw$f+=EHqy=0-Rm-i(um&z3eL>|N1fZ$D{zS$K= zEwbY=t@#`H7J|@n@)spoB)iHp^WXQoYCWU?^^&)|u=L=)XU+H)7sWf(#PmhJX^RQX}3hTl*RRzhwCk zgH(V>)}A`{HzVFGCh+oF%!5ncxzmQkb?4 z6K}L?e)^3BAc;alH-k~8C8?P6Ahe(4{|R}_bifuYcny-fm7yAGa&j^dF*llmXEspx zN^8eJA_MJl{ZD|Lj-TDAX-i5_vbtmeq>rZ<_R$oj1 z3@rKyt|m)tMEVS5%dF}0`oNL`Fp}Ilfd<_g-ZTuch9D7k-~fvg=2`x2icr+ja^qG~ z8YM*zka{X1p&Vd#0<6b4NHz-gwKlH7|BoVEmAnbu%Sv#Ye2m(ox3e0!%}&>UgXmwl zW&`TZGPRNd$bLGT83M3_ew?e+c>s9Vi`NbcMEDo*5oo@7d>?q;y?bZf@rEqug#Uk{ z@FE~L+>Eraf|HW4fZ?#Tv@{Qx+T!Bk)Q-4)?wp|jX4!Xlxv$4ik0y4*A4|*wxS1sv zh=KRxC1lBCC;P?72s~o|%>=M1BY`3u*+bTUdTXvP3n##N_OX5*1a*M@h{2tb5c|Aw zOaKud_)FnXH?YCR06XXOLl_{XzQFsSlh)PEfIM~E zH0lDZ7#LY;a3X)(tRl88D{5-u0LPo*E&i{|0I*wvCoL%i1eR?4iUBk$9YaXQ$f$5g zqfk7(H!wOXSuu-2M6|qnEmkqhg{AB?&2b95MD9nAC24iRT&Y>H1;A+YyNf*_Idk7) zj*u!``xWpSD1)B=0wdDd5Cp3F`r}v@FDM|AfbGj`YadKIFbA-^9qAkTJ-XB|qE%@Q z1I$hfxbNQaIhR6y;({T)EKK|Db|wI?YrKU)-~7T{0n?j2a1u=(2TK+5rmE>E@IkiN zrAh6_o|QW>(a;O}yz<`Z02sBxlg9-XU-p>AN@QY9kKQV(k`J?Y zxk!ffNE&NzUtc-VMmum&IxM?D%E12u!X>J=SEA803%7oLWOFcaHpXEE29;Re(z0}c zbqtsSjsMM*S@-h*8ugl*^w+siwa-5Qiiw3$Sxx1q?+_xEm6n%Bba#sZOI-T0Z3%D~ zt*?JXkYE6XAl>Qv zI0L@D>T^x>BC8V>6-^s8C-&Gxui;I0xj8X0bYFW5EErwuzawQqIoK0|%%I4%fxh9EDmQ(64;ZPa|d z1wD!HO}?sz#y5SpWtSmt;;|P2-srF2T@Q85z^z`s#;=~R7sLeq@opmI0bI5_?ZY$+4S;R|=bY4!`=hp(t9<|d zJ!FY{)w}*X7}2)x5S2@SQEs>DQ$3jmD8GT2v#6-Z9?VapDW~q|&kUX&IbRl=;**j# zllMcClaguye0J1+t_X}VtawP^X&Qi1@vH|`xEA>941F#&QW*7$U5lvRv3`7GGgoN> z4pC5OXkt!IwQG?R4ltLwyYuj61HGV}i3u49j29Qqz?H|EISP(X1<`pW@GyfPkn8(^ zbKbMwUrO`cr$;tVr<5H2p)*b<{-=pTug`)^XhGU=KB2S z7Z^aAu%FP&pC$_=!3a4*dql0R>0X#d0K9VpZ@4m;S?|kPt(Wubb=;8(Xl>ueORYw7 z&J3wStF-QlhaKy?#LoSdGyZCtA=>Gf;h`b-&3I`%c60C*XJyuTyY}P6;&&jhB_t-^ zu17M%At8NwetHDwPyA3jx(PUA3_Z56bKKYAF)%P@Vx}oT*niK;iVg&=T1GxwtevFM z@fjHrAVyJBhjw^fe{9qRdz}KX;Tst?)%n0k2@XL-1nAhE$3Vyh-uf4}w!Xf+m>4uz z5`g%b)M=NNm60(qDZVVSmX{N*kktgKIx_ zate!zg21}Jynp~a?E+)-k{F1aReH@-3=C1Q#O_d$zYAO|sk{IKn#T17ze=}JmH$Iw zm3H0N%YBF`SLTn$t3@kFb@oC${ueOV_NxUOWNGym=A9~0_E39=LRdH#IPUA5b`*hO zHBHcqiz+c3*T@^aWO@+r;~gJA_LOT>yogT$_NwnVNC~9F@tqG_%=-3SZ+Qq&%tz8h zK`zWZr_JPuh8!bq7Cj5Z7OqVgl=kELru_0!+RGX7IjbKfSdDysdUtnxy|#&E zSf#nRRP)lygO@W51P6gvHR#5GN(jU-0E`rb6QYFbaqpvdPv2g07?O?k1NN84{e-lv ztPJcJBurm3a7UMYrX9MKc(l`Y=FGcK*s0tQ%sRF^A8a?O-0c8lx%TB;^3&>48;K~EKtQ31fBC`~QQ&^Lttyrkp4E*}5Dqxi zP+%4ZW@`puAqLxx)ocjs>({S;S{%s1vAj53OkL^lQd3habk!%z$R6p&05dL^{_;`` w-j|y1|NEkhmqJ<$n5+NK^1QrV;~BMhEpF3aY|$UQ_5(^*Qc%=qj70>DYp(EtDd literal 17727 zcmaicWmHvN)Gi?*t(4N;-QA&pq#U}XJEWz%5fCJ$1Zk1(?v(B>>2A2|yx;xv-9Ohc z7(+PwtiASJbIm!|e4b~AD=W&PqY$9Lz`&rteG>g1m_fg!}WjA8`hY%1x*Aq?MJ$ z;+Ao3BFO^Ch$Ya4^S*NI*=~D0rv&5XQ-3-e`gAn<*-?*xM`XtWM>?CJ z=#q>)2n*xAS_YD(wLmbI1o8|Sf)p~jRP{U9R}#o7%&KBRSP~y2aj?K;QxyN}BhPC1 z$;756As(AqG47da@TH8+jSb0KyQMKJ>nES=5uCWrP|Wk&oh(k9SvCd+hRGPpAgrRl z7F?R85VMi=_q{R1rxzC`r`D6-;c~_;b|-&fUoU%=&#MGsbr>Bi)=$`t>J@B@ZH`DH zlRwF-;FLg$moi&N7X6XQyS6@l{HUz0{qOa8E@B`oCT6U5VloUFJ2T9=R*>clH$LA4=*ogCHPRyGh6z# z!Qg8!7K^+J&f?aSg{Lq<^v~&#{q&!H=^|fJop(ll5rg@#Fp7$1t*@`|-z{G5 z&lvm`{CBZ8!K7VPNRvAkt%hdwE=R6$tyTBVSu+fm=w z`1rkJ*^=x8(ZCi10|O@~CqGI`&|q@Mk;Q;n#`iDjA_8P`v#Y9bczJnU1c=wx))qg{ z=(RmJ6b=jyvWnpS03T&27Thf*b>hbz9N0{k8;lNp=jaGGO86L3>-aV5?e_-5SPxc{A)@YsmvWlI|dPa4*rKzrUt8H+_oI5?gw`*v!mKO(wjb zN?D4ks;@0AEvsx7YX0HVy$ijSBy)su$$--ieWraS@v*aHm^P*Lkcq@@im;xwwBpPr zR_4M6?FfDS|432D=RCsOVfqDzO_C-9@o{^pWf}4Pc(bE z;W25p-57<$xyW5d2h#76pqrz@;;kkr%I+67VGUa{& zTq(TBBc#p0cd#Yu5}zLL6A}}uV)AeD7w?r+@b`*!@;(7LNwYbWNURQeQ!_JTE&^ag zE7@P{NSGv>54YzBv%dp5%|}j-8jtmvAb63%RaIOR6cj8N1;RJ0f!-(WNHg=%wb~n= z7`{lV`%RLondM|HoI|9Dp{*){@mLbNA5~P^w};a}1Za9V8^n(cB_Q&_kixagbhvJ9 z!$BM*@jEIPzkg{}@LB>{yT;}{@QbM!*mtn?9HkgXDJUYZPC7rb6^Pa1i|+_5P=JUy z1wQ+h))T0NQ{vsn)4sg(#o-zvn1q!RQ&?EoX8e2dAI|}|^tM=;>_#S=)ywoJT)dc| z0JLiCm*oG#xUHv8fQJ_m=W6Hq>6RC!86Gguad&FKlb=`2hl313Lr))m-1?kZQo=Nn z&M)ce$^#P|984tW8g+K&1Xj8SQ}jVhCgc!*9Q-aPCpQ_TXR9h!L{R}7rG?R=QbXZn z_2<8V*1>+-iDYeAy*b@zy4_CmKJCVb{=hKl)I^yMev3~|?k&@6F&bv>S$>Y#4vT+&SsU7G~Ew&GQ0P% zDHMiVoi)N$b{?9CA0@(y=@mjR9#OyQGF;nA&>6$EqRO_%Dc~&RbyKoI&@)EoA7*4Sc=^30__bAc{KQ;B^% zY_8R|Ikrb)eL{t<6y!k_jPzvO{i4$~t870+hKON$eIZcSp9RxSHMV79p=Ds5a;~qphTl^HE5ZuodlVi7-M6ggl;Gna)0G ztZAZc^pH)`DMgU-r)a>{9ycAUqd#u3G==c4n3SPb_!y~>Q!H-omuc^>MCE;+XiM3% zkXeOp|B^f?Ar3AFFS@6Orwa$enzXk1_R1UkV#JN55~~9&kcv)Z_9`}p{BdZ2%kDF~ zyIfj1R>x_7N;qZM{wM46VG)e;P>CZ;=)Ud(mpkHQf3V#tZS-hc^l`8Yh3>)iqC7vo z*DG{yeq-g>hm?nOj2}-zXR1Mk&^2C{X4vLpAx!XX5mj)fDB~R{b>wNriQ^%dZp~(b z3~o!D$_^L;qNoHJ^Zj5b3VO1blFr;!?9&yVm5;lZzN=;*LC}$aQDh6McHU9^sqno6 zR7O)VIWa%sjk=8at|*xZ;Df(IEr#6o5+w{$+&wxP8%@YtL@X`L&bu)0eXeHsgw@BN z4Rs-h2e`itpRGNwkD`;4XVgW@%d&W6-oZs_SqjR3vh(F@{BS5GfsDU{ossY|E)4T<}lBdok)QC!hNX8MMlr^4WJ` zL?2%Q8JABAcHF8OjeskRMA%bTRSYBvShhE4yDq+mVt@BsqDX{OLE7_qesrs`b@pEw zKwlnvHmEVKyztpQMXbvD;mSZBgz6LqEoNEpB1IP(-B`1HpZGy`F}b_giz47gAtlX< z^z~h9eSCbhrY@Eo+g*+M1)@!h?@JWUAA_I9po^Jv1?Evt;OpyqcXc@E2MZ75;OyLZ zutOiA8u^Q;>jQS1AR6R(xF*g1*v-a`4pix=L@j<@U0qn%*txD~y;FHvwtUw8d^es{ zXz50coWNrRi#JN;St$O|=!8NnNxZq=R3<=u(*agh>|ewW#F{1VFO-HOOAelqQ2+Rx zjuY3=#fcm;5`4F`y1(XNSpVOjQ#wce!x%W+JC;c2Msy5rD-IJoF=7idrH92bgrC&v7`^Tv?Vwjgq0(Z=LZvPn&jR%)9xF=W75v}1|nj-FkCx&zq;mp z*bChBv%@Wa+|Yw+&zDod1;tOr#N8qU*8%K1Fg zOlW8iiI(RV@aeTpa1~6@t>=kEmejTl|8R^Nzg6#V(owND9E7j$+H&G6e8Zv7tf+v} z=X+^OGLrE@!rkNZYw4}eE_A3ivg=omw2OCqC7CaDp7NoNn(!6w3~BW09a%v|`W|5n zc!VcA-}&jJ%X6I?$jSf*bUUU;;lzoCo$zwhD`A^GdwyNnKU1DYD3xii;IGLp*}~4A zEP)P%9S?U#`=}i>ArHQa zVK>%S3r325QDBh5k`7~a!2kybRk5-k_L0a9+%Jv({e#DuoCc?GgCdfRV3pz(I^==qPXsBcvYm_XnUA;0l95y)_ zy!S&T!9VDzL>WkFvJqvx&U2!oG&tnz@P7|mAAu~2Npo%2fuE*SKLX5=K~igr+IlN| zb7ff=w<4t{Uf(?+&xmO_X1O;>7N=)^HW@=jl!6myy}QEkRWLQ^WZ)lF!~nBZ?=L;( zWB)bO)iG^NPtn9W%~zkrIeAFT?|<2dG!<~y@}g{CC$Nl-uoQhj>EpKGV#{~Ku0$D3 zS(B60!tZjc$*9fzGUU4K858O9v;IdGrukWa$VSs*Iem180v86iBTIP~_xzkRI2YGr z7`2cHt#JBlwWb?hzr}xG7Rq}Wr4K6*SSrc*Id(o=3SBTkt;>1vnmy+W*Q1U!+!$F` zkh%(Ayn3FKz*-?FunHP=q{q0)gOW9<>lHPoNpGdw`?|5_5VtWya#z55Ove31K^15^~u@^*{0OyoZMS!m6$xBYz8uh)5FA&D#lK8DQE49)ekJim|PL0R$i&1r1+GinD; z)nz59E_P#&+`D%8Qa6+%wgyk4}&YU(U<0aN>9soa!ut87krHm+KP~o;Gr^K66M~lf?iTrV8+JYH!P>QQOmbm zz5VCXo4Cm{z!GQ|Gfz0DvIOV~M^i!MS$1m^(Y+oyUX<08zY6xmPEbNjvD?y7;6-X4 zeTg-+jk5DPB;MB_D*0F$tq{e7&|xj&*5oaw(Kn1ZKJQ--`Z zvZO}H$Hhs6sA^kw&+N)n)cPBeVm6@(Je?krE2gs=JC(n1(e7oWu=nwL82eb5D2snYod=tyvof{btZXGgnwBn8qC6Fj?A*O} zPfy3NkIeIuVg<=*FeSb$zC1l8n_VDQ3dCquj7(DugygR6P-+SNw&0x$Hf<95F-M&+ zVWm@Xh_-SdzZL0t`110!?%xijP&m%e^f{R4Q~y>x6P2wM3E0~F8cAz zYy?KI-5O4m@%)tdqHYMLMPLok1D;4hR&`?|eR7ZD*HL=4YARMdzFIc(%7z0AOi86M zoQ)K-!&?~n%(ZtyFSI~BcKk!=_zy{gV8L*f=)muvS3W3cS44)k%=h1SYQM5^s@>3V z{oRtP?YvXeDC!EC7i}hv~`_}`r7{6y8>v(=YHC;cxa*7zp z_Y0HfbHV?XLuWHz6<)jIlcpqc8+5)iT1>phdRH5h=bUS(uXVVtr-g5EIrfNKx6gg^ zgm5!zjWNFM#Zn%GuR&rs$;^&sPx_%SHdHUN7vVCX>BdRd3$6(*Dx*51+5G&#XLyjl zR@1{{3Kq?iS?!*?^ly{GfiLY}%=~^&EJylK7BW!m~hY>9XcM z3%ut$B@WhW`8=&4`y|ripA%oP%!~~pv=l>LB|C({eu(VuNH*~4&z1~jxxM*vy(9}- zC3Gw-+nt!ApZem+cU_*n;FWQLH#a{iW(ahHW8g~+h&_6T-*o(g3tfT+gqGd+VVDEr zEk4BTutK28fw7Gl(Ei6(PpA6RMm&?q6aV*T!o>iY?4R0=M_YA!RZU~G@mL8+tYt!C z5OID?w_o-%);~A#&JQZTptaJcireNCJqmrG{4(o66?xFX5zsVckBAl1PQJVadOmuM zuKA$(mFz7+rkm+p7RW<_7({bn28FWW%kV%W9S#?yzMwPbO$qUL$QX!?~xop2_Zy_>#f zeOAdysMOvl5XK^A|Qr2u+&PSgw^$thg5J8po8`bD3||z z6$K4bq1(-bgXLyIOiaw_GCi;E9XdwF;_j|wHzWTwbC3vQV4{q=ZvEr)?1zGUkGygsM@E*lF$Agd8Rwl0HxAIXmWd{ietvqKigEcM zP#V(ToazAf>Zou0#Ql>*abTI+k6zK$UX9hzUxuY~688(IHX;wFZxXzCv)|V#MT@w7 zuqId=Y&zuyd7^)IZh=2j-Mw?vgXxdoFGftZryBPL+K_26xwL6^pTATT&|7zDNh7(R z>5jeto1;v7rM1(V7b9e-CWF3mot&=tdv-jik~0l{XMxPiR;A|>EmY9l{lfiht1b=s z+|m4EXJOW(=Im#Kj21tweOn7RTAUH1O!wOdJ06U8_mxLzFDdQ$@zu(d<}iyLJefICPZ9_ z?b@wHNv{0NSra#yw?(+`wu3{TbQUMD#mu*91FqT8ZNic7!?t)(G!B*^C{LTldU+Br z=YC>a^*ZXR*cu%W&<%#x!;^0qR%cm_fHiQs5IRQtb!W^kyJ|UhKK%nPs)0YG7w^cZ z{fblF^P%I=T&r3z$t|>o>hE!RsN_=NJ5kEzBTtOM2$xd>Rj~s)kjy#VsM(w+US8#I z{vz&myzT8Mq+Z20u|5~Rl~2ktzW%PeeE&o@dS#>Vr>}_hn=_7fX^6Qe)rrk$kAhA{ zm#ippV_CPCm)e=T^AdSxL-8w6Q_NGR=@(?Hq=W}r-o{i2MmxZOd)X+by%XR@UavR3 zf5$sGdy4CU&B_NmYmMKw=eB&l+-z!W2JTX zP=9Tjq(Oo>%)+qqtJ`aDo-gR$uGD-+_t5z9y&Sh1LuVx%Se=3itCZ*gG)>*UEjDB-`-tv!JF~1UNDpIc^{k5&ifwGxQPL7ZV3A%GPYD3n8Dnnj1vS9nHLsQ9^mg{PKk38-}U(ToL zQgSs7>eIE@-U>}qp0fx7SI|lMc^Hb&*`DrnT7DKW=;1miBEXGiY}3nk$ua%a!k5w@ z#u{33Uk@*jL@e#NJ9fi{R7Dp}U9#8-phrt65cT&ZAL{|z)mU<$C@0@F306^O*^9Jq zZr#&;3oI;SYNB3j9H`O$V&~g8t3-VgYmcd>YPXiumRrR_GS$ zDcWCFIMB70=yaq?dVuid9H3`ou9=$_qjAr>Gcj)KA)o)HMO*6jtClh(*URnY4i$ow zG;cS;$rLY7D_I`mB?l40>TWE;kgj*X>!5Z1o-&I8Vk< zd^AgjQ&mwBS5(BPudm0!!HG*ti=4Be5fxpbulZDNi!V^+Ni{D}_3c=${wmO_y?*hv zzE(ol$=g;HRsH^w`+4@mqn|{h490y0Ivy_VEHxQ@Wl2mZCsz%Dd7C)nMvG}<`|z_D zBqd&W45myiJeGcDuSBRaI0vN~BL57+{QGUv>wY<<@mrILNZ2zGU|c9DC;(C^(XNgN z3q$tOo&HtdXz5Yyt48qGiJZYH9oM-Z&Rp z?Q>?To4GNaPOLfS&P;+rN@D_q-6yJ%J7$3Zalux?>oW7>w}W>^Jt;g=_YMBXY;1^~ z5#h>l7;e5VdKwl6_ALlPztb`NiA&Xxa1k3mZlq2R)I)i<(G&fh+ZrztpY^9~ED73M zj-ZYX36X~r$xuH2F%?TL0+J)uEM!qi)=~j6IXiaNl_i|qw4-^Go#s+#n z&Nub5cQbcrme`NU69WFAvdpKpFHha zc#=;*Xipt>?p*9}&RSawS8!!mL-R4)9?03;@osvjWso=zzZ{*Gi{mMQ*g=;@o5NVtxfOHJ)0@zEh?%j z`AW}tHBK>~EZZ>syiXg%9r~LQG*s*1$v$7B8>s2(1eL!c#S{)DZaS5mP1d6wmyIFn zAIT7WE9xVJO{+-7&K@81qE|3${#A9k`Tm%IfhNR+c1mv~KFXWq-jf%5`-p6^HzOa@ z%~0-`1_aBGdmgDl_iUxUYST}p*m?v=oF*HNp1v2Tr1tMxvOiEg-)^w0p2@k}iv5X{ zwD4WShNZ-lkg~q9Vk3H1sxGH3OX#T~k*eWxv~{(mSgABcO`!SE@rh&Y=t$ARVwkvm z4+ZS2bFfd(FaCasy7MM{CYt_=aT#c}SwC?u|NU|BJ>Id9d?yxmR;;aTFCy>LqRLaI z&`R;kYqtpV?lNblhetH$n)DoCWSOd1YLS~e9i^E=rJdpx#q;v`((tR+9=7mMRmmh)%gQ|+9obu-?ic}D;_l^T!jqPd zS{wn_ymb5NBjJ(7YgI~OZD~_HXsNZTRC6-1rtouVDY2Y(QJ1oNBUVD;NNAQn6S|fY z!UX5mPCSyLOC5jYubo!YZ&R0QX-DzT{uVthuKXf#y`^#aj<%oapS1$l z?YUtPRaX+kMjA1|lrF&9`L}GK%#BPYH{Na8BNTv8B&@8gOn9gOY~_iMkH2cN$uM!5 zIPLM`BspTSY$!Va_>!?SHf z<2&(NGdHu#UB`v~Cf^J6jORO^bQ{IR@=`eq6^BVk%RER3GF3?ewt7F%3e(rWb)7IZy;G6$OVM*;jQtE@bXkzDun zsg&X+PyP93PILMo^HxSXGxAmagO4&;r_K#A{~%l}%3Zc)Goxl|CT$^r3lt4( zvsxSv8~kfwGmI_EiSmi0OM31S*Py|L9_niE-@oUw81n--m5PevMrlS_naLyBc5Lf+ zXk&P2+4a;r47Cz<5VW-@(H=H66hGmffofuiXhHFE{nWhFc+g;k2p*|(V{k(Y6Ns=UBPoV`_eukI$sB4*hvAKPSbg{Ow$~@UVUbo;a4e9t zb41vAa#783KzAkXu$n0&21q-X{c?IZHf_$#J_u4x!mN9$0UwUM1sa$qrinJ6_yv)# zFUe{P(^YtTIcg-Co)lfXtX=#H9wFR~X+NH6PqJogB(;T~U=MrdcC=Zj#umhEe$Y0K zZjMt7C>`?Ue4DHGTlBd1gyUrZaG7;ACB4 zHN}w1ZQWB^yBq;1H4!;KREz@K8Wf7h+19Syt4;V~(@0;a@s;>Yf}M2i)=nl}E5JqY z4w?6K_=#(Pp|oz_lwv7q_HycIsgZZ$=Z8+fYADF^Nu~La>hN!p-b-IKY(K%BH%b$Y zmS-MPhR?su&oq)_8N|B%Rqiivr>)s)KWO^}9Os?E^)w18Z2+n_MV9A_nZ;mp#ltdvd*RWDy|>fuGp9KYy&sg7({%AyzN@<%N^A(hAO>jU)RohGvls6~ zfzr+(YbzBe=Y-<>VEJMLlS_C*>MHn zG$#h;+y}m|5HXK@8~r`GgS)bYKjuo%HP+WBIh?P~t*EFNAlB4ta3N=8j9hAT`(x4@ z6X|6I3ur6AUi3^%RP^+}er}*@;M)*ugEfEPT6o^yOir-2#9EJrBN}ANvkZ!z zca&oOy|2^*8ay6=-_tiTV)pcK+jKr6sF1?u4_GLAXC8nc0yr0r2ebJJDS$JQYt$J6 zWo}FrYfONajQkN7jc)lkZr6Tp zz4L6r!NNBNK6Y5U0!73tJuj`Anwmg)@yXo$c`I5!cYF*C-|Aw4fPj!au~+x}bpMvu zjtKCPwg3#+)w?h)1e{(bmIS>Gkc2dwwR_5>(ckZ)=YDIeJgsoRL3>){(V$=%T$vCH z>kkA6J~UOqs6uYw6`%zIx*lnuk@p8+^NQ(wj&o`+xe3sR(|Df;dl?xSwd$Ry38F(T zE?k6!gpe^>9$FMlO-;Eo4eIK4uWF*-B#Xc}ABT_|h`qzER^u<>VfQ%@Nt4Z27cWoh z?%>{1P-Ktv5$$}e?ZMtX)Lg)x`}|s%jxH=Q5oaVzbQB<`Z$-TM#>dBJ9^Eq(Wep9< z=;`U*Jw4B!?vG74`jrC;rD0FmJn3&_Iu~IbpcD%tNMjugMggv}CghiEqQF*Y;M)Qi&UvU;E!2wExIn)LVsN4=(;|ipamH@8!nxnTq5sY zlXE5br-~MnZX(bTjWXrgmbA`0{tJ?eOd`enIgziz_LLd(`5M-hg$xu5LiY!MT>eeI zOz4*a>?kGC#|zWY-$4!*c9~<>S-=t+!d44mr{834)5KrGzkO0v~bhH@Y^4EMTTnz z%i9+8pyxHO(SeAI)Jjh!26TxgaAHi!umwx!=;#PG<=i>I4qJFkY(hUWXCVjgja|c^ zI1G`V%ujQ5blt)4;UsCSo5o#o^5*0%c8tn$>}9@*7$0VjC30x9d`q4#)_KI{`8MyU zayW9cpeUn{yei^~a#&Z+)u?`6C4JfdBPV@5^@Y`T9pRW9?5msxiiNh6BxNl#>+=r_ z1+ElR)Is;k5X-I2TZ!sizUJ!tzweMa$N7dF1(ovskR2%>HViLbBP&*9)cQCj%!hy6 z+E|mxWrIf6U&P(Na1$YCS)Jb(mlz}t=`^Sjq{0YI0T}nkHuU2cVYn-1z$CJA(MBJp z@SgoFlLxmLJ7m-md*`c$f_*GzunT)ye87rJ^oPTSQw5HnUt^- z3BHgBa`3DJUu3&&F1W`B=shf%W!p{=91QtEqLc5$tZB%U13l?q??h34!=o= zPKhtBiF#v&MfIHLnxj3=FdvJp)xC*37|>C4bE-_^lZiM#;~dl6mFI_SWKYt<=0L+m ziWn)=o_T9UTiKWbqZDN)fRT?|NZf7tQ5&aaE?MT9Cfi-0pN9?lwCKR1-q;OIFe^gn zY0IS(wk@DEc;QYs>&BvVNT;}=>?vaI6tOox>EX)g7Q;a+rT1gJt<)Dj%R%!#=&`EX^6(S)$ixp?p0R|$U$<7Wjs&8_17x$Ciu-SN-n78g!@tV8;wFWo#A{ot2Cyqm zhK69g9`L*!cgQPgCy6y~b?uUprR1I^X38=CamO|=FJ;L^TQ*OG&CCD#Ksj{1;tF|ZW>oO#>Zl(H{1H3cwSeSW#-5EzYFTjE$5Kl9ha*QeUj zIs*_tPiF(GI``vu7o(SJ$S!scGsUZfFZXFB#Y1dOWJ;Z%!+4@k)@C+s0K@|NM}@?_ zYjh|ji_S4=8}P{2oB+xm*u;=RmUTK0WHS`7dE_nmLNt)!CD~yX-;yFfz@My>1E!W} z#$t5+UC5IgRdz!+SHlkwg^83VU~3MQVjclyhI#0tpi1===BZ5aR9rf>?4tgNJ*`t= zN!8!{-_D;6^q`DrS)7GeJ!L@wE`VIbPdlmjkr^@Lo7tI7jc$0Q&dS zHPH%ct6UU2G!qR!4J<%8F!xad!&il$nk1*kKjG7k;5$*}`ehEMo9}-WO#l~Do}>7$ z8O-64u)IMGoi5BM97vVAiBs2$B{Ch?BE?DH) zzg_3>qsG?HnK8aeDb=EMbf@;zX3I&;tDo;vV&_%t!X_5|0h768y1~mQ0Bff7J?Wcf zB1PMf;9T2C3}W3zKHsk+-|0)M3W=pZgR;v;AXU0H2y1aEeVh5FGM(a!ogE9H>6slZ z)&oXC2fI{tFgs&56;cZUGL+WgqRyQ2z?ZBc@l7EwAu)AyFWvaADoj~$0Nwcp&iJ?H z&B341u&5|1(dPk^LhaH{UwVnjk{=-;aNkIEEIv8>)2PPQQwb`M2N(!ImH-*40k=`j z0((Q&=0^dTeM)E3{`Tf(+_!J8{aIhXzJ`=)OE-I7?oJis3oPX?p+w|>!@$ViL;=6o zRf$}GuyVWx8(JD_v}fDQbz8f-6>UQa3@g0KlZ%@fW=4v&=SN$7 zT~rO-#zyS{2nQ>z&+EMa@NrxD!VBu2&9cTLySVMr>HLk&_S}}Pt_0WE}9JI9sM`!$gxm! zZWnNV*yP0zuoFNM1`US0!CrYeIY45|P z!2nI^b?$f{vD+f-?2+n_8E1QY@`_7IP6xl|dT>Q?&4!IL1tUo%Ah6w!xh{vnTf9A# zm+^V~_BNkION;|mZqAb;Z3dA`O;9e{F@-7A+=_&HYWx zRxLUerLOXESao4!8|VDKp9rx!Tov5pD;$NC-u51*q`9Pos3so@$iCc)5_OmWYDph- zF2zP^UCL4flnOkR7C;kL!4M8-2`Ys3#N0i{0LQBGg<)u(xiC%K@*b6^_0 zx!~s_d=c5(c2s`g(@$m(FHYlzF?ou+hmfD-?aLM@Zc8~n**wlDMl&9a1yZo*LQUv2 zuadYp&Eiwu5=+69g~jXb&fgajfLQOTx8&`%Q~tK9EY6zn8d9!g=j)kYQm>C_;T z)RYJljXVZA?DT|h`?I=K7 zi7Y`-gv5?%!Q&g!_JQHMw0AV0t>0Djw=}M4;|5Q8jX26mAh*cyHtNem(+*bh4)#mR zmJsgPg_JxZ?3Uz7vP`O5nJB&^*(ziZR~29z~i5|Ed}trXz}vS(Ft^eT*8)2 zyEkR3Xhp?d6Uy^5sD^hvpJ-TDdhg&Zg}!K*tOqt*KWG!iep)-sF8IJF2wtETyAoiOHW+8w@<=Tfg|07mV z2cYSc*XVeo79Zl5rDK(%dxLDO9J9qUWV93v9nlbO-`Wh<-JtoNyYs1=wC|JE0v z=_*0mY5`&iMtv-U-{Eu_24ne9`Mu@!1l0zF>G}8I-RiyB}lo zF+Y>FO+=4p+3%Eo4rNPToNY+FMEVvQg`;M+j*`?~q? zqEh`h{Hz$u-n78fKduG>fueIAA)Vi+Jj>RdP(?|GerWuuARv70>{52BjzVq)aWGl< zb|NF1vOqdwry)3wzBj`WfE(+YC;13N!#vxq7I_Wvh~GHktp9|U=%_KlCYbLc1YMk| z4Q!0-p-|5Zo1F+E{bJV~!q*3fBi8V#oX$3aF=jYy?ss^2cB1mZ-JW`}2EXr#Y>gko zUOGhQdWwSpvo7PCFkg#4m_~X6^rEvlnlbh-?7TUvh7^ z9xM_*wBj0K#94D@eP$py`t4A0?Mg;GXx1YQN0t&)k}A%xk3&@CS2xW-7D3?z)lKK3 zi}q1HeX1#@8d<5|CJ$v!K?T`J6w1VaP3Zt+wYV${ViHwB^=M1NeWe9W z-)fV>9!r$4Ze#J>@gGwI9}=(>!7;Nep&bVtl$jL*1@+-dCz>9^7#(gjP9CpU%z*;x z1tQ|#dS~+xbi$vmROC{hs|d{*DT+ygA3pBhw;VRTTB{;@nz;py61$dLvrOM7572t^ z>>iz%+)CIFE@ULQ24?zcQ#%})q6Ub;c7B~WaiFwAK}BV~RRdZIAQ%E#il&?O$e|3u zYu4Do(NS7j+R(+t)VWauWFzxIs~Nj!pJ;SpE&_q|RX4Zd9B0;v!cGjlYkCV$Cr6&50c7K*eq0;CvMT7|`9kup{Y zt_|QGBMqPTt+;Ek))CziJH}X78~Z_zW+DCEIU}YTYVQUX!V8;jv4RP`v)_QFZZ?$C ze!9^Msz{^BLY14_TfM7OUltLdURX5?5_x{1Mpcsf;?~k(-vsDrX8Mg#`nGm2JxM%w z$$^Q0DhWTd3^2jNpmYG(m3KGWmUQoG4-bl+o0FDCda_ZG{eYAYbY`r2fuKXDIDQou zjgce(^oXy?-TPRhV}^_xDuS>ALY9n%INmK-3vRI;N6m+KsYA0A-?tM8pq%3(fVwM+ zsv0|-F%E1=2O%GJHm6rXRM3juI}luK`rpMgxuR%KXsH-M(z!;*Gk^;2yMB_e3rPPz zul<&f{eaxbqXRV77ZSj8JcAwy^4g8S<5JD54PK>r9^-@4hSEA@bc8R6~0cY+Qrv zmROlQ^sl!!GVNjIMrKUtJpW4g(`s zzN|qA4K$mD{6TGuzZU|3e>L;6r|iYK*21QzYvp|SKWN<))<9jy9;J_gXusgGZ|)0@ znHf+6s9fI!fniMq+J2Q<75w`137n8scCGD9#n`2Mn)ztf_78>_eWC1`Qx*0=n5H@Uu(2W!J$P}Uq7bX_}5>POHX0Y zK9^QGNE~?ryfNU=zyqsu7qOc4W2daTt*VQN^XI__p3RvN5h&0PG898|=oBBdVSw6l zDtrd6@XRZ1$|}F4WQZi*PvD~%Q0%^wlUx7YOH%xow+T`V?c+kFetUa+iPBQJH}#s+CWm;HFY=4xRdw|CCj= z&}kQT6sc$?pyml|VMfU0lJoO__kG+q@V*$ARlMc)JFIr!%TI;qFFh~D-LsVw52RyRKqTWxsGev&AkF(?_+E_GH!wXB|xoXfbh_G>uT-gRlP@)Z?8 z$xzfV*N;Rs2>sJS5_6|L`3p`}Pcj6JoQX-{@C`2&A72Up5M;rBOAK0lK!o{4yb+S3 zKm+>XrLIwgu7LBlzOz#R{%g$k=8d3h$vnHA=6`Br;^V^xMRX&eO)C6mwUo*~(i{iG zv=My+1FC{D)k(?83E#iJS5%CdSFw^37x!0-sW*sAPL}ob6ab(WFmer06$9~bMp^Nw zRkbls8hhGs@{rr+_O`&(sH~RO+qt0xx6yv7!aS($Q?CIOR3JYO4-G}4NeHJ``^h(~JPjZakLSnhxmI6M zR6Hg!28IaWTATpTfdOe{pv@m%UD3l9s?7yVOwi;G*UUgExHIG4FUS198x03)|kPp@%V$KF4s9FuU zu}U6Kw>wFII?D)%pQ?h2NkI9?2mncCNV$IL!F;tmJu9mQxKtriNb7bzk`+fXHJgMK&Pw z`}C=h_&gN^1MmxeV~@AD_sR7&G*1IRF*Y$#SG3sp3(}tL7yO=uQb@66b)S0oH)b8p z3PadY(dQ;fS8LtDyUYE#8e2jG?^6Vw8XKeKCJ*339Fg4;-rho^!q-GfLZ>hGXUd`0 zwVAE(2NG+jN?8Tyb6dVZ{mK;VLu1tPvz4g}e4puzEpuI!MEUucVKYv(p9)5ROiV>Z zRhV+%n|_?}6A^H6KpW@gw3pP;4N%E{n*dBq{7_T9#&JVN>RK}&Uj~ho zb#*Dgw}8eTG`_lqhob=?wE^C~@c#Wv@Tvf--lm@*&;s>1Jp)5dRaGL`fBN31(gLmr zeLzq~^b@PWo6z3Miow455)Z83#r{kzfarb^{~93ixiNyqP8%Dhr>7?w*0YrC9Mhtiph)L3ak=2c5Pfks4NOf9G?|QRCt%(fl0%gtPHkSxR6(Tl~#?3AQv# zsZMPVsJM(eUVxUEMnZB4gs^-NKMwWDyKy%PDn8e7%g$^#X?`&xnCC@)9emAW?#=vk zBYe?2vnGLB4k<3(D~IMfXch|&0y)hp7Npq!d5=YyRi!4At8j@dvh2=Z+a`&{FtBZ6 zNJSNaQ^3N)1_cEb62A}ArUsS9$BE!-MAqhu*FekrX|>ItiiQTf%Ao(3S^=;Hh^>HN zuM03=5DY0m*l24LtIkC|HFx@vh*fR5KV1ra8v^iF3}OK(K;wdXMQ*GJ1qa7hfDWGn zMS7*jxtYlGgEIh5yTRJz`GpBcf=N&1(V=8#X9tCb0wA0a$Ok)%%Uk3?pA=Yr^LoYC z93(feGGpMa0YGD!poT>9svC76?i>^B&Kjz9JwT5Y*VtZ zC@%ewnDqySDB6?2hX6#e_3?_3Rw*+NFw63O{#*xiB;Z8(`T2Aa>yx4KFCD2lf~cjq zxveIV!Fvxt2m~rij5J<*P++pVySrBa$9{Nxtl#>kW3kdAOifK~)r*_c^Bx}*7RYl0 p(07R(LQh=(|MKGhtvqghhs20+Q)uPUz>85}-b*V=l}Q)|{2%8@@qGXQ diff --git a/_images/sphx_glr_coding_ppo_001.png b/_images/sphx_glr_coding_ppo_001.png index 2e6370fce3f88b89469bdcab04036fcc9ca2b98a..0b9bd3e7acde0e0a17ab5e697e5c61f07b27af70 100644 GIT binary patch literal 57217 zcmeFZWmJ{x_b$8uF%U#lN)QwjL`tOFAVoky>F(~X1zQPe1f)TvR2rmH8c9(=x=T72 zv4Arl_wW4A`Ebq{@B8H)?}tBQIQHJ|#d@CSzUMvXbzSqC&)es6l0*d82~a2$k+hVU z0t$ttJJH?O@`iGzcUy#PDA<$ryE&DzeGo$NJVH+;zj8!1(L6pC0E`GfOGG|Lo)8efwZd-T#J zab?Wen0}C|K*h{S8hh#ez^G9BvpF-W+2`BiwaFw%IQjj25|{KF81X8zI^S% z-9Wm#estp3EUu)=R2+I*i7 zkL2GUj_AlC{DA-b;8yw(*65$=^>7$*x#QfoVy=_{{1K)3g6*B zUv=(-H`~9ToJL*i76136)ZYK~rFj4SrT@LAumb-bQvd%vQEiS2HExb;RqM5SH%4kb z-G|Gp(Xz`-9eMLTAMa{=?vmo*;20PfXcXJOXW-}Of8*=Bd2+O#pcxn-^%=9#Nc=NH zCWdOy12g7K+n=q>K2SK*64Izws4?=-iG*c%lmo${g3ZD+hOO!G)${d;th$8rzCEu!7s8gt-QeyThwUwyx zCJPH;Q1j#U@fz7r8-3j=qCMrdGb*(n6+;<(IX48I?puxWU7`_k8EU2Gv+bsdKnc7K_y*Liigxs?{Jk)uz}s@C*T zJSfjr+>W&~MKndT%85g->3p$_t;rKV!l_@M6`Puy<1_=MK2J|gy_l`bCS_K#*;#xs zIyNTz=}$_MC^~s_rj_}Fc0=e5K?+eXEGhm@*|=NKb#AlX)F&I? z)jA4sS{tpP+SB-%DVyfFJn%A4eU)3S#7taA=Vo$pvY4dg_U@oIxm#%61SU~bXmd~-ZP*#haRwiMYHqGMw`}}- zdnDsU>LZMMZw$M3XtUl_c7Cnibkp0HpB3Y<)HT*>Zxt%JA&N)98Cq%*vscZU_{39_>BO=U`;?hy7M8Hj)(*5;{*vm=00K zqE)^BZe7;Mh(Yvt=W3FmGuzH@_=?5fh4kOPeM4@t%t|x!S)77S3Ow3X8XB$H3Vl62 zli{zXK9<@ZoA^I|{BUt|yK?z*eZ3DJzul~qk0%^T`QyV~X(_1>5Rz~Y-6Fqi$E#g; z{`3dIO--$>$%%=bVXxh%Q_3#s-PT^4h|9@gNk*Tz($Uk~Iy*D6umm%vc)ZKW$$7l6 z(wA{DTPb(CGmcZd)`+CS&Uws{9C`2!*XX3AF4&{4G3N=*S&o>WR`5JTLCp%2oHr&j zVze6c3O8oLM74_Yc9#c#=Bo4Fd-=&bD~pla?3d1BZz_sf$R+&4hnuLDFj{MC`_>RD zV^Ob#?xaz#qt!EK&P+~CJ%Wfmfb?-uNYYEN(r)f4jmsnsE*{?I?yh0)hewGJt9{m^ z+R4Tcl1Pv&ElIBqmmI94Pt|o&La2EA(j%SMzYaQzEe{O1O%H!l<0Y9{ACR7jwcli2Pxbj!P>sQ%Iwts$o#uJeGlQP57|K{**uYaq)Ai+jpXa0B6Ncm5x~HW7ftx z7jD6U3?m)QbZAhQ?aFgR6+p_S>?J;m5!dh#wTOEA-{G0nTVUh9i z-)Gw+k?&Eda?15gVN%Sz51}+%YT1z%Ci4B;>vKzk`LuH#Fjk)$-qGGFvQy7z+*@xrKZmoT<+gN(un{#0 zccOdy#JA*-EF?r%p~zKKc+lt?AN{6e1pcT?xF5tgImramBigell`j zBg4ZVIyv#k#&a?4{ElK${G^;u1IMwsx!Lz%dtn=Dl78_}Ku8GwWVhhD0fbeKdRey@ z4!+G|@2!Cx)ka7$W)nQN(_+bzEfFOe_I=?I)H3KP|XO3o5Js#b=~oNIHoBuN(^cyBLjnFrgA)!}G3dnel|r%(ZUV1wfz^@ILa>rzgCyKs@rI$6Sto ze&H0Hmffv8-lHN5@@)yB8Y%1ltmsd!<>CXe9SZB*TWYC}f|_GEv0ye59P~CQh+bGY z=^TvuIRmSuBfsm=r=p>EHA>7#?H9V|ru=DJT3h|gCcF|(j*sm3H*_Hf`BbyZ zRXVTBnV8&#D%}bgrQss`wQ{E;W`GQOlyru_kibE;_~4x*5I##GCnwhek9JYm37#Fd z&e+(P3PO}uz-dKA$Gya?KNxmk1f9ZT8IMB&MS#bGC&BXwj)NJWpdb|!6Vsk0?}SIO z?RFRM2wJ<;A`XWFo|U7hsAy$m!flxq?>@wi8HJy&fuSL#kB^T;u~AoWVj}gC7XTw( zZ`_6I*r1v{SVYRy)YO*Gidh5}w0t%nrWO{A(b`&`yRRCDhK8hMWH<>M?~i*OS*F1X zNo>z|g=8hWeZNoGSfG~cS65fJxtJC<+_R0r^xr4chr@AJ2RY=ms|O1yyr`MHsu;|z67ur$ra^wiAD=)#6^a0>%4PPeZLvRlP_&jDje+gH=2Cb1<QCvK*`Ix3RTlDmb1` zu;xL{ye1YY&xuDWLz+f~odf_vT?*wrXCo-)evqR!JJ{>4@hzOA_0U1JIAt*6qluNw(iw0_QD=OHq_S^t+Iw5ZLbHx30vN=qE4@yf_TR|0$z zd$7Ga66iL8YV7Lj`d#Im?>RExl>lqCkmS5Fa=5dkk6;Ntr0|zPD1bf;m$_ zT*m&V25Wx&`Sa&Q0mr}u>)N>EBMg*F0`L5Mc1ZV=aLS7?hj<HDhYIg3;oS`_|2J=tBKDqD9kTw|*cjylgSI>7PvzwofF69c9C^RJ&{J%`AUFB_ zq#L%;A294?Qqor+@_-WHUi-p)x)0EW^uQ}nYLk%SzV}6PwgR1RxP3o=s=`0T{mUBX z%G3d%SHq?Ql#GQ(E;9YefaFO)KJ2RUCjrU$7sJfgFb5)x#;dzzc) z0tZ-*kIY4(T0;u;*!dv|D3Nr(-Fj9&kq_r#B!lc-<-A1U;DvKLz^w|sj@=$`a;}EW zO$c6cB{vNd+By$}t?B2_NT`(VH^gho(D@vvC4&G@>i0f;`0$wgK6~{BE`0T`FRy~m z5?$W_&Qk!Vu)_;|ay@VR_;5MjVQrL>ot+(u;{^hOqKQGw;2{79xln5UhClt;IKRuR zX)j#3FzULHwC4%%?X@n&FZlZ2qhny0zbBSGqM4Q1>=eGOj+EIi=ax+`Ecip*J$m#A zff)E^mG9~}Ayjptruv#e=#f24t=yW(TCSPTl~TQW?V1?CX{d1efCp4^m8{^51g)X( ztPTKESnAIvuRA>v#7v+?lLQpj4LKR-{!EgQAF2>6@X&ML5Oq{^Ay zPj_RbxQFb}!WA&GPeTeT`ZN)L8dv7w7tDu7vKY6V0JNa zanf>Y3m_3#P#%PUxsE#glm*BJz;JQArt0{B{nbpg$za|M1iJu_Vp01VfG7qCI42g_ z_nvC>*WM||9!+*93#(6#uK>LK@mZ1aKFu(SYfRT~$X!c<^#!H=r3_zXAY|6pJpf=6sZyV7I3j^l2;n z9f7CO@v9T#AHe10;B*I$F6iNOJ|n;ADK6V^VKD3X5+NarQhlA4rC*xn1fl^v1q~o) z+9U0-i+2K{aULEXK6fNCWfPoOWtdB${@}O@UqNeL<>uv$d3}y}_{mN*0RcfnYwNk} zezjS`dGsJ;aV^(5()TQ?kAdj~1O@_^d=6|Kh&(y`iNU>E3heJah)EB;urA5&Yy3xh z%#{BmpAKVIh7@&7rXg(wReN7Je_jVF3?b!%H^IS#!zJdeAOf*b_NIOOh~l%EL?IR0 zIz<#MqN=Lu0aXXz4d+B;ma4v^BM7J=h#k~g=wnA9N-_{N>N;&&K$}4-09C_%eJ5J2 z)`K62uo0ZDujYf@wa0L*@b{|VOaiO37_W|lf}=T5mx5iW{B>KBPC*E?9cE&o4V3vn zPQ~o)H05Ed=9ZRs$;sUacM)`Af%0bL6V1<-0XYOICIF?bkdwCxV@4ZShKeagJod#! zIk!afH8nNavps#Pdk*TnvukHI`0Z8~7<@3luhPXgTI18b{Rv@tk^(Eho zBB{8T6RP9_R7<9<>G}1JrV^-gpfDi(6V9!Eor(#70#2jONys($Yt0>}^Vs!?sJess zgcwbI$XRf}=aQVqnQW3jc5h-bMnLy_8yt*nor(qUR9;arJ-ntA#wA4MrAk6D_5^V^|*cewno3}v=JO?O;eOdCf?u|-OARcT& z?fO~c?z~oeWF?o#_YD!$3=C#T#~M9qU;{WnJq6e#4xoYZz7FafF^vI~dFbY7^n0oR z_Idy~D@{CzY!rQZ{3};I298nz5Oz4v3OY$YVq+;ZG&Fvfn3K~>1Q%Fa1Nil{+^9S2 zpslTq98v(rke*W^h9T1~2G&*(6A(;qw$d8+rAzOujU^!T-*!dcH9d)IqsC z*qWmha=Cwcf~hN1VF9L})+@dfjZHcjtUGB|*7j_M0?}4v*kLkO$*q(f4WMTW*fR+& zt+oy;1_Y3wm5$~|xj1xomYOT?)9NZmotA-}3jzLeSnU0FqPh?0s>ovK0YZ9}a@8Dv zq^`l9Q?A#YiXhnp5>0wm);6ro%<{7NdjHbOCO_!Z%B;Gc5DUNQH=6@h zGQ;cma8IW^dlSp#YfmK;&>S?eP(h`9LQs7y$Bc8PJYj zsNjNvg2zX+@UP{&1L{O*G`g{;r>7ib$Q7A%tfOi&7IO$I>D#Saq80-5l?qtAUshJu zk6KT6eaQK~CoB-FI>?=XcFij!EFALb(_MW~#_`{;R>W4=FI*=JYUcCUxA9q>K%dt9 zDA0Y<2tT05RBnD}&ZmIHvm_p~RRto+O2?XJCx{LDh>*Rpwe_I7x;hxXjh=^R0FG>o zXA0!?AyCn@B3e%&OGv;`Cz6+!M?iZ^q`Zh}Q)?@EMR3pDNm6@vHxE+A(;%VvRaI5J zsP%BA7Z4bRR)>dAMy!H@0-_Ymz%NxSE?k4tXi>pcYn2_J)Jnb}TXp8#IjS0W49`Hmwzf{)gx675KxilrbUz3@OV@!s zQ*fDtlU%u?2f6J!AZZ>q%$lVKZ=8P>%|zW*9%mC?UcF244<_wbO{1OrpUO?w*2I8P@@qxKG z>*@ifbR4t`NEJK{jg3Uc#tR*4cB`OPm61?Vs+t^CyKVd;FVX?*nCox_&Q<}(0GcHRz!Tw^ zMgyk^4-bDnJDjCZy0jh~5OwCyqnO^_=SYTxh30oyyo}UUX67L104Mdn2A8ANGJgAcLTFVIUgrt`HC*+POkjE)Cmo%_6^HflB#>7lqN3hZRS9x% za8&Q~$q+0keED?lzl;rwH2)_%g9EV}B`^j)FDxJENGdF3#T_IhOrWUU1c4E0yUeDq zx1K(=j0_0i|HZ>kgTM1&9`FyeNaHm90;J*`XWK}=y!@=^M0rUZ`A`LX=n{Mgw8wL8 zN0N(>;O)5S=nN&*)UNC5>hAUE9?+J^($UR7ADMNz*4q(_O?_QkTU&Yl3JHggpAC6t zskB&=hFJo&zZKVIC=~GX|9Mwk!;d;U#PM8DxPA%rL7}9gmWh*Z33IltJea+1$5DlX zo02r3I9nCTsZxTuR<|bHJbawRA7eR};I9{uN2cTC3Y*emIImJ+JuG0C!{fE@tWNhD zy1>$TIEbkvLiA3imQH_i^~00p+MkKfdhTtwc*jt+o2ruYtBHxtwy4%FpP^K(c)7KG zv-+Qyp}98hkB9@sQ0b2^^}vc~SH8P^q1igqUW$8Jox% z8H1$z;l8mwn1nFA-mDjQN@Ozv5VuMce5n!-_0z(0Tdb0b1(c`mqwTmM4Or8wsy<32 zq$Ubow9e$l+XQ3~1CJ$?*kn%maAxrxn1m76OZu;(A;J@>r$?OODf1Y-toBYOzIJu7 zaB@pJ=3ap!T-FA>&20zn&uZ|19mOt^S5zx_8kk*PDo**50f{gDGoC~YMvvsS2 zU2*n9_%y^@wq@tG1|odk9JdwKM09})S9J~73-IeiTv=VIuuxhT zwM?-*?p@l(r@`3SXBxVU3(s1bDSa?1C}T4UT!J2r(aP^ap{+LhY5?V^uhtXEkT9?P zUiUdiGYOF9e(GbAh`x2?tJXv=Je-h7Wl*LcjQ_hZcjNe#255!MiDySbv-GfYB6j4A z7elfS7x1^*2)GEgTl+$Z*kZz4u9^n~ z78rBYN-7tdFV>G%*e^j(7eu7}!$V*VPY`>FWctYZ@6r znjVpfi5{9-X#s5^QRXEa$AfrZ(TXr!M&Nl86c z&eM>NVbgS3%7_5~WDF#8XX&Ru0Ia@pTm2)i-9P>M?eFgFO=xNmoRA0u1_P8z3~cqB zsHiB?5ru+@GzZ*{wQ>U5981l5n6y+1lE&I8QNJ$i&K-z2no`o3*clqCKYol0lKThg zNQOO2D6Rl1wxI9;()9%;%10mCRyg$_9lQ+)xVu%2_%W)gwCftg#h#|p8+R9P+7QUS zuVydEa8P*2?gxt31}G%=t;dA`XPlee_38l=3AA3XxuUgB?6?k)&L>dXR?y`yo^b%R zJqX&F(5eOH7*xG9{nk*_vjmuZ|ZD{p_{6Z{-AY5_1*Z+RdWzmy0nK2-T+w?CgBPf_at=0&~n`!oGQY*y|2y0A4R zjZ{I{ycSdLwca40spO!|n3ShLAb}g8GRGd88lXah!g9C3vnN^j<(HQiz!;&Yrx(j* zdIiuv{+8PVJ3G6@(TZZvQ@G3*rQGizdBXXL50Dh2{!x*mF|J-3Bk#rku(aQ=IMNqg zlGBowWIm&k$vA`@%cUFykL+|pj$l!?KHYux29;rLO{XA?r(M` z@PKyIS2)q40t%GLXSCb$AfSQK%V>v8-7wGl#Lpu>Mv78D+3miCwUXqO1teJ(# zyN2?Eks%j8eD5zfb1s?6H!6SSev+Pe8V=2skyBBydq8%NRSpi2qU1o^YpuIh#Xs7Q zvFEI~UXcvD&qPP}4}8F8ZIr*SukSo){?IDFEhL0}*V>gVoB;ACq{KwrC;dUw;3k4R z1HB`56m%sFjEy5fb^1Uq%+G)D5tC~UYsWG2cITPau_?Lzl~CO0-Cc3NFGUcVE8-Ck zHel|9VYKZOI^I~;x86q9>=(aw4!;8RiH?ga3i$aITG}2~(4~KP8h6Dvhu?Y<%WY0p zf#ED)(UagckML_}yB?|;&);sJ6u z_m(mFCMajOp7^0$pLB%X5NrVyd})@*oEBsN>zZ9MP@4-TIM(plGTplEx%?yD%r!FmDnJU=Eo1BTYp+Pyotw-0) zcq~>W?I%n&6eCN56YiGoCm^xHsBK5eNsA&Ed2V8qU{v;F=SIL3(cX>zq& zam@T@oiu6USBrSqMbg3{LNcuDX@y@|3=tW0af^e(slb^*1Q{2)g3$5duA(Mky3_Z- z-o?G0CiB!OTqD6JyVy6?((HcGliMORYCJ?c2kuO6)?#9TrE8OvYx_FfB5Q0p?wQ-% zb;8e5>Ov)fCeSHZC?$ML+?90U_9D;fF~sX-x)*EgHkcuS&;IXH4IxXV#x7=G7Da;i zloeQ(FD2_@v8%A%XCDIS>e`Y(>&MtSPepWdQ;vQS$m>?42GMI)O{M0PE9*hgg$=tjM+5xgjtD9-q};Q~ z7==cMDXkfQ-}2OGE7U8juQ$>a8Ytl*tsd)QlNS?9e~Ew*@+sjz{)-nk9{l@D?e_`2 zhTk_e(Vk8&4qZfXWosob9Q{i3G8Fyyfjo=sa%qoAO-AXS&O1$muZ{ZgI@u(xZX)oRX%--ymUeYQ zoH?;BXZ=|7+jGOd+d4<*zgK)-0@6^CJa65eK%M8@_&hOj$Ja&mV>Sy3NnuCHaBRii z{e1RuS%A?fH=gsl7GVN!@S`{@1OT%3t$R4J$vEA{>y>OA>7Yg~^zA+&*}Bwx|Gwr5 ze+16MmjT2*yPsvU&v#KX)6vlq)<(!JA#Q8>#4+Z6Qza2&@$RuapI;}sNOdB4)U zZ+N_tlM72`c8;(LhVp+7sFhYka2`%103c>jKrW&mn#kX?9OS$`mZ?v1mQPTX;x|jM zq(DCc{Z_VMcfaTCuS(CV5Sc0Oq$-Ki0;{`<1Vt1HY`6<%p{7&AJ%BnJ=V88Is?c}| z5BEKnIE^HTq|S+Vyw#dD3x+WOTcwy{BBDE5nK9e#>_@?eDKyaH{po96M^VZQfPSn0j`Nm`y38AGXo;EoW?pWrILCTi@0E_DJp3LTUp2-Ss)6zuRNS4<~hS!|Ctd`@nT4Lz=7Ns;2Jp z;3cxyxI2(aIOmDqLCXW7M|jcKQ-iZ3p&3&v2C2q)UE^83MagX8lcu|cBcV_GTL!#crvIp{TO4HBqr6hG^WnbEu3Or6Xp2O|^ zD1nmS4frVCzr~=;2us}z*?7WQhBZITMw+PDug2}>Gf}q+rG+P!|m2ba(I(-^PR`54V2?N)Yi_P8pu@` zs4ivMu*~6VS#>)E6Yx|~+g`4mzDmL|R2xZ&@Dpq~_XU))@kLB&PD|URh%;_g34eoH zgZQ9kLGurE#k+=P&6-{yCn5IcpqYO2TBJwC+Ibo0ugnQd2F=|Los1gH~ zUm=%+?&ikp#V`>nEM$MWqCR)LI55WZ`)m z5H%n!**7JN*^=%xq%CTMe789|-5U8GrhfIn?wG_&)TX6YxV|Gqol4p0;m`YK{`;{i zsc`;Ar4EYAFcz0TUeL)v22diFVTnqqW#>9}C1dNB_?A>FP!QF5Mwgv=E~eQh1)4>{ zJj(aj6%DG3WpiDEKeJN(%48l@KDY+Jp*yj|=+76t9hYTtE7x^pIF}5<%$OeTPV>!W z#Ty3}Ciaj7U-89USpe<~J+k}2yN*i#4>Za`D}s*h(pro#qjXL9lkhM>;QC$gT)}P- zS9$OHjS4`Gs8w@*(=7O|y>u9b#E<0hZds;+~Z3jwxupvk;;<&+YpUi(j^1$twBs9xtxNIh=}T0374>hLGUtV__!OoeWxQ8Wvr z3N{0E)vxr{Q4vPgF&~l0(D3O@toGZ@c9h(AoM0lPx2}SXJhuAMgu^xR1bT@p0XNU%}V_xF&{bSpjANbu9wo9dvdF+J{9&CuM<;)YOJ|nYF~4e6ZEq zXBLWcUox#r&)i2tT0WOfbu)+w#5QPYAfy>&aMS)Tq_9?1izo2)&@E;|Y{JXSGS8k7 zZfn=0td<}-NLg)Fq{JLMsa1cC zLiY@}eW`Jss&+KEX-!o9wnW}p56iks+MV(1f0B1-RQb}#Jbl{G)dgz)DeeffQjU~@ zLZ5gKziHoXKz=KtzzPN{El5cGcaG=vQ9GtDF9eA=12f}bYz+RKS^tYY~{bq*H=cztgtAdV1WKxps)2B~;w01y`mMK;I4>j-U zgJjtv=M%el2s78*GdFuEX=xrdKH`RrLAq!}>UA=tS=7%Rh zSR8^?PW$<1h!z3T60!r(DOeGA|KXUD(l#gkv}<BpsQlqh%S&tx zajQq4!4Yd&{`L8)dYKh#fhBkppzE~xOHrPLjLZ)#D-fv}=+hI_%5X_gqd)Q0t5@|U zK;^l_3`bdnh`U;oP452<&;8KWYRN;DCK;9qq8qU4iP~dOEi!?W0BwH@7VQnVbfNhm z+kAJD`m8I%e}pBhcwiI`6w&u55uGv1VFh*=X$!R6{`}0^iDA ziYYKw!W#ln-=mplR#u*YE314tuS!ZvYQI%~W_lW$MMB_2rRU=-Z}S9E3J!*PD$N0O zA%O%xdVThdpI;xCZNOYB31BUCdr?F*qG2zk^QP6RZta*$@Xv*!)sck3^ON0~x;qw^ z1G5r}-;xGKQCnAUo&{Gf!jvGlK$oQDXuZzbNflPvaH{ln4$teuXwM78TS#rxAy{m_ z1|Swh06rk}rlzKFRXcD+UZJ7!YM(LcN$!Fp3#|}2A4AgH5lXG*ZB+}_b~5tI>d9Laci2!ZRWcCi*rzj|P+>;z5@ z9XC?9(ffqJDVw2F)d9Vf&o9ziL`6=Ke(iap{^yht=%Sr41DZoUydfnjRZ|yGQlP6qj{~J_nIvf8T|$@dKP^#7o7P?D7xjI$+<&oh4#L zCTkE)FPt~W6UsQd=<5}(&w!T={@4Fa)44%J z#ltnFd6|hHiN4p`x5M?h7l&@XDLc#4^6DGVb+No++S1#46umiauJ?}I<26J1_%xHq z6rqI->=up_he_{E5CTEo6w1rXLxKCk4y@ZpC&-LOMMXsu+|KpuW~Z*R5t1uM&%pK$ zR#KRp(bh=;1H%;*bS4q|5vWUV0|TcETWQkZKtiTEZK-vMxMI{EdWwjjk4d`$G|c)H z_KfFEt=dttfXmj1{1&eqG-r=f4-#7{RkHhrUANN5{9h3)d;Wl9WU0&;5$ zD(O82hyxNGDZ zFO1zrP#JxDUp>A(5J5`KmKdZDR3<`!$;N2 zwNt!vvVO@IASOx0X6=Lrp?8A$xhaHEaVsb+et9MKG{jf^?;gG46VV4jF1hU`u)g2Xm$Pd3WD_pZhrh0{ag#3;u5UV%|C5 zZH8#qT_@xwBl?iufL6#vGsqI3Cs$jloOx3XT|NvM9@A%c6|mF-q=Rz>5!owAO15vyNW9g#CMuZ6zGn*6DMdieU%TH6A_GU(5lF`G4M{2C@2`!>xYwIdFRJ;!Ub&abg`Lo4M@i2g|~8A-*P zbzWNIot2Q^gyr;=1nmEQuSynYk&E?^NUe%}fJHWux7>?wLgTqSj*mTYTxPlx%9%P- zE{I~kLC30CkUxp|lvK9lAv>oG`|VaU{i%WKGH;r z&ED9uB(hcDgZN^y?c=oH-;cq2c5EoRP?U@M`iZ0-;Zd5bAL?ttE_kFi_`&LqC{1#O zPm=V~j;k@LHIcY%x3>@``FdJ4x1)A=Er(Gvfpy3l}EJv4LUFo_p} z+)Y@!;SMw(Rlf>TdW(c`Rci)H!gZ*}wHpsKyBcGE%m2MVI)IaTYyNJkAZPoH9aj{j zqb;e0_|buKyF$14F^xo*LT%6MN}Drv6PEf*-B(Aq*6xX5l@)=iXe`IrsJ>qpcmyrN zXsl2`p4xcS_4HYUoBQ)PH@=`rD5h-mu8LPS)T=urSb)=f$6J>Ifxh`I>w3lt0w^CX zt0t#_+2r@H^4kd)oVkeT?={7otCN}pcDdueuFNno-Wx@;f*l%h=lzmyPRhgsT*y{M zn~{3%ZT@z{fiUZrt!dVOzxo@{EmzRdmWh+_>s!ZsNq{sCXP(ts8|3+i>(g{A_J!p> zCMP6k*gfz?F;CH)34y$0Sfwt;$Jk&FipkZ7<9#-C%^7gCE}3>8(hD7QkrCppS*k{p zAKpWDo3GNcRUwYLE-1Q69(QtWy2&#)dt0aK{CD>X&9Vie4ZE4*)Gk-cA8eT{6RoXv z)H=(BFTsF&0pzm$k?nc)YWlZ18dOjxp%c39h!$b0fyio_0+4lH{`gK}or}zIM=~Fn zB*d($YZxE6cy6+JjmDqx4vO>@Oz_=Ym*f7txNQ5x%*Lr`1EiGeN_#V#{0XYXr-Yv4 zs?AaEX%$SJr_Wt_Gh8(vtPRbjD_NqZ_ZoI%!)Tl4JmXUW&k&6IYGnu5j#Hlh$}xFe@!!jQOE;X~X#alvOw-ZZen<(W=67yGtnBW` zZ2o~hJrSBb4;yPPMWvOQ67j0o-6ImG+nJnm$qX;IFx5sq+sB#JLnB9@FdBcG@f>40 z6U3ZOd4Fq5+V{@Fts(1kaYcHxObhlX6P4yL#>)OokiGmZ%aRgVAZXJc8H%0=yVECx zrS~o*y{fi%)>jjMS^j4`MXJM~%jYMc#81E{{vg86XG98HvW9>SALw_@EBp5%ZH2@8 zc4H*t2d>1>@<)lCaouzo9Cpa3RnQw=aVq&IR@LoVh&RW(6hW8m2~h!cFM9v9tBP1Kcj9&Pi8(_9BVg2)aF3)>c=~O{+^u zBE%03(efZgwdaN~PZaDn=Vugn+j(q1XFfSvRhqXFY5~z+=O^U#rHO*y=EXgKWkB(h0SR9Yw;QlGSbo22OP(bZ*;nS`zNayivn|=3Xgo7@Es>=++hH(6B-3BV$fptoO_{kJ`6M?g6dhZl*x710CKlsm0aJ#*em!Bryu&Yr`tin5H%a@3r=ZIqaPseGRb3Z zypI&@=2uheX0pZE->XPcdTX}EkKz}}oR^LuoUIQ<2$;YRz@|RNh zdve!LzgNq)6090ioZaS)sbPOG+XAmQiCAXfZ2hip&%$p;2gv zq>=Ts?|~qkiIt(ftYRLkqY5V*Gr%m;wnF#BHJ3K=fh^IWSt^#ZTJswgs=SExtA6bi;3-x01Q z%7?D(yqUzNau)vQQ6k5?D2!Lp`^Y8L`qSFBMU5=F@eBuCVUDm9iMMUsWd~9O^hP<1 z{Hzy6<(0?lvM%J(cZ@&hkLdd#pCW?qmBMFB2Wy}UiVX6W0BeE zXTvsFfwsUItN^blKp{?XL<@nod<&>UaUA+*!3em1rza*lT3k&{&4-qRLmt{;&`d$? z)O@xewq}27P{6w_QJU&rb9pO9YF#a#jwa7=Tg0=X_Fo$Hq7Tf0IJC61V1kg$*Q!|= zNlQyx`jK`H-mU=igb*WPg6q|hU|PN84Sm;M7`Y$!#Au>m_zu*yU>JT!CYFJNfz?|Yltf#N2?|tZuMlwJ~JZ&=3pg(H-dXk`LGW}kN0tn^nh z&+{!&xsX)7!yY8SI}f1YEiEfMx13)$58hQ>m?qi_KT#Gv#d0Fv3V7uR0FZ00wIIeJ zuMBxSA~WqyuW+4ZG`{T#C-3v2iAe3_l@EJIbcBtQGunIGV=Xh)PLlM0lUWP+?k>yoH-t~*C4G{Ia_TbmS2 zQzJrX$aU^%c*({+y9roKRDtvQcu=x6ge@%KFd8P-?7-F((Ge-Sq`EGVYF5Yo4NAvH z%`>7ReWfqo*xNpfzn%C0+~D zaZnTHC$KYxwzjsxw4%u{dqG0&;mH^SmKKGG#`EHN!0r*C6yt@(OThWj|DAJgoZ-xo z3wHY(P^sV>g73kb@f>`>;EX}$?qE6qw8vsFCQMIHFAfzmf|(teh)2#Is3?dHyI6)i zqNBh?@_{N?{9ado%F@y$`Dq&9&H+WM00!Y7Jb1uoH+#MgM)i>Q>G=C=ZU!=GP>ArA%<LIFP|WupxD^ zsf)2Go`8Gqx>AE4)NqpG&*zTsxw^U{Z)k!0dK(sIyfxcSKIRPL;fSgSe@7mxacOI9 zJt#EP2#jYt%Y(#iRFBKSpaIUS3$wD17vSXp;Bj68lL6{Kjt%_xRR_$-tuKkGF%Wx1 z)VDM;@u^P6X*p8%ftTAMLcs#w$U*MO@~?GewB8Jw@B;2^3EF#!xF6){p-*Rf1`+LO zX~SToGEXxBY~oumo(Z$Hh;hWbI(ZrFQ=2fjj_2Aq4D&0U$h$OPpkM_P?C$0^y%6Kv zvlh#tPXVqDm}%GHL2eiPZ8+uI-Ga!gD0+l3)Nojk zsYUG0PkDTXQ1_V-UK=~Rk04pW8v%a6yH{Xz@|bG-V@79u*%F1kSB)roW^`F!amlXmyYyQVXUe)Z=Oc?4aC@%%>HitJv7GJt8Db;(BGAt zy?!vUvI-_sIyy8$FY&QO3%3!e>wTO|K>j&eqQFdDQs@C)fyXeP-B{WNR9Z$SBM(&9 zAA#K{@DzR3CVnvGf8#fyiAH}4@p=fuZ{_6#1l}`%)o?etRqV`_l{6=dES7(~l;~8E*E3_NrD3afcfLB@ zPw=1$tQF8F-E!}-&Le%J&Ci-}Z`uSP^7l`m0xi7dPiX&MLP9g!%=kL~3eBt~B30Ab zB~kco)(wq7OQ7i%aF{3#;40=pFut?piE{XKqe}%=PCXv4|F%Kd-NYn^I?xEEOk*b8$3M%7SC5k7iBU(K z7zRd>oRj}|qZY)@TCvGh_toK)@#N|Kdp~%;EzSbD!i}%dY>Gf`2q$|lk&ed-?=!jG zr^V%N$y2kZX-K;c*(xdna2DLoG@71SYv_uIB zggd&JkLXmGT>y7uW}X15KB(-M@?Slz@qv9#lXVBx_;}e1!^mv#PeEKNeD^4vziiyI z@Lafnx`xURfGr}+nm{uhj0ji$EIj&YHV55du@fKU8SS9!-CDPDZgT2U#Pt?%XDGCI zo-SR1q6?K%UZ=}w0~&6Bk3QkvoNz@+p&wWy1ELHUitJPmB_BY4PW&kW zvI=xSLj0LAI2+H8&TI6$BXVmd>j8b-|6uODqpHrjEzyIDRw-gaMFArQM3M>ulFT9k zl2ww51j#uk6No5E5D+AY1OWj7$siyqIVZ_ECnX99^xRnAya#bYla=9PF^3psB^xu-%Q4_{3~zPi2X*+o8Y<9k5! zG`cFa!^ZfzFLzM2K!tMS*3Pq~PYB(6pN}Y&a_B>FjVukWtBlP)IO*Kg5!Ff}Rf7Iv z?>Q0AJQuGM*ntO{k!6uuGL?#cbIX}5QYBMw!LGD#vRLaVw0>*F`OBN}y_-w4kE3p? zLUBroIn8%+yC*Aoe~E0(eyDz4xV0#|{-`D@^~TiL6PG{iPCl5hRKxdMKzRq9Ov|5Z zq_SP=8y@jvlnCtxgMsCZF3$rCht`#(T=2tOVT|mT>lTy4R-0)9zTUov*FxT1EC?Bw z{!Y@mxEZDPA0Ur?s;eb`j-)i_KAV+iUedcwBIi{%kVV0Y;3mCdhg0q;;l36dp;S3D zeE**Z$(Z|F*f~XK+T7iPJeO5-R(*db@0NV~+W+|3rW#I=>4?5#UP9x;g5^$jiEY+3 zpwhT|fOa1Gkc;L)%F?jll0vceD$BH2O72)?y!U^%PVjKE_RoogK1BO~<(7Se$&=EH z(x5-ywrnyaD_>e4Rz4?mzi$LP5q1(TE-tsw*qzQle*C!0vu6i5IX4;@7yuebLSyW* z)zwSf>6R8QP#TGI=qmE1KE0*Q_7)S`t7cRE@vUCwa#6A!U`QO?yZ0WFqUw0Hi~4Cj z+ma31Xmg0s6d(q=Xtd~-6KQa>d6V8j1vcsF;Y(N4mI_UPUMs`&A!FL)ej6>?@X1M2 z*iDJU3FQZLkKi1`x@k0I9u7&ygf|~8&j#)yJ@NG*mT1pGZ=bA&>EOH&{;%qr{0xgR zdqI^D-r(AK$;8Eq>&+lrXSCWPgVL>8p$$vN8^m|9N=vi+>E>V0wB$lJ|0cKy1XLkEGy$;Q zH&b3zv=3@+P=lS&soR=Xj+3Cn5L)){DJRVz{9ggx@4S$dl$31DjhFC@^1l{&sR0zCbv%7+ap5Ec@N7?9 zci06!f;o`-<)J4>>+lSsM3QEgz z@H`?rJ#!*$=Oz|0*i@9FAqvwowhe-l8wn#8M2W9LZBXR@n3zahf;vk%Py2jP;H<-R zphe8~`ve8lJ}#(5J9ITNQ#7_MLC@fW=nHZHSnA!!;|7!5QarE=R9Pa(r`au(nKKPf zuL+>dM8IAmiA2hM`uQ$F_$r+bytw^zSYG&kmiNten>7!u+mQ171fj;NfqVY==~HHY zem^89mG7kXx5DWOR0CMO9XxO#EN2lSX&=S`Zjin~M;H;l=*E~<7AF!qS(Max?Zbhw zIT;*zUbg?_I%wRYo+ zA-ne(c_P-6{il&Li%Lo!f@Apy>!eDS{sQ8`KTPOvV8B9Lx(g$s` zSq!G9QAsp1k!th5BpTsp{}S?7s9-x`z<^ZlxYc-fv{2t`K9ho?qE3`I7V_=z8jE15 z@%Q@mS%ZCB^Cw4xW&&sQuem(lV?aWBLN5f}L}v&z58{v3_YZqfZbHR|+7WgjE1?r6 z0TfFVf}gI1nYNQ@+U^N^Pt||>tOx$u(2c91C;rRU`xGzZDf6f0!b{EeC8W1ch+7bM zPB$1J*eJF)Bh3!O%Urd3^|tSU&_yAxl1vL57xq%miOnM_0H}$X+o^u=y^V%2A-_Eo zNO)^qe!lygKg1;mcF+9y(VjKa+J#>kr?a}7v}ZKoSF5gUlw2R462&|AH` zH5^uxQ9N#4Zd0>?Fmds8@z2F$4q~l8KyW*2WS-zl@ZdVK;vsp3$%A2KJ{&q!wES<; zFIl!iy%I zdP}5_KbNr8fDKUh74aUu(rcUi@&iRuf9=Fc?9{Xi01S*39o2oWX8PX0f6HG-f(uUL z6NG?x_u4YC>-^<)NJiF7E{{@*Dm^0Gvo> z;_Sdh*cV2)ek(;Kin~F0q_hx(x9?FvSwUxgRs;nJGRre^*#*w5)1Co3Z?8{{f23K4 zFpudbyO#McsI9(}$}I-;>E4Nkq|wGh)rpVi7dF1Aw~5`WgHIc`m{@w9rK}U=>Lmdj zM%(GBI_>#N?X8rru%3?mzb?ona{I4^_8k;!ZW?Ypm$Y5vYjdE3E4k(gusG)CKDd07 zXSV5q#x(>)DbouJE?OH+Hm`>cuWKU<%^mjofu zeYA3W!K9GibWiq&`AKqxD){*;UV*RjBC>Z;Zr;hi^!jzp^5dfhGMn+|w#m439X{r_ zLw4xUx?Asc{;`L{T04~_Cv>+IjQMRO?zHy~pR2dtsdq@)4;hVbH!_Z(-{YENR?e4R zFJtX}=Y5y(pYx5UQ6yNtSxMaNK^H|E-{XA=k=w3GFB zxK5*nxeg6k$10>h!pvq;T>m`q9QZ zT}S@8-NAWrtGuRD^^xFGY$p+FNSsQ!dv$S9(s=F@JP4fM?Y$umPIxrZzUZ3Vbk)FO z5%Z!sr~e^ti<^g+x9E9Qi_ypOe;)M6%t}pO_rOPS&g=Aaa=xBspE}Z-g7uRl-_#fdZAd!MT$>q%v;+SeXrnvLvP?iZ z^eC`?8Wl=6x5r#)Yz39*>E4noWK&wI`YFj5?k~mA58Ubeayb;-!)L}G$7cov%}_W) z&DPrrDE)Km*HJdhVtCXUioL1+1UGJ${OkE0^MhesBcq>@L4e&%a)N8t8ni?#EE41d z){b-?QY)p4$njfAbNB~q#6Mqsz=7HGrOtkV0$1yow##?Ui8~+CnvL}YL;M2YNlmAe z_2iNehYXh~Wu3$qL2cTuxR-1VwS7;Z>g~2^W zqL$eKxq(vX@c$-a50?yr!!yf|t_~^A@7Q-H<$@Pswh2pT!i9zPFQ^lT6z+~JR{yqd zr_nEy5U@0PNZvGE6Tq7mYNx~xqMSRu|ZNLDk!3%x@Rtcg=sjdj?ihkkTlYYZ0%8P>>LAN*m z??dZi1lfi_4TJ1dp< zy5+kpoQ% z^M26eCtG*29h5cnA69JKxbf=E|FNC67}5tIwvUZ1Cg=I3>*mnC@-T_!7OoIP&R=u_ zRO$!MpKl;04sd-z+U5)b=P{kSqwu{EhebtvxnhR79`Q=t$)ih*bcr$)@9<{ja@9J#NRBMY;wvur9Su*q@XOw!&m!~w`FjO>Q|lsz8%UOC(RFG1)Fz)AQ07k^>JA{E&SL8zagGuX>8-q09p&8+Zo zFi^$PzPI4v>B(W;)`qqq`esQ>XeD*~)gGdTMCKb}8F>wZ7>;znt9m#=#cICwvQ8g@*)DRrTl=0fe1>(z?6 z|6VL=5R^G`11XknOZv--icA}K?V5L|VKohQb<&upxA!*y!gZ6GOE1~)>%UG}%ACnm zcyJZ*Og#3&x$Z_zng_T!(%&4%CXs>rq=SG45lK%^i=A7G?pX5k;OuG{$WZ}3eA>q;5QCPB`xNKhApRv9(@4rqIOFbn`m zBx8YphaFnkSA03|f!r?*4<=$s4QqgN+4c+i{X;(YQ@2FjgBZC7(;*H>E(3} ztuYrjw_b$I#5Ia9a*KPF z8mdynlj2j(^xf)kqc*!4xaIy&6xR>6&ocu33rw`g_v-PxfhfWl!*N>I99a!hi3MZJKZ3ZbTh`{8=!!>??YLOn?^O6%ePgfbg zU!AqnY5ek%6E7dAQ3X8&s;sEC7tAROH7)WnQP(Z!|L2t+@;o4UO@#iiX(a9LlZK=b+5F6q#xl>E~7hX@ELF8U9) zxU+^!u6Hk<{GB-hjc!$@HO1nb0@okpv=Q~xA90a7M62Z)wP<@Rm1S3K8Q%521E}g2 zs9*ai=mI3x)p_SuXUvTWLQ5ZKgt*E^_+M=r5kLJfOPLKHCGUlUU9wWvk#12 z{$}4#ty^Z-7_c{#{;aw3d4<4^+ITVq1uKWw)q?rBcHISIz13(s5n>hS3&sY;+6T-J z|3b#qJYRSN3^rJV98#sxIUSsmf!_J0zaw^;x{G}`5_l%*Aoy3#x|Evy>Xa~F~U&@+A;KOouWDgqDyf#A4U>BdBSMWJLG?UkTLr=rU>O9mx^pgWOre7EAfx=b)ezri472=a$aaxjo10N zOtuh16!FkVRe zbU=C?tbstJbt=Vz%6aVd0_;CvdfziV%eYhSr`lk9xXPa z@J|FP)en(-CoK`0}Gc2(6j*#{-LIeLp5IioP67r>z|&lj40bQ z+*Rfqo3xyGg`T^_7gU-Z9;?0-X@dH2w`&L6U*l=%+_}*TKRRRXJ)8a6rZ=E;h#q1F z)Kj#U8jV$yK0K)2alQWCoa=n{`HWYKO{XbfTR#q5e%9`|27C9Mu{CAwU4bbFEn}Vt)lczZ?hk5RKNkw>G94thAb#K}=ZOiAhAu=GlVS&B z^hi{o8sUncG&n_prg{A8{9_#{XnfVBM0}2MOxea!Ve8k zS%t=+>aZI0XQR;ERSw`%KC%1RenTdz)j( zFbP>gJbI0;t1Op5gQd?^!X8{ti`NYbk6r0? zZ(xYuVW?Tn891b@uzwIrAsO5j+w!ToYxPZ#`cu>TgC3#|_!Sg|#EE1si!Ls38#65= zw=~wgziECQY4>r|5#)s$?&YV~dE@#lGgV4M-hpAFdYZEMt&Xc6Pn3LupTXSJal5_mE_9?1o{n9BR4eDFl zdqzLMli;51iKG=UG~opY zuLHoZ{lZA*c8SkVQE=@1gyGQlK(pmt_2o@gmMI7D%!Zue6z+C!|0DiNm0xFlOw`~P z@!mFJ<;=(BaDjUAa=0jK&Vc}(0_JLwUC?6LtS)QJ{*_iUqu)~bhsLj+E9tszPPI>i z7x4fGB~|;tF0;RW82v(c>f(R9P@Q|JgP+-m7EvqxUZy*M3TswJvLa z_IT!si}IR!r}&KSt=H%Z$na|)0t|(j2ZkkjaiN`0cX?HTp_ zZBusv$HJm`6lbhtmh=|zrWs%1%XXY{i}*PZw}#5{je(s&%ZW`-v0U30P<0_>-X`t0 znh!RD>@Je>z~yoC9u(ibU}+7%@ksfYoha83k8`w$VdnS@Tg+)Q}pn*Y}O{=)H7~jEG~x zg{XuCPvmWuSY>SC!0A))5d289;bsv~LR!BxjJGaSMd)*Z^m>m>x`2myb*%C!B!XnH zj=Q@%M2cYrYEcStWgx444L3)sA}F1jD?T znZGQ`e6pR@S==e+31)U?g5e>`bF-N9kAs{Gx4Jy`V*H;KqY}p^F!1FV9N{syEsuy_ z(dJBPG52?oD}KpuILJ6-o8av=!PiXJTYl()|6OszO`Eo8ZJW7WP+E!+ADyV&^;=n6 zC*XzaObhgt2cg;J?C9wDA8lIl#!*}&87&5u>??N%Rajo$o2be^>d32#a{Y8>LVH9S zo9V&rC{p{sspxjA?t7U=&c$2D<30s~}zShz7b99@4@+w?&A^(RbHL*yAQ??ttgVAmx)hN7o zmBcKW*5rR$=q| zMw2IFJWTnw@A>HKIVK)V!#Q~bJ_?j+j_1gX3knNaD&)_fKTn)vQIb;b=0h(PQ+QZ^ z?C<4u_bw#J&Qkjz^lE@UjM>IFwkVzZa`eCM=fchO6*!j@C|hjnkHnClJt#zlK_?B~ z<#S8|`Jmsz@6DmA(rxwa-#zz2KY8o{AqWQ$73Vv3Ziv-RrtHDOF4IWlf|UhqmBnEK zOLgf#Ee+;T7$e>LedRKB*#hQt;7pl})g&|7|EW;nv({YiS> z7cQ(uo4Nz7ak3WR&mAo^qZ60)4Fg+BFiH{K(T)Q%>o;tOfbajZVmco)Q(zXw_CrSg z-%y(xa?s_~u$_USI9adB7xiGdfQX|GR>Ox$E<&)CL|Jf1+$p0xMewNZ5^|b)pgw2% zWfc__7$F#8I1RdhuLP{d$u#8f(B+S;~j^X4-cGlpRx)Yg?C;)005GOo02GY}n7ceF3j zWCxEO69{;l+k3v1bg;eKd99348&{!7sR)TOnf|wimhtA#&aZI(zV|O-^%N~y$M15u zK%2OY+7pVFhU49$JbH~^;C(p!JbS!|RbYNNk?=EQG0+YbOB7Yn0;cTQzyASIXrsbx zh|zD}?8-&3PCIkw4m0}98Acqfxu~fhZ`0e~q}|nf6zyO@}sMMvx0+j|k6&qVWs_j1`>f zMRYLhPs13{b&NA)@+Z6_;OF0vpuR2$-sgD4#I*pG)bUPNj;KSO94PFR!RMw6i46F5 z`L`>-7{at?D+7ZVNdNE-fW1e)y=oe&%s7sI&CbFsj}xW?XGKIPp!^e^0CsQXtX}kJuiO+;7bl3`|dyAq_XhPjxgMMY@d&HbP#L)eEhOl zdBlTNoqqMwf;sC1g3i~%&ueCQq(DA2x{6^cm!Ca6tLdWXZ=sm`(0hk#0B79hYQSN;udbK#v~}z;LS&i3Nr8lYt;CMKs8dk4w^3gnc=+ zjN|&09R*t6(jo^xsKC5$-|g6mhO}vSby8|-m#-~lLq&<*6)?oI>r-3VBSzNJD4)K6 zVY1ulCw+!H;F3l%HoSplULCt9ep<^l`A|G)^$=AL8Z!ak10Oulg}%*fA?KwTyrX`_JnVDI*O86@Pm=B(s5- zWD&T=RSyH-StO2BzYOB||6#~IR$_rkuo1d6%POv&ALE$LMey(Z1Zt}KpE4#7d-t`w zQu`gLZb*xt3q2<-;RL-}(3uOx|;C18X6@XDLEZF8vTEY}_hTcq;`gr6m-FoJAp1-G>2+>h&J zt;Ua_G{u6X9i}mg?xRy@m(%H3)P9V#aM(>axSCUuOu%dApA5vL6i#r@oMnEPTik*l z(4W`8m;5*=^!wP3`v7?~xBSzN_C3NiwZhY(XuflVV1#;W}eg3d8ew=;(WzUlTurKldqjLxZ-wv{)%lU(G0QqUF zzP>CJ#X_ua@;N0%-dav9!f!bIpizBa=z-ZL=jFVnpKU)N@ zbUeN%IIn{?C@Xk}PF(Znlf9$q;|b|}srx7t#y-or^I4g{EkvubPqju}T^gs2{flz- z#$Wx0sXjhSv98zov{mwg6n{}D5@U}H%vnY{)w$mfzP%Tt&700h5n`x6Sq@U_V+A8!3Z1CP*)jSr)5$*HbUSVcLkw`y_-* z0WlwuF0QB-ww`>4=_Ap|b>!ID*>?)rT7DX`!(@{v#gtf>1w{Z-vZ;P*)=#@dzf;&g z6Ny*Pz(6FXaEvr0M(}3HYYR1Hs=DM?^(eF|?;lIAt?Z#t+OHb?9^1eqWOKUqh_$xm zB%2%i8cI6_mobS{=LkEy1V&**nh$?}1AKLapZ^A^jAa%J;IPWYDqTmeB8OygTv-!L z*}>|F=fo6i0T5*nE(J(bW04{>)>&bS!xTuC@J74dn4sr_v*^;mwToM`e(5Vv94F>_+OL;3q)K{B-kxzfGM4)=lG6V4ul{=CqXn5)+$4TQ zVRB-Waz--dp1(uqQU^)dtUmgZ>mg7Qhc?wG&R{X+J^2q@MjaB{w|Jy?fo-+nhXpzX z`#@3c1o)oXpdP0~n`zdhmofkWVhSn8b*sbW`=f3R`))ZJaZ{l*ju zHN?PKNS&izyx4gCsJB2@DQKeV@z;h`@HOUF;?-s4&D}0=G`?Xxo1S9yIAm}Ye>yY8 z@xjK5xI83y7!n-=;%P$?WL4T=U)E=};SyQ+`5R+n(1M0Tk0&$c_t;&=q(;U3`g#Ro zpc^w`0p;ywF|kA&zQ#D`GVRm9Pm5NC>aXt}{QSj`a#J2@Jn6_n#P@VXJ;bnyZo34v zZR{|bF6`Q^hM7tyySW7|zu!d}I?aMpOveQIs(1Ze)M+h zkub_4jT~wFoaP+fA6N(1kzD&0RaqZ}}tm?9lbeiCYV{?e8-Ml(>6G zt!ZPZDOUyRVwIzFazrrL_M)V~&xa7R%Jt7_WM&j^qRFe65Hs(;E$?=tj^=84crByy zW=c+O$;*SqFVKU%3+P`|P*4HV;%xhz=G%VND>$h#+9s!Z=We*JY*h)utCk3`jexOp^R?IJHy`FUO z(D7qiRSLx(+^9D+<)b*>uE?-3z-5S|$4Pc1{%UxPVv08A{88(xC1+$Xc1)&;`DG3x z8dfvuOIaS^AW?{OW#H*-34HyFTl7&f5pKw!CNZt#9R?}w!~mI4R$*IYE7yW-$6fUN zA+Z*fzHq?_L$TiA_g0pc@9Y;?w|o{@n5+hyJfIbh$z}sp=P}k(!PYjDOe_@jfDJF2 z;!{Xh20^-!vb0PE4>kh(i7@+R=N)1^+#+U)*;~-W_ zSa`U1<3vBJy;x;ekiMsLwCm!@kQi-4hTW7y-H#^>jF8h_m6rAhWzE*Ihp%8QOc7@1 z=Zo9gRACq=jXR~IqYH(|bFe`(NY2_i9U)w*JGxta>buhObv_BTcL%MRcG~z6pAGdxLE(*)Y*7kt z$v6|sjimY1W@WY~S;A-7*_)+SQx4NpF?}7pb0NI-#;h~*z$*zeoY{HH_=rBTFA?$f z<*A~;$5AngQI@9wYaAOkRY<*8fy8BCI|snT?uCiztIOysFLQiBKcJ*QwzNpa`dF0r z+hQt;7u70LI)7E#z}oFiw3j^&n(6FO(C-3>iDYvKtm+eHdcpj)b^9CR(b#2dv~6RB z)KOz&+}4~w&DnI}geX7x84FWUT>QD-9^GfxGtYX|L|DDMQA1;Bc%I^za3A;jvv&F{ zIm4~2QngL5DF1UU85(hm0!9)qk6hzUHxVR%c=+sJ{i(O^ZcjYXGvDG78o}QjBJ!zi zE2TZup3hQ#ELPluS$tSt^;1s^Sp>mHjZ93b4$p_jG{5!S;Uk-v;Ilf3)`C1pFF(&6 zuNqTlyzHAzq=f;{&T6t>@)&*3@Q!^`E^RC=x1{sDaAr8E zPNC?l?0DrfRsBh3j%&cn{tAC&3(J6caf{MX?dz-}@gzFmN|2@GB<&6EO5fr1#-;6d zcrl;TXq4*t5&f89a@rl1_hIkr?^~%k+0`o3=xZwd_nPuSW4Bu=5?MEQC&g|Ju1k@X zp4hoKo-p2pTbtv&-<}@xi|xGd!2l0uf7fqjkz)i{q}~GdwU-pFelB`wO09}z;p5mx z_B-lLF z2Hc|OH=O(ZQn79(uqHe!!gQ|rK!zEhdQFsh7^^~|j)L?%VYOY9;5&FI%B_mo3eM#! zS05Yj3GR?yCCflY z%GGhaL5($%LG>j`HU~t@%_0v;ZcrfSh)C|SV;nlgK?(=Wn^I4XebFC{-FDtdUN*Xs zN?RtwW9Or}!j_k!l2nwi=ZU)g+hw_(w z1v3!iB zeF_C8d~XX95=>6~^lxJp-LUXBeQ@`pc5yXdzMW{PTGG- zxQTyD1{I}f#R~o>M+YpOBsA_6wH2S;A7Ze)Z4X!EM;-4=?C$A^+Qz-ICQ9D1vDsMt z_Q}z4BsbjHUf1#FV`eS9JS6TEq-180Z71^V?7~OGOJWDjS5lhk@X!u!%@Q!p@X3B# zOreN)bdL^(XmHc}P$(zY*w@lf@Q>r)8!M>DZ#bz|@RNU24vL7ZA^*-<^;bXnH^moe z*Ya<+>z&9{}G4Za5>zp_q z@mY#->H1cvZQhB$Hl7I+2yI39WgICV$5aQebK93MA*`UZlG;m-OzJcrZH|PEt}G-o za~SqR$HWu^N8Lz#x>a3Uia}7i=|BknrWWSF5-haKZc>VR&6;R{TaQq{k0Yl}H6@qg z{6urfVgLh_J~Y*JRcBcK^kb%Y6$bjops}8o8Dt z00Txftuefm0DkY%fKv)DkH|>_#&c_w&<6-REUva*ehr)}V}n)KKnMk+&i?3&g%Cm8^6q z-6mnN0?ww?a|GXhtHYuA$M`8WA3T*#o4#*rX`v51Y=~Zf}xW)Iz6U7me|vmj0;AvanP z_hd;9-V@9qe2UJlo&-iB?dCqh7Gk`aUzH9bMhsl91q|!y>M|*9YAfO8 zq3-%l=hh|j!GGX8z0;e?$w`51%SUvZH;15Ajs9#6~u4z zy!o{2iveDL{y(|mVGVwsr{cY5ME*=jHvicw0F#@4UJ&`r9XJELF-qlJ9? zK-2Z*J?^qUSTzEBHWKqQso8_z7#x_4UJt1uJQ_^_prkGfp~qh%4Re`*ucg{a+HhaD z()VAJAI{0>|JleE@A91c+!i$JhZLo9DPGeH`&QsUa)M-vN!jwlJOeiIB2z~7Bzt(Rz)PE{A ztEPKo=eMv-djIkK?+>fah+K4MyY@k3|3$YN%xU{*H*e0ZU2_S&+bZ}`F)90r7h<2dJ$`20_3#1F%Q-Z(@2kJOMp@k};;kxQbEv2@7PI7w{Lnp*kf~kCFC?kst{Q ze}8`!Bhj+^@tK695)un@FJ(B5RU*)qm1oWosoeQ9IM1V|o;9YU@X%L|8PI9Ty-5NP^a zEZS;`Y!RuR4w}<$?8R@OR*!*Cmz41D9}kcj1=x(HU4$aO(s{SNmd;S+TW46-Pa%Qf z`*6&6eV2447f*wlQqgWTnOu7Rt2dCT>`OBp@W8PUjzF#GkKG09CSrNCMqWb*?KTf) z2M32W3b%LRk;%cwXLxaeHv_8NC>$Bq?f2Hu(bK;}`e%m`y0{!Vtm81K<_9pO=mqn_ zcrgb#NuX$ERN7JU&}g8M^S}H0W=3U7krQG&4m3qvb-Yd-V!8QP>qu}^3A(u#VN|XF z&1o%i#*02`YmouhLvoXZmvqtR_7R80*$51Si$t+$Fs(1J8Y+n?xQ-X*<(*x*n#R!7 zik2IV=CH7^NaWqdW@d8c=E-CL8f*f}@p{hD`#f=rFWl87jc0)uMHbJRCzZ%_lT7*~ zaDwGlhWUObl?|+9R@CvZu1)YZAU$}CJerI&^kzPP;es~S4%qYF)k_;EF(8Z_+R#1+ zBGC^h-4!Vv*x!)%puqN`q%W{4@=(P>NC=_F-}g+;^+K)On)FdL^srYg9dI z;lv(`NM=nce2lX0RzzI1Q_%V&=G3x@qU%_J0|IT#;ti)i+)~2EIcW1#>=CvQz1o(` z>&k=QUV=SX&BwbKc92w5=Z!nX*GHnhMf<+wCu%{kVgCqq5s8(U73;=ccmnQl!Az&j z5AWTZJ55d{OgxCdZAUEbeTRr+^=Z5xYvC%G4@|fk*wv}9vrp%F;))^TV3gfd^4KWS z@TvH$n$i)*e_NCce8!;=+Xmw~MH`JA3nDLo)t{I7NEj^lAX z#icO#pENKx6{S7I(pHap2I340BwJ;cXrePIJF$?t1sCv6*GJcCV|aNzY1T3+d$2&C zz5_V$BRu*wyjT^=-eF+$PXulTlq%iW*B|_n>LvUwJVZ??A^$smhc)wQ%|BqZeaC-* zR9X_7|4)(b|BWBg>;p_ z1b|O3QH;ZE&@RWd>lD7HZB7r=f zdl$n9KM|;plgS6kuf}5B74OgwK&GEGz|T0eV$JxG5s1Ns|NnspqaL zFeNP$KXY{Lpkq{Q><1Ip*wnyyD*$U8vkFkF>FI%0QwiN88r;_!}t=k@j3}#k;0@cE31mv}U{q+J!2un8#|F1FTI1ECsAKhk$*_Gxa zSf~j{x49BVmX`8KYyGUo?*|szQWJ5M2rmBWB7YY(csN7^^(m>oXvwgM25^i*ng^sH z7a_qUxb%C%eCRi#&=VIIcl_uP*>}NMDq1M!nh$~0RH;uhXY@xNda6>*rc~4J|W z$m2!_Dgs!hQojxP5SnwTc;b7bYoh>$T9D~BezMC5W$pS6>=cdORFe?8H9M0>z~fC^n%95)McZ4ZuiFK=jPW@%#?>lN^qw(0D}xUtv^f#3Wj4 zLqHIi<~_w+INhc*gtffkR8x!xTNX1|ibcLN-~2!}T2o zmnhY9t#lkhCviQ=mcb@W8&R4AT!epy97@=Aco+ei{v^|Y2zjtRE{Lovc(o3pcmQc& zaZQ-mc2R}T%}9w)pgv6=H^~ceU1X68Vrp|brrxZ3KX9Qu=KPL~MQw~*AD@`0h7rk2 zU*C7QNNupONVNR)hOZvya@48O)U)8K?G&*5KsFAkqhm;Xr5H!no#-C7Q=?=N60u=g zM#c~jw+wb4UY146mPc@+iA0uYjVT($bAznvoxFy@WVPclD%F3_H0rv5& zGZ+eT1yHIU0r?{gZ5KclCe6)2hea!N5C(w;t%qV#m_@f9k^K-IhbK6PP52TmhTXe^ zhWPbGUfrRjMq*}Z(~CRrmC~w+6Rr{1acXF@UI1VuCq9IV70LR}v`k<*|J4OCcyjXV z*Ng;NeFK5+w$40o@_Ny4z>wp%fy`J z-ff-Yl9Chm@85?u*qW}f4LJ+~9R1SbO!mZ427n{?w!34<063XyIJuiE?IiyV@p_97bT;RP)EwIgdNbP>%aqj&|+;5-9Qxz=x39_#ZspRU&8-Z3gv$o}Oy+CNrZg zAZ%_>Ln|ve8JQeCF6RO$-FkYk=`FAjD2g#cdp9{5FQ38VDc)XFBX*HK8l@TWu^;03 zgdv#^-n4P!iwHYp4^GT#c=uLwR>f>7^oYj^Lld~QX9&k#7>JvY1mw6A*$vy|M26|W zZEzm5a(WQ!jx+C2Ox9(Qc5w8kPDx!Uu@9|#gm`&mYw+=6!K55E<@6eJ#aTSBBuoOv ziW5WJ;q5=UYbn5#DuHJ&jSmX}Lbz0_<@Oh|Z=xs)A^W)Hr~ zs-HLZ;fI%%w*6&SCBX*!@Wu zOzhZZks}J9rL!rm*3nQ4Phs}#U3|WI;uInVX&Nz{lmLmM*kX77^W6%-e6C5cpaa`B z;mGvvlP7HRLDWFms_fV29X4KXGd(PY0pU3QCzRo-Y$Pg;{Z;e!;s&57QH51k&&B(4+)bk;NkPn7U zQulRmxCMK8BZ*ySTqr78_>)f#I=~%P(UZGSgSJS0R;8swTcn7#5 zhvfGvRw)UX@C#7HS(!5b^}N*bQ`{T8QX&N5kECkMkvI!U>y^9)C@JLLUCo_V93wam z)diVP^T0yWW)Ak|=H{P99I}p0D9kF$`NS^fJVLA&%070FX4z{gAfhKqyD4-jpX}xbF$hTpBncd) zx(e}2qljBq!Dp>OMKud&4xSFFzQDCBV5~j~+xIfOt~_FGM-(I^+?15oX5X5)P!@AQ z(EO#>{WF@U)q1AfTpnSDcxrFFw1n zG4&^~rZ%m$x?|i^_s#Ne&9i{EFOZ(X;(&C7Nrez}6& z*FzYrLRMmsIvQe#L<3nS5s?cNuZ_weh1)daFcfc<+c{_!2X`<1a$fxT+@T*M>Z)Lm zR|6N3(jZ|~^aHfq?W?nqF`!b_KNvvexY-!sWZ-B1?s^1>q?@_-SJck~vdE&kjt1}N zQEkMt#0g~wbmd`2ub`{@9^B)%2sdO-*!idd>#~^oW9B_%hqcVuV~}+}v@?$+?)c2} z!K?hJVF1#AXtW7Xhbu|c#r8EeG9p!|(4`E!d2(Obj1Aci4(@X=f^@Q~lyC>6Opj_1 ziqu(y_Qu&ezG6JvrF?!~-fILx2ilH{G6~x&VdpF#@ay^&qAd`i@v)V#|GrVfPIZzx z@bsG3vN+`lQpBYW;v8H{Lqq-q8A_II-XzBC={iiKiX19%S}FaQBeJ8`*bz8EaQui8 z5!C{NV`Oca>Q-3`L})J*Ku`qiYv@JFmONGdn$NRO`~0Zf!{#QTVjqs6G0kog@LIEM z^p1C~aNIBZ?&@jM?f_n?MK-mf-o(rdX5(1-ynwb;kSq>U4Hw7-!)qH7`%c_sO6Q!aiA~k2Ag&OO>D$e#3UhmW1X;Wo2a) zbS~P#(a}7mc=svuD>zPMz_-^e@9J}E$#(NW#VF&=*aAB+vLqt4I=vH4LHW=HoRG2v z)gfPtefspNz0oMga$+42(C1?X4)h=#{LL7={H) z<;o2L!F(pYTFBV^xYV4G(7grf5S;$5hLT-4038k#o&ms`In=M1m1lDcYis3DxFoUg zy?pd&=7a>Qw1Wt)wQ#j2@sNN)^1~lt>LQ(WeuN~HD4|3NFaF9KJvoMtd&w+_!W&|S zCkz`%CQTAnAk$QAqL(jT1mjzaz!*Wqt%R5)lE6>^Ji>dJLOp#Dl~uBH2x|`qw+Kvj zl36*>Y>PsAOx_5g>n$!4%=u;{?JLe;5S?1EX2Q$`D0_q-35varhIYo9a5z99A}0_I zfcmF9j)Q@vm%(?MAZ!R1&LA7CM~Gz>#d%u~v_(=ul=FI+oD3!(nn)tmU_}y9t{|UfV2I^I- zwD4yHtLlwlF?c}#gRJTR%I7dek3?dC487iAXDt&_r_7h54>r+t`(~ zQbth8zghGCdbOdMSYtGuEKey1a>VKFhkM^p62v8JIv=BFv+44HO{=ey#3|%D;6e# zmQLWUnbZnVM2wCMzn)i^wJU8T74&A~Vm7B*ZSKLk7#++&JXK!*um!H?PAMrV?yq0# zri=hj=v_Jnu9|ea=C=H_q{C_oqg>ZeTj8?&aq}%U%!Nm5w?4IBnA-vN(viv3?#48e z2x2d?1Ec&dVD#!!9P{)9wNwY8NxB2*kh92#!vLp9D+X?;1==A+E!CNwBtb#R^wY3&Xe1M>ApJ5s0u8x^hbpD@86FRzA14X zeSMmj5*XUD(E~Z_5s%G#W@wH6g>8AM_ZkjRazgQ%-a{g$gGvmwM666B99QUe?TQ7= zHlb#sTy8)cb0cT^4yI|oJaaAhf@VPt;KmiqwJ5SW39^DT+icVHaBGviR?mc z^JEy(+Qa+zpG76k!jy#vFi{TLrVd8R&9$Hy*6e>S5Q0$swKD8Gk$2um*1i5|;xnbp zk(IRdQwNNwnMAJVZ2eb}booz7vtQx=$p>gh)!=G6s?nwxNo!?eQ%q<}j1nS`GQp2Na&qENr=b|$K%Q^{gN|j@IHtywEe4J;^0i(X=ps{|5`y=)4pvK zeJn~&JiUL(gEi|(S@-`hapB*}xrUpE>f;npxV2R;*Al%nPZZGU|rg*^l!w9;j;vz|PE&XF4k$~9OZD=F>Fq!f?Z3mLO&U zKK!@pQ;oVvw+&p|O9-9VF^X^I1x$LM0syhWYl*yT6nK0Hn^6t}g+tS+C^_QAphTc{ zU4>Z(Z+(4zZGDi8fihhdtB2Nxc57xDx~0J%K76oE@dr{nbM`DZN?nSImX?-3x2~r+ zZs}MHR!4yX&MuU^P&!$wqzRQO0k^v>+o^Dn9XWPP8WWdK4{ZG#U-!@v&t*K-@@EJx zKMdw$1;8;mQ;WYRBujCm!%EB*lEOFSuprw>2-TYvDTO5^vLK1JtfNpiR)~okiI)&5 zWE281X;VV2S&QOE)zB(R4htqDkT&cwnzH~KM@?Ih=A&P8j+Eq(5_2Oakb@XUkNmwR z*eDg%*Vj*@&cZgz4!+RAO%-CIMpsHEkR1=eY8WQE4JhO?h3=0N*5xR za!HwSErrRQ3WZ3eq{ywt%rI0On`qROYc35GW-Z3<-TQs_`#!(#^SwO3BdHFochEZXb1Ql41K?)7u8Gs&OZ{Hekc>4QOYh9p)%)HJdi88&6`9gFCN77s zysIeJLN;tr&F;|1te5AsBmAP3S5>~>rYF#k9gTV9KQ}Fnb-a1T>f3L>Rs9e%@Wk}P z;5I`!4?If_!NK0Gg1(G!2OtC*K3Kp42xco7ZpD5!m~Ky%4YvY41@w{^2Uq)qtT1LA zn3!B2uX=LE3JgUzC3JbBJg760E?Agv(ihJwiYdRR*JsY>hV~IVsZwHhVszaOeQ_80 zjE<25D(ZE?E_P`0(ii2`awY9lqS1ldJ$UF;d!a$$Cg)w$BYNP8#4QscI1 zDzYKokRIW$eFb(K)kfz-dnYeI2Kx>^lLjOINeg8k=3Go4N>PWXpo{C=|GHlPOa86j zltE75e`x~yPd`YJeop+%c+#yV`uf9JX2)#nk>{fJrB>_Pn=RF-&;+1X_f-0$Wp z&9A-;^-L>bJS2yd;4SP^9mRfMdyziwO$(@h73fuX${FZ#O(gmGSGqBoog9t#h}%`v z{ugu!50mn|O`jZXz*_3PkqW15-AF1H)Ozpa1-@=9K>=Ps@hNmi{>*Ot?6c3>CKoc; z5khYqHTz@I^J>?_x(Xp6S;zkzPg#RtsIIPVn|g;1<_4toh*6`qkDaY3`FoSs@IC!) zZD))4c!2*xO4^7!OXtmt?bElfSNXN8SG^BRrk1sH`kh)Q?$ zArISv-&b>=H2hCxh{rh$7Ka2%=~ixIVKEu)B54XnF5j)qm7!mZ8mc|oC7@^=TgR)+ zbd{n{7iWkq3$w|T(i;`vxrYqQmL>wp5_U~CP=CmRvMn+)5`=_tx$_s5^Au>(aqug?L2nEkGNH*rp@sY?#(A7t0F zfV{)gj*Vpd0hQK~&ouIVj#RnqwZYzf8nGZ}4=xw5Ms_D9w(h5BjoR5z+1ZS>;FoF} zSGQ&v3Tp1uwtxn;zOSJaTA216dLfLQ_xUn_C}UJC(6L%pZJc4TST}=@er#H5=$p7c z@XqR5uQVoqCRK^d1ExPd>suXe{@thR`m}t9mnvJEH+=56cu(t!SN?`eZ4Zs#wMJh& zd^Bj&ANn_xSB&rWcIm#o0}LN%U7`8k{Pef#I36yi3JZCOQsJr^p#1|L)c^GI!+HGH zQu}{*Is?{IN#YP5n>22`8I7Jh+%t=L81y$r%pNJ+B}&Y~1JZXrJ2^MB8wapt3TgO`9VRpZV&@;5 z;aM`1D#YfDanQ4kjvV8F{TJPFs;w%YGIi?I&6O*P&olTBN|=81dNCqm+%-T9h_diso$#58sEz4;2rX zK6WmzdFMeB;Tx~xM`-HY>(^RY8n&$&SmtBUgd7zK+7z!BTuC%|%QB7KL3jYSK_#SI z{ozfe$Z-2Fkhj~+AzdsyBP4}I4|o7F;#^}_1I4H!S)I1^%$YMr z>=;ovmjcaKaBN{Duu`~3!JyDEBn>6<=aogK@*w25;D2<>TAIFS8(LH#shGfE^z(_QRo;2Y1_F*uq{e`c_JCx2&IFSKVvi+chXC zNDSOG&Z1(==YI`+N2m6=8@X=XI{kyx>{JF6u{BO_+bP})V~`hc1T3T>%}ZihN%;Q# z?#5Mrq7;P%dw)3Mi-_*V#^&<1eE8(R}yoe%niS3|Wzcqhabd7>kMwM-8?7f)nw3`E<4@^Y2(a4Q8{xgb#m# zu)_~3!F>!(OzhUqZj=1Y*K<>l0OA8XQr7y}w{q{sCo4I(`F#%rL%yAT&@`GuwR5QO z{1|miUgOn{aLr2+oh{vGmf#CoM{rySJWM~(rAsib7Rz93kHVcn3jeT8S=C)m0Z2) zx5(1ASdR1m6%=yj|9(~emyqSTNmYaY)*&1|i*-CXuq80xrxg$6&ly~+ED^y3xncd4 zhX$EuFVCr#i(O^*cP+kS4skE$AD7`O8_jg~b?@2JfeHYglH{p`NcPW8s)%PbK!1?N zT_^Wes(+jm26Qr{%^rpR(~r;J1*_`}Hr=j|`exLx-$V`1e?NAB>2||4$?Xj#drd`r zwGZ5ua?cct1)v%}ui7mA552Upj)z()!IA4C_t3yA5B#1Lj}S!0z$xRWht4BoNT8YE z@Xf?22OUS?XfpFD!~iHNVj9!4O`~^H)V`M@yur;inokwS?kmu|n_-3}E2;NnY$AFbmzKz` zpj)%UW{MIu)O$c-dQdw5)MS-m!rvNHcj}zz*mqti60BD|ztnC<9S5G9U+iK>``@N@ z>n-Jdh+m3(DN)ojbiZ8e>}}e$ixrPF|E1wUI0XE&Row|J>0AIav>d4fcFM7M72jPx zcsY8=isLkrP*81BPf;JGQqWT0GK|c^aK#^~lV9tcI41Gc!|G{}K$eY;?2No#*!{sR zvLP@*o_C#8Sefq^7w@Li9dN)-89Ggcj~Y4xKs#E+$}K)sIFq3?&w^~}Z2K>L;)L7W z6gmQMi#1Q>)dhaw>x(zdY{gLysl5|jV`{pl{$%vB;>Ii@W07D?9zSWIjDO(UsNmBd zBO|)=+u(ewKF&~Elh(CN{vvBfOsT6tLwI3Dz_?K<>;RLd;;Z*$k!$k{t{fLa7Pqdg< zf+MS6B^T5nV&wn>zW7{QHNACUcGkx^T)=xg=F1@~CX2*`CShO;NS=(|%9HU?(dwUG zef~|I<^MdtzO3>)x3*K}|D( zL}!a$EwtA5cjo4skgO3?r$o)wqHg;&|E>PNiMjoom^|tX)(~{nDbNTK=s-^m$ZAi$ z7Rjq?*P)b0ToEH~mqVV3#gGYpCe&2+4!8`W3Q5P#n}6?b5cbDec}Qu-6Jpy0#(<-* zp<#=cOB`A?*ig{Lb#UGKsVC7gjm`Kyk*u@b=K1AeVzs>2t=tci0<@fn&B4_6&_{dL z!Y%KiDCCbn45)t}=~M}Rlyhj3DZRM^Q`5HSKg0um9k$e;e!G3L1Ka??upi()gM(c> zHhiCwzIAJxA-qA8CQT&sgxhvE9r>Xp)S;o);-(Nw8pf^7=wgyrIdI^>hl_kSg@uLV z?Rnf*PjC8$wr?o2T(s5rQr(O4!kKX9((THe5V84T%DT#jaB`gchBE#DdTJR8Yz}sg zI9U>}>>g2r8rh${!*ou-$NW-^x4EhjIoe+W8Wk^lvWOFxd|3&~Z+W+W5m%-JieIEN8e5SHG=M*ad(8$Rzd2Rt!oMdeqM zk2oE)3pZK7&5Dm~`|6i>-;yo6PCEQlOwWhwC>M;d@N&UVq;)|i)n9NrxPiDi8GUyM z;q}%wtP?X-{kSQ`P_A0S$2)2I0769^;mkeo2Stlri1)vN@o{34Av#LY16T88%~#jO zDdY0ZRGObl$9fDLIE_+Q!)|^z!0Izo#(r=D{a`lZ~%iL6?ydw^04KD!W(r?)y(aj(A<c$Cw&UxDbj?Iw*L{kfRIdrWgZv68A$b~9lQ5)Ub5 z%du)={zSPejp@xr@ffW{G)GP!q}a5*!b71FZ~|&2P{)|o2vo|@`^D8gptEQ zAu$1qcLR*p^T;1CzHO3Up=hb}F-)`%jOnuK`DR(sc{artq7s8bN8{FtvR^GkuTOzI zU=kfg?U8h^*zz%sOw$g6kzzq#ce1^rbltgqNAdC}i-0I%m$-lbz5y&sB37FAW==-c z+% z*2v{rUGuOz!u2GQ3tK{(28A(fgE6Zg;V6(vEd6oph+*ypBD+jyYUItPtiSRR>J1H) z-o2uQV}6!jh^Fc?1aqL1!4OZS`6|N?&iC z<+{(P>aXM9xKZr|iOb3*-hL78z0VGZx^U9f)x{C|^+msRhYcH+=&EiaUzCg!j$U47ET1G`lUoBNc=ui1=Y6_iR#Q#H7ICr?Mf28? zmG|5s+T|@CubMtx@4e27)}GcZ!^o$aQzkHU`opROs;-q6Sm8S0anaYZz7Os7z8KoE zVsRaACu+nWHr86M9Y5nOkce#==7YDzv)nJHwt}HKQ>RAA-45|o3N@md)3g};Ezp5g zLS||~qM^i$^k9D*6lb@`chY8X$1eFp)h$0S`z^=^?N@^d9B_DF#vdgmf9JX1IT^lfLZuq4l{8{%+3FQv z#u(r2Z!4$!vu|$huy=;+m1P2Jm&uO-)D3YRKK93N-s&qTlB1uviv?mx)pooBY-KwP zyOy}4vs*P#k_}<6db7CwWb_=r-0YWlgpd=eECqvq7AeTc$L!VQNGMXqY` zYcY%=!M2Xk0jzHRR-d?x>;ZNX<%y0ce!*bDz4vh0Orfe#@C<}(5Dc5SsY|bi=cl&T z)jddHXS9kG?_tu`xcst`Hc369C)%f#XivL#SbMj$TU6Mu%$8La)NEU9SXd;cvD79d zGW)*@wQRWyKYo_?;^=g@-x0VmwY85bf`a5SVZy)q zP>Uvao_X4Axv}xal6q}rv1Daj+Q-UWMueTPWz7O#KfR#2v) z-`!k&?G^a#@R>dKOk>;8d-fWT*q$-IZ`X{|JWQ{s?DF9L4;l-Ov|p2*7u3eaaJ_as z%ISt$v4@uQAC9=`9sY-WVVl&8vPLW^9S_BJfDl3%qXOvGx0R>Lm^DrWh{*huTdhjJ z4KrR}uOXr&(TfH%U-C>uAi=5 ztH&JBK6El+L9f2=GLpai=**;t^8T=v#Hxs}+3kGGGFHDvLt;Ts>|ZSY(0N{ct%Km$XE4ROn}$?Ih)0rrvwIZ2!16OH12ngcshwe7DV@3rvm{KhYqHgfWl74S#MX z+q{PXM|I&*Eh$(S(M*o2Ue;a`%Z0c$M*{Jm<;++V?laEkn49O~=!EsY-=&;2$e881 z=KGeHXX}C4`jBNh;hmT$CcL$5^2Vr*sB#O`DDB7MLtM?NgmoZH#XH?POzfgu51p$o zqV?SKUDnv8YJwyZsYff^>r`?41n8JBGF-wqkZ^(nXT&Og9T0rOcm)s9s! zByuLhml%$8vhpt;<7{n>m(=BJT(Yb?@8fn}O7IV>=bq~vsru#1HskK9_wKE+VJ5!V zvkvZ$HmTozcPmen`>#*bKql4|Gh3u*h}yAqAvA|UWwk8V&{EHfK6z)`P4_mLSL!rz zd_`rF2Vm67b!J#NR@)C4iP%kjFv#dF0}e-RpTK$K#p3y2KrH*{)E+Fwh9#wbeci5U zW_vDfkv%}JM{!Deayl9&a^Ki{4bg4RWA=bnefN>R*aXh9wXZK4R_^g*$>KC1I=}lO#zSkdFLm0h)ef1xT0}Nv1$0YFnuOVw#EHP8&stl zrbFz+MVRLtb|E`ECtXvw$bqS;GE^Y1@zw-jW+9~aBdZqX z9vv8aZ;(%CI6d!X9W5?YS~Cnxl<-}x6Bx5OBtW{A3w?DjLFstUh~BZoqwKq78;;2# zB(n*y^u~&PntfN6eb>gte#1#k_i@q3YlBuXs8vddInDq#`NDHs=3oD{%zoFqLuApi zhD#!3yPGgDh#R?;O!D2KGrUvOPvV^DBIodwoW03-;=^8~PuQC`B7t1w`_|TXB)oHl zn6ZwH8`vc_$~d>TU94tszz@BNID1;XEczrpLfo8( z{CxuhHPvJpPgN){&C8L#t2sNIe*YqOrsZl)-BQWTR+cJ{xG)%$`RM{9` zntUCbj0-jm!-s3S+egeAeZGPjWXp{!znaB5vQb8U$QmML-D1%l&l$|%9qb0d81N|Q znYw)@xhW6%clf{F+L2WEDJq$mtV8Mf#l{ae^2z3ih^czcDQ40G7U2gO5WYx?30AX8|RvbYBZOjS@`kkFwa-3`TYC64M+R$LH=ta g_z&S&pK27}ep@d+9(_DPo&(zvV}~F4aMqgt0U2tU; zOY*uqdtLem)~61BoSaAYn4NPum`KmdXL28npc`J(X616{uEg9F-iX+1-!b9DtGO%j z??-l8+a5*q@8{VYHoDWF3DOte{C!Vz)^Gs9}G5jBr=64Mw5ud5C%w`ny1`0h&QXBpQAcR1KUIo<6;+ zrbe|=wh`3-OhTf$yz+3G-FD&cQe^q)w|ibco+U{6eWm8s$0PMmvc*1nvwctDZ|dE! zizYokUj|Tcdv~SCM^Q^QUoIVPw?T_G&_fry7as11M^epF}+t*QNO8_VJ4yb4SweSNX;y zuN#8OjdAuf)Jq*tj&@}77I#KH(C|mI*)NfYRXNL3z0{u5b=NXCp(wxF>zvKuu9bdk zxVHV(5bHWLIEP)}msMf!E~k zlsBchrJS(!)cODT)`OKwG<@^pyu~hg@wWb40~x_*&j!vtQb|6eK6OQaDyT*5(!#=m ze_^46A0&3TBigttcT@)+ulHx>4-E~OY->DEmW_8i*nW}zYAdoFGc9B@6VOj|{?erc zmz`zV7@?lU+jP^9(XpZt+y(^i-@j+;GH4CIr=vs1$;ruZ>$6Gvw{M>EVteo0kM`9& zo!K1X#+R1VCy4K9XlU&2?Lj!S#KUUo!D`*V28$akek_23JF(@X6!G{wpp(sEJtZx+ zH${An*Z5s#Ci|${4mB#XVxM_wAfKL&?u>_r#}#7Yy~SMghq4CR6&JBl5v%FuP?7Dv z*Ah}vSIEhw=(mZay-h;xix*d1-q?}j%_Qln*5=de$Cz8-FEKJ`|j>;x)o8Y z2?^t#pYJOx#nV*__4n4N!(25F>ckGlYkVlUbkBEocJA))|M~HZo+4|Andliy0a%inuCA`6{NF5@WpBg6!ZyT~@2D1V7IH zu*b;&vV9y{s8HsY-yir8wC{MV)sdybHDO_44O!OUn~qkLHyW_szOA*`m))JNN+vEY z4yALpBOcqI^iIiaK~qc1Wa&ypf=O?Nq(&5%-bMZqNBU>ao*@^RrTu{6N#qn4`cC1{ z{q$G)AJiQb6kulyY$LYU8fZURUAv?P3 z*Q@%wt&R`(Hs^c%nP2`KTUd~RHFp|+PnI>fBsp@T;9+3OM~N2Qp|YFruI}v(D=HF* zb)2|h%BLD)XTR__kc36ia(${vM?BY8t>XCTz-FTMLfA^$;i0S8!6G*<9{JNnuCScZ zNVsrP|GH^m>anCSjo&)it8M(FYCOIBTMKiY3FkstlV^M^l}xV5J?VMI&~Lc6`BXarsf;>Oe6%0S*t9!3$L6VLk^&Mf`7h%a<&dm zLolsFKjR&hoOg=pudpx~ba9&Kz5Dq*+Z0GFo*W-RENZxIy&Q2_5jF132!!~Ct~+P&5^ey0>)1KWJ)h)`0>6%P~-BfzHuuiC!4U(YvIWMnXtP zsF=xGl$gpdZ@qtRAdCUgt;#k!i>|ZLm-X13hqwPjeZYCoPV&gR{-SH^-0w8YJ;!X~I z@|Nb4l5i4NzHp-$R0?u-j%Sw6J?5yF~5SHfCr1%Y_DI~go;u$T)M zSX|bdblfgLMPOdK#0OQYdUd?UsN)-!YN7e`R<9O;xOvQZ&ALb7^26fSIO(Rsx{Ld(*h|? zs?dBGis9>pzv%(g!e8Sb`22wwx}-1Uym@=L)Pa$U>yyXvM%=si@3TEl+~G}^q6Z7* zB6<9LXx+ob-1d=RL`CwMU95sa8FT0J@gCX(vT@^Lf9~9HDSw>Dv7p=jrj=7A#MKp2 z(t6m5zI+ohh@S~qzV^@kWDo_ULiUTkP_}D)2vgwl;k`bv^c?0x0tR0pd0v4dO)M|+ z241mJaljTM?4UpQCn?XUYevE21)IY2=f#sj!sJ4>x3SL==t3sKyT;>NTPp!)SRzF( zW_LmJq*>LXybdb3q!%teD*A-f06+u;VI;rBa`fMC_poC5YcQ`&fjX$-Ese9a;&C#F3V@nR z;)Ks3A|et1u}$W*)EdFfhThoN2&@mJq=X}x(6YI^>-ZYNtsMhJniGW-0`Hn}OF56t z&WHH&^750Lb6xF55EA89M_awZaVMKy^0-<&h8Jg1a4q3t>VrRB9!8OfXlyG5d7`UX>%H&<|yQlVr#e9(`tL zU%3TK=ToDdXVTmL12!nc>|=Pi;S>fVoFX62QH=`N+rVh@7(f&UjE!kw9F|r_7s?>` zD8SIM+qPv2q1a;1yJ4Xqn+*(e!l6^m6gTlkZ6t+iGSJQrTwv+C_OVDP9+;a_p zq57sxw8KjI&NYYt$>dDc!gf>u)AQu3PD_t>kd1})<(bGn$88Eao9B-8hS3%TZf!XP? zIUFld-&kK4a6c3<8!W)NZ9gcs+3|o4O~$Sv>+UWVEVAy~vQ5ov{31lJ=J)Tu3OC_W zhn0#cvoiuwgJgwwJmN-;^Q{5PBe%D`JnY|NjC1|w&38zi2N*7#xsUC-KbMkcHu!bE zCk>m!VOfoe;2dBQoBqF0)d22=#kub{O_#g5xk05{mE_hlFhIBgq{K#m+I__~jFwK7 z+%_|<@j$C?-n>~fRkBu3iS=PhsPb@avcZ2imQH~SK5!D!CQ{mU4GcDVlr+_|oP^c( z-B}nIykXUH3_IzNPXyu;F5<*>?|28;j6)D*|; zbi)S=T1}i4b>7t4SstbmbM4cM0CZfc7UH%$?z6VOUSi072sJL-w4cixk7D95Lv-a( ztj4@>1F#nY1;PeHbY8!v0NBf-`0F|g%R-LWs1rUVpKU)zQc6mp(%lVnTzXS3TEI%> zV0$A&H_nRFVc0HACRUs#K~1(dLp@c!v|z)jEBVQV3m2@|ObQ28${ab%U3QXT%iH(n zyHh7kAFV$`C{7YkoHND%ZWcFzFnlO58=L@m=;&CKJ2$dNw}?Jms~S5bm{M4dJIK{T zlkEYFwTeKuv@GP*vmQ+vh}$ocr^v_6l<$lHPW&@%<<97_Ir|LtD$nrV-MgN-s& z9Ok?IwibFnhlOEWmk!G(Etjt^S$G^!B23}nfS7_}uJzea!O`pbjkt32;S#nkdU|?) zswyPoM~k^dLMrG?d_+v+acEUw+Hc)7h}o&za$-@+NQ6v&78e%^qm-_0;zmWqD5erX zhO~^#>#g}76jBJke7U+@vcQHBfv~IRz?=V@uBz*D0>HQ3%uNHznE%oX%Y*GDr~p14 z9Z&Dyzwa9mFaFCfkz87fNrFNUeK2D&u4p~f2Ov{sEw95&26X{(V{K|jTIL^ zELXO7iAgsz4|}m$V^xZOb{$!tZb2~aYKr3EaGmaXAwb6rGTE}K{ta0DM!eSuLs0J{I^phvI=;^%>xIs<*jjS&O5fkllPOH$2(?>% zebjj&9r7rL%eLu2zDWawz}o7nr9Ht}OhI9t&iJ53<(+K;0_2ZTu5O^9cOZhsQ!T$a>PVUE5^RBdnbPCQu%&M>nMea&T z;qs5V=E_uFt#l|pNC(!M1>ksWC`*&T2b(b1UlR?|iR*U10fKb_mStIv--jdr`{Zc! zBpX5EqbijS$ECBhC%fk$U);8jy+op=U-Gn5NsTeu(r$Ycip?$N)y%(QHN!y`d4!*G z9^;g}P`)LYu)l|iLoWFD`%CKH>9B?=;fzN&R1FQMX%bS%(ZGHlNlRDhWOo2x|H`h}4gsMqWGZMke^vZ&6&rHY zbiYBIom^!!!z@Pp04RZaBm<4G{jWaka9CJeLYmgGYOkiIrugS6asc*bzT-IGzkdb= zr{=Uo&s`#AtY3a=w4uyi`H5mDz=^PZW44Gt#D)8P;Xz6g_G4^=EMzAP@Gs9x3OZE zEf*w_sJp*8SK~z})(8Q{HqbOXy<8|2Kz`5Oo^P@t*Z|5|8RUI7dK)!as9iv|^h7avAqXzI!vSCBmeu_88yd;mNCAcq21v z5Ppl9`J%XZrOv|)Ci80uB@K%#l6g-;PJVujYqK|QZF3V)a#8e+(Mk`Gkdd^uKRJ3b zpk*M6n0kHV(bQ-8j2{#+DJhJw;I7Aem^zxFL#yy2r0VDPJ5C1jgX-b6p%o9?CL1Rf zL;o+0iF;y3yJ`}1Hk3R z{GYmY)%3rYXi%eez3Nng*6#?#c0Jpo_)B>#d~6c%9G#uH>=*m!25UJ2==S`dt0jY6 zG2(=w4%=hHI3xp!gPIo(>Rn~yK@5_69534+Xs+m8C5t}g#y2f+tqp1^a_(;7Q~5T7Y4J65}djH|5;r#@!{IjR+;Lv;<| zxZ$p@&k)Pp9>=a>GwTr%5v}2zUIf%a0xJ#T9+jIb5AQU!wdp}_BWqnXVB0CW$;5P_ zhC}+%qvG#dRY@z{trK%|kD$!%P5845SWo%dI2#)?kGdb2Ww)Fv4H@5L-iL;VpRYm$ zljVv7^Rn{tVz|*5;erW7DMC^gq(46_Y+OsImJD*y(f~o(7HDSD>KYn+IA7PVHqr-M z!j2+{0@NHdXs}Szw@HS5wxD`#037X1enLs(IEDqNu(9bgV}F)5wm%uWJ%s@eTr4{~ zJBS~3Kzn1lgze_1s3;G2aGXJ~fv?f|{qDlmt5=`q8^5doKHef^Lkk*%`0*NHeK75* z5(YYDe~}eEazi0AW`H{qZ7}UO85piWu!G=)=!oQk)>D$BHE47&tYfa@nhrt&F`Mu| zlarG*0B4)wEK1AC5v)|6h=JNxM`O9Y*#8-D`0-k>hk(5Mp$4LpfpkM5>YQiOm<#`c zh{a`28{}fH0w=o-;%t%mAo{-e`NHoF_PO=m%3~7$y5CT#{i!50+gDmakwfyk(`>xY zE=VqhqZOj|r7=KnxghzIvZ>8-eLeUt=?}jz-}s9nVp1n7nV#JNx?u+^PUF6-ZC*5v zi*Z0|LYut!Q7y>kphnfttnR zWsYz>vinVCf$0=yz`8##cee8;pl${j8U!f<5Gex}S5D&vPnn)yD%`;EoTfvSvRZZ?ottTifRId_1^ z9SCg$*vweirH$1Z!q>F{0?T-%xNDXGQOs zxq*UAw*b0rJxC6LeSOL`qobpUs=_%j=+YC}}v=8Fv2&8DCg1f#cF7Ei21YA4I*tb+v1*D+QmHmUa>jW6>CfI7G%F z-mQ_AguitlX|WKr7!!p3f&$>6vVHheg^cp2F{pe}pt%MD-=eIjsE~T`;)@k%x#SDI znGO*a0GXw9biR*IPClP1b%Q)n4~)g4wzighWMo7N{xwk5ytr-`X*8I6K}Y5q#4*c4GLfe{IO0m5p;1W4})m{8-66Zd|3;T_UnOo ze)z?5>sFm%S8^bH=j#`l8pDoD`Mqoct*@*exExz)T9A9M9UrVvf^fsR-Bm>1}d)y;BrD!rpe7O`P828=ra|xg| zAmYk1IP}PhaU37-R8m6kgKfhIigiRC$IxtdxUU)sfY-)GX;?m0(+%BXTSz;A8j(z` z;W&+;KRFMv z2RrX9tLx6bSn^6_?Gl}(o0f&#gK1 zn?gG)$nJ;+jmW{izUKjLSAjMu4N4zWJ0|w zeL&AYg@n8THUH70M`fFTWSHBN)H+FQ|G6TF_`kVyNd9w640&Gs@4sas2SphKQ4o~s zb+W^$A4(+t=D_n>Tr`FA@z%$uJs6VI6FRz?j*6zEA9pjgK;^lwrWW1LDIvl9D=&`+ z!b;yBukgDY+;MT9g*7d62TM5ApRplYZE0!WCL?%V(63*tkTIf1Yu3dF`2Bpt9~?03 zB%CRKD>!P)ar36cxqEbU3{Q!dzvo$8A>s_%ezN?4|Jr}}H2%MLZ&+WrxJckWVAs7! z4tP<{WGCh(OJ>y~xx$Cj4!PR9^p5s`I6~{mlRMh0U+fa81oZ50!a`e{y~m3x2ucid z*HV%y=(kGz;ut{LpD0oqE-YAZUrfWslkn@xw4cg4IPEPoH1g}> zNbGzD#L!U7xt5(XmKKBaXLo-jvdC|CT_p;+IA^FxvvOy!g;AV#%JdDj=YD5(Kv_0{ zXjJXb;%~mbMM;6@e_wlwT&ek@*XXinx6f&0DTlFX8Q(cSq&R6zK=VcOCH&V|3 zDNroBXhTHA#GRZm5M1L)V8`5*_1L%HYKr;PA~gM{phl75_)D|HAUB6QORI&fuTCw# zopeB^uDJjaQAo>|P^GGrg+D0rfoDqS7M6csWh&tK!B0GSy{0{(-H4y}gZ5OQouL|U zcP+B%w|3?Rc&ts|cL!elZc{FuJK6a1`x$jO%OW)#yH2BzMvgf{Nm3iIRsntTq)mDCs)V&Q7XWt#22vs> zkBa`U)kG#VL~q14%{6)!1*}QtE<$X45hU=bp3vlSI!Jj@K$UZ5Y;vwzJ$=G)b^q0i zw5wXyzt@w%D8Z^x*0(p*vf$xE2m<_VO^+j9&(HY zX-QdG*^oKKv`|9v!;ci)`UtW=!=cxF^%{?16%ba#!GfjyAZ9v+P_OU7JkRC>H|O1xUXGq$*4qpcN>eF(757-6bPp!og(5G8X>$d8Cf>?erVILXN;N z`9$RLgywxVz&gLRqc43BiD#_j)q%2rZ}0#xs13?tccy0C=B6zG3>o0<{RL)}6ciL7 zYF{QLoyn24wdH~TB~wdj)34Fb6^t{`(^F61rK8gusF*Bf-Je#gqj4SNJto0wALOM-Q6<%U;7gM6{qHJ2(fLZN8&@1217`UfZvDC`lU zE_}zw$G2W#;5I3Q?M;m&uM#m8CjT1p(XPVZqE97Gl9OjSLp=`pIQ8NZ0UvEnj_VHR z*CXeECq^k&noLbYM%gnN=b7Up*ke!Qm21xv=WObt;Gph5h& z8oBW%t&XAvwn$M zRyCj2^PJFMP)Wimr86iH@CY~ujd-2jGP>gr?ih~LlR#wo^24yp%21p42 z=66kvda|bBZOXef{l31c!jYj3Ik2J?2jndFv=|BVik1bd@nhScl#d!pLh{mx@A<|# zYq4JfvS`=Ydvtgh4yX_$$TBHE$jtmT9F8Z2@jbW&X>WqVmLF$GzxWn**V2*$!CR}p zFF}XX6PoCV5dy$I$Sdu)(kG$!af^}B2LxNe6m`?vQDb9cSMUuI;!P!{jGI`pa?MX3 z8RTxoQ1r89p4)f)^x{A*cT3KW-Y@w4Q({p__Tt&b=nMAxx|1tQO`_?OZ9(+C;TJcr zM2fiyJ@Ceh2agYkM}NLcUfSPTk$?QS8TwSO>+v9&v>fhj_`N z>(SFCK|{)(woSV~vq8DwKtOy&^i6ulxa+Xa8-|w;JW3yHM3An9u5Nd$cp!Dn>UiF% z@@vm|{HG?lAEa=cFMy^P1vKPSRFsUOA}Pq*Lm+5%|Fm1XaTyk^E=#*6oZBEs=K0pd zq5Ex0&+zc@7Mgac2mQW{p#l+6=nvhKtS4LKEe^Dd^epJo{IC$#Z8v0;Hd%v4I!yB{`)Zn^lx=%WJ zCFSR#-WD&ue7e~eglxy>>5xrqZA>#gVmp%UdB{Cgy zT;NxXyu6_ev>ws#-kk*kf)`zC?Y6tBEw(>PKc<$uji@Uipd-l@BRUC*^_{o(88X^t z+zv}VI_sCy0~d=A%6UyiP3q>Ex31=XZT9v6gs0XXdIg}qR=A)PwR?(eH(fC zEGD((re>b=w#G$WBN^SxeSwFd0Ol;)1r@3GKF?w8jzXuG%O+`Sim)>ow|r`#0l{D7 zhF``bVe~#Zt^z(*k0ozowSiI~Bud_^?{fW?(RZ4D`V4pOiMiR$0KDf7IepA^DzJlrd}Or)oGxX&8Z(|#T7Og)ta8Z_*?%%SNPh- zJyuf3$z}Z)!RI-IKluV~%{}rB4NYZS-OS?n;r1kV@}Hkvq1sebcY2P!0E^?NjHvk! zT0LtzI7%PpYNj#EqAUG3zy8!dhKO=NP(tDv!O$r51KO02nzP?z?q3ZaQf^q3hW#K> z@a7F>=cmQeQa-0H8fJqaEr0Mn)3?6h~e{Mr_N; z>1$D>=4h=6c^8zUVDW_uoHrO4!8ejxBqk#$p{Q|#m+s8$!1aMefe9((TE5u01Wm8* z^haTl4^`k6@~0X9yUUhkj_|TmXe!iQ`@Ar!X$ARgrUoEJB0Qq+sZ?*kC2qVx*jP2JLBjwZ=wlxR~G2b zr7BUgpTuL6de+yh_=OaRiI`FVMh0gVCQmLIY5ys|<9l(N``;cFz$Pzj$Ne7c`dwwu z3na%JAvw~5dH)%PLw`Qj?pl5(_JdG7*Me3Tt=uYMmhhRaExrn^T#3Z!M}@I^QvvvW z)VOX@O4AhuYyU2Nl^{l_rf`r8MgBMbE5wR=DsrO_P2bzo>^ovJT5lL#ru!sAW}(X+5>6jVH$ARnb$wPdC&m#d^bOcJeB~ z0$a1ob-;?ksUN|WxNj^K;6XP=M&cV`d6W{ba8QvT!f*7#hqYIGRVW2r_gNu0b}QZ6 zZ1pu@hn|pok5j!`sz`J^EbHM9P>V+HlWQ?wvQ)X^K;U>J_Hd^{;{H*2ThPtvz83b% zfI1y*5cS%PKxzj4p-6!wT!Ri@?&!(x;-(sNOl>Rnuku%c&y9vILL4*;6;?wAUuEm zIs-%f-uVliO>{&dM-4VAn=%Y2pk6$JfnP|F4AC5}rh0?$iTsTQMd^je@qpzBE&H2H z7^Gd6sZl-)jnM2&59on{4>AH=RNMf5p>){<62m>lHL>hylUqJGlAf2qiK2eke4f_| zF6{wc&6pp$AnU-80BC=i=r_TUSfO5KB{Z}>`=B!cAed!)3)&r*X=&xb%G(FNMesY{ z1h}dL9lrkuUkG(JCnDmG5&Mje-tvKP&4zGIWIa7+-mY1$w3-%A8sK~g@8n%)?n5t1 zD+DDaC9M@!9tDC6aU7#`xH5qBJx(nCBwm1ukN8u;)d))dl1>-}_!yx(R?ZwDDKS+2 zUzj*Ajau8Dis^wZWZ}dB<$R0)yGJ3hr-8YVw2o_0lV4()%%ex+&`QrU>^uX_70}<6 zOKh3I%S8$*UEk6+T?;tsa6Q2xeJR5Mx{b=|iWvGkcb0y-;SzdNL09CWwgc!QVj|B;?j_{RXa2I6hh6C!}%Pdqv^UvUyFmsAV%?1Si7@4#;7dzefI5POso# zLg+%x1oDqu=jTVv&YwPic7kR}TMz@C&WD#Sa;q}Vq;RP44AqB0Qo%(|zSZm8-W1MB zjF&R&>dbJP?0f37nlai=ygWYFG9lcVdXRT_O;!z+?ZF}$Q z8#UnE*xaRQiapkuu{EnE-aI9N0E8Q<4|Dg7dO2B1A>${5v=yN6M&o~BXTvxRzBq^r z5m*lRSDQ%Kf|{BJT5 z+e8iMKr160k=H`8pUBbcg#r+UZXG%J(siI)Z8}^M3Vj=da1qdosVyFYYdHZpqAM7W z6B83b0Ov>8Rt^|oF(NWyYE1E}g9`&bmM{Jg|brdH;T>Y4`c;sELLr9y+%_D`ayGV6!W=Nryy=I)Rp3?ocQ z%V2*V8-=&<^!bDMX29qgXR52Kfp4$*Z+Z5Cp14E zK%3Y97h=FbrcF+_pti0~eZJu;lZ`!9laAcuYa9I3Z6mLXqwi$pZe@k0`>0=X0IALRA?`DFp+1$WUVj1x zHW3v1%GG6%BWNOH?+2xS{L5QIG0YvWONq>0W>EOljCqX;`A`B1)QFv*kjV&uL-|v^ zln)NrEy!3v9>9553^uYKFBc|a?*E51gwvp%s>FWj)uITPDyGshD|En_`yx$o>HC67 zS28{d44rkPv!J&Cf76&qxxy4B7uRHPoJ`;P=+W!J@sr_tNYFCY{>DQg%7L#!?vbgD z40d^eu+!~#aU%JIS2@08d2FnS`!F(MQlV@`@aqGOH(pB*bNbwCw+e_fGi}}<6dw$p zIP{2$(XGCHU;2+50WrP-N><@Ho(5H6N6_;N3vG8e6@q6Fc~CvwmPj@u`hVe~WJ}N7 zpvQ{L*r?>{gONCsE|b!`8b-i=L-QS`xGwOT9PjP=Me&)Pxz5K|P#bqIkrgtEVj_*f z_C61(8T#hvGOB8@>wckk=TJXaP>>z7W@m&cyF8(>B<_*o&`D;~tN7u21F5--?XC72 zW+%KGYUAcCwpsL|{?v0B?@NQj&gC*|PluDFa@NS||bdF6*~Zk}054kGi8TG3^&329b}!J>;C?@od?%mH54F|{rv z{x&)v(qdsE^9iX0K7uprGoRVO$B+=L=mljq9-gZLy}#T*Q*MnDkAsE}MkGEy9y+;@ z|7gI=cMtlR0IRhi4~y*2CV=h85Aa!J7KubgIpC;0*6GV}76K9_ylBDld#2~15KV6D zzq~-WS^SftOhojDir~k{Q0%#pS&yzI0G zr<{8qWWz`nTb^{oZ+`EkghZljpVdwO|0HMl&{PqOKU4k=Mh_Am2G4*h27R>8(b28Y zZeHCMbC_Wj6^#L>yb#6%y4|-~S#_Z{1dwz77IXu19?YAOAniG<4)Df=?I5E=(6{>y z#uDiBBZAmRkV9a45U``j(Po#@PR)mKR$y5Cs$CJEt$p(k~1qj{_`cXyTq-K7Cjh&<`90TCJcEPL_^Ycw z-8mjg%aldw%K2TiZQ^%p&@x^anhMj-+%qJ7YJzkSF264XQ6#hJ&1|F(hw3} zvKq&#eZTOl6xgu}msyYd#YNn7;}^`ib;U)D0HSnC#3^&jG+P8-_565O_noB`(xpxY z_uhNg^^Iax6(75@-ScvEVKTtb!eYU8yY9?ReqajRPa*l~^-U?nG-h*JHopqO^ce#CtBEm* zqJGrO1h;P86WvxQjOHPf{aGD8cr7AY8m@L~J-Ufqw=r*PQ8-p6|M9Ub<|gYj3=Nl*02!b|$Vk$BF?-?XC<{i;iYq&YKBpJnxPQdBx6m3WfHylT6jW)K zYGQvgRqOP__smss{q1!prnSeD#Gb6KX8oh9Q=cG7>d)qF^<6}GY}=(m{(7Cx>;N@Y z2!+HKy3-`9Lt&UmFHu`JGk_sc|2E=}uJQ)CfYY77xj1=0XzD%o`5RiECw)?L*-s}9 zQCOS*t*)!zkL05e{=aa(;50Vg%8tFG)$t{tDtqP`3)e@&a|OSlE4!$ya1S7O2+LRN zv8!FZR46UAmHJ&LlN1I8n)1W-7VzxBNYQlk*RZe#DD&_^*KgnUoto0+;^uC<#6)LJ zfd~lE6|s=qBybP7%q&fqarVQhWtcgTD3XM>bZlfPNsXuQm9)+bIlWwZzs8qY=EFjW zWe*0Q=DCg_U+Y!B#eumUA7q3VW`q%6io#=}5E+amxd@*Nx5;+w&Bk8;R4-K`G8!#= z*3>ar(MA#{i+&AzJ$+)D*_ujcK4@w9s^Neo0x@)!fv*j5!Uzr<=dX|Z(5?@dWLiPb z?NfMoBN(rhVc^*0?=McyY~RK@kZvw%u8b|*Ijub_6%yB8Uf>n}>I*UeQ!%7{B&bm$ zHZs_}7l@fs{);51wQPdB{NlxnYRS;6cna<-FnhUGZ}pq<<>ch3(a_QL{&4}}QE%EE zb)2cmosYU&IIaheePD_LvaG3TdaJVIUPDRf-0-iTpo>f~hx3|{Qu3K<0Tq$dXlZP$ zf`kortgt!o$?NLss#(S$PFC`15G#05uoxhOYc{MgY z{XQ&=4B*o=baj5i+#mE5z?B4pYk4i!(4hr$keX%rf3>1A3e0@c5pnIlPqkU^%WGhh+HJ-saCBwCP*Ru?lsg8n%K*gx1hf(im3y$U z;4sA10wX4sh~r1-6miq}`(9lb^W(;g%n2HD6<#uaxVj=71-j8+j|q1qYV=gH4+L!Z zsp@s!thq&vEv0(Hg!@ZqiUd;f+eeUsY7cWeHv9i$A8Me$%tT6;D1=UKs;|gn9ZiMK z?!3z9-4t~nV>e&|J9_|xIi zTk!GAM&sLfu`!kSo{&IgPX6{hk-KT_glwLq=*~1Bm=Jg}Y3fDICXl6oZ2oKOKz_Y9 zg3^k-qtcElp#;oGpBnX^{|{{c|D_kp$~6k>nEEUM7yMoz<#^|t^p=#x{tszS=4ivO zsyMd;2qGkNZP!r-M`z{Mpqt30)GoK0ddsN>r+3`z#eIfUG*(jTLg{`m4!r}5SUvbr zVeC@~NPZHyzigKVLIJUo37^0O#VqulM_o6NlZANShG3Avbf~CP5Df8+oCA|(h?ySv7I<>c!$4&De4G+<>|)uO*r-Zs&+!=Jkjun6 zh~7;Uf-E>*bQvkM-6NF2;NP?ATV#AQElaZM`EdY~NQ36z#T6o&ax;(HiAHz<^p?MD znPNGVmqtQ~>HbO8Xh2vBg+mh2<(raKHa}}?@f!yKWD_SV6e1NpX2J)F2$8| zPzD*8+X150F7;hp5)p6{73R+I!`s#y`1lumYON4m|Bd!rLeW~Z7pC<%Z^J=gWNTQxXcQGX&Pe?{N-C(`|idu|N8lN%s6)Asw4Y6{H9yL>vLGP7RFcRX#Ih z*)p)1Z?25e5(bNpCW5YqJQkrfRy69zj~{7~FdDZ8z*~sc%F0S<>nL&YKx5JH2@vcs4)7Rb`xFee}flM>ZV$A_bN`?IYd@lBRS=#^1sqbSJ;2@eTj_9Mn*BR*+J2%6@X zG>^_yX_j^;Nlo89?Nj+4qQQ?wb1ZB5t!VBf zBv^)AG=Dj71#Q1~b!XVO%)U<`)N4qpWQ!F$lD21CPBmhw;JWrW)Jsl9|k#hg{>A**-d#|@6Y z_1!0@MHn8dQZ?YlNWo`Dt>W~)I|xq~as%S{qn4Ta3H>jHdrQrYGnFzsD30v{DIxkh zaE{H#2h-;cm%5%zkqJTDy7t^oVWPsfV5qnm7XUAle5}!i(@zSW(cx=ST?x+uP8((t z;RVLxuSrcCIKHXY7#??33c8P!VAPlikhgR&nh@rUj~ShD6QOWXr4MvMo+g&eh3DnL zK2#?x)1JRf*^w-S9{qcsUEWTEg#`STAr~2dMPER$;~LFY>XjLb)8dfYh@kaD*GmA8 zaK~1L=Q-Ewg-SfHlYBznqTd=e*i=Abt*%DCbE^kI+u*&_LUgucUF;TjQLxFp2R1d6 zq1XedLgyNCZH?clBV0@GV9OI;nmpjC?s{O5jHFbmh8#1zh>{?%H0(OLthS5ZDdM~_ z0NE@V@RP#5slJO&_Q!lEnptIk@0a&w<&X?W(sMjnj2E5r6`QgBG9Z2*Y}G$y&bMHL z!sT#Eq;b|fMpx*DBOj_2iF+(4^ulwCpd8;blM`8I`4ufBuetyE|y>7x#a zMHtOU+s}?vjl|O(N<0&pD;D^VmUd*D>oE*RNq@|2CJGtts(MQ|Jv2pfuzO3?KMQ3M zTagqGyf`r+0v?tDlO4Cf=Jc=WunUDWCevYgh{C^aV%-tOT4ZHe>6T$?6>)M-#+g+w zbIf*?G1C&5CQYa%lJBQoW@`8&7dyUHS9xX?TGTHH)_DP(f8hli{v-_CCBrN&!$Q%NRglVWOIJOhZ}Png!iKaU z0ulFhD4lQ!2L4{ewAUJgP9MTG3!~z8PGXQskTEWBFh=7z|I_~UYl(^Yzk*8M{p*Qq zp(wUL4kB}T4fgT?)>VB@>=0r--_rI_8C+tnWg?EL^2Ds9F{z{>EHF?K0R^PExEREA z!Ib}@0ol3L_kVLMg$iZ#Rm)Ky@r~haJXaA>$5M|=BpAA|yUN`rZ)P|TDX}1ft{|mZ@kNZg2(Aj zDJZLpm^zo8{F|xv@8HxnpZ$lMrUu~IEOekRru94q2RUNIy`3dov{DnNlDl&g8Xvp+ znbd1*3a=@Mazm$AMxhLX3&yv{csds?hKw3$!6P}^>5g{X57!=+*v{RDaWVj)Z1!$^ zQTS19Gp@0rp^|E9Y7s+xbQ8t~QlwrCne_B5!Lye&lktt7+z&X;7=EcT!XK)1YU&R- z*e64v!na_?m7%WtU|Uh+1h4_-P3*e>=%5)p3D57Dg8t1NE(_3kQEaci9U#V|G&vT@ z<|tkl`PHh23r+1TiRLdZKljN?HV&^u?)EAi>gmSCEh9i{w4S{y#!|zxS~l2z(#2Dj z0%{qaCnKPjqQH_^?(HX0YpQAS2-7LgA7bIq@l)#7NM+?MZ7ebUhAT{nJ>&~9B|+@O zoYTK{e+j=ra5J6tG~yb9OOu89?WXp2eUNIA0R=EJ<@~=&wAAVn86l}GJDl5T)a1CE zhF9CbaL|ArL`az)lD@33L&oz-PWcGelJJb@KYS|+atMiqr+*=aR`3iN4dgL_FEbJF zIf89qs%^w^65ra!#?RlM9$ZWS#Rp*Q(HdWX3OAE=sHs#2Y~^6ntsnY(UOv!@O+g20 zMYDive2kBn+_+&upmXQFL(NKkN5h8ObV*Y+gyLmmCIG!y)k`+7B@+=jfPZ|f30=qm zjv^Gz%Copi+l+K=b;*p6aLHV)9C)#NI+T=zu?)3n|D6>JfPTlnAb~>HKbvHIwSfs~ zph0eB-!c0gb7!&@5E|R8v_>M{f#DX`e`sMe9dCDi?}F?C8mFK=k8tpf=e^lWmZVr> zv9e_;IQ-qgT*6>480UKOmPm+mXs05T1=yTJy~zmszAE`|H1yNHzGyJ`%po3iN~daV%G! zL|$IzwCPxBBcwRigTA;iws}=(mt7IA<6zi4~wxU9GCTlB$V z8|XGrM8ItzA`&VgjR8oBA|WNB(j^^I>b5{okWgCb77>uPkdiL(p_B#zX+h$Sg}!m_ z`+LvleD3Gm{m*v0;d#EX)?9OrImVb9!%e}-4+X{ViAWs1&zl0WY68isLALe%eXr&x z*S(&1C3d2982w>8@*kf>{iz&YsVXXPK}6-fkA{toMF>UFXB$s6u`1op%QfX*%fItY z`MbAK*EYv9_E;?Cb?kS5#0>2`H&ZBCxU4!$Qssh-xkpy)ozhaUC$ZM`-ur4xJ9g)W zQbg=E_h>Y&6Ii08_(>yTrjKWhmR8Zy{E+MYEYcQPU>?6Yo49iN(fsu89V_|hg>`7b zT%2!~08AAbN!io9Wx{Tu**+uoS3rn)thwXRb8R}DU&;(vG%Z?o7icy(zeLq`d{ZaK zp{dLdLN`gq5Iqc%F-l5B@Kb*{IDYTZu6UI#lZ4%PU`y*srT=JX|1NR+`}@~1@VJ9! zh@|fg>;OHMoXZYwmGhAX$0KAME`gyH`;|65s##5698bYJSv3@(~<;th}b5cp&5Y07+)NQuG>9{Xnm&2U0j( z@G?r~_=CMr1%|oK8X;etywoHJ_YMFel5EQK`-f3qYE+$>Eu@R7{Hi$Gd;l+`7n{}Pm{OrAbfeY07otyn#LTGJ*ub)DN!qyqD6|jZ{RH;o6>laIG9u?s z%^O=ofI6@}KbU82%MF8330T(y&gjVc%Zgd9$-M2=grfHqGWHV9&WUS>z7-pb`%~S_OLA4m#-1(p-ozbXOo1w z4)N75B!sE9w)T9k9VhhdP~#4IG=&BSmxDk7udBZBN=+Ce!HYxQ*w{EN6^9>a`CsuW zCd=%F0fiFYSDu@j+}q_Yzn9-hkWHlxES3;7hq0IyOEG@~UHgHrT=g<7^lR3w+l!hM zbyFG~9`?yUzFIUG0b_pE`B64z0b-8LZHj{P94GqeAr;Dhl-v_$mT9I z(EvWS3z##twe<=${jM{)%6To?T4ol3nUhv4*#AU!db%BUX7IS_z#+^%7KVRJn_t{A zs*ACloiKu&?>Ja4#7vQQtJ8Knk>U?G>zXce*j&AQe2d$NYWouPRO$3L!GL$KOHBlA z1`hh)bbfp|j!z-sRuHq?Nv_wI;BaO4N46ah`9J9Bii|S`Tx|qEUhQbx;Hp2g@TlHn zU6<#^q1B`3HYDus_W4zEb`5;G`hClZ*p$xtC(DdauHZ2{W%6~;vPI`(@jMe?2HULE zet!}NWoX7vMZ!%+KB#O-%C6{3qu%mTl`Rrz-VY|+8v7EVs=QvwQ*NVu>@w~5dyh1+ zbanF4rk(Hb$_+ltcA(_f^{@Y^aqVGjk6DqfMDMJRJX7@z2_5DsPrsG3a`cDZprf=@ z4K1`KvuHD({M7&|69Ts%eTlp@2LX!xKGn|X0tJxZOUicZ-NKn{aRQw$By*lnS?{A;2Ix01{y0Hm($+hc3K5oEqokbl#q z8#B|)O-9A+xG%LX(}GZGee;W>+|r}ZUw@+RuqNUpy!zGT*Q9WY#ye^@JD13wcNZ9G zZ&#YWiJ)0RF9tbg6KjGT|(-nxAg(<}9ijI-@B2EFw z#ix85)xt8pN*egx>U0+l85~(@cQZ5NEtq-%;4TL<%a!eSSWm6S-Y9i?^k=(-Os<7<~Bq#aXy4l!yc zL_~O%6Hhrt!p7>r4@-l6sjh`<-O+ncjfDayrU7C#RN1;28cU`XK(=uHagNRsrwc$^ za)+Ltnju{L2ZEaCpU?b3QJj?TxbB_t{Je6Ar=PU(S1zS8&}qJBJqhMn_bOJwcGb&x zb1YIH4#?0>Akl!-{t7TvEx2!y>;g%|!|?DbsP46Usy=?)yRYYMCl4e+jIdI3MoFRF zt@xJ`zg{;zkKvfmR#UMXfp=~R3>$xdQcwk7co~_X>{-U- zICfk32|-_k@(oJ+IV2I4O}`OL8Clt!jxnS#mAceQ@ssaW^i^5r7jlCdt||W6*I5bx zqpvkD0U2Z00aAV|fpc&_DC1s!vDH1g$sE?;3@Jebi?`Sak0zeycqyXI!tXdhoI3E?P9m?)HJR1R+mz zS`<^=bm~vY&wZ4hU)5X%xWia=ebj^D4Vww;ZvvUVLyxB!`ue_q7P+nBWqU1sXJ9wI z*TR6L?3+BVJ2XIM5}Z^?B_gNKuqu_itpaVkRUIh-miGti7`PQDFYi&>h<6coBN7P}!KxJcM8eq!PZ1ZW?*MArU6W#K`$8vb8LA|!TRj#+_jM((4(jib(EwV$ zV4vI%N%Prh&rRVKK-xSbEU&G$UCAjQs4?&X_N==&WMFIg;i7|chh139H{%$Y{ ziz|D~L{>-yt~&eoDu>_@==e{zGy~UNrJ!Cs%Ctk}-5jBIfYeW3hxtihN2{Us2Dgu< zUND4Qdke&Y4u(!^vS;iV-{0o3y~+VO&(aS|ksl^;vc_}=C?fqJ@&3A^7<}dXPV3Aw zeLRM0!Z#M%0#Dry*J!(U>MYqQea^jCvv`wlJP7=7fMDQis14CBxW8z}M#;LMc1vx< z)FU-87S-I6+JXH#Xz%T2<&+4;wR{%a$S*)1jNbpnva)$X=zJ9G#Q*x;iOV6LCAaXZ z*stHB9yzLcF;>4@BB=P*6SSjo%cm|}4=t=}``DyeN8^yAw*0njlAhIpjqGbl?e}`7 zXDB~drRY-4ldJfA!D5hqzU)ly?R8-roq9=TIRk*b?X{0i)ujWhyF8oFDyYP67 z7Qn%rLLr}p#f6G4UhMx%Tan1we&HfO&-&%FSt*q`D6bP$O${(&(q&w#EvI%@RL%eD zY|N$Le)6?rI6TJo5WDttdReR$x{D zxYZw_6_rs``)FLK1|U{NeFjyUC0n;gyaG=%SvhB zm-oh1Y{p#&nT7*m(tbGguY;cMl%(~(!iThC8dV{FC(ucE$hO$L(3rsmGo5dSP*#!B z2j}T!hE?F=7r{Us#BNWhg*(5T9a9K`)E&wfMR;1jT9_St0wO;i1M&Q3z0ixU7es)S z(i$2X_nK6ELQA>3a))|P-MUov(KB_wlKY{GXe$b8T%&Rx3#Q z^{^VRKu;Yc$z7bBUO;2X%mn}&vO}V1pBc5~3C73w2AwH-|DN*j$&>!WI@3A;`(z4>>NCJ?1_6`q5>gm6+wLHrGok5dbRSAzkd-~@$le|&rjWA>-udR zO^JlW!j zou3^%L^^{C!y^(AnC*T5vyqNE+!MRm-@ zZoG5f+VC#!tYG!h>0?C)tB$*DV$|axz?=vzlh4Uo`Np-4)FD=t|3hIpAy+?M(T(!> z>#a7g>{PS7r9MyX^vEqE>Rn+(%0;f$a*p<)6$B@hf7L1EoM&SY=O_M~r)sq^_wb8m zpRik5v9~nQQ&~E0Qg-LQ>zG+deUdqgsYP}PMUMnnJH9+!FgV%unViWRtp&n%++4Ul zdscbP#34a1a?Wx(uC!wb&cA1osedu;^^ttW!%-&`$g*A;nJKh;8>*U*?G7udKOxJv z^x7#N1`-F61t}|UfkCW3LI~Hm&A)e{WDi=+BpIv$<4L2SIp{jr%ZvT(T4*XfKE5)i zWMxwGwHvUAA^g-`yOz%F7$S{AEBPW8>p_i|cW>NSmSaD1+T1*)+^CZL&f3c&kcMtG(|<9qyR*Mny|9Cb^Rb_Cr~g?LK}veA<}Nlbqx5<@q>DL?3RfnFHbmyZOvr~uDD&HZ!K0;R+cl+Ea^J(ufDM1cAa}0R%PxzC=vR`t04Uy-#Lo@x{j7og%zZ`~;`%C4bfKlz=ID^qSdJ9j8I2@fmllSpz z;hKG6GH-X$lYcglue~#D8)#<|w`eWfw|n>)Xm<-8hITAaxG#@*5R~P4mqJE~6wD5A zxX$*oq2jfxaiqR9S}w7Kll@yMpaK$K2Hk?do1$w$QS1in0M1lX_#G`=5?M(ourUL?6KRj+x3i1i&|Izh%jpL6;bO(P&*hEX5cma6aL{ajd}c=uYrRY zOo$%jC;YpT?<(`9S&Q!Wm~d}!fo;l8$!Lkm zo&&otF?^6D&a#)${%hLrRT52g6A8S2uFCBD1sZwjvp?Yv)z$-3iU{ zsjbFs0GyOm|EC!J`7uv43m#aHZmyP35X;p=K_y_S`^CGmJ&u1NeG_0_< zMD0%QZY8_E9dav<23z!E%~B?eTt`P;NLN1}z2^7fN{*91b*@|QNy`gq*#aT#qeu7d zYO$aUd_66ExTGTM9E_bfJ3-DS$uyTwt1b^Af9Y6L-0uiC_1t5b7?fPa{zD&tO(`Rk62fh}%7lJIhiDWbY%L(RNT0vZE28j-*$T$h7JN6!jDlasl1&drJIs5`E-8!ciD-( zp@Y(!So(gYs@V@yv!cfPVuMSvgblU#gpdxPp?ekz`IEB#Yi#15qiF+m9fk2H@Y(mF z3hLPpdJ8{a*L_{#b=hG)MIYP>a>G&eWbo4F5*JIlY@f;j*Yn81@0bEA(b%_<8M~ z?Fcz!_Kzh7V)#!Lb7TRMdfxqz9<5)LxkXE>mp(w3AuroO08x`3DTDWWV`rY{(H_?D zEC4!R4WpCuFAX&T-^~)rLgZm8J}<9 zm}$2tL(Bx8r)~oy3wn2i(YM3{Lv&}7?kM*Yv}Aeu!?qHtsH?Qv|I(R*wU-3ku)s#V z0!$YEy|MLey`^m7QFy(epf(5&#RQu_vuH1B5tdWqWrW+}0+J@bvRNINEE5MDylkzMddv%J{gp+aXjOv! zB^jaw9lA%-Zyjo;@?n2H>aE{>2(B@dAJ?Xx z-b=3tg7oIS3&AS>4}5k0ODAp@g|uMFtRn$!uX!k=wy%!f$!_4ijU!4(?uT%FpnnUb@ z3@nUF966gV#h)mX>Go@yFF$>%M$>5L@KL+N_M-2F> zz%E=(N2iC`TL`+(t-8zPoF2T$G3)vYKg+(U&q{~WO+{L=`4!vzNGob)Iq8w`Sq55} zRi!cU$A*5uRhm^KELo0zoWX=2tuVzR9pNTHt=Js@c%~>S1uNWdsW_Qyxy$fxE`Gnc>cquwTkd-F15{N5 z%1@L9+Cl;`8f2X{n_r)`8r>p7-C^H>ydt|BDdW#%iIKYFm%}~pYO#X}4WN&>Wkd0@ z>R&W;tsXCLZ#z4?S!t+@*m!yCXTa#s{an+{_=5iPOmD9y{$d_CV5N!%hM;j)_5@q`jTNJ;6R|nJ5JW6%Z#!a0;GM5=5JXv z;CEKx)Q1P2y1q=_4&x9Q#+X2XONtIm``OII^erz{1av^0_$W#KM=p01OAE*22Te>D zJKxk1xcB&o6vTFfZs8}0j6^Fa_X`{|vjkE-?%Y}bCsID+|0qK!WJm^ZS&+Ifr#BN( z2xfRx@|`}Q|4$|3BY_4s{`z)8DA9Yg#)jP>;O=l^y{A%NN=wsA;*!r7y3>xO z2yH&>;kfP~GaF`hl++j>k-6$w7xVp=>?SSFY$eGx~K5rN=tKoGRt3PoH z5oEvf{CtOh*FJQZfn{rmcCMZ}t@yV1&wbY6iWK zGA}G+AG@)G*TuqYEEp~?C4W|fUPZZrFdsOy%T>hkoC^W4{dVBJv>a_0Y*FyKJUV^$ zh%mV?U8*j}2zUG1*K6~4Z2s13Mtad>CvaNHBlhofNe&OmKDhNaik>wZ zeuu$v0iZmp81P*Z93YHXt0R053$!hBk#Lv`CF<0qfeLI}*$Q)b>n-9bA3U@VVV4E-CNCeLRJGK)UkzQcZDV!}`I?IitGJ!>Z~n3u`vO?oNSU=B zZ6y54?InGID)G!p*d{Zg&$vqxE^^pfdT;+-s`|Mh-qidryaKD9x=ABIbDLn(@?p{( z)>ntnx;=FZHC9U-+MW!HL#HWW!wv4#l*A>4na>yz=m!?etaLB5PmR?qf%*?V!7ZOj z@6Wk%E9JIrTc_=41`}!#(u59-pkKDiF+^@R2{kUwtSuXB1Q^%yUNY7boezEq*FzyjS zgMxNVo0%~^kmO}?yaomb2V;oUQ|P9&vS2>p2gjaBxTK#uefl(JBPx4Skx!q3^|=b1 zKpNuC?m^O1W}dIh-~_Y(u8|RL0RaIt4NlW;U^!S4^W;O==6j4&MW?l^cdnl#4jk{G(OlVG^STI6aF$;3z%WKo-85Zqio<<#pm07ij@$sqnbEq|ftCIBa;X|e@ zT%jj2v1G`dkcDew3RWVsBRHdkE=<#F}oefj)XHd$iluXQdTzkAy?LHUge+ve2%43(et zyRAYmXlJVxb8A^%jc#VumTTfDx0nk%G_eqru(RV!hX*CXCLPqQqd9lK_Mo9;WpCev zjIse>E_Do=XT)nmjG}ZL-pRs}g4Erl%#Yo!9H+KrbX1ff%7jckOnFJg=#3<}DVOl9 zTe)II9~ywUWVpyFU!(^r(X#Xvp~7ky#Wh?0`H`=0SATyz{$FThV2^SISaqS>{kk_tN`3dTd2Xqx)=_NTmQ)?#u|8$)c3{A8W8P5l7OnWa0=Ho?f6mTt zeZG_}Pro|PbH=~A>AE&Wr!WOjr9Y=;qj@&g7{5iEb9ph^C5d?A23bk4KK+dU*vrnv zbsAk6J1YEA6JXSmX|`|>?-gVmJMJU7zINJ*u3M8|S+ge$bjM&`tL#x)%H!Hwe!P=2 z)BNP3RkyJzxb2o#Y|+&ARnEMh&Qi#BYSCrEwSw8^!EmCs%#+&_t;6S>x;i-r#9TZV z(tG_5A7-`>zarhTvV!U=?>jNO$Lo(?%Ee_^Z5_kIDR6umgp*MN##s3K_&mjk3nkFx z@y24!XI|k#6O^JoT3^6Kct3`FWQv)nn^Wi1F_sObtXb;o*RM5GQlD#AmDJyz$(Dk1u&v zkFHg#zdXBjNXSkm%v_ImBwl}@`ZYJzZmXx{7hC7aq7MDph3ud8dy;}c!hbp5CrS77 zu#{O_b40dy5j*RolTV`?r|5~!fEI?oGnz!N8(%1oJ>@1w`OARpC^%hVA*m#5sHi5Y zAR&B;9mC1SW*u4!^HTOhhiayTT<2az%9Z(Gk6ZSeCsW-zx!%Vv59(XrzQ&ttEk!mT z+{Rmf|BcBXM%m_dn6ibwaoN-?grFYJ-#*LgJ^73!v_MjNVbLhnBFrddA79?0RiV=Y zi&JmfpYyyuG+u_*ck;^oYtq)L@s3jSjajl)Eu0H=VmGC3J+?OLLDSCKFX`;qW(k%X z*S%ds(f{(bZ<$9T3TiSwS5`*mtdf#1+VGQ@gPW*dp&7pFV^x(RdUTnZcIb9N1>4+c zz&SoWokfkoEeW#J8E2FkXS7)98)Rr1LZlwOxvH zo*5gPo^FCk%_Iu8IE1P!=OnB<6GS$ILA4oAQ3^%>h3>mmGqbY^fSa6po*3A`uu3G0+q^UKiaN`+<2QST z&)_~r?1BT-FqBb{6^EeGX{)>Yd1t@Ge!9bR_=l{@i_o`5S@9Jmxf zgC0ihcn}bN)bcn0t!%S!^lN04tgK#ChKVNP&)GRS32NzV@>#up}C$13Ofd2X6-g}J2o?tx|*@@+lL9RJ=8|k zaQ$QJQ~sb_J%archan%z_yr;7AI~p1k4lmV3nb9WuF|nO4K#glvg7Y^usXl8H)U)$e zWvyw9eA>{}<8)1Y+%tL9L)2AqO zNN&R1l6{I*J03*RF&#aF4({jYx;M?jLxkSoT;LEBYnyVdc_!&J(;Y~^b7v}IB+je0 z+7lZ@uV`ZS3y9VcK=B69sE4(*zu3Z$%dOC&&LmLf&#`|KaXRLrZ>BadDLOnZ?_=(SA#IolFz&#i{k$Ild_$u3wmqQ{4ZBi6VO! zgBi7ZtHQH(e0+Hn=}F4d@R9n)J-sR)nxAD|`#Vn4uwi#<iy+JEgA3rL#t9h0T`u zD3g9ho@;kbYvm*a`InhYy}qVg>0fx8a#0mj41ie=hg>ks1s%igp&?Evxv_F(u#N)5 z!^2^tm_+7n=YSAf|MUbct*Xnl7hSqGx5vv>l&gMUXBoc0u%RB1s%bfT z!4aUbB;w4(8V0nQ6NRQVN!tK)B*3a>@jjEjkieZvtw#6evqF~r2?tc38xKcZTVs}! zPPP3uM_`!U&mDjCMc11$e4XGP<6pd7LOw1s-bn=!rSGPTi11NSQ!LZr;qoo z#JbS9r&gzuuH@)4b*1jo=rOCW4K|#gEak0TJ=BiZ^2sPQA3ig z=Szq4Yj3Hf_H`K3Jie!%Qut$M7^jqvgIR+ZmZqOp$ibi*?)z6^-0Z*8RiU~h)sB7A zDTa~O$q292)IOr3vM%}l?aY*DHqDhL4a4VxCObC{3Hn4iQXd$#OdmWT{EX3dzQ5|E*TucuXa-?3%%uL(vxLlqGh~MnYJ#IXTz&635v;XH(;|h z(^AnszU-yw@QsD}&W$7^y545)^z;O?bRaFIFLIankP{v2L=ZYPQTD&(%wq>Yv&(* z`+3Egg<{x&#XXqZ*pJC8&u+V>o$KFzn?&8w(1E~LI!+WyQJw$GK}IodDePANN0LD;$v(5Z zYprb5DU?5}&wlsTdG+kN^)tT^Cv99-<2BI}U0o-U1|Dsj=~5P*QGe+w<|?CCezZTb z&3^FB>`eHk^%VEFCncn>=REd}p|Q5>`_`>Yj`5ER3Xd)5DHqoiSL)Qb3kq+s=aRh8 zUDj7eGtKitkn&m?cgUkwcX*=9;H;1pzobfj3$Oi|bB;Xw=_s#POog1Pe=T@cC@>@; z;ez?>x6+uLcUd=(OjBO3r(s_C)k!L5VM^t`9dqtp#jL~l|JS;DOJDO+D8;y|}Q#J3Z@jq*WM1=qMMDudr$1f5*e?I>Yiim30w{xHtUW)}GwEVSh^d=g4U<3p}5cOis%e@&y*XtQKx8s-9whOi7|y)g>^NoG!)tF_lfeH}Gs5YCezEOV$@ zALTH#<41qp_36I0i#xNkg@kjMC=~OxG|U35)wvC~nm;-l>st6iS2yPtG<9 z`DdSm1TFdZ>lJ_Wk$+PjQ)rl%{;>J4h~?xDsA+7L{zBf}eLeYu`|3ZdX~-XVXqE|) zfB*iFY-I9}gzSft5USM=ZspX>{P;gt_%`xs6v`HB^05yS|5XJDrnvq0>RM8Z9a}uy zGjc7yuLr!IrvUSqny^waW~C4MeN~j|tTH57gb?Z(u<&@b)C-d82k=`gH2Hpq)}8S6 z^YiQKkVP?Fnlr4geMjyFoUy<@Bm|&LJ&36=*ZWB(oJC9|6crRyjExh9Trj5gsge`_N%A$BjHMg zwxi`YMq}ysR8hr z(Lj%*(pEgN;Xq=8an?snEzcZeXLnOvv%Gho{jcv(^Q}~n84UIima@dM$-GNgcI(%4(%xP?CZS5W$Oho0<|N8oJZ?1Ab zB8A5$06bP!6aDxtkfw?En-xoni>1xY&B0&rfwK{_cECHmD_0C5iCMFLeE{GMWaZIn zIxZ^rjXXlCxx4Qdu)FmIzKFCa+wQX2V+{@SOeW-#UM!*-oA=3|k(a-Z5$q&$3l+5f zP!la!kLAJV{NpOrtP0>FsDgd~c3moVm~@~%VF1ozCbCVFw!L7^mUFKhMxOyUh(D}X z)`$9{sV)E7BzklSkmGuDReT}b0yrgUgB;pW;PP_^^N}w?6>Z`qYctS2a(qh(R zLaw<+pxe7(wd5_M#)lT5FxH7qw?qQxkoAS>A%-=_70wS?Fk%Mw&BP-Q;Fnd_)TFjU zz`Pzr&a5AZ$OZ3^RMva%_nD z6m4O%)|`gx{!bLi&Mu`=sc-xr7lXu0z_i>#@#t0z7^=q@b5YnYgPg2lXc&jae|O&t z`KNFaCkq`cV*#03Fo}~e;u)gvw{QI4$oB=BuXlMQIvXAG`*9Q%)vSzgIBGu}0(!SH z;I-UtFdJ(?#b#FapShy1k2P@CxcNmiSi*gH4!Wdpy?5^{28c$=9rA~7vLPT;Mojx% zsy`(qjnIsc%Iw}f2Y+)dYezVrgTh`3REI!pK+u?F< zxG(q&QlOGR5I0Jjo7I;P71v*gieTIUYZxc}jS+G2AQ#31jPd3w-eNc05)a}>AC_Mx zC#)Q+vDtWGlpY-uQ-%Ry*XdynT387FwMAAE7(laFi%iNsj$|qmSy+(mv&xVy<;^0R zfa2VB^$ogtrG;vN=E#3t(GM(#qJ{<)U0vN@(F*+Y#uV+uU(u@g$hs4t;8r7aWWa87 zB`vLR&fYrAnM<}CX-fv)Kuv@;et?>liu;zEkGD$D)bZh{Ti;)GSBd1Km;8Fj|3j{*}517KFqZvFfGi` zvG1PV-mo(TO;MAXv2MV;YR8Y?*jrjxcMd^geM)5-;!L_rdm4d$Mn~Bv+iw#2MFZwT z<%7>Z(3~ENxbzeizA-qtWEYdun5>Iq$BvPg2E{=%kYGj3l8B0wyIG15<6VFqBj<<^ z!;BDfpQhz+O!X^)@5^B=ZEY{S2u4!n+sLeEV=r#PSPLfYAa*>W&kn=cy-eD-*_|=f zSPC{~bT~4At28|pw2q0CJA4a*`%VliJAzPuAAWs|a1Y?U;MC8$hmWtJCi>0aeSua| z?S5_(a#Q39wg3I>t;j#}kM?8#w=$CdD{0ODA0Hxd4~qMPkpCluRMkX(0+mG-vD4aS zJB9LzIEXoYe?!ZxeY*ltx%=zaXXrf~&DrvL*B^Zns|8>Tfs=(=UQ{Frkw*g#99uXf zXbSb&4EQ> ze{Z;3Bck4#j8&8$>Ecr>5g#fu+t4LgwF>Fu|xB_{o<~4$0Ha2JM>P_v$v3n+`{HB6eACm@&1OKX<~6E~IzHcw z`OY=?A*(soT4XOs+!{!eDUOdKVU8G857FKyYB1#(8%2A^z|MaX&m)KvynwQ zC4D$1Vse6meSMYwDpt?7iY8bjBIMSR(KSjSQD-=g>oW^ly|0O;?7v0E+>n-6Q>spu zrkLA;Gl({&RaI5T{GY}}$Htn#RVn5h2Q|Ya7LR@azDCwI>=HhEB9=$jgI&fZ(<~O+ zR_IpfG|{&Us15obs)!e9Yez8|u>t;;`(%tU-i81Y?b z8iC$M28|$p{3=rD`a-uw)27)LXj^o!Zh9@@fn!4-MsmEM63vFk-MbI(+_`f= zIW8j8jB1P!XGfI}Ia-slVbokdjv+l&y6Ec4`W*V)qHPl4Pz zjR2*|1IO4m;Ozrg>B>muqIS&BArXp&pyIPDxNdx=KLgp%Nx_h2!hgTN7Lzur*OGxb zxIY+bPT@f$pu|bg$Vh-UMIs*WApS}fYTya@LG{5|vCAmck! zC@|P;5Uzq}GFirv`lB*?tOpz>&ooWVRe|#fAdNyC>Tn z=iMZ_KUb&*ebrBcgzZyS(J@Bhn+~7_N3ul_*uahzkC%UPSjf8PKFL4{APZwn7>X%5 zJLiEdxm$*;637=*48k0x9*B(HB~x@{YPIcK^?nNCp<%}d5J`pT;@o(aO(ms66;0z4 zh?Y%AkM(i`TrnkER$d+>TJuReR-f97XmM~`saN7Ax5NQf`|h{Sq5(Enl2 z00s*+f?lQ!x6M#-w+o2sjY#Berd#a?u@97x|KcIq=YvJ<8?}c1z^8_7*mJ0EIZ%*- zCY5E==6~?Ie zbk6dRA9=wA&_%XQ%``+HniHPdJtU^D-rj$^`sU)~BP4?BCz$$3M zv1IzdU+2};V`zMx!|`SdwnwP2{psGy&^m~}MPhnfLcM}1HY zKF_zewN*iKyEv9h-NvQ$P?y0@an+nZDkzf7k{y`biqAQB{`_MSgE4ed&NnYFZ*S`l z?`uv@P6ZDZ4d^*k>mmL!cXXq?VkVIZ7oUOMOwbUR<$jzTwUa>sm_EOVbHe}e<2VGV zs;O62TjBGKr$!3kMr_4cB=0ypesYhvwpC_Ks?MeWB8Wq5%AAJU@;+3yW6tXqA!H`t zRhaXb4E&Fplgo1k!%$K!E=(5^`Ufh0Bh8VKkyJ64SwlE*$ihP+eo8N1r?6niJkzE# zp7;T^G&<}<%cn5D;4nYGDu^t~fK<>$b);sWMz)a2f2bMh_x1;Z# zAu)(-rqa?e!?@vvsPXxlPBTI&x(qWZU*J`X_~@6KYT-Rt6(YDt#<(>n13M}O zSx-OC1~mtVSA^AqJ8G#fDZZ`SHN(J4*%E_Lortt5NZhR;MJxLmxEELudzyx@Vd6n% z;J~esZeO>cb}>$rXp+K#4j+1Z-S%e)0}FbhS=MIx{soCBHS7jCl;i$#b6XUV7Oz_K z7CY*rZ7}X@0N;^-lOod=l$>*@!vKeoL!_%AifMl41WmtG_~Z7G%HAIRpRzItk`gJ@ zz5DhNU;-}RS-e1ekeQN*xj}T|A-uCJrr$`qnnV_!G&&(cD@%sZB;Y1}qkzW5BUKov zi+up?djyGbVv`HS;tNl~*y(b(FFgFJGr-MNN=nMRe9^(6=YdsDBG>#R_hwjzAOs6c z%E{s42yND)Esv?mfbR5_wDT`vb4c)&cGsWD#4K49Iz=bM)C~NkX?u8i1y-X94BniZ zXeld`6~o1xFwV{Y;lqf#cmJSje-rcFbnEIH&zuO7&0j)`W7-t?~_wCn+V)*h7y9k>)W>^6v|kSQsl&j zWZ5j-7}>@L^OH>>U6V$3MIQ9F{k5#QdI)J)+Vy5lp*y*_xX7st{oae@^5kJcq(I36 z2tzMrC&OG#{&ZU+yt~v=^QVF^UOE+LjWIcd2jXMLCS}~vgalZ%kaLJ~<`j!#*G7^} zU`x~i#I$Z5#?11w_#i@L_|#evcEsScH+2K1ydhgs1uKTYo`89Y3HD4vziLXdK%Kpw zpu_iw*1UGo<^)y{w!B$yJ_K>1D@OrGlS+z~AT#`Hs5uzKRbE<3AXeXn=^s-Vn(A4QiS$WZ(E37bM1lxBId1 zKQ9!ba`*M)yelUl^qquu&R{`n{S^C^Yfd1lnAu-l*q@bi4et@#E+0&o=BaGg`5d#K zILh^NHGOQi?HWw00uR6Y$B`G<5(6kmGB;Y%yxvHHDEg%)r~?ODvaM67g2KY(-~wsC z>+I~z0A^`Q;aIH30`Bp$SaFd!bvsd`L^vB4(uQuyv1o?nn-ntu_jm zs_{y5JWE@gP9|_EN1FJ!H7DtFXlN)P!E2m41uestGZ0Cc5KIVsf}x*3)ODvH%cgzfvuKkL4?}7i zc?`&l=vYL~lQ#ualJDA-DcOirTFQ(+Sq#w5mjVF?cccbm7%ysGfUBURqoWbXlmzSo z=G6e(bf9m8q~->dsvZ*pu?S8PoC6U0OV@cPM+b*Ktl0)E6P$v4HONA#_@EiFDnw zGW6gxXCbyYna5fYhmuG)?feS`%Olu^dk!A_c-7ka2q3?u)S7fSydJSBGJ>g()Kdx* zHc1-#&Nzb+W>y~%IZa`!LS;5U0U?FF3Q1;=nMMRWNLmaV5*lml*|R z5C|P@uS__7c_9m6ghsKHU*Qw{_m{F`oG*4iv0hsqULihR*$W?Uyvpo}9Vru{MH$13 z!~T+T()pS=JoFmWTb;-#9m4_-B61xfvHe|ndHH_L%p_t6a~aKz=FfFV79)?}S|bJI z;Xc+WgJz~_sa+D%Nk**qBLr&1y>#LXDYp&E5MO-4@WHF#1-e0Y2M>@{T(jf*K+4w#6$pw;o)H^ z{Hhns!#m;rnfY@&&J8IfXzMVZ_JptY;sQbj@@-UuJ?i3THmR@cGy;`SNsxO1G6YPdxskwY&=!%70HJ52 ztvET-u7mr+;T{G;A(VoD!|JmOpb%6Xo#BVqi?v2ULgY-wvytk)xl5P9G@`c)Dqs}kVO8fa}(fou)HZ9@gA)7nJ9xPIrk zyt#0jTOcI)1J!!ht4fqUs7f+5`H`=XJOSRn=U^1*{WBk%4BWYT;OnO4SY2yV3@H@Z zjZ6JgCUS6HN-HTZ=V&s6iN#YG#P+2Xvpm8nhEf!`deSqFO%(S{f0OR~i)_20AcWIM zV8P|@-XU>^x#BZIr9whJi}*G1@ko^+T1m6t(yOdm+5W+i#sl3mjCQDEZCzbMx`874 z>iDJJY%^q`XktG@_ea}z3nOC!GAu)UK1s{He?kdObXF@b2%yW(OxB;fg6dImpe3N6 zhW55v%YdP(hV42OfSsv``z^N(|2KZH!}a?06bVad3GUr1`7$a9`~{Sa0E(#ou#H+h zQa0kwI5|Rgia4CXo%%d@P^B|m_d-t&$=z%7=HLC7-W*J{^#`EW3UUl5UIf*dYYy`=IBmP4Hg0dWx5>cdI0|bUq%-P|rzy^x@r79>g zzx3^v-GL>E#nR(AEqvgBERO63H1FxRY>5Iqo`|)FC+oXv1B-LHxG+E$z+NcXy1Z9X zw(L5hs*{RMC!+*>koRhb1pc}v(-k=yxcwpU$dALA zPJ(eEzS|TG9)6ci<6e7rFm;CKREW&HqjB)##|)v^0T5*XU{XOSBbop}S0wqcF-^mz z?*dfi=)whC#&1X+(>bp}-aU!Tp#8KFg(4yH)m&Ck!OR*YP?=ib{*$OUP4M*z=hL16 zW48VB_LkOzB4vKEz0ZjJS*@@yE8YwNh*gF=f5MlPpO7m6P?APS#9ZgHNe7T5kaoY! z2O_sNpN{;Vd$6>GfKOgbCcH`hpZ3l@F6X=dccOI-E)y>ZDTlQg6`6m_Qaph1ot zST-}XgubETlanphV+$r-%hC*<<8A~MO z6(M7I&oA?uO9}(4F@{&Tn@YP93f*QEM9p&x8!1A+uI!73fpD92?1vM76S4n1G0ra$ zl3V!46+QoY7x`lW|6J8iMZfAW60Qdm-}OY*WIGaDzmZZo42bG%@?G8uc{MofS`h4M zZEzb-O+?a1L)*4!u@km*7#&N;58c>AF(h7W1nh)tP2XbS|Ep-_l-Rp)k~w_hN_{VCrT1 zbmbiOok!AJoPKSEPGdQZ@K`NvKj10Zb;{VT{FaV3{%&D5L*<=(`=Dt8T&H>Z{><{@ zU*8Ht7Ip9Da4V}bfT|i^_-?EAH&7U9MEP~RGeLIHVh0YW^A&fi8A7&@Dnn`kZ!fR) z!NI|1o`t(nVAui!oXN_{@;df(9G_7PjLMGU^8;RspH5KEEuQ?{0*Mn4zJ*g)uPcluBGt)_8*QMj zk^QfF1#L35h&ucAwRe%j@-gX>oHNz!l6I2(Sp!8chV^40y_I94>pNq+K#Qv{vc2WXajw++0tk zueDTW%6KY263I!~rl=4(8jOgkJ37QslkhKmO2Y>o?cT6gKmLeg&2w>k`Jc=EdaW5C z|M6!k6#w<&8Ta?+h3DmVF2o-IpaYm(1go5z|DHOX&9SysZ($VesDMb6V-O*g5s>`a z^?spzEwJ!S0##?xcJ3TDa^xCtyFReSbISw}<{{Gs&xs0j5>qt=S4Es(>~{{`mODfP zLqDU$dc+?UwLZNV0&`#IYTab=Pi*jzY}zlYcJ0~)=EK>0aVCa0&mGOylW0@gk` zNj=QcGM<*4Lb{;{c50bFIhIq14fYU({Aw%byLU)!)sN z`#a#ajy^nLC5xU)T;`=r=N22vf_-^fw}eb17xt#YziKIP4CUKSN!!3pZl#su<_V9C zoVBDaPNWVaIghS(ifOrCy``Y@;K5E5pQ43?{&oNufeso9{MvL@6Ge>jjBW{xLJp8a z@y(kR8*B7~w$ay4JULLyTPPWxc(+Hl3Ga9qU2lh&mY;LYnN+oB&YjDlUEg-+fZDP5 zjy*ZbG=Xg`otN%2iX!r7GI;>$hD2U#yLy|5oL&@A+H?sY6*KO`Awr0y2xYJO>%;X) zFwNC4MB&CGvOiO#4V0E@O&VulefGO<_LVj%R$NP|qV0ilUd7Fk5a>nV=+Iyb-e z8jd9)TRf_fvY|vdIpyB6z0Sv+cpX$bsDo#T1fieT_8kWPlg0?KNy+s?VvpWrO-5@| z>ozruO^tF`7ME;oWApgz?78~JEfryg&t$FhB!q-nkgUF6{ds}RgQws8x;_hTUmUnD zV?>$+mHOn=!d|_ZbQoAI2TesBt!VpSxY^52$~J{wGk(8gz~+LPxJ}K!8)V^ke+OSX zmLa~g_*MaaHd>wRB>h{Y0}6%i8-IF_Er2+er7v?samcS4Aj#lQ{z-qNAPH zr)U*YwqO2_sp%K-9@Z5*2_!duTgTsH}QzGJ!rulCu63_CRvID)t}R^SMApE*}-MAZyg-o=^# zB6v`pCgs>{G#u3l8FNcsQH*RX^^0IoVX^qcQRsl<-bx+(V!`d9RSBe7#q+%u@Om9z zib5o=muu#3+T5mnHoE2++7;Q0w_cmKnayz z%a%f06P9e`ZnI-ol7Y%a5sTv&A1a{4s8I*n#sWelH&+|Z2IS^sh!|XRr+2wJu(CjD|yE~Imsx`sH6enf~~gg-{$h{zWXj`q+dDk!?g(sUsQ`}-ge zs!hFIgFxU+T~0OviwJIx@rZ=K;g|Z=t@gJ_@gQAUWUrondQ(B?e*OBLs+GJQlA{kF z_vf%>(d?K2R7nn>0N7rg)ah4L>EM!2+bL{QQ|o>R^?6xPh`gop9eFDSANe-g;#ddl zNc@Xz_#Ys@l^gxXL%yuii%n7^SA+4zQvtGF!We5n$#>_9$;AD`*p(YmCw6-~82xy~ z!a~UG-IV<3SL}(cTfq}~=l5JUp!$1l`19vL*&`~aQsB&URlN|H?1jB`2e5)~iymD2 zz`pyGR9gm)yA0j%0(c^+tfsQ;UF$XArd7RC=H_pwy>9~at~S$>08A5;8joCE#gN%2 zC7RDaD_vaRW!wR4RXfCn04KPZ@v6^)#oEsrNRt=tR#X;nmN3S76sz}_o*YD7K?v#c zO&5~Pc96F?(ef$1A3Q4CTL%3y4!t8P!0o~LE+tV+2fDphaV2A3@3BkF}$7MFac#dcIvbN zwbjkRY+s~oi^%DR3^936royL%`d%P#via{ z{-Q+@%2q))R;ehelOHx++}wE8dLLOrLDQ*ER6FpVOq85j{0q!Ccxg{dh3$RXi@m_^ zwBW`!Iug&Rs>79F*F#jrB_;17RkH3oxLXo3PQJ3CHS2x_4aKgD7j3DzZ79Dl0ZQej z`M6ECCF85c*JUNohdnO>8uXNx#Fjzp2V;(!JejJ!Vbdn}B^L;Iwu=#xB=SBcS0O2l zP>SV%XO)Yti-Vzq`VmeFYn5~a0L&Pv0!EqXd+ISpx(Hre>4o#wyJL2vHIQ=BX-WB^ zjv7pq@l=dD9;?U0b*QfQ*~g{9(3SZA0YI` z+w)&N5-Cm%<*j~po}QPlN+3|IX?9nNu(swf4(Z~Cr&O?&QxB7c?BRoyHiB%tS{<1T+AX7Q8XGj{%x z>;5}kWQeg$^n1QV4%qH)JW@Q@^%*W7(a`j0=n~$uCPgsq=(s}9#>JnDW<7N%p zux9Jy+79$><_45{(_=Y+7mg9M4@gpa|Wy`0(UpmkeDp zz9}S8!8XD#UGHQ>Z!XOFLXma`KMX^c{6-5NGX`r8Xl5ljt z!oAmj~@nB2@E?VqCPlu>C?wS)d#5=f#OFr-0K&(4%7S`9aK4q<4q)h_(wm6c|_q8 zUhYpWAeur;OUu%v!*?%bt?wk?B;P+02<<+>Amb!Ath6RF=U{t@1^6vv6~>FSl!4DE z?+2W!E;n|*# zt>!Q`Ld|71^}`5+lB0P=d~L_dkC(6brtO1{-iJGtP=Ox7z_+RAv=!oFP4#j`l;c)_ z=LLn$oiH=))pVOSII;>^%in*FfphNUEGn%oiO%Dg)O+*I?fiA3?#9u6@S0|{ogT4a(}<&=Kp7IXXi=e6R5Y{u!m*= z?SgeID%(iHM@e@U0a!gV)OX=yoyKqT^WBtCI^%i+H^26q0k0grFCPbY2k zOwk6*mcymsTEld;Pf?3`I~MJACZqaB^DS}G7VQi>L0OB+7KPg-4~N$jLrOEWnd@Y+ zRh-6&4CHz~PlKWvN%#IGymQ*%*hI_{pn=j!?$(lMq_TdC7Z*68Aq|}H4)ye_avT?` zF#ji_Fp$z4;-<`O_qnV z{#N!v_TQVasoGH87bJm&N&-5d^mGn0d`U4f^;cdTuMXTCFylB|+c0X~7)Ich!U?E$ z5GqEfm{unFsr8RV$BqFUimO&EXd+RpY31bPqzd;iS12CNDI98IC9Htx;sHmKox|&N zB|qEGp6yEXW0I9>2dtU=H@&>qC}+c(iSz(dh0>bB*G~M^=OU*K$du^(V@~{blXje) z%Owev01w(Koz1Ghd-vy(;v@`Nh9%4w?L*Q-y{=b$x*)T_W3=16rw&Ss5iuI4*9XSjg=W}h{FAUrD z=2b2(94w+kloZbvDO@4Fp!?vtV4kNh0A z1EYZ*k}ck!&>kgmqz;I+Y)`FgZ?fU#i5Hg@d{`4aucpaUlCY!GG{YZ^&M+w7ReSK* z!{q3rrv)rH)6d+z-m!f%nX_N-Z1B{f+iDL+Yg%5=`1p3jcW?Nz_BTG3-6fmI@ff?Mwa)jM{#?NE{WQo8vRYLF`m8csFN=5c7$J#|oEcAY4IA&ACt1`7eR z*J+SHhS9)l;Y*R2Z9+`8jY>cQLIGIKR<+6B-Olt}=fa2;bD3a~F1jqvr+7q+00g#D zibA!1urlC7IXrLPRclvzcOxxG`b9Q~96?Pk3Px8B z{7g`_S%qGw+KLdgqR@?jVpe?heZY^M5UZpj7hcQeDNdC>-6BEzK;=b>`2MV~%Z)=c z0hkgpNiWv2qxIPdW{lixeB#@0zkLW%qI=jpK>Tw-Fc7_v@ZKZ?GL^yfqU-Djp%bcp zf|x1@G4xMYCeLeyao1F)6U5@G$z=G2hx#kji$Sn_`ye2165Py)zb*}5eboTbdG~~w zwh{KwzQ?BPKNvlK;7k2&Tv>x4Wv4D(&LrQVmqlMz5ngF^o2oRF%^#6q zyW&Dip26th-pW=SHiy(2PzW=qGY?UUh97I#Vo}YL+c+aliDLHiGm5rzfVC$1PC0TR zE2}4TY6vGvo0NMX&)L!`Vur|8gPOK=r!6bZ99ol2W}-^=m>fVkAxcyk+3?Q6>l(cU zH9q@YPc>!v0ZdmIrz={FtHJx>8%vdu3G@&mRN<&MJR5UgKR$h5?Yvgbo_j5QEa6rZ z5*`y-El}tk~b)gxc}cb#>p z)lb~S-JsF*Nd11^P_%3S7PH46#y2R<)#j9ISHww$pLeQy@N_Q~<_V+1=CtlTGeo+OHfy$Sh4EL*xk?ebe;^3a zJL)+18EN<^?$YJH*(MwAF04AfMd;si(GUy6y%=wS5v zmcvt?ti$>c3uPggn>#th`o}i?tk}&U62^4hVm}PuXs;9u2w$5(EE_UhycU@EG#~C9 zRT@>d@@V`5qqViFVMU)tm53nsel1qUJjuoj<4`+NglJLc2o}>(ymIh+p*6H0HHJ&U z(7L~7M;%N@vOnDTE@IdmcCpGcB(94!b>XE^CP&bQbiU?t_Wr5t@(cTY?>XT_8V9W) z7|zmB9>yd17%qCBRZ)rwN+daZDxIMQ=JL5{!+SIVDQ;iR=NV4}%YtC$Hs4-S2PwDgtUm7^bw+IiSnbvtV6o1wM3 z1OH+%@#SpMqDM$`&+68zX7ZKUeO32T3|0vns|^x+^AEToxQ2xZt>T7WI%WP4TbZG|ti( z1Wgn3CbU*>be~hv)5gu$HR+&pt&ZoCUpu*otf~1MZ%m~DLFQG|{WnY-8n%9Z;}KAH zk`7ssn(V`-=ZZDQ3ZZ#+sXZg1%X?P9g9|hb``b6s$bh%Ovopk|%B<;lV406gez@)cMiQOV>AE@tk^uco3D^ZvN);f>8(jmO({2LPR>hTIL8$e#3FS-ZDn32=Be58 zbCA29SgHpct^}0GBzIm*IxXuX4OqO818kplraMp9t+qC+wDQ!k-ZSkk2Gj*)nhZ5+ z^kDSP#ChADyIiYPO}p6l>wVpVetP1(SPQBtnw~I1)6BpBEa;0H{@*C-xa^|2#Az`NJ)c~fOJVWh=_E@mhP@I zxBvIk8SfeQ+;i@S`@u2Xz~1|L)-%_fzgi*Blx6Q=+{ZvcLAfI@C#8ylaxD`65u>BQ zPn`6>c%Yz&u**w5R(DU@n0on2AK`;IvEK;F@^5ZHy&;Z5_d{cnxk$ILuf$B~!+6(m zs|h2IoluH$ySy9Y6vvPt52LGjX;Q-bg3d70u{b3?UV6uC@*%9~cvK-iGnfi#-+njD zcr<-^@Z=-+hqVmp+1SEAf4;BJ zP9!KO`2NF(-M<+T^Lr;%E^GIEe0*<>lo+e*DNOARy=I`3P=oeY6BMtnGEj zLX!<2kEm$>&O%2uT-Uv@po_C3o`($H_^Mm0@l@lt z)kC;NC200rzbx-^SF#L)S-- z9*x#{@XR?7hqX!Q>5(QRB&?5@hrzRd!AU$?YKFO0e?(zsX6ATV(bf`)qI2ul(9jtC z7}1}+(8ZYAy0G)}=TH9uM9YS&N!i$Fl_Tv|kS6Hw(5foigRjeK6iD=w|8{p6%;IXM$zsc9B^@S!&1MPY4Fjn z_l$*_kdcvbhwB(Ev%m>W=M)o*c#rBpIUf(CykBigocJ5&j#X*Hu{M%Dksfi8XjLyPEPLa@8{;?YTB5n6!bk8C@d_j znzGyX6zS{hv*f-1H9vpQl2=ht(TF>NlNies)_HGP$;#ULc96vP@83Cjcmg%^+csQd zl9T(&tw-dPl%(^AxkW_6r|fd_^TSF@xr+=N`x|`DzD;brk)Y0eayEbZ+r+}(*AX9f;8CQkb7eI?-{UcP*}h(I{6k8*MI@G!Hm%y-AK z5{JtqDKnxp8Q~UcD!?})zpbDEt9V4=$&)9O4STVRM`wA3h48cYa0NxrYu`@Ub*vq5 z3kfMeQ7qPeEhxy$&3$)z>Iu6^G&N#z(bRQoTFJ%bp>HE)>Oiojm)nd=mg?NAM=JTl z#}~eE(@^2x%gYC6W+Ix5zEo7i!CT;YP(<94Rza@W!cJs#^y`TY20_6DD7_;6>etFS zVFg~8vP8Ote5EPFzkf$2B*-%n(BPuOoo>4e|2;VE^kn*j7Msqrv)S@Q&y8}_yln8# z9~lD!irCoL{li0UK0X-@4Z=BxPtTa7;HR4Tgt1S8o@6zfa!V_#TpU(5wi%af&s?4P zF%n~O3kxfnnbC)bhu^q4{aV-X?(Qc9(rM}GuVL#$ zf6RrYt*=k!vFP6p;_$u})73gUN(?QZ_u<2xN#}vKlSD(3n3$N{VJjymr@w1!EvDSa z8-u3E%*;$cK*0Iv(Gy!+HqHFla+Dp9w_i~B?5n_K zL9d*sw0EBUacz8jT<*yen^MusO9(otM4_hh?xH+4 zrKqBU0%mn}wYs{xQHl27t*xAbf(Q7j@DN9B_|#blbqnt$E6Y;hiWiUU^$TtNoSN!G z_HmdZx3J0HA+*Rbzq-2_(aZbO2~OQ`gjNuN9&k`u+ROu+>stPKrd zPtMi)ipt8WDk^weMJTu!LCBesm6c^PR!ToT6%zYKSDs#czIDk-x}A8w8Vl~}QSt`| zfjS#43pShMjFY5C$?Q&^W^)G$FSmSs)ChuLGRYo(ivLMW~k zYmT*3nORwFnSD)7k3Ud|+%FTy$9bBi3jMNqcJ_<@SowR?I}vxGw8m^0XlZGupUb8y@nxPxHXE*qX4_a06R4O!Kt}eiMJ`q1F_qBrhv6!ge7oVago{}u z@fRYJX}C>Bk$HK{qDR#OgQKJG+Kj11M3SNQJ4<7e-^9L1I6`?AnL>a_p`*ARN!;1h zMNLZ^SW&?zk%r3a70=YvP$%o@1eoRdOj%cCuCOM;h8Cv6-_XHb z!tTw?&feW0dJ5xG7T^$+$moXa+qZ889A;6VJtg+FLr>?tA5JFh9@)^);O^$rw{x>4 zsm^xpPbXRGSoAw5Qy2LoaOTBoV=9^1F*UU5a0LL8e$E#zgmOuem@5pUQZ6 zt?bcB+pP?`wTI^&9emM^*B8i)Z7qqvm6WM}6>JT=@lLy(VZ*?8O1M39ssrJ6uSBEY zISl7^5FwPN_gP7uyBqxrdH;7B9h8v9cu!!=Vg2bp%YPwJJX#DzC*jnA*~&T zYc!gQ1DP=j^_p*O?7GXMPg1czs>H?OZ`nz=A@&9b2Oqn-@<~ccuFo_YhB6o7`f>Jd zzYi80b-wZ{Xzh+d2?=lzP?VLub@S#;Q*-lQGc!+_2-3fN@lQ#ifVlyUTCz}6O+({m zB#e0)Cgm zfaq;TzXgPo^3S{0zO=WO%^7N|UF)GKVEX>P-?`fD^UIuwzMC)4cQTd;K96*~WC18K zJ4*$#C^IJ~CNWWgiQxLCrjfF;@&{*}k;=E%NYA=?7N+h5+>lcQb^v%u3C5;DF;PTE zAT&cUvDEBr1{kI-fRzM1cIjYZ!4`krG+ToeDViTc`J9|?!gO}Kovh+sPKHWxalK>4 zVCP7~;X_YP&u4k+0K32WoVlU^!~;qZ>8ah*dKaBbbStaknH|gXJ9Og4Fn?m=;@T0S zM}qC`?SOweEO}v)zn`*WB*T{dAkNLr{d47&%|u1`<>jTjn@Bd4LY6rLd6CoAGdMCoC;^!SN_}% z?Ug?-?qKP9NOElC@U~HGs?Tp!>-2|J4<%Or_T-<}gsX+xSn$qRm=0ofk2+ID49e}; z2MBu>pugm7YRf77+7qK>&!Jmzix=FQj+9rC;l3L1^1&L{ulrWN-C)~WjVe&r^rlL{ zgbij5jxDut!=5|gO?-;^yRVc-J=WrGhU>ObuCrzB-sQWzxgv9UI@WjY7k_$^gIVvr z;Lz4lRBClUC5vU?`zHHs!!_x@qbGyqj~n)+Vt*IoADJcWZI`vOQ*U{#~d+Geb^)${ar;-Sw3Ziet!fR=USLYSiyGx@_I`%~Bs>(izEG3NU`+7J1{9Kq= zkpgW-`X%wVoi%gJtBD1TMFn?YeD6CJs0lEDi3@n{=MtzbZfbbkTxrj3Hfj2k{_655 z$Lcsf%tw1!x{89hRhth}x$kk<5E8D3MW7O>JRBv}OtbrvSZU-MIst z3%}x%vE-Ga;;On?*8St+0lQ_!kzj!d(XOM0I+K;;yIk>AwNJQsfuyv|&F-%Zp&u~kH1EYcsZ40pIdNiNldIvzIkDWIaGp) zpczoD{fsDJ`;3eX6kty0zJ5tw#FP!O0X9fiD$ z1<-&BlobgYfH!q^qBmY16yFYRv6-xjDk@?xEiDD?@IE5KggXKDB>Y+7sv7x_GUe4m zGIl7>ra@V8Om!D6v@Z7eFq4iCX`1}6%7y};B4W;Q4>J!6dsFsFw2*gmSEDV>g&JnS!!N#ii(fFCGO!Nh>D8p zxOsBHrk{P*_MCn_PG@G*dZNNM^|(xmEqj!cvn7KxgYpd5I^u>LmSy?4S17%?>A77- z?K5p?rO~kmwPHmX)|>T7tBOpe-*2)TMqVvUDZ}l~_|(WWOA3E)4;a<= zq5pGlOqEU`Lag=5qb7`YSWvh^epv?>XJGRV=i2RO^k#qVejp2=t8$xQ7*+kqK1ZGI zYVH1^J4yY!Y7WbsoIf3BrI^&v_JaYNE*P<`_g$SW<1PrDPFe5(i+?-)AYVb4Xx1w! zW!t{gv4p9b!shZ7KkA0u>s>U7N#aj)D>X2{r3+s02bH`%ngkvTCN{Pu5F3CJ-2tdGm?7(NH01_ME0CvPq?i$b+L^(0}B=>7dyPR`D-A6}dtZUDWXcdEvxk;*0$g>6os;MDRmJ(@O> z*r9d`C>y&$9lAI$BoJG^f9DMi3u9(yH;0mkEwJt?G&D2>_>Rv``e=HqLN(ct>(1S~RnTz`5GS8MG?* zJ}gV6XJ!sLKlc{BIvJ2%HEpxTIZz$oB@|><{p@oaiU~=-go_Fb>k)_$T#7hB9G1ug z=DSHy&%h>k_qL`L(uP*#l$G0U_-6Kms;hSzRXB)M-5V#mD=8+3w~F39EP7$|)|P(R z-A%GJA*uNZmDX7{bC)86kOl(+ZxHB}Ygn>~>Z;fr)YH3X+H(>k1OxUlB{(I#Ej)Hu zy5;Nd&~Had4RRV~P>IN!yWLfAt@nGIoaMAnO(%{op{*h?LM=;aydn`Qag-VO+zf=- z>vYuKoB|5UUjrnZRqJYL{#5zqW5%ek9^u{=ziv8($?A~p^BPgvGZ?I0^A?E;Gk1%s z6t0^lTT`U8C1vJFE%Os85MTwZRMw2L$8UxDAsbO>`cIG=TINuUjE!FdA2|0F0|gUw zN@&g`_wR?+nP=J22~Y7g?M+~6E!N|A0nE93_bwD7)G`phsMNgSwY`C_UfuHMp%gJH zc9eJB3I`tg1R)XD=A1dwUmGa#Ce-^cq-oijF4a9$M!0%0I6- zk^}ACVdWP+2*9BH!BVfTuA+?AxUfn~OFOcSP+Erv@+8?M&kj)JOXNf;y*(xuOdvt^ ztQX}T=y**oQ|<@};8=G98qs+m`WRJLl~ag5kWOy>e1Kri2h zlu+hrisS{UJ>nUkuQKhTtsR}4t&jG@aAX9u6WFpCTBDH|WTBn&Y9+*qJJYkQ3g>pD zOZLpFY3K4XkKXRW6d|5Pz_Wc>iHjlj%Z+ZT8Q+3XvY7RE@6KXOe!0*UFxCCx>{akm z_?bI0qakj*Q-DqB=a-G?T$+NYB>a}eV%4%{BlQ2)AH_~->}=B?5%E7MyUs(@Hso4Et~^(Y*cMjVZ18U-j5sHvJ(*%_qID_ zzb@HvaFx}!DoQqnYZYMu1#Sh_^#0?KA$khO276kO!%j}ElyOX9-=m+x!oiHV^FQ0y zVG^{4a1bwhS=0(PFbAW?>ZBffow1aT>ZP;+LcKhZ;Lz}3z_#yQ9?lOGZY=bdHBG_U z!Cho2c-T*bwU?i*a_M0B5_v~-xEOmEWmD^H1B=>9o2Y(RkZcOIUpowjbihcZL&4fCn^s;q zf%Hy46E4cVmJL9&Ox4y+I;iCZ@RZ}>V&ArSJ=<=Z(Ut(ExdX}LP;rG zsM)cIzF5B2;_c{G@|#ijg;n`y(47H9eM(AN{Fx@H{oo$T_{2m)Qj&gD^yby6FC|Hr zr>~z|S7~EB?h&nC3Ne5zU~PNzVI16of?dG7=!CsRDN!yiE|44$)Q#wv7!Y}-GX|wD zQiy5`KvklNw+fBTV8XDk+d+dK0&)g&XY<*P-}nKFCNl?z;i0E?u>rYMzRF(kSx?-7 z&zoajZZv$@&M6%fUh64{3Y)R(ljM6SxdjDv2!sOjlHJh_fg#Z*Ltk^X-?s1mf}+-N zv0)Dkii;Qvkl{{Ba=;RH1n4+(hc{1_cfxy4MJ0sakp&byw&(q@eVnb|E8nAqZQ%VV zTn4i(d+5EeVzLFThi_kK9X+@s{VKy1mjdf_8G=PZPb*%0Erh8i@S0{WRH}g9i2r zw?m3U(Y|uVQ0`bgHP7^Oym<=v;2)8FZ9m^9GFqF>3J(g@JytG%-*Z7>tPzc(gF0Qs z)lB3{*b~ct`)>~aTaN;Uc*TSm{Q?PmDy~^@;9x?42KQsi=^h&!+l|1-{i$LDAjOG@ zi0D^4(L2Q?C|6dgsc4!=s^+y@%xhmVSRy5^ML&Z>V{Ua0X^&5P>+Qd zD)qD-2|_4BtMDfyUYLfVAt?Apu+=Ij`V=_o-)QF36Jxb6D!=k$>Kzaxo+FiIS&X(V zvFgH;!$Nu*iHTtY2opOy?2N&8Lo0OuCVC|a(O3!b`UM6~H}FwmM?ev~Zcc^_t+av< z#+Nt-J{XV(SqhIEIYS}CR%R`4?*QxpPlIOf?c_jfT|8fpu-~5d28J(wi8d_ct5>fg zQ&Yj$3QcN$Ge^R2YqEFFuXAV|8-o&Z4UDq@)LWY#MKv||{ehfF zr{sS+zW21u6z&ojL$;SEeYh0?IH?i&&>e20146}-$o z>`9rpoL2pO*hbk|N@V>8wg&gscja%)VzD#{3&PaBRp; zaHll8h=zwFa%+EwuK?K4~T_X%hM0_p*29X{A-a$`ml;Q{}%& z|FL$bMfiFA(^7(7J+16@gQEShzm<<1&md$?%yXg9DgnmB`E*o*E<)<>!z_kb2Z2&ndV9;h6%G(7_~G)T;z(H zL!%<5NAQqs?`G-%QC71qDgUb;)B0XTZbz zT(iGoufYQT5ixieR#sMurvONxKDbt9uE+Nr{Jc=hAI8GLasK-=?bAWa!p`<)?N<7r zB?wnwc{R^*%49fp%_M{0w04lLnGa;2>*c_PE4WA|rA^PZBVwYXe_HZ#S#!|SFQpms z^YBQ@hxE=?Cn0&pmoF$~V~Sv20b77w3YZkBeOp>vF9Z=8d;#ysh*J)Dx+(Y0V$4$+ zzFr5nAU{O1+i0b|p&}nIihbh+pKJuhb0;B8(n3rkc8C4HgP(48=Becfcpq;^W8z## z_LCG5QjIHc3T2&~)$~ba6F|Q;^IXS5uBMhIyGB0E@ofw;C(>b>c^#KW!VR> ziHxu6PcD4-Pe+yf%XQ<|80B&m)=hCmklg=2sRMB1LHGXDXYSt_nwp$^kv9ia3w&TK zZ0z>Tr~h%mU@RN|qWA%!0T48~URnckhG@j~0CC0fwY9a3{QR{5X_kew+SQ63C>!` z<1J$gxTf}YWLGw>z*Bts6w#Z&!bN&{11@S(X-BeB6Q{UaY@XGj?0XTPC zb$iOar;NrxiejOzqpt01+YkdUMdlpFzcZuN2To5LBq>|;9;!n>6r$v^fQqeX9-X1=yN{;CU!1 z^+iwo0!4PF0qF?299%D6gN=}okn3eJs6vnv zLm9{ka7jqpYQuHGsT!vH`gDCFcmO|#h9sc_02>-v|*##9g#z?LSa zq(o%J8_c(dliEzz3HGOY+v=hpK_ead`SZsIav@7g%P(N65*fG$z*ho9ekyW60M!(4 z=$lYiCrpNY3;c!NzCOo=_B$YvKsW*_;hC0JN7;aA4h*(Zcc^u zETtC}eSo#Gn`sEw%s1Rt&j@enGUKaXy$C0$S0lJ0eAk2XBxxLK^dpB2|1rk&4b3sI~635=6 z3=9l#VZs;tLl6WJg)90sF@ZUm9M)pVtE!{Z1-eZaY{{;N+w1O3ZC*!_9C=26JAi2NFCzythPW%Rd zBgPc>*8_f+d*CpF)z8et^yTZ!1)82poE8qN9INlZQ$?U>TpM0ot;#~SkpWU z3(Yox09YUfqpWQ1>3Ki6k+oePg4Ji*T|3vn9=9)-KP{b9QuDX`;N4_zlA@D@&c zE$i(qurPoIe7gBgIcK37k)pREVz`3`&*7hsXYyR{qE>G0_l5GUcgG%|!Y=~j5&^__ zEvgv5yr-NKxFB%8YOa=Jv+Xlp0ed{g5?PCsd|h6ynti1 zmx6%Ui|2p|vjy85?KM*@DRgQnbvp4kxDry**Z+54ypslK@(&n0WNr?>4q^@nlH&#W z_W?3rQe3x-0j)va1-FqRDPZAyk!t#P61rP<&S05OMHzx#;6g<`=>}AU{V!7?1G@*Jc-h6pPbH-2Zs_#H zKbDa}1NsN6I{)g?OIzC|AR4b+U9W>UyRx|n?WwIg$G8Msx|NNMEO?khIZtEa<7EMA z)w*qE0|yM3LHz+q5hix_IMoXp>Q1|DZrGj3*@x&S2V@9S5hf5^VQ4xengBh3#M)k) zZyW_ZOEI5I#i8 z2>?5;11@fY?Ez`ATag}*r6i(M8G2?fj%H*t2BF$u@0kvyh)mYFgaO=u>5oZu^XSi~ z*RQVwY6N?q>fys!X!gLHKsf%S$N)Papti@LyE;sY+WLeW$>OZaRrU13bPE~Cu=hG? zBRGYHvHYj(5P(;11U3mAsXzF$xJUcl|1#G^=w?$C-9U&#Y65P;4=Wm{=Rx-;68T~Acudgvkd4TJe-`kh?LN_ z)9-4km@)FVqby-RK8COx+~tvQd~B@CfJs95GxU-_UBvGIz~;*NqXQWZz45>OA`BUq zf`qnRWnx_1Jz%paK;Axlz|L!C#gD$x$*o=0BTRrHeaYrh{HMZ*vlHk-ASg0cR-usJ zL_tQc)zt1*+D%>G>?g%XzcD|mMy>hbBexD3GJ_1=Fg=|H0OeS{7e9D=NLK=BT}49q zDQRlngV0p6a`2R$1>_0=T|rnCtk>Rw0aOP_)XK=pLJ`WLm&S1f7V1^bA9w<63hTX% ze2RVMv=F)!66yg1#q6oe9S|}h<2MLM6P_Uo&|YL{V{Yz+>-y-m9}tSlgb#wiL@Czk z*%`E01jG&L!Eazp^^OLD`=4$GRf9}Jj#(4t8$ugEZkcQD=Q|x+CpyocPl-g(3rnR# zm>MmS&(;{EAqcAj%!Z6$-SK=F9U~(+EI+NvA+TdyIk7OM0Z-vGET7!dr;H*Z7b%Ed z^F5IWGY*aan@0r=25uBYFi2I>@V^Ec3?z<5BmSB?i$+}yb89FFgJ|FhHO@o~AZjh9 z(Lo|Xq=ZBzMQo~3bY(Lms@=8ibeGG&E*m4lr0eNm>1I@_Y{S$<$ zA&-b_%36U{VLO2)4go%Zod8W?wV<>d1bShdlqEAw7!;1Nat%w_{ng zkf#M^TSM+9J#xVaZn=ikVm0$Mo+Q6}Lv^hb%hStC5E5FTKvqtBhQTLXuB2XuKr(T5 zv)%Fqj%L9fcEK+bc`L71xjK6fBq4H;@6gMmFu#$b+u%$nkR`Vt^I#FwvavY!E!12pIy z5v1*_s_0093{rD(J%(HtJZC^>5Y&APf)D^*APUHLf^WRBGt!=EKv+N@ zI1-Md#f@S@0uWG7kr_u6WFi{I?)08eX%wDBfr}G{!v6`F_^(p)(Z!7}PA_feht$F+Rz!NqHgx||`;gA55=mAIpx8+{gO@G*KiVSK=UaYO%k;b7tNID6!Q?EG> zK$*co6=;&cLYP8d!{GuT^Ucl8?rs_nqTv;U4S-d_Rt0DbBre70PzT!E6TmJG{NgZS zOcCOAH*QCofeo!JK$Z=;bVwb-qnWuptOVd9ouwL;kkDlkAtK}F=Lc}nNF^r`X6^Ag zLJa2z3{7Z@^736G5rooFYTEh!4+57Mp%5X+-?uqcdu{alOSQ!l+ldP4%Z;Nm$7=nm zsm1kzK+l}aPKv!_6Mg^+y08Ii;791gmfW=U@l7bcJ96S(+2Wcst-y3r-7Wmij+4NHw z0AR=I>{EPul4T6mJe&bgQBnC#YFn<03@5?jCnY82HY&hN@VbHWm5tS9x`LtCIWWNZ z@S%%*PX!Ds@Z8?ZEToUa)gr4)G0NBjVuA9yy7xI6j^`yC*+IPWIXh%Kxd0h!tkLf( zdIB1oj*}nABXDd3aHWO(2GDmn!!imDBzj!ut7I^?$iDTx_D(+V;WCdl*Vcf@C%k_B zn!bDplBICnu&))Ya^R2*Hz`6DDTZii1veRKs|wLnsNWVCjd!4Q=US}0IHl`xX`}xg z&lbN^bPXB@<>huTsE;K6&@~KvPnJ6C*6iyK{-lqWjM>!fcC&hKH{C)(f;Hqk04@NO zjikEwcnB$g?e=gC!CEsB%p(VDj&gE3oIasEpS=aYeDIY6I(OaqZqNSF(ZbQ$$=HBz zJKPuyg}H+fLkn0lm5m2=TY#njgQT7>GD7MUFLj^;$9FsMQ-po%cn~JhF$^nY7;Eid z_jIk;`EXqaHjLPD6V7J!B+gEOGd+?1M zr_Fek6XYlC1k!V$Hk@wMxjb};8eS_8&caE?(X@Ams=Oo&;BQ?~fuk!BaZZD?MnHz) zLCV7^6$b}g@IQc!!x;c|4Gq9OqK?qMhE#NQyWid+1u~GCmlp!rE*L&AHp7No*bQZDm+y8HUFGBQwOpR@t% zg;RB~KF^<%!>J?CWZ72Bkk<_i60RGLA;LKe5Q;!tMyjsRxTXDM0T)LNnDO36{ty-n zeyHJRn!sd=Wg7lX`vI_d+<(TpqLPw|zCM=!$Xc5vFZ)-d1P4bMAV&mq%7%{==nas% z7u*RHRda9?zlgy6>R5POs0mWv+cx90++0f)#3a#&cd!(2fD7gykQ;!AAh|z&+?0-{ z7}$i&gu~Z?(MjXA4(A$RapeY`FC8^qmPZ1@12Lwxk# zX}denYJqe;@D%s4vcdq|s#_=nuF{84|IX7|jKb+yTM{IRl3J%z_wQtW@ZT8$|Bv+d jzcCN~KYY*0)irnXQ}VFaTuN|&8bw}OS*l3F==J{qSQ4+B literal 15854 zcmd6OcR1JY-?qlLAz8^Nkrib`O16@bk(HE@JqjUvOUQ~yNJ1G&RtVYIBqUkcSs^>w zJm=^4z5luYdG7mo{(3r&jw7FZ-s8Gn<2=vTc?GH{$sQ&?ModIRbXe}Hlo}Dyt}y(i zJ+Kd-*y_A;AtDmXmy^1z?)-A5-^^ZT!eee@F8)!>u6-UVfl5@nGnfxL%I8YGtBv9o zS-3&Zo^yneU8uZ8v#VZdwz=3PCNjeI12{ zGSbgP?HheGB&QNt6^8U5Twe3){6?ud9%E)I@Yj0IY;IzQW7y{TVbkg|eWscq)t~*| zk;y?$`+dnJGp`|EE9Xl6KEHKCB$7FJ~n6ziVz@Jm;2~nYp^P zZ8GWKY`W3CwCh8DKHtTQG*dR!LB-7gLWTR z%J=W~Zs-aL3AvT2;VwSNzP&A5=ocDFs>9R8zCAlX&+FsklQW%hi{gc|(&a?rMq?ar!kgW73s%dv(jx)y?g$wY6FMn``PC8n)Y; zE^61WyZmXBUD()qDem#&TC9LUVQ-sx{_|$j^T!TT2m5{aaQ?gb1#WKc@133J&Y$9EG>4hXYs1mcXLbE-W(_f0YQRnqMuGD|^>eT~p?_FwYYIpA3 z(Vu9EdmIun>{udq?V5?Z`%76yk7puIv%CTVb=zATIk&iOaZ!^pihl_?e(~+ww3kayGs$S-xlFaTh%Gc`2G1_luXQxwS z>-X)O+V)z)PK?B=kHn=EHG`a6-T4+YUDZPS6dq>A_{r%0|-L(FsCk!1Oqp(74 zgM+P=KKmEe+_9N$0|PBl+}hYUykFaoAM&oQ!X-{~<9$VTtgNi>9i}ySZWl|bs;a&m zyti?Q;qf74nO#vZ?DHMHz{zewlHmoM*KmP~o{${*`y*H0|H z)<{PTCE{`4y*tCB^YK$Si>!?xeP5}|kvOIL6ou%ollJQB>bycijjOAICMG8IVy@2y z26P|!``<6=|J_^oq_|l43@0ZY1H<^Y6oudYCDAs5Up6;IgA!kLn8(D#4C5&Y--(ZB zc=P7X^A|59Q`FjedxNWohdA}ti23>XbxIsVCMWOi_9i+N5g5U)e2$m*fkrwTKmU=W zwuUcXNL*Z87Cbki6SQYtDcJc7&GShSp+oPoPLeR_wyr>A(KRlniR_SQ?m`w!20tu@)(+w13R z#XNsLG}~Vyy8bKa!-o$;wncbt#6Y4(dfMB!mohc@`S`pWjhUI4ydOU%u^KGD=HPIl zQa@~b+|<;}tnJSEk2*Z(`1y+*XO7`scg`PslbV{-V~L$rQ&+E9p6==?v}P2D4bkTf z(8>&565*j%c=W#0J2{z^o^=1+yLYLM9=$*I`6wkN<@1CDc6!o?=g%7o?)4JQZ*1XW z=H}+SF^YSAF1w2}p6MvN#zaM|s-`BXq(mx{6n@2@R8?DBK|$dV*2!6v;n?xx2mPzR zG&hGoeJW{U!ZvI}Thbq@l{r2?T>VnSDRgbkh4RP|RVu%N0)a=59?h@0|L)H5DID~S zO-y8d8WGXh*f<<6%fKWi7Pq`I)78a+^oT(aF2z&mV zws6IrZOvW$U3xk`W5)JabY&Uj^~^hqqNIHL_KkV&hNdRn+S=Mn2``2+-6vhswRg_v znzb^VIdcZLb}rLB|H7?4G$?V%Mo=Y9ebrrj(^Fz{a`Hn#!MCn1SxL#=9UUFGslD(C zM6r#aqM8~d{!vpSrNcvmxBvWEp74ko=^>VGhsg`CQbyP=`+G(KL5m$qhZC5eOB zs_=N65={?j?T=TeEY2$iDVZfSqWt_N9oe+UkB?;UtY;tGyPM?jVO0$c84nLJ&x(XHx0P={egySc zo}wjr8Wwg*Tl=_>kkBuCVR;1wyvXZ{iiE{Q+f%1bUA=l$9|iKQ`WeryX}vsT?fUvU zmh|^vMMCUFYt*_upYkobI5;_3=t-|@Y02YCD2`K8=0AS?5VRX7(c4~(=8I8$92%;2 z`}VafSN61uE-AhoT#Mur5(<=0sj?JkM_x4=C+6ozq5xo*8=IR=jE#M938dZ~OH1S4 zf_vdi9Qj(!cwIU=x|gCZPg!I`ZGL@aQa^Ll$jGR#%q@D)e$uaap-O#y{I>gi<$l&v zr=CVf%c716#2!v+yNc)XCu5XJQCpZTnX?^jpm-4*+xYo&;)f5;&y!nzWX zoZQy}Y6rsv(KEs=NES9p@KRctQ7RlCES=1_f3GIF#A#&;oGZVeUD8-W$MXY@ibvInRcFOv)D%GZ^m+>#_e=@Vk zJYpK9{|KVK?b2VF?Z1CGEJR6_3J?FJX^a{Bf9f773Ca9?HCa7ZSdGthD!<`jgMIt< zjkaW&uxdNMRaF25QVeZa??YrzuLLAzvlqU_Z(7te3*ttD5 z=0~<}<7{L{p_#!@oyX&;Awe}~WhrQTSSrI}t6fP+AjH67ZB6F}^`PfROQZf%d6!>W z#SIM;^S`^{IMM5hJ9MUG$%)KeP##+RM^GcKdEn=t=LL)h_8!=~``5B7auf^sW+u2c zPuSz}t^Uo*%Ad|oCe`6Y6w~s(A467N)F0eiEvgz(omKVyxr8hS)z5l~Z9eTntB~&t z>s2)6mozk}A3PhmWiTPa^_yEsHa%*^BSr2(O+ft!+VU=GRTK~;3bGy>?(6H@u$Kop zJeQRvazudao{@mn;V+3C#LCvquTM#s^u#NxQvID9R7POxW=C&rth9G@NaGF;4i0~o zm*oO7$dylCZEv8LaLzq5aJwgr^^&1J(jw2S74@zl7lhsuuo@KhN zGrfgEo|}S1B96cHfj?9@SeGtoT)N##a13=Iu`KDw1;eBpp!wa#SBc(3eD*?ZX` zS9i1S186&a`ZS^7BMY;1iXK+#UqWs!yEcCLQZsDx6{sWYb_tpdp(v%Lr8zr!bWFea zur!r_SuI5PjNQ}K#jI;o$;VaGf4UVm`*R*}w?9>)NPe5n$$vsl`FnU=#uKNT0$c~f zXuq20i*C+WKUX}3U_t%gyL%VOzCE&`^h_5nESHx!4h@7){rO}6(yhE$^R~Ed@we7O zMxG>AJEM#(Ch9qz4OYFrqHP)~?PhG&CDmsQs&AE2OXeikswyrVYxd|88|7GT|L2Oq zcD)}%yxW}!U;owT$b;7^&lfGPmzLzdZp>shyy3dMPBf-@%3Q%v#Oq21S*kYss?H6K z(vqBExd#C^Ce*s9+DREJ%2H1b+@?tX`k}fhxw-m^v|6L^0PCfici$vtM(vySdM(<} zsYOb%W zf;QVzbVF~NT{qX=qG`_5;H2Tv3E*m6|H9uYb&B*e*PpSa%PUmcwh??&#!tu1Pihz6 zIyz8%LD4laRQAlx9Y58I!Pd0vslR4tWs=$eQF630iGb$$g@uc!I_W1g?fXCG$S911*h-eNTItw#FTLOr7yAQeEzeY6sJd3hpyo1L5c+V~om&q^=% zW{YkSzx9RivRfqf4i5K6>JCf3CLi4XTgXRC@>0m|kt~DDUc9Z}AsSj*S^}s?TYss< ze(l;dT9QZ3PGWEB#{0f6EAgM7KGpx0<>C!x&v)K<{xq4H`p@^=_AqTv)asU(R|Nd2 z$-kK*c=~i;a`F=z>u32Njk0@x0;C(OO`c)dMY#uS0n&kXYE#k=e1ewC7u&2;;Th+% zpUigX)2;!Ri4$DZhXCQG$4P3&4%t|I{k&XGw^>Q<7W~a+_O*S65@WT-#V%K~_r>n3 zJ_dh|9i5aDUQ|0gnsUs!qF?gfUEvEZO*dU{XONj`u{*mrO;v~&v}HUgyY=#Jz7}YT z^K8)sEhA%UMFk_UEt)U@gbIh0we?vbfKx0idqQNcp!<1vcr47ieivr{?fzA)_I<~- zyQa)~o_CIzjPD2@JKJ*A_~x*e;-AG;pIf&*>n8diHy0Is6T7DSF5awQtS)K8@NiCd z=@&td-yBy%oNm_0UVTvWKq+;^E@4AwbUHUTx1oY2%jH?rfS#=|`GE|@3B!h|#f8f& z=aIx$6~EfN=kgis)$`Te=qXg6$~U*Y{(bb#FPFC}rsTo3BK^XZubX3X2iDH8?qa4+ zvHsjBaeH>`(%pSKlXuddeWm71w5w7otZkY5-9t5(6`*`_7qj^FlT_m!(|g>fuTBPK zuCmwsdKnv?^>?YiH8SFTK%P#{qA^3jsv>)A-D!SyIp=_*{1b~yBP(vJb*~K<+dI4Z zgQf%b2CS+dSz?&lZ@Tu`icWHsx3Krx?b|1?Py{kqG03{B;6(Suq{{F&GX#hugbS9KuqP}vE*w?R_4u*3O zYRa(tMSlUa&sw||4=l%iUR;0WMqH-BGR@;Ib&_1))btU^3KGk+LPG6o&inT&rio`O zu?Q)w{NYAwbLQ8=f`9!y(j)4rl&?6y#eQa_Kk^1Uh(or=j0K1g)q~2)%LUehqz?cY zPoI|C%}SiD$0(Jm(IjbT5wQ2_<8Dg<0zgmi0L`b8W6d68DPw}jnd$?EYquxk z$6LM<8mGL*YaJtvIbF-c$XNh#(2QLiXV0=Y_LbC5PH#Zyk0pKhSE-tC`4oXu0gTQqq4jM)m z23~8@WF{?b4p!VaftYp3a{62;p*K6C%)rCa#Ck|7^G3S$*@AtigC6R7WeYsh%9P2} zkZs|i-p=NbXBE{*vZ2*25pTG;LhWhUPs(IC*)mTrQ6f~6Ag&{mlQEa`M()7@qLzGR zLjg9G2zGw2+Qp*p7ixP74YiveC|ZT;A8A!k zam$`uHrq!c z-T+lZz(C{xb8YYHs{j6-DyZ*?YeIs~asAH8k^RaVjpUQU%n76WoU%M9t8DJrnWAUD zF*Y`S#X+2~vpFHBsF++*a{S}Xaj8zJ9Wrl~=U(m=v6pziBuMBo4d=8pq!xKQD0UZh z3)L2eMtS}{8yo;`rmRe+U0`Y8>iPowEGRg57eQtb5z#hH+QXw4wzFctzbI{AxywhX z@uQhn&Y9+1ZWi_^bbx2>Cecy3al?oEg=5a3`vy&?Y*^F`1m^NX*^D$(yT_#n8&Rvv%iWcT+UukD7SHw9(RdfXD}}6G^XMdp~@* zdvR%L^7n66&}9{sPv8hwuU%uKB7Uuw)(t%;D6z(YdOi5&de4glX0JZx@gH@To1;I7 z21Ruwr3+3E^iwn`W_j0KLUD#_v)Nm*b=+o7pykn{eE>3NB7-12K?pc;kQ({Z9D5PG zkaM65$amqNEADr1ZU;#e-WtqWX_@~Ka=CotR*`T0J|?uF+S*#QAT&2{sfb43`Vp`S zki%~11Fhm4T%`U!3k&ywd%?~)#r0m@H4Z)Qk++$eWWu>#YPhxG(6l$T_taWt#EsFE z&+mW95H4w+|KiIRMb8N*Pk$iR@$qrw5(GNv2QrWd_Uze%2=aURlKzjY7#kZK=dqL2 zCDBNg1+ynn;U{k>OOupoN+>S6Wjn>3a6 z^yla2uWX6Zl4L1P5LusWcyjj7e91;ogHmU9_fpU@Hx=np)&4DCNrQ5yQp!lh_&yuf zO9Bse9EuWtJhexj20GpB41u^j{2kvwHzxDkZ}zb7YW+${<2629k$9y4 z1O+?g$>~1i_Xl%7LQgBJC8NEaVIO9|? zJG8*9Ny#ADa;cNk|Kg{L3y)Th^1{E50toX%1Q zkCoR}cLp;A`_PF08d>>ElXF4u(G|bF4aE+5UQwBAr;S;se)dN?$Reic1R9{j_OA~%iT9uFxRy#* zUFnm>Q@uVI>wk$?>h)$$Fx$Gx2*hzW+~U*Ex#hgI+*Rbhc8&<5#7No7 zfDtGWXT*AlXNtFgA0E?^-8V(6)a5G_)Eh4Q!t@h7=6Vgil1IsVC2jrO>lZZSYw{ z&ECUwa<&UPqJpUxKke8R`#e0)GAO7{KQ|k2LkV03$t$Oz06Fg2_O_>tjLffJzdp@4 zMnpx)@Y1rAv}bspCa$ zV#9?nT9xz;=*v&T!@URRAbc+5XL}$6r67_0E1dONU8JL1c@!08lo)fC+)%%+@#bHu zn$mmsE5O|mJ3xhyU&EuL{VU%)rhg@EE?!Nbaa)@ai*bP4%X3(W29?lqP{cOpX%!z1PZwz7ZB1s{keGztHgB-QE{2 zk{KINyp<4ElXuZjLvVDG(^YB7W-Yfg^gTKHN-YhSL#2LiJt$64vr&3>eRN$uv$eIw zS>CDeVanCad8_WE*S2$!ufMatg%KxBLgVZ~-kEu|$XNQhtPD3yKahHfP-o-fOfVM+ z3L++A@LV+zupTHq)gq~M;fdYsAdUCuYnmn1*36#92Q1<~UJz7pi8>e}Z&jpY6_hxi z>b0I4o(<7)Zez{1KkSyalc%OVq8h<%hVST)eKn2QU=qL0K|h|rvuwDu zx;BtQe2^@M)plPlsp1dORUal|eo9C=IYBOaE(3Rwt=-)hpB*Xvs^**AgN!`@+TA&F z^3efqhldXP=EJ#^Ed~STsv%hj-ivA!O z#dTX0Foq}okRw&q)uryLl2mSo{^GArZ7cN|YG7t{A4#?%w7wY3vv5xxR(;5}! z1LWKcJtpHnELBB%ZVz4J>u|C4j}PD$+7sxFFvMuXWn-q$+bv?hh_Em(Es3$2ncdR( zHMHwr)6>-xOT!D!Q2(DaX2#!idy~c;l}EO4{~C*3sdEb2>Mv8gI~TI$)rSvMc|D4} zw8oB()FCp}kjn|vg)-Mje+Jh8_IT&rsqKwu+F%DznAr9QoFz~6`q7w`_`SQ7Jm(In z|DNow<7+GCMh`cgp_o#f#r$K%Is}iwH}HI8eO2p>4hUKt6C+)6p;&NfRI?*I_j8qM(3;Y;o3r$m}Yx@pH>G54~jDD1VFd+?LJYv0<` zfTX?onjJN#LcvGcwfWLevh3ikwz;#lXXhRh@~GcKEyzvG)_ITfX61g@FEIrNb0e0& zUrnQ=*l&B>ngoUFK595hs1W8q7p(_s40CMehc0`rHR-9{xZzhl{K+t9zR#}J;9LxY zpdyc>Qk#J3$cC~yPkTCf8?m3HLcCzN*yKbuW_FT~oMa#93c~m3gBLH3VWYqWeh-wzwzMcgrB6vofn;r%uT^9-T$N~+ zbdgk3Xi&T{K|;e@bwXMtYlRxiX-ji2qzpUFR6v2`LzXQ3v7+w?%wGjhBbGim4_d9|Ih8 z2qsR>V2Dle&OZ-+(3&wT=oc9qYF;o?5X;cY2H@dl8{-xQo@R7nLiSNcsjjv0VvnIIr}7Wc z&80E%?WLsH#;faphDmaAp}0&=O(lN(2%>c)t-%c%`}o8J_)0?2cvHmy!|UFkLp$#8 zh<#?a2RqVk&~sn3`_QMj)F5j1v@Sdl`H@+2P`$5jP| zJs5j>Lnx#?GS~kk;idcB&o>(Bx4+ZX?~d(l^^zEDo@3;AYTK8tf~gIv1hifTx8HoW zc5|73Qq|H_sQE5Wq;PJ1biZ7_BgJOkk-D>8aP72Z@3X3}kAs&^M3lPNJv@JvtH7OQ4#ziQ9jr_@br9|Lw*Yc*zMjTtAerAdA~Rp)k2nGCXGV} z!)}a2>~2)JF#o-?&)G@3=IgWmCNGh}=A0=@hODp)IyLJjcje0adS9IOhaf7d$9d$R zt_Wy_JN9YOJDCMxasQ+(%!ZQlu@HW%+F((QWb^OrL&BAwS05kJmQ{c%QCq?(S%W-2 z^IDB6^z+xc;t$+;KqXPtMhxrqI)dg}M6JN(AMP%C^YP`g!_U8_|NO_l+Q3rac;!&pVt-Jg z&D8hP3?6^lp8vi>G~hNT7Vo(}$yS*6zP;FHc(=0Hvig_Zqoa)xqHCiOd_qSK?cEKz zCMq?-bKQF*wSAI7u;Imv7jLt(+1c3qFg6}EGOTU?|hB2Iyl9J*N%=ziTPgvR6@gFM#ZcmKrLtnRvb}wWl zay(ajv){9i^4?nqNw!NG6xm%0l9IovgMu8~FdFo!B+vV+u`#`MJ}xc}i~udH3WIK3 zZ!_dFEvY}vjpG(M)KhP3%@3UKoQrLpxRM%tJ0>!6Q^!dE%0B@lRoRrlQ=m1N?ihX> zz!2YQZlHF?u|8RhD7dx?Y(wz}=3_}oNk(!eUnMdM3!__FS{ms3ZPPO{MzKMoAsV^-pb+4Rq_%B|R1q?k5nBIHvO>(l$_?H;z8}{2=n6?sz!$3H+e@F<> zz#_Y>?$@t7ia#tYEJnVkUFVxl2;fEmW&oqQ~x;^qsVt~@D}ktA52Oy_Kqq|=Ic9NV1DnO35FtkbXCxoj8Mf* z6Vj`PUnM3!3=Iu^{$awg1cSz)M(;-fVnv56A~|??Od)S2CMG`DF?;^}`6uIZwUz;Q zTI0nq`>(OwzXh%RYj3ZD$=J89512?`@Uh3g`m(91DTynM2ud-24b3YlYiPp&xlq#2 zkawsWqeu4%kwF*+L{H6hbawu9ECF~7k#qak_kvNk(KjH%q5vLW@*EbLHa~L7fY$%3 zWysJpr;udBz1(CrFd(|tYEMpanNCgg-T-}P=jRnW8x<2{(Ry_=ju5F(;{W{piw?G) z6Bu%+!$g99FBAbtX?7cb@72}S5i#4zfInl(h2HAw>WZ0ea#@+jnC_79pK8YKu$UOS z0gsj2Epa0LgL6CGQnh4WRzShCsd?b>#Z>>zGHh zcXuCnpp|KAY5Dksh~s;wIbCdBOhQ8anC-B=@WFjPh%07mzUkQ zml6o>noB1?VJr-*&zK*LE>x!DCH+c}YJj5&SAa_gMe4|rBj3M&pa0XY%r7q95^G)F zi0i<%0*i-=wsvs)Btr5L7H4*#ELbMVV7fE2bbEaofa1EQCc#9qu`)Mdz4O-^=!Reu zDeUb5?q6oqI0NI3~8{xS7o*fo9Pm;gFWA_$XM?^;YX`~YBdhvx5q*v~5WFzEvb%!Y?$lTn=7A)To)GrcNUt5XshJU@%3<0? zSPIeY)e-ke1-&ZMJn&{&D=Qw53c~iFED~ld*do)s7{HNl?d@&T%g|_uFoJ@B%*?{# z178t}pe!$KGSVMkkdc*z^bE%QwWFi<&9&H{oA0`^{A_l{FIF^GlSw>IC-9MNN5LiWB$Z-Pus;ZLI z_1bdyJKK+N7_JFC0(+HI!7g~sI?O|;x=|`kLD=9t`u&>=Zvr6?j|-;|#EsWo(**Yq z!VmDSe(4?+-^mn3DdSzN`C8Xbl7E_88CiBE_|iN*86f-hTh;6H0+GS~0a6O{Tctj4 z?$g@{Imq4BSgjW?KEwHRD&k;aZwUG`{c`Akqz74mic-Dx7h@|MEKTE&B$+T=MN7vD z0(A!^N{JtjZGNPcd5VuO{NJGg3Nb><6FFn|=a(wJ&3y0dOFC9IHiLXEs4Fbw2l@(s zj#QcZprqIcK5n~X?CN?9nWU@B@LJ_ShzyE1iYlLkgfi?L2;q|c7T5w2drz9&3cm=b zpFRS=#iFw)XMtyJ>e{atLx=RvX1pz&-|?IC_+HgYv)g2t?@*+l#E*fh6(dy#L29r? zMVd>f`%RwSt4Rq>*6Z%n;{JYKUaR+qZ3J^O=Bv6s!H4Ldu#~j*z>VpRTH5SJ9GS#+ z^^G?)1>X9+A2TeXID;^^4lr-tND-Zp7uPH$I5A-FBUC6Xe)fwKlQJK8H|>2(?WeJ1wKV3Yxh(deL|*heU|e7Z_)Ln~c2TmUPNMFBB~=ov3?d%u=fxAw zn(l&5;sW!i#(Kj|_ZqbK|IFs)>>KYOoWAn39?&G?@ajM?L${?O4dBIoNOAZrlF8<|8S;D zxHAhOh;V=d3H=j$v`f%sk=3z8EO*~3fh!+7_LQ9B_(PpNn)@(KJ_(~33=F8-z<<1O zI{+6!*f}^Nq8xPi z@@``~%l_iX>8@%TfV-5 zoIaDlF?^32&HrVzu4^Fbs#2VA?O0RvE{u#ff5}P&sZacKdV)uQwC7v2ckj$8@&oWy z&T-yc9F~4${5m#21=DMouX6M9V2BIKc? zefI3ck9-RPLPj?oaV&B9+hc~d2?d|-@2x8+>%b|)Xq&)p3vLxFZZL%AV3R=z(Uyo% z!;fPC$3Ye3t{ku|kDVmAI|$HNS62zcK6rFN0U}~z4)$ql|6E_5hSjjPDAh0r1ESSg zr;1>-Zr~-LFf1^Nq_z9V@$f+)$lT80Zr)K*H#&kn6*DAo^ICK-uzBdMTxu$ODA6PJ zPntqa55vn#kmVt;fb#6~VLJDitwsjIK-17`e+ENL;2<`^s|7Oj$G+TJg;2K18z?u<#X>B#ix%IP8gz4v% z-BJP4$bpfNiv#+ep7E$zc7K0s5@Fav$SI^Tk=n`YmK^7fc+g>T6#*>}j=?e8@W{wo z^a})DxaO4FtlK@9=-BYCFeyXJg*^gX47v)8c;Uik08UZ1vxe1SneKE11dbcP<%<@c z0uLVMyaS#a_lPiV0Jia!d@Z=5&ee%xP+eUOJ7hcz&W~kSKyL`HXprrz`UIbBZtl4? z%i2dLv3#%Iy$b@OgJ}m#_w*^HmX;O}?>=blum>w^XlS^LoS|;E6j<7t^J07e#zR5s zubKw8t~xof9}wvwzrYZw7G#u@(?yv3;P#_TZ4az999|r2f*+Xx5`=6=4;%{_UD3i& zY<5FAQv-wxePo-vMux@hy@?G>5u^;F2R7@aJ1RDtDoU+yRYL|$vBo}dQeuOvWs?}U z3w3TCmCRtzl|Ay`w&#ERf!YB30xvPBEhcOTcp{MBnVA_iznhj<;lAgRgbNA`11?dt z@`=`j{X+ngKmaxqEhmNsikZ|*E?H6$HV~CY_H#ii=o_4ovaN7VZ6B0F{>D3kw2MD>sfj9tnorf8d) z8VZiA;E{5^(7xJkD@u)H0ixnJt-l{WT*J{o8G{vX$}X&3Jh>n`n&;6GA{A z81hMdHD;HavkKOG5?O+4f!=^DqTU$!7fbQ;F$vS~u(mCWEERLe@! zyoK>tYuL!vYR`IB0vr+Kv!5L|^-wMTd4M8HPwMX*&`qBFtnu7O`0e-k?E2UKf`@%m zULHR>I(l_j>~!+S0{kls-d(tSF(?Hzf=>v<494N6vEBN2?i@((I0N_NULiC<6f0Pk zP{!_9SQsIYf@#h!R_L=4YxZxLE%LwM__;{!_ptP^LrW;#ZF)ykuNjD4!3SX@x^SmTT|E9S3 z1%~rNO@hwzLmm~J!%PCi2g6LjePLNQ1{wPO+Y&a8o^lU2V`&j-RSpi0R}~c!1GkR` ze;}u3+^Qfy9)lj%UF^UKTjW3b@bG;qWgM<0{eQt`Q7q`*0Q!V0iQTQv`z0I{uFqG{a>VU;z4=2 zI2u;+_rPv)LN|uX29Ehe(6sBRN)*I?A0g~OTMFC^m0`JI-1!u`DykUr3n;mMq;h0| zS42eN^5x6MVqt#g<|HlmqD-8WkVps*rywRK1|CJi*rF*CDz={_AhqpmpAdYtr6p&m z8x3n82b@$ppxYATB^>=lmVQQOD>3&5I!m%eo4s#%Oce!(*iGnE{T2%%9!RYPp2;+LcR!Cr1d@ zjVurf9k9IfXgCN53E(187+5KtERAG9{#7*9XJ~Gr@)z&@*xPsLFoNN}ct8{lhI^SeOas%l669t(C$0>17#DM{qBCQrS@p0=6Lj&mQ4$0Ll+c z(}dBfgap|oH#ZS><@m?$9;kkphbF%)`Ogkj!Z!C2gI6>X0w?{4P}JbFKC>v2>!Ya+ zD}iSPV?wJx4C1DF7{Mx_BK=#4h-__bVHLPPn@P@j1@EYS^Crp*Og*wGYJ6g1&9%Wa z7|!g{cXfRM1wuh+#L+2 z@Xztm>MT-Z$s`44OrPMER)v(A{_X?@P`tG6uj)VQWU-0O$>PWYT8&nwW7`wWkMrf< z^QC}(hHad0za#RWBMA(5w8_bour{E2Xu~$vr@#N>S|+|YhtV#^1*mea zuOx!NpK$^v+C7!vK*o6m1#=e2bvTCtNd8^q0Nl)L?ie?!-nfyU?1*LuOop}Kajh>T z*9Ba9H?hSExPer3Xp{W}Y9b^ghY`1ggv3-_fqaS~R3Z?(FQ#_i=ThWT5^>B??aB@lKO7!Mg%?_=9=WXHO( zH6cE}1&5-d`$Bsxb#1)>g9&;7Y|wHuILaa{A_5(@>*){8ch&x667xm~H#omxO+GtW zIkOF~zu zmoRE~`~LB%=BSeQokXCLoY|#Sk(@V)?%caaP;vAP4Ig%PYCsu?lgk0A?><4$Pti}nD5WDlE$?UOYl3-fiyt!;qrP*2a6um1EnLM73h?X_j$`8O|Nc-a+%u5^7Wop4%$U?oi0 z`fb*2S)lB(+1E#(UAjn&K)`6B<)u({tJk(2ZtXmo5`E|HT}^cfAe*yge<&fm0$Ad3 zo8Em;rsCpaX8>2sl(p4Gc%nHMb@6q~6h33c2xX(n?-1w!_q!ASnUzK^uDKI#3rtaK z_!`;}#6egC6mceKKPf%IM~;VS_@`A__?vx^4u-mv#C|x=Vg%d|%0Xa^gbfFJ0Wc+~ zb?~BknpQxyCa^zr6Jrw-!l+!3ejL+Rf~yuWxKX>lqyzBX~y8n_vspx3ZeONV)@*%`YZ)qDcQG>N@B+)HF<<`Qgj4YZa5V zwx09gpOBCP1Vl3+At8AWWeP134v*5Uzr6&K1?`V(%2g6;gG5LzDT&4D93XVpGUzf= zo}Qk@Rbyr_{9uyc51%K*(JNQ3fQu8(x|}8ni473s8Bnj5L`36M(gfs_H__ z*5{U%aVV6aOIS#>N;p9AwIYXUYGiq^tB0nhCeSa@ki9S+Bjf%doUDUVCuJqM%7suT zoZZ3svcWkseSM;jg*;`D=0+B{-o-`Y?46RTDh1rn;fImmw|pyp{E0v$_!PQ1swQ3mCrJAG`lN639^Shf-lnHfQBcT2 z>2ugmokF^!zoxGrdw?V#wt)p+hJ&igs!%qx8>@l#pt@DqV+r~J27$9+kj#{nOrhXG z$ME#rHXG0o6&Gi4aTlbo`byQYs_XP}ZN>VyRX%LhSk!}=31PK8VX+h}*2|*CJ2?F`3wFd;daTuO~=v7&C|@~4sy-R&B@Nu&F-E#i^m-o*L#i*BK%_f7kF9j zy16;IN(uP=S!Au~gNW97)bzK0<0N>`K>biH0K4&OJ@ z-Do_qVr>;b?_p`8EU%@dt9;SfM71z6H}Te40ta_{A)YTjUlweNriOmEm+I1f&=zU` zd_lCw=q9e`Npf6@>$;~l?@U+wr>$KK3nzMcGi7;3BvtdJ#243)*!z;M9m}e?3gq(2 z@awV?w+F%ozie*v1|0uI2wn^ZgK29kMkpyLDCp^F<lBN(Oc=sDiiA8DU%a;tQ9F!a!92mx_+UlB`)n+P93}X-` z34<4-s;SEHgj43h(ZQC=h~Aw$XK8s2zWs7fmhqt_rsb8_(CA=yyhUR2U?MpwXY*)jz{KBv)BUh7-sAzHii(PQqHxxw51Gq`yIbnY1)=D8q_=*$8p<)t zcvDw-F4tOA7EhtN*ONuVY*L^eMIS<;#s-T@=&P(<`g13U+q90U>K0FJHby z5Ex&|blwymG3|xQ_D7F!BhQGDB7$BkV^X!@wSEqRg}1B785l@hU0r=Q`t*^2?QJg- zdSTp-j*gfwQ?ozHc%BQGJZQamS_;27JNv|P?H<3cpC4=dm+`r|unO0ijO^^`sHuU1 zTcO{+T{kc=NW1pp;weGXfa#o!4}}b;J#xQACt%!M?mTJg=txFPOuW7{ zd`9kQ|6TvC|IvXbET8Y*;s-DIJw85;1wViF`n3{U>{yScTn&5AcvC2Atm;a;*yx4b z%8@TSYcs3sJ(^7;BTPiW*bNO0gSCED{nCVlgfXfd;%>9#(_a&DxVX3s3=Pe{CJ2># zEGG3=+mxM#1rMmIlH%p%h3{|r61Kp|$VgIV#@3$9sK?5f!lRH7#q{fGetVk+@2np8 zuerOsqs#lP#6sm9HIcZuc$!JwgTWe~Eu1=1<@FUW+?ck2uP-I2;Da$?VGUmd>LM2w z?0i>S=v1#>ZAw=PHMOw`&(kk5A1pR=a&c+AbiLt48laJk5S67St53a7!teez@*E)@3b6!h&lqh0t zzPmm*`?Ep>F@-m*Y;Cp1Y045(QBm!0PeyOg$Q==u89u)G&T80QuFpm^#rMw@25B#H z5v#BA@%*=)e)pdD-JN^Az1AsLVn1}Ty&AqH6C8{HS-;&exuYGjuV249Ees0nZw@)0 zx@dPwc5gwXdcFH<@!PkJbw>w|NI*mcF_M;(L*Tc&t^kM1_`%K{m>(7)Aqq{|9gf<) zC8{AK)9dG7 znSg$!osggXz6{VX&Rd)@Qp0-`@Gcm}u-hceeCi&+#sFadBDsZk;;b zLTA$a@$nhawXZM4$gV!;ZD@;Shd>xc#ihX_EKCU}E9rjHAD@n|Uz=ewJ% z+S%DTLHG_)U|`_b@-i7>P;81tD_|UXuP2-J!UbxzEXwoe&x=3U7iaQWD8cvU!^~0; zD8GugYEL@5zmdAa?7z>7koOmv6p4;@BukZLI}TUgKv+1qxJKQF2MTXfAp~$x9OB;E zja1)6SQdspEJw{$S6AaAjqv!gSK-^Yf1>Wi#>Oh{Z7!B&pJWifeoEXaZF;86c7RAb zR~Ob$u5|iViFq(05BoWWg&;5{HkMU2OWO?gbD&yQcanaAp6%h#=%|V9!H4z~nOjI& zS@PSr!VRshDl40t{rRpi&)7&h>}Ah|9(@zPvj{nS^y@^uTeo<`B_)Zvy1G2=){5S~ zdxwW8`ubK|{rHxy6udNCMGP}$xYzw!lR4d@H7e=e>gp;s!pg>`Xlr8Pw{b&(Gmh}= z*|UKx1d3*6>89r9Y>`YdhPFd+w#bpYckDhd@6ID{HZcmI;}dFmGo+caA_$PjB#pBQsLp(Lsu=z+$Br z78c%kyR*Fw3;8E%&R>SCxU`hIrKJTXi-q5~8q?j~T~+7^ubS=7BHrKMFWq!+i(y65 zz7NKRXOLY$pF7)K*=L=eVBtcIi#Bjqkh}5Ib z4wKuflj+yb6~p#yFTGvmkzQWD{jhVi+IjNCgS|zuNM<>vJ9q9R9n?NJkYr6P8EoE^yI^q9yyY<8y{i4{1V} zie!+WJaf_RoBFM~2Qt#q(ieiua)m`iSP8I4?$0DkZ5|AJj^eEx?LD|v<*``$z@aDm zByzWdxTc1zwzk%A?fcM>?X>-yI>-6V%|ma}-~NYd%uk;_P1AX;F*{NtHR3gS@}>0s zKM&t4DMv@mz?UW{GdyW+ZC${A&EI{mku*#>5Y7;(N;FeTwA>*EmV@=;MOrv{LQzaI zL_9osR-OHWG<7#`-aIAgb`BPQ6i287{*)R~Z z#6Fz;mX5Qz@I9#3Z|~wg%(IaipG?o?5ih_YC1y=0r1uuyZ9{Ywvj0)a=_j+RPbMjc zps_nAH@9JPai}bcVfb)&(^%4NHUJ`-DZFj#r$;C$W13!`^X9_M^@Zs zY$b~OIqqDN6aN5cCkGeAItj_cC zUGnwa_lswgdm#O1ZLP#*>a$cz-kUdymoDKUrV!j?)Uvia{SRGRDO&0r2D-c7b}hh? zi$8ht#OYTXMSE#@IFawc#sI`Mhd=sXI5{~JF5IKMX#e98z!|sYk%L108>12L-ie$z zdHPXN?Jf}>9-gQ4(bo9wBy*TIK_Q_Ei|u5A+U<#``^?i@`esHJrySiTkSkl!1k&8B?7K4+e@euP1YI16 zx%oyFlou~v^x9u-#k%18?0cE5zTMAqieyRmz?vGFO85B?hv7=m%Ec5JA4Sf%@g_1k z<$L$eLvXb6t*fGkPl0SJ=<-Vyg%VR!Qw9|-XI~~KpWzep7rp<-((XqoVW-@YG;E4c z*h`98+T;5>YlEft;;g6HTFHtpHm{e0+R3I62v*q|V%WZ+Abf$SE@;qu6au z8!{Ie^Mh@(xcI%QJ71os1O7qJO15Td6pSYm0DwvqL&MaUc;|`cFnq&QfCa|)r)Yd( zD!l%D;)1=nkHe+$vRKEA#rF@Amx0uqwmuVN6M&9;_?lV$+G22-$KCID=MjTG2J)*#fBJ18}^w&nsP z2@pefd+v2=X}`bEsRY;NiI&fh10XJuhldCH+}O+vSM|~1o}#_IeVj2Bn++4C!rg}=55q7? zT1STm0P#z#JDEx{rJvN-%MT6>SuBs#n5$G2J$XWjVz3BWzHXA3Ysw)(5WHhMc+Q;* z$jr|ErH~~@)4JyhZ504+0^xYP$Jv#KUymMz9 zU_G@|hmwTf?gecfoz>M==BD=clT@7Q3;i+Eh(@0uD$_`iy2FN!wy>v?_UE>lGL1qCk_nG&JK z?tP1^Ab;~F{m7Z*qU)1zO@`O8)n# z{-2fj7-NKtK|COqU8Qk&n2|CJcj&!+kM|*zA+5z`O=DwY2;|%K^>xkyPk>W^(}NV# z~-pcZuR-$DlzZPg)kZ(J$Z86@~W!IvH{~J2p^;foYG*3Oq7(Af)J-Tr*3dR1MGPT zg77k)I(!({_D%tg3UaFvrU&3tx+otM4iMO|5KC+8%;MtfwoJEf-Fg%pd~f<5WQ3DX z)w247R84yO^Hz6KNERe@&UsL?u~8-}(AGCLDwda*-@WGQ?5qIzczS23XX&D*1saOs z741y`KN91p%1Fu#>whk5jP=O)Pdsz%ae9}bw*ZU{2U`$t0NicM5k^b}NPji%V zF9-9IbhQ1PK7#bQ+vLl6T=@kv#K8%V!ihh}&E1`(r>l#rudm;}_TlxgeagqSDVM>) z!MidTx7$A(?0ntF*bq~%4X>hNZu-Mou4?s$tyFnA(Yrj9?Zbv*NJFZ8Gc2-k!Frb5{oLDKdH% zueiFJ0TO1?>H(A!u_-B0KYtn_^^ebp#lWB6S)Y+@<~J%2SYLN5aNWqr$PjcKk#6rS zs{TXdvGg+xGX1HU&eYaGJmQ!qPXZwaP{=p+eSBx#`7z^CM6utV$4g0fA}uW~Cr?ku zbs|ePKR5BbQ?3_N0$32OapUcoG*ZE5SA?>P#1PYs2D{mBEC`&caAko2DB&P1E1R0K zAf`Y>z@M987h@qq9~@QSFE2-)!a@?no!PK)a7xTuh}tDxTwS%UUr*bq&`gzu0E1I| zxND1xi#t}eT-yXE_*=m(v36+)CM{P5Y97&xSg~+$;6lP4tZ?O`Cc0$1a8WBlQa`Qv zt7vY{ja;GX7d#`3b7W!4*hm6(Hz}=^@Jj*SriQQPv2m0Xv8UW@807t$oFA#uO~vbu z=L(RetKJN{?&y=Bc$z3USKT%RZ>W=H+==vrn@eNT;Pu!iloVk>siTrkxG|U{%`12K zGA5r~f0eJmMaPpLNmQG;k0ozs!mN6>{-IpaxT0Ai!IdzKsyZ-zCo(EEf^);pw^bXG z>Yu@*G*>jUHTyAJy~w~zJ~!%gY2|ki-7OJL3W_-d*h8E&ZDOyT7Z+X`R}!8HCZx1b z8h5aM(0M0&!;uUbeC~la@Y%+Y9etVro|fSvz@9#GI$f8-7nm4E&663}^}TPm_6y$q zG6hp9sopoe20k3Gr-I-McbH;vbi11DKM&hzbzzM~QZ;A8iZ@BG8GGy&WCqwq8!Ngq z;)igu2?I%^>}{vx!X!I#z=fDLsQQyEFKx1j^SigCx1vlO!Z2`hgCP2? z_d3o*2s+N6N9u`#Bv~q>w{VJ@lsPZKY#=9bl=Au*Xu>gVryxtrrLR|0el<)z@yxJZ zr$$;(?CqLTk*zO=E1!n5+^Yb4kKf4t<5PHT9{Sp^Ew)pbYpR!TBopCCN{ly^$XxK; z@j9jFLM2W0gA^(L9lbCeennYXG7?z5Xd}M7%Wl4u4!XS=RiS*(<%Wo}->Mv0GYq$$ z;nXIKGOCX1*~w~;d5Xcf(L;HVa;_*>#ZFQ9kArT*mj-NS9YxdgV)vfAR}CdvC`X47 ztLicT(gH45sTEuG6~4`UpO@KfZjBk9anpMt%?a1VZ+>~<>?L zR?5jdlUw^secN79`tBGB;ClTi8+`9D%H+^gay2I>*Rf=goFcXyro_!)Ki$r^?1&8+ z3wm8?;bc8SJ3Mk-&U#ziQ1RyN=xgWi^HuUeAS8n?7_~e1i)Mf3^*ba$j7`eIsMtEf zQHT2(%X^ci`ftvmZ__90zbPx92!px9XZ%zdC2>Ymo;=`FP0dQD0;8e*kmi;Ru@te+ zui>1=B5R^s_Em7Gz0omz-BCPim48j4K<%;rc9nTU++p;EZ)-uqVsYaYf&xfAHz}bK z1UK|i)dyE-&{Lv!JDPm?;U{-;;PEiPX9A4ijEW?RulK6clB=u$vjR zv~NbtmUB>_xBb@johUCuF-`DU*prs;h7Y-XDsd3KwM{1&Gs@!P>ki}!iVEQ+>VJWF zC~t0e&W=z0Qu~Dh|E3m}x|jU&BahXz-jP#it(jwSP$sJJjZHar$9T_i!d6p_JQ-Y- zTrpTOHe(ZX$jF#Z8?db;VcyEhmSNS5t;)fsKrVO`+Oxf3NAcBC8xHqnYkk`ii+ewr zPI+6n@T=whR@P8bR&Ec5aVY=Wfx5O3HnPar9QEpsyo!pOONrv80-`fU~9?U*XFo0di-)3HuU8#W%;MORSecVTrlQwiaxwkj<=0es@-YlIK8ekv~*ka2AG-w*fcq#K_obBXOC zr|8OrfMjDXE)nHiS8{(#jW zafVb2^XHHHdji;qtk)Z<6P_Nl5?z^bsvHR;buw0t>M8(75@ge4esKzySWr-O;ZPnB zjMe-Fxd4VyB;9-e{yhOPaTCC@q|zv;{_<~qAT22=@g(_xQpiAKX59MVkRayB1T@ET zMPX9X>2uH23h=co9!TEDJKCA!MaCYtb)2GGIPa1%Es_y>#>k$!Tu(1(aZbM(Jr!gM zuZc~~%vh27mX=Gll@SpU(-nK)-`k&2Q&SVX^O?F}u2XuAq#wi$;8D#0mKjue@TK@H zRrnOzu1>T7i0qS=mN_}2l$_KVn?IlMZWR|7E8*u5@exC>!h&l1XI;*gr?n$UKp(z@ z;04%3lm|Rx&)<7**pM*GGAu1E8TMEMcet|*yenGsD20+<($k}rbi2Ec;{zX;AYvUg zZJnk4iBi?DgN|Fs!k)>qxu&U!kCazb$ha8`8=rkvhKahW82k1FV{$<; zH#aVkPE)No+xsH2SCpnlsRJw4T8V?su?NhZASj znezBj1g#kq@#5~ksR2rkEiFZLWvbZr3%Si+M}-%|`5SqCnCNH~H@6Gw>ZNsa9iKlp z0y`3$loSp!q1|XLBS1+Is1R=;p1P~lPh{Je(s7^DKP zna~~s&kJ-`!sq+dPhMKyBsFifakr?IepLFCvRb;7eOkKz%7VDE@>WZyBjYwvf~pDM zP<)uXiYtoBt}WbqIz@&+N+_54S(zDs{q}20iIWiK@rYTvlm?$Z35|YmK!vO*kI@djlXFrrMdHE7wtz3$L2Lq_n*buexOPBX=eBC?z_x#a(hb@k6y5F|=_t>SJ zKIyzi7}Wtt2r>bH%l2IloO61yQ;62pk?ND-350#bB0# z@M3bp-bV0{|CK&=J>8lieF(Ne`XJ${Amj`#!>NCm9)?**SxYJul6B zuRlLQw(#NFPTqOHYSuV4r(YB9FFOQi(6~2@BiDdg%KT^U2=>^d#k`=z=Bb!fy8D~K zQ_3~6++FDF?;vR+Rj5t@T`Z-)H-1dlpEcoDOS$>n3X=MiY3r8YF#wQDDGv+WZcBiH_7E(ku|H!!^g^jCQKsy(= z7PzB9U$m#}pJbK3Xjjle8yj#+Aph(!e1?%L04MXhBv@+rSMrF3-{8ge^xql zxH|Nsy9MnHYEdN$_E<p=jAtg%;sPJJ*jZdCpGqv~3kGk^ z7%fTYKU$a|Lg$TMfL31E;9pp*_yb@uyT7oQu+6`)m=|>nM)d-WA_iBX{?;vxiRei4 zgcqOD7sGBhZ)HPt98VIylMp2ntLfJKwPeEFlyK!qtBeGbZk(A3n_erb?l6GUxk85kH$@7xK7B$1JmlT+at zZP?WnF|hjkqZkLtyz{633?Qk6@5%&QwoNrT7&;n0%kgKJ zsHl{%gCpu>S2Qwm)x+Z=5iv1f%Jf7lTib}@VnGH8mtQGgtSl|-fe!^~tQBx>#Lu5c zbw30}MQOnKVK~15ZUvAwmnug70W8DvUcIH&g5agA*EE0@h(YO4ATmZIodX!d@gFcI zGDL$8Wdl*GL`1(EfaZ4B$ArYhN{WiuDD4HB2|LIwAR4ROyqRcK0~$r~yLUcm8=z~S z0^FMv`kG5XkX*+-nW%?SC+2<`L*Ydtj*lUY9gXS>2J6TV2?Lh5woS3Seg5d?&FIhQ z!CNsyr+o6`W2I;&8FKJIFiLr(fkyY@qP_R4jSlcfWMyR~seoiCayA?Pzp#e6(wLbw zzXz{3K@a`~62f<)e9S=gpp~X2gIgssA{)BAtUp6bLo>XwU;7c{<#bSTQ3Wyo!~6HN zUEG3t8G>;5%TImahIZe_lX91@JIbR|uk@pa3h=XSf_pOc(Rw#h(29 zS!dpV;TDbAuoY5LbCnDgmRMCtls-uPF?wk|J`73!Bq;$+;(v1*SMl~n={|533Hof> z@fwyA04vxE<`8lk8az)=Pt?@#E(+xIi3ow(Z~ObZ^F^P?jn++)( zoRwmc*2m$7zW&lCXv99Dxo&0(Dj4cYYVUNN{)&YttEjNEvSI<*2nZez3`fJzpg_ifgZj^{K#GZ}T_Bj;^ZLctkGeN;}$t`b!=!ArtskBL_ zl$3kTIj}>={O^KJ0s9h&>8YInK3-!J-=0{Leh&WJmT~4#%=Uu;o>;2NLiMUz~%4LhC9JCdnQJ z`6slTTS11T9hSB$-mhRuNL;bE&B@sFQsR6z*48pFo@~O6V$GlyP3`WRQ=%J~E2@ek zkGZ{mykG~$EB{wU>U%Z5wx$jS_DV6M!FRhX(b$v}Wz@9t-Bi7+|ga5D#PrJqm9f$s`uj4-?s{oaFM zqeP{~P`+`Tp=1)$7zeywf_bSrV7ccHAk391*P3rVJsJzDy`PUsmh$nzv%0;#$M0T& zJfiVG(oHjYR}0<6K5(N&R(6Xuj%!*r$_QQVhTdB$ zSd*kv@>$bPSwQqaLU(KYA1NZt&hGlH!J7$eTbIvzr1DV%>Wx(Z8@YQ$D8P$S3X9ei-2s)M>g zowH>iE@*tlhTVg=+xbK2qwfhX@$a}Nqeyz4nV6;Qjevh=%5l`4;1ph{E zP#c_y6NfUsE7Kh7mEJpvvt&nA^Vo>#A=Pc6jL;WtVX7vOzS}DTRzu%vz19ZgfKjb0 zLA3J*J;%96cA*k7ovz=+%+0gAuyu=NdVAM*eJ0UY%Uk_&kCfz^^7=UgB)28Gji*6w zfH72!&s04Pec85PV5s~zcJs-kOxc|Ns~8F!ENMf2GErJ}R0{7`<=`v6%PY{I z40g{IPcC{?lSSX(9MbUJkkx}%m>k7!6URK7mybB8p|B?HuqM@I|G|Jw0t3b?EQqej z%cRgJpAAt^IL8cMQSaYR)4RV2?}~{P&VgqPDf#LGIS_ht5HMY^e%9xNiCgR#497mwUA6d;bf4^B@N{e z2W3ys^1(J|2taZv=TH(d*4PZ|m5RsugnMis(1^zjP%ag}6Qq)& zr9Ur#e^uGT9S_Mr3_>BVXz>42-069H=I~%o$hM!C;V&=r<=eLzLr$Iv2`5?{x(xIs zBlvidT7mUUavvp${kJpkLWKgM<1=sh%YlrfMpWh>Smo88a-GCHSh|FKw^uHwg0&iD zT1Fo1*+-rhB|?g=+E0T%i=uE){>(GKEdH#}nV$iJfw+_uI{-hN6C~f%KNJ@SaHueZ)D#bb?FgH(M2fALxHydAVcWNG|%Ay*7{`5U5a|2 zPaPeXfm8&a)rB5lW+-TBLx45Da9;+{7gz&*d(wJ~uZP zH6(bSiu+$-2>Y9$;QC@_z;8#0+d!YLMnxJ(DLwo13(;>vaH3I0IiGpQKEX0b`E;^xBmW_+8GA>L# zJfU{PV0}#@U)GC)N=ce^su+&ybusvgz}wC)CPoKk{{K|DTfr$II*+;_Cv*?WZJ8uKJ#gicLSRe(Zyy2&ANcnkIUjJ9|-lb(qIUi(x_hC~;|H1%> zQJn!0^YO`Tx|M^~zr;~Hf%WxLNXT7ERRBwNfgRP-5pX%p#x@LT4FL*I!r;({7BOAb z85SDsya|~mnlmGUxSEkSEx)kUGdKQtyXhDpgi;zbrVY{72vT&MdQSQ~*$Vpt52v#y z%7AAC^bEJCrY9#`xSz zv9JkK@&;U9P&A{@F1Vs#Uvv83^N*!C?^pGeg#sV!qTR_16!Ey>6Q{+ZwKNExPj3vc z59XbGu0ixD(sPFehnjKeq)sC4`FIC5zQ4#gH*DfG3hsh@B{w5VqGx?8?*HQA*lZ|J zGLC)>3o&qyK^F`Q#_<}Z)oq`|I+roQe6n3g}Xc*n6>KoWxboET3V4b%8RF#k65lWY9gE066a2 zD58+mJm-{zUHRX-pot!eYfQyAj&zfR38g!| z*TXPIsLpIl-ZI0air`{lCKtysZ3HFAX#%M9r=Q1(ugr)75mziJd1^5^A2Q^tciF>| zMCHK5f$+ojn)SG4?S%QKLgMX1FIh`%!sjw)F!dggOqE~tG)js87n&;w$NPqGFm*Ki z83isbqSdXHT#gPB(p+sFDM_-EIKJoxH~cR}856C%%!f%`EZTjq6UfRBi)2CBW+3B~ zcPGP`mYhmrCk=0&d?2mG0<~g>UK4gsYt-%PsPAWbSPAOinJunNkedKaG)DtK4r)sr z6mMA?86X?I!HvS|x8eeSc#DR(yEph>b`Mf+e3%l()cY>o7+e+OzGn2KcZ}&^>uBYf zV)ZHkj3b9y=k0HAT%WRr?kf*tR{5Eg$y)jwsV9TZoCq;KJ{qyk@T^GIGj~)9OMiPB z(6IpxBMJC@77UcV`QE1ji!`=HJP@O$%ZZMdwiP=^<;}cqLM?NPLIMf?D1U3&|_Zm!$V2o%pRbL)uLRS0? zWuXW_VSCP<667})EZ#`8b@7@yD>w~&8EHu5^v{46OaBz`4Z%vO5=0RI9H=s^6=9Cm zi(_(_5-h61ufT>Sn@ApTOt`QKi=%usS}AVMp4A<21~y9AD1)vZ)L_$JZLwh63RPxn z0Ishzg$@^MZKgBy#fvjv+uMPSdl(rRxmW1<{p}s_c0=!#JUG_D^GKJSamaVh=M9F)*lA1>^zaGd`w6&{4K&bgM#rt=z)o7i{>Rxc3m+O}+Nc~r=MGBw!=?&#x zVRcLG=Jk!^V{Oy#tj^L%Ji2$=g(dKA3qClPV~L+MJlxj?{| zY0zD8?Q`BgQ{>>_g=LBRTz}LA?@ejx_P-IVd@UtQKT4$?wV~2G@%hdCH|tf$b9uQc z`%lTyN=b?`wo5xNn09Bu_EV>$AM5`gBwML&Z_fu--LmJgYFR*E0~-bMYGtKl!F}k% z_y+FoszN#hD5o@C?lLAm*1s`Q{tXl(@!ppVn2OGMX27E^Bvd+{@`L9HJ$2?1$tK~g z@rMt=8`2VG9s`h!mX;P9fkwyD>?*KSrtDP#-<6~L#)n_Wz<>aBRNx>*@7Ey3P{9oT z_+i5YE?Tn6tJnTC2+TOwWY8WiT{Ji}BLAxHwmYC~>6E>`@ete(ygVKoTU#w{?e1S2*a3gb@0n*|Mpo-4vB&HR?#6CVbsY>toxKOZyU7WCR$wPL zTr(ww<8*0As-t-{Av_ygTO!oT$*TpQO5MAtjPi+C* z`(+eTPa1l1oso@`trTp+zP8c7#*&#k>cRL|S96g-nDmo!Z+<^x&7%(=l20JK58g;| z2EVsmwg0nr3%?c{92a*`u-E^SI=)cfeCy_L)oqSg*&+9A@-_dv=lqLE76-YfqECa) zOfd{P3?Z;TE9s@XEI|C&@Sm3uTlph)?>ce)tLvIyqh`-}aAX2lRd!?6`iry!5^e7O zSy=RLANoso5|R=Ele|UQD#b0va~xt+y}U2k0wK#*Nk(@DFNI_ULGmXc^)p>DyC;fT z>kMy%)_ZttFTXMtj4g>Oy;wT|e1%|{NfQe4_?xF*JcHcdt(kShJ%KXy5vY`Rm+yx4 zb+HPH#f33`Ifr`MMHTct&#bSxKT_jk8NVI{waB{0wHhLkf$T9jnPA64mE4*vU=AZ` zp^sgQ>ROGc;QEJ8_kkb{dl{nYpVNmuZ72CKlg_bT%^~nn0=d_ZTNuVKIma*WO8YOU z7i&xoHNC%VM5-ojy)I{ieq0c!fIJ?&nLx8B_bO9{DZBFj3+{FMnJ|}Qwr{<@=6iu3 z@$+MBIjM|*{EuO3o0TUMH%J;+L%nePz^BG)3?+HcNBB#SAznVpbdkU3SY1#A9|N8i zP^}XfmhjTdR8Ngui_3BLw=`-x^Fk9Fj23GRrH6}vH2quP^Vb6a6rxtzW2`rW3gK=Y zbNkxTbr)&CxT$%fe9|P^lR}E};3UjN7miEu6AL>5pbvW!e$GFGIgSiBq}g?Is)x9R zmHX6l=bI=<`O0MDn=LF=oiwaf<%&R~R*rk$KbbKZciqT1h~MGjwv7w5q;+k%Y%SK)3sTSD95jsAZ2i$ZwcTWJ10>||7de9h*q+T)nqTPrao3|uehtsE)d z&rSXPfg^-P_Y zsr0SkliGrT8}sq7uRz+|Ef{J#%haJ@F9RETa&2x&uH^ib@GHu(x;Ssvw!FuKu{ngt z3(^3H9S~A$-`mssUK8Okb%uSQ0Tr)*P)F+bEGj2U3i;W%GP2SA?2T*1sja-VdIHJ+ zRsYRW*(3RU^FFf%4q{CIgCb6G2$WtXTy%!ny*W!6!LuQ5Vh{q=G8AyV6WT5gsGT#7 zHsDHnN&;h-)`IGK!0`}blY{9$;(x&V=0qLS7ITOCnVF3_k%Ki5WJSmX^w=G70Em3v9R!Yj1U zPq>mt2I{)7^#3?eKpU>ppa(=G(E|i)P$0C7jM-gIXH4tp6g7S=I}cys1edJ@Sh~#| z?{R|Chl|c}I|o#L*wTyFZxwy~!H#-RdU<QP%~~SDu~#U12F}QXht@_ER{Nk- zbWxc0$OVw=a%+{Tt|nP5m6j{Iel}KAiqdGYINj&6aI}^Li_J91Oh2&laXJnO$UX2C z^pp2NAGSDtxSvQzon!+S$(IDC_DUVNep=RSb+n3T1%>Mwj~-M;pX9#o=^m-|3#%JCH{j- zN#ghmSY(3NV`Y;Rz9pGzR`r)q*6s*war++^7Dj5$*bWr7K*mFf5#YF3OTrT*rx0ipgh3-UX{s;-1p>nwe6QmGM65mETlK8WCzRiA$VRg=w9RgMin z8;!`18+Bok1L4E^2L`~n1|4*FuZf|TSWr~;<>|Atv0;PIY}g|rER4GJpj~hh+Vw9v zI4sEw=;-L+WNGJau&`CWKs2Quc@Jf3oMl;cLWBS58%5faEhq1Z$LeE)0UTuxS}r>u z;aw@3^TjHC|NgRhb!I1U4B6)A<3M9uC>Qvr#{PPSeVLhp{(bHTDAD|R>7JEspb3kU0Q<0P zgZhD#KMm+8dMfxJ_d`_bC4#SuUH_xZ7P_FJC7K0#Px?2AsWL3eChSCU+h}aj^dTI5z!5hAoEpjw z{{ut#uBrou_#VL+W*BBnT~Ep=X$oKD97yBF#!OHxUDwwS-CSIj;g4k@z(hne{rVJV zX63Q`LT~7w8h!P=v`Ym8^r#w=v1RzgUO5Yl1^?LZpzqhATI;3&^KWDK=xNzC+Q&;# zt(BFSml(r1_^2UXK0avr3V9*sXb#W_y`@2BX0*;<4t%3R?!SBY3ag;=2M9nQ{A>%$ zm6efz*Z%@4AQ6EaVK$JcSp9DC0x~w0&bX>>AO(lgwkHC++;)H;1z}+DL`};l$e2jv zUwC&R4|PTMPHKsKKcP9%xryk@g{ zz{)mhek@k{)feu92oYEQuK*p!n&KszkvSNvitDX~KwmtnHvkpM%FRs#ea}r$tC-sS za0>HQP-tM(UwIA$CY&2jnO)DFKX=e|Mf>!jCLA9d3xIWn;w!ghD-;u{>Bj7s@R>uk zqaqA6fRf3W*w595A<$(5E+LDYR1uiT6Jd{VWX`aMu@C^0%?c)2ICUANrB7#YD7*aH zzdwya3H2~0hwX_(V}M`mIXw*Rei5SMK)cgDWaqJMOLre|p zLWl=YALth`9>}&Im2ch-1^Vt+yl#3;=GlqtN2ly}GEbmUz2H?|)k%o0@>#SoPUnC+ zv*fV(eIucS6AxTEW0ri!Gy>nUjPMD1S?GMo&_g>HwCWxI!Jg4eLWkPRYg|t26DJKm zU5g>7!q)U5Mg>_k?b}?!k&6v)#m4C7`M{tI0}9|<)Sb!?0%80E+q z!clV6sE9lkL}O}m^>bGzLN2^)<9V1Id>(DhGS4K3IR@f~jg4YsZY%)697qvn2PH|tJJ(D=OFSONUf1wE2~|v1+}t z=>n@4pqBB5wh@e~B|FZ40xMNAXhS5t>i-27;XOUf813#(Awe;B1|3FhVxlSqG(ACo zl<7tMkZhkHP^T>0Nu5Nz?%!3Brs~)DrTi)yg$8c*BI%2!4%|%@*k?(tZv&M!m-F=H z8MOH<2hY?T!)5#!tya2q(9ufPcQler1`T1~Etg^F8ogu8*97E$Z*LxIbd9*|dCbnu zjiWWt90n96;Cn%2VqLQVPq}I+^?4LoMM8K5{=UgSmGDtmB=h+C%Jvc~TQ|i>)bmpw z^OlFlCVf$;Dp1cb(FP z9FHT$^uI{7Fx3KDLF*nuh8iy%@If|f5%jg0+i6HAMX5k{Z@(|( ziXgb=3NGYo1hnz=X>WIxqVjsZ12dk{Kfpx#Gz)-uXjT>;C67h51n}KkdN&Ub89bDcMP*fy<-t^UZCpkHJ9D0E7t7aY5Ri*m=Aw+L` zfEz*F7Joo*b$&o_Fy6$(grRpl2E&8_My>bOhtON7Vns?)FwoCj^(f0n1VM;ZJevgl z^- z86TmhqXRtKfVKol(9y+9bx`f+!Bss?{r!4tE9>iawTx%kD#6P^g*rhH{E&Wq=p-D= zIxYzRi8tCX09SDX;6f)wa$GMjFM0lWi@EMBxVhv>zka2EUxlkRdfx|(Wwz%v8BFLm z*kUNv6#dlV-}=9q?)kyuvQRCJU%A5wm}I=J6Sq-0n~u58vVQ$Hn&4+euO0!@u4rdopUuK>6&;u&+f!a(aw^p42Ug^2|H%)f?`i$-m`kxfaT~>n zfGyzeDs~YOD#z;86F@Ql#Tn*(hufDxB>>$ADhs&z3jgr%Fb9-_H#hQDpk-|wZXN5( zcLh=r6BTvY$w^RANof_HOwY(re5b+2cDuK4_yjOIXk?-!of=!@stjigTgu2b4yL!& zcB(BV(da)`E=Rgic?Ma3g`oHlR;S!|NBIBO*_nq^xwdV5384rLB%v0mlnkXvM1%%P zMOw+&pkydyC>at;$Sx5{Atg!55SiyRNT$j>gpeUJ$9LXKy?gKP-RvvfbT1rKzY&k585Psy?B^ef}J3IK<7bZW0 zbOyLvn(upLm)CE>XIV5?nM?Lgh031)kPJ#$L?U$Y=L?5ElEqO}Bb;W|Gk;5(GW2f~ zUlupdIg+Qe^ zLZRMvF4^k^7tQNnVA-)2k!Dj+xxG-cw>&c@u|F zQXI4=E_1cRL$7+sKvR|p3>pvMBRE%<_Ao&Px4lsR?YS;cd z`7kt^6iKc4b8lnIx$W>hK?^~$lL)yZGoe3VZ*i}o8*n?0UV}z`@4UUc_r^o{dn|o( zG=J|mWha6*%<71vtJj;HTa z^gP+q{To-mIjrIRGbr;8A;q)+w*U>1kea+Wh0|=6c4#?&2^zM)mA4CN4mHrIpmmAu zz!N9|wV#o2L|Q5DMJjY@i=nVg5EqBG+sX8^n@@<%^398QT_**?$Ri?6za>|v)lL*w z9hPTzb#06~#z&Vb2=(^L0@1ahmNSx({y5PiBKC?Au3aPt!}T3s`}mT8`h9_t)rDQ5 zyAYC%Ihhv5%|7nUKK)^zYEOq`L|K~|yLSI}DH{v1&V4h~@G!{>r=7lYOxl5d>rQSr zw1VG%aY?%0v;Egiipu0*j*?oY$cK!sqpn^s{0gV*zLIb1p40a)$->mFsZO7md%mq` zG^~T64nh#LlCw)I7a6KEt5{MY1|*$uTm@^$IO!s45|l;q|7=_NOxKUM?EIPGoS+w` zXFi4o|vY+&fX@ShI;ELP-H%}Bz zfZRN8hexr0i;C2d<-E);yuJyX44381)Z$kL;I2f_KlTi1*x;OEZFRGEH52*T4YVe3RjSy zNMj7WMB)zzUUP|@-00&0Fi(d`+|$_F$^^#**ej+eu+T_p5zc$nuBP_(Y7$C{EFxjX zJcJof#{5qPlqcSXL9XvTy`SS@v@3l~Z#m=(m$W2iHG;_mPOasmLoaylYlY=PEe1Op z_=JU4*5@0u88!`lFeO+#^wy+cGazt3aCB$`qvPXr=eR6>Y2FPXj9K(xzb6X0QMdR} zf}@_f#S`>T4>pq$L|Izltb25Hn9a@2CjiKT>DS|^)9&3|@Q(Yzrz>+@0S9uhr16Zl z(s0f@O{|R&0RRaz`R?O?Jgc+#`9r-7IJvdWL!LsX4vuX z6-SuT{T0VpA?;hZ`F#3O8q^D53_Y=F*II3uxfqqLj)ttwB_$<2X}A9pKb~v-Axu4C zG1-&cQJ%vfmgMT8;%UFeh~DywYDUXzaa^n3JpNfMt5R_^*j|3?!pu%Vkv_~_Ak zJHcPpAei76eR#f^`u)g&u*C9-A zf)DLOk~y!M?;^Wu$E?vd{`~y>#!#!wvNVTQ%Mv)n0|S{iY)EOlvQstcTGSrkEUZSt zJAl-9us>$2)?kOO;B)Uv7XHlllce8ZZ;J#Wpa-@1e=b4dpHnD!OD{+%-%LPhp|o$` ze8tHTQ^+#zPHQg-oayzz?<_$vmBaqt8tkSs6dD0*!Q$=S1VGd+^=~RpiuDa;*4y8u zH=SQ7(1GS4wJsW&CYYv>c)Ev&3&BZFZ%%(onjIa@(f){Z0}kbkgGCvcnJGyAC^R&* zt-oYdyjfc+Vo<^YMr3RXE~B-zbvB&vO|AJ;rXti9fJ^8hSiat<`uf4f>wRi}KQmm< zh6^I5I?e6{&;~U=KbQ&NcZ<;60*j;sFX|||7Y}Fbt0?@`}`#I?n^Ukst848MgLfPNcD^$su zqh@&`%hT!M73Pg>uqB8DD>8=+lKV zWa!ikQWH@{=O-l6^^%tjF3wp-6_@1Yj18jg%3=)AOIEyCb>osP8x9+828!Cu=XoD# ze$*oz;7@GrmZhy<{HmaxWW!T@l^g++k5OiMZ$+*J6O^$5B&(ws1|hHn}x0hcD1K%?d3lQTqYcG7LG`qRfg0xSesbI;08MVx|Kn8{nyFv#Z)bJ71c z??1uVrA;C`(H6tSQUloowZ^6&Qgw7wPedDO!>ZCy$x)&*knRS;G1ZsANU7mC-!9h0 z)p*?NNa>J!%oU*n0L)B4=>GG&905al>%y?K8*o;>~Tb z?MtK&ldom#bv(t>c3y$(n~xl5f~C2RgI8RsziW zXItk&6DOYe=D$KQi++o_e5*+GeWIeJPXAZq@y3mYh#Hz>V?^7zyeWZdMwn%iI)=Qj zkRX9urbHE#4pdr&PNrgcYLpg@%fDry)GzAsl5(>+cvxO_aEku^k3~J4e%8iDew3QO z$(&TVS>WJ2z(&cwu2>%|cgOje734wmHDiAyQnJ8mkG`5jcT1(dh zqhig&{^h8A98s>xjKc_g7I zbN)V=>UnD}5ey2qp|BS=LV}gXtK9&w0Zmek~VHl*6tV79GcdrA5IQ@@* z#$oI9*(3IBurTW2C_3FgTF*|&h6+<9D$CsGh)6^4y}wmO`xSxL#>fy_qVD*lF_hN>og(Q6)ExgqCS%J$la6oG)GNyvZ@w?$kCtYGhO$xBU|Zw>NvA9F52Gwg(!_e9@-S$m-!CN}c2Efw z!-XI7z#(`T;C9!CUM=~V)ja9`XdoHb-{Pqe)MqFHw9b$}bM(?wCkBR6OJn$vrzC$6B+ z2W~OJmJ+y)R@lai#(ADFugn-79rb-19v0>ckf~8$V-D;KMW|$eSiG+LQ__yLrJ$}$ z!Pk*K-t&T>(r3(=K`f@=-6vOBf)AHelj1eLekCWqXL{zS2ul23_inPYNi8*NH(Gjn z3pI@&>98h$@iq|@B%dTF7jkZ%aK(F>MYAw78;|rg=_Q(#3A{=lZ3`V4Z4W;Mr^%Z{ z*u^6d+rS0OMESi=GEVdeJRCn6k0(!_6g;v4NDx1ocw@q@Vc{+s^Tt#?*riSfYb^8j zXH%Z?(=sU%PFwZA!pdQvbsIJmfjG*4s0~ngB6JMl!8e51l0t!i4@?=55&_XxRrNS} zyRf37LMdk72?e;{1NVuQ)e83D9VkSIlk-hIiUplx+QEauKrW)Ln~zTQojoy6EbBJH zhz>?AvoBrM2%C7^@ilAK>=p}z!2|dhseNKPkpuI2cvX%@4F~gnNQyp*LmK~JDkFj*0M`zxv?Pp2Fg@Y#3-#jV%ZXOnAa9b~B{(!xMf4i5@G=|yW4r2l zwO0ncS{gKPc|A2EtFzU_S8GibK&TNccX-t)R?iX>J)r)ztWUoLpto_w18v{8p#A$1 zj*w;z`oQqqFi@szhwnqwL2w6jHpCH^-kUuTE0w$msysCF3xP}`i45uG!f*`?^)rBd zLPo<~CLQ(D9k_{Oh0KY-5CxO+XiW#qw!nx06wsj?P&F~3B5d;FHE>{nEHK25j(Zi$ z7@74Pu^1ZAd2r_&TUq%NG|!LW2CtZyl@yfXDaay1Mu9%+0}Q%_D1+O>UHp*Lm{dO0 z0kgg0-wJ$~zjC*1^c2O84;nyNs5X%1PI*$R`7+iS$Z4SIm=jYW zTk6@uovpqkaC;dp15cf&uP?`x#yal5zoekVJd`Ho_)g^}%Fz@Yi;)m=AWC3PiTh zETlWGMcEht;CC>nb$>{R4E&?hlf^Lu=^EYTIO}4>g7V8P0Dv!)J1qj1FTem#FhgK` z%>WR&kr-wGtajh`?_0NQ+2Ye)v4C^T=?CDs_UZA!Qh_XSaQPDrGC$(#RW4Yx@<7>! zSfCK3f}R(*q$b}u1y`5oO&Ks`gT##>o%4-SDT?7ESesA-OJ&B>X3f6CN=V0YHf@bS zVHW^v%?+Y16zcjJPDy2>zeVY$1zz)MQ8tvgW86C8?mpv93kHV71?z!rzW_4!Y)s7v zS?2=!1z@Lc*vW`omw3)du>cYz9<7J`f`i}FzM@G&>lHr+pyT!j{3N}@=#VDZ(1IM+VPqG2>mV@zrg60OFZQcF3?Eh1S zlVi=AIb^f|m~$+c;6moHV9msFAF!(ZO8jryIy%eth}C_DDhJItBlI6h2Wyjpf)r*D zE#7=yzuPQM4cjJqYv5x`z&3cMdi2VuRh5ONbKI35y_FE1fhWV9s_%!rOAz=xG6I4> zEC`?P2=xplqK!vT@bPz-t7NbXM#c1Dmm?NKs;IDY6?#^-J+%i0Y{C_tuYx}Tr1^ZT zq6Jb1x^4nhqZO{`i#Eq)fvxQ_-;<<=vi767p@xPKGT{2Sg6QhJ6mpC%-@VGq`b z8QfuJ_Mj|1-r!vS)(MOPBC7FE$rfiz9eqcwc>0XuD;xM~8dkw10O&mxns*;w2{k1p ziXteCYV9&Z!#WTKo;>oGCRO>gLjG*^fFN#IQX7ja+OiFH=T*K*##cAQ>=PptVw{8G z3-(H2B|J=p0G@whoMetLqkc%UTSZ2MjEs!b+Vhz@TPeIY|88G6IlLXiC!n`4Yrpc{ zxzZ#*b5_AZXAC)V*I&bny~hL3;w+%!xKJwb04xU08sl%RFUg>wdpD;rki{LMyuLDZ zAvPR(^Xi?459L%;>_emYy55U-5AozW!My8%Ly-;jp)Ds)JOtlbm7we~>Vw;ym$nsX znX5N$h(_JJ2ckVD^QZ#EJ#WpSG!Ymo)4x|8%!OD?X23ArLHh|x8)PO2A;;%p+hDr6 zQxy8Fy^ju=>0q~WMrSe?Tf7G*lQcozpSvnPol54>l-^b_`MM>R%rIgC;kpSCDleTS zR8q42&8CUa%0^>@Ri;1AE@S1GD#Xqr0lwqx<-2arCw3NPY5;52v)s` zCWf=77C>INJQ$72yLa#AVz-njCG&C6!mA2#!AZUa)lDYc*c{BhA#veBxrFC}t=~fw z&L$rXAMempNa~Nmpg<2bmlY zO820kAfuy4MFCx51GlmA`ex=$raA7+{)s&`1v?Gv;&z{(9BtRo z(BN7&kDHHkUIHUmfU($$74Ig7Nx1GZc@D-8Wz3%|*?vWDV=0LQSRpILC@cK4*x1-M zM3}QLsYb|rCA$|k09+9a3h)9rX3sO2*~Q5dhoT%7S@x?}v+-EXgxDQqioz>=jCkE> zs?<*)4Vm+W0v;0!OAG4GA?^6JAGC|v7;8o}b-2kwW7q_^9 zJ-<{=?!drAZ`KqUAcL@yDl5AXMj|xX{dGTzQpeu=&HFoZVqzN`LLIaA{48>#>=0}EE273oBgTgTxjTGbp?`DZfNEBf?1%!wD6T3_P zrFp^f_G_?%PzbEv;d9`AGWVzn`r%+X8&MMz6ByMqMZc)I!DB;{AE9fPlFu)ahZ!lM&K~(NwI~TnJ4P+YUUp zzRM*ji2nK#GTkc|#4V;IT3yE&g%t-wM*I4#vCdUw>c(@>RwGM?zm%&7D>|oDC7x<2 zWCOR|A+iRn10D)1Itd}^d7d2QG(`!CU6dtcjUk00yBrKZA3KJoGBaxc%)AJQEE^sl zoUHDsNYe)`4J0Kc5vR}-81%^gM?crewi4oqrF@LRb+?XA<%o|8xON!Q@<2yt-##*b z2h635h-KTzU=!Hj8O%l&twV4_mKK@AX6W+cyIaaN@aLz8S8N!YKp^oh#mX@5I9RR) z_#q^5l1$dY`_aa+#91gH7UbghyZ7$B0PvHd^-#^zr%$1-y&qU!Q86F8k$r1-S)^B6 zRvqC{AtrS0u$UKM+_H6vYQ;m;p&2M7x6soIuCl?gMj=&tY<4Y}1eilS@aHESAoV6N zdGl{)peYKKuocFuq`-zdH`3%~zo{LEIv%KGT&}m+<_8+E&ME5*?dNg-5b&qW)s8)V z>XaLL8X$zRLeU*p^mVo{CA+Y2CPrmsV;)KZBtj=YKHX|lABu!!pID_rN;!f}98?Xb z9@knNO0&(u_ezWw*l5d&GXqOwu(NVDjtaMwlwpB!V^|{n1mtsTYspXm3tLBQvJ{N$ zs?AjT952_^*?INWt=iUGATl&@lV^wwp(1nNAZu+Fni^q&N{0aaiC7qt3(|UM#23Ql z$1#C9XnZ)?K{#W4XT7Wss*p0=isH|w5s0?=SrDP^)WGJc3)t>W0oH|{ScOJggm{q~ z$>D~22S%)P!t6)r-v@X=Gnrd~YZ{WsN#F?h?o!9!ix8LB(9jT=Wceu#=Y4cyb+Jn| zVp>Q(9&s{-4&!s0vG2&*w6RBPh0VgSDI~9^cnr;IlEvrGDiBb~1{SaRBCkONyw`LPp%-6=TI&EL3TOO{k&9Swds3mvmx5b4yDZatijvvRoJg7$Qt$M?`k- ze&GW5+_~;x&LZ7l+;coH{1KUSfRT@$_wO&q$N~O3&zm>-$OtK*M_TaEs-pzcpTi<# zmU)!S07R%_b8fIqoy_*b{I-kOeco8F9&Uk_9uKfGj$SeY1;cni#pS@bF3q?0^^Pp@ z8AFTEZS%(&Zf73_XrYKw2y;oY%O<7}pryax!;_j#C}SU@%13yEhdu7<>;5 z25;!-5%`3sxo;GH2-w|Hvs1J*w0o>)V}Oy?v$Ha@v@la<1Re z?ySMb{iUQ_d#^X#-Q>UUZ>o^KiON3yESbR~dF0~pWUe?)Vq5L6Tui=Bqzm?Y)vxl5Hs|DRa8b!nut6yXD;!Z`^p6S+?(# ztB*;hKYp=Eyvyv1iMC3*nss%SvYJ{l_8q9d*|LS=4@Me$4{K#aa?|gP3`yvAM|p= zzlkW=#g8337P7ltw!YS>+qr2QJr#4XoAmwrce_TBjkf6-Zo9la+aq$189c-fE$s{* zl(wv`&2*Yp2VODi*BPYr{Gga5Q$09X))TO_vXb`mX5L6!isJIh%DWKq^BR~ov0X!a z;a9a|EzDWPAJ^x4Ylp2EI5`zagcm*hX~lGm3xa~q5>X2(>FMb$Z)~WpjMwuR)=^-` zcA{Q-dEE=7myMns_$+MP63?V-+Yl*GIQONO4tt1@SlCq2?q{i<4>_AkXQuYp!a^3` zpo?N4xAVH0wtc(u>sPPd^joMFIm~gpZm;I*#HG4od|tm^U2T66p! zrz#~SCA*H1LDvm!`-K5*KPnytE3547wV4STWvRP&n>sQy^K8Z>AFp%inl?s@pvRv* zefr~VKdKa?#^~+eK5R@P2d~MPALe$iej}uvTyQ@q3gJv8x-OFm$oJ7U;R^M5atf{@n=%JaO1987Y)?7%J0yjMl@i&=9mTUmOP&|{O~?=R;KuEI>=Y@|G17}%~7 z+rK0xCg!>`m%lw8VaW~SFIlc(cG?{FYX54jzc**;{*La}?c0)p{xl+~10~LB+1YYv z`i~wZk2gf6owxXUJ;r6(8zz+~SrF|wPPw(UHC47hQwDn`p4YsGfsqjl`?Xbfe>p_5 zwjqK~_UY57g-ey^-B%`@5@AwIaDj9LZ~GZp;SU}j7}wS2J5(GGUW_-!xT_?3(YmR9 z`}WOgdnzdy-leLJ<1G@A)i)ooxEhQ|y@QNlcvzN39?v zrJ+%Pg+)4lz$vZLpE|8M?hY)Hdf`O0b6dha@;u8yoj`8m7CPxL&RZjueu^9O{lOt2 zNpQ@}`@YJn>bkBGWSqc+lw+DMifj%&uM9hQshXu@ewTB+K0?*FAggpcwPo(axohln zl!NXEdjc^#U7z$l=|-lKVlq|U2Z-%=y?J;|w{$ms=l9465w;TUXy4)b^5sjTeqOst zxwuCEwAt?5{(K@T?qBcN2+=Q?z=O@rO^VC6eUn#v zV7GJ9Dc7h)#jK<%r}gC<7#dPJ6!mY;=pIa$X6RS>SK4=KKOWd1ie3M7jAHQ=t^4k$ zNSUO}(rpt11A_uK?Ls?wScyEBEgP%?+>8zzicxvwi4j*XNtORf3-C2`}zqT5`%{i9|1%Jzo!*(T29^|3k8-De3sDw-qWnPCMAd)F&le z8`t*$cRoZ$UdS_Pm!uZ7Yl;gHO{I0)9Db%lSe~FyD_$<~Rg3l3&6`S8#)67JpHhQ~ zKq%9ZrJL0#x+4V!ts|5}e-$i?$=>#wN#9p%KclqiSA+dUk4>9mubZ?c`sp}LUHMsA zS<~1ki&kC7ZOfoQE7Mjqrgluhi{-shlMy1n^L&|=TzJV;1g92Hv1op2Ye~2l92BIK!KmW2KARFP;yhh2 z5#0(lC8=n>@E$<;(@MYdsu}fhMukmdSEh0sMHS`c--4l1G9FESurjv=8%hC|pduwaHrXrz zAOv<%DUZfE5pH`o(8bl2=gH#G2{#vIrU3~J4UGiSy4l&;Tz{If&=_0g8#iv)EtG6b z!`dsmxs{^Hg6)vUJQe&wf4^M97Y+lQ52x`kqlUt)&!3e91Ox(W`1bakR+BznP&PYa z(U$y{u7Gw$6CWR+^^xOLNb^Uo+|luIv|G!zy53&CGYz{moI}4-eIrWPQGtMfATXZv z^6g)>wf7D-tHc_pmd*165)bxs#8l(rVy&-CS!ojp6Ld$1jH`t<44665Zw zsyl$9Nut}6m+Qm0?!czvpO9~#I73SM0hr`uJ>Os(*onr%gU;3>r7C!Pqa!1>9jiiF zW&7LewK{c;Tb((%xy;&@01BtioH4a0Ka4R#hX2&w&PFFP!i!4L^iAo{SX^_QQLVg58jEv7t>A|*yJBH@=Oxo zJZQUZjTP=L*QUA5$wUcO_x5Un++hx;AWU>4ZY~)T~ zO0Kh{r1Ay@0t9W+h5Carv%%< zvAehDS6(h22Pd~uKS0Frf}q_mWIn%I$5~HAJ*EOw^6a6XPxN4SMY2(s zgQyOG$z{O4t<=@IqPDh{-)gAbF(gf{9o|6LeCdwGWhSPY#kDma0A>>{_r0~st1&LW zbrK&?h3d*~D85~*OVN_Nch3(#ZF%+jH79ymX_L zjW%X;8>!IK!?}$gZ0_uwho$9+cAgiA`}*~(#>`>y`fSSEEVIW>VtCNL%ITfcD6~uI zmS@FIG(@4j0=qwqdW>&ubd-UgUk&g&-T9drCi=N62CvQ8i-cB1O)a#WgB2?&`C36y z(SD=+JdSrVb}D7%S5Cg~2St`tUI7inC|S@13HcU`W|LboT7o zhc;9gj2yM2qvLBoKYRB8O;Uoz(@JLRM8}VR1ZTdfT+MNV#nfUGq8-`n|1bRh02Yrl zm5dfJ?__7rAh+t}3G(Q?I&ebmD~R}hP1!MByeQsZXx|EaWm@za1|v?r+=Z_uCl?Dw z#sm(%@<5sMhQ-=c>mAr9&EVy&R*;BIR$q+?su)fliHE3zeXSvdr=G*B9>d)3&-cIK z`%!RwckQKq+;>S=SGQ!PL5O^>80Kdq7*$hWKc-cV!Em2)ad%!kI-xk-C! zFrxOrg205u)ztqmVq#)a(9zLJIDx?=J2E>wG-=ZuG%?qB-z_g3c;&=>L&HRHuh({0 z8fU^yGn+eg-7_LA3bEk+=Bi|BIW|-w<}Z`f>gw(1mr>CML6IuocIVGds_#p;7+Yr< zXsQDVn#OFfffmI}xA(@_+~t#GqE>&Lk)7P0$?80BS!@lrh~$?qC@7e(-QU}pVdBJK z-hY~ti|&XwsO_yybPhaS=Rfk+rH=T%Cvfhq&CO)(B8OlL%ib>;f$!cmZt)lOvljL1 z^e(}|eGaR3ro&dS1}NkX-KI}kl6rpuZ*^rwG2f#9Gf-#A{Dr;(#igYs`UD8y+*y&C z%B}aJ!;Wl!VHfb5SneV%-`#adNJuEiN=iy%1{-zh(k0;ft%y}YctaZ~Qfv9sLu>7- zx``ThKu(GN)6d!&zj$|B3%{>ASB_#07xYIy4iro832&pn=n-sLl#zH=3my5>1Qggx?J zI=+C_5wOgvZBjfKNZo9@y*-|FXmrjXEx2=dr}yIyY+#S=ggS#qDmI05#!?C^8qDqt zcTfx~QL}I_nKS3a*y={RxpqVtb=8PGoH&oE0S#@@?TsQDYm?E5PhJdd=TTtmero-W z?W%TVEBJS5kuWIA;r|6(c*$zGVu)i`wif!Rf zbW7pF-634Slv8P(Gbo56)q$fUGVtd~+{draBuTD*+t|6nv8~#PVr=DSY2C_nw{9g! z`aVkE&-h;Nug{3Cl$(&O)e0}6mk8wkB5Ui&v1A*C&ZmdqMhtDh~j*b*+kJyQN0O7fJ`{ujbI8Atx&`ItQ4pJk{FTdSa}U^(1#h?KBG4wWYjn zE{hQ2Q&!V2f{A#eiA+n~R(V=F;Gm?i^^KOD5O-Nvw`q$3MT+~+C~-l9xvy@HK%zWS@tYg>=k4R&d) zN=9!~#+=v6=)z1!k<*VbYC_!m(BK_e{n40jZ=Oi+w<{%c2saTEd5!U7EQ8ikyb;{= z-rg}YCvdNV$MQv+-n&;`5QIh^A^Y>ZhZE$+`<2fFG-b_!-@U-$wf;~xS zGebiuy3Kf5w7zDy>}~Yf2AJ_`Ce-qDYU#_UVKBnKG?Qd^9PZ?+5eT?Q%REnoFJ5C{ zkgM{i<^i;{WwiwYGzr){U%RtVrt5VK53?xTOFYIXz;bUuhqwP-(0zvsk?y9ua?+-Zw~v2(X>-7Ug@z`Br4A3J!gzQZO|8e({9+Ai9aM!aZ0K-7 z>G}VNnA@vU+rwV8+>htA5Dfyp4Q@j-SEKOdqJ9gNhcM^(*WNMiotI_&c7?xaJUJV% z$B3fL6GEj1OTT~Ghk`k8{OsuNUs}7VUOK?r-zxNNmOq((9i3Zp^YJOy15aJjKcFV3 zjqt=uo_IX6Eku*}USQ?AxrGgt)=_kZzB1T$#HZC6B*Xd63$PBSCM5Sjhk&)qTk*>F zP|;ps{0{$|=5t))fPA)MVPoc|e2RuAVX}LgRqn_TK0@7c0!9{F!uXXGvTg&U(!vm?bIueZRrw~+U`S&1I4e?SJn-1rJ||wv{3CvF5QT}u z1+Bl(o%yr=g>Xx`^_4ImYBZn7&Iz##EzQM$-8$T3FHuF2I}&>YcXI)NxUi(FZZ!Qu z*WE;w2xZGZkNh71r*Q-AGYiWo(YfBa{s&~Ei##xk6KK451HVw$DB5Ve zFE(o_!Gfi|&Vq0qgKg1F+SohaaY>{8+4-=@BY8Mrx8q(2I%h7*fGrI0juDB5v!a}) zV!XLH{My_5ZM|VDgyTv-=8sIf>pOiQ_Pi<^3eyp#-Bs!m{SK%4; zIP5tg$uykCj^96h?ECFI+vS0)O^0lqCuZ1q=>1#b{M59=TbKy-Vi*3VrWR`m{E)((9@Er?~0mPUt!sA>XROFm=3TH(4_6&gRjy#D*MrOME!2oLvK2*8YujKnRC zRH^Q8An&?$%1-xze%Qq`n5Jx&UN+AfV3qGjE|EgDUq-1+K4H8=o z1W`jyzkhfG0k+o#S3uW?5f78>$|Wni>!RBDgrJM1NUzD}nmPue&>3}gQa^wGtcHk( zsHkX9(c`TB?anf$OP7Wt19E%kjvqgsYKMo3g?PBwok4@$YqV?;w>Ko&g@~u$TuIx9 zxB)kWdnEHwGu;^yk0er;P_Z3r0ppDt@cjo$VLL&d_1w z?gVs13fM|X5@5vl*o~wMYqUI_@=q%7P$a=#u7c+g0|a{NDLHTX`ug^qID`=wvH7j! zExMVxD}GyM$58sc@KM;8%sY!adxG*xsqcsJrU#k&X8GCi(AGTh4@!YeTzT-@=pNdb z_b=(1i+p@8aFvW|C@Dgak4K1D3hnOlzkq-Fww@6?_=kTzQ%9#s?T2ScRURPku1hg@ zs%mk!^?e*An8kKRY{U#Vy}F{Ajg;iJ1mpN-mS6#;rHUj0~wLz^xX$P`KhUZxWLNG;yyoRB(v*csbIV1w89gR zx>OBRTOz&BQL2b@rM+uDuD7TP%*z@DdT}K39NUkb{~=Y|zPK55x$(=tpU^iA} z&~6vNjW+hds->FOqo1DKz>lVd&}T$ih69W&JuY&m&xpl2p)Nv$JfbqZr-zo_&+S;gA;7&OpQFr3NI2>NJpCSMx0~SQk&XG$u~%O9Y1CSua8M=EXj zFF0+Dh2%Y~J`GXmC|j_Fi4b8ZWc&0f^3i#W+y=rB@_$np?wjvfJs^#(WMYyEx#2X^ z%!1pO@AxYj8jcHu#PC~xgfaJrp!lqw1_o1uyjjkW4+AU`?V^=H1-ZrH>v(v0l2TGi zKu6a)G%XQmT9&MJ2!!PS8!1_%_?16y^q&#q+V=9%pTgfXWerJd5p@Hr!UsN6llMo3 zyptqN9x9|@Bo2*zB7BOnF#m;%kPk&MvVN-yqSyZZDk>`P6Qv^(k>&Z)Yr)0AgTYLw zXpFa{gU9DP*Lp)oYS-6i^b-O5l`FSkhIYC!?0V1Wj3G1U1gRWIz>68r_Z8IC)F{A> zA>N(Xo~D`x;YH+Z4;7d8INc<)m0_YQm*vy#Zky$QRQ@-5PDK1(gfC}QaKmPzs$l0H zS#4u0TcBj~%F3_yZhG^H1Ra3#|HL>Wz__MzbOs+`nCRU~Qxp|n683<%;^_|uOI#%X zZ;<=(qcNEhor>v#Zd1;O6bc6_!zN^uj~p&M!JuQcruGNo#8%o|T{U6rML)xRfBnBv zP8fGyoKpWAAW+!&=a3`_s!V2LDf z{KwI}lZ^%>S!wsq_wg#!SKxzFDvSK%Seohvww9#xBzM7RdrZqFgJBPY8nv=*DQ>_awU_oxdwnNJDhaHFO09FE=|8vydKHqK0y=Oqhn%vyO( zRMlr@E?vJl(ZUkv^ls~+VT4O>yD%EhB9z11noyT$pv!zx0ZhJM?{vrxp!tg^>3W>*N15l zp|?WMc#XBaXmB39A79&HRGd;LKn&+gCT#9P6n7{;%%!sMmToWePBH$hD1Fk?b~K7)eFQI$r^ITj zYJq#R6Cn5mQft3e>JEVghMFmM0iyI@`X`1UlZ?_IKY#rA1?Yvu3pGJYT?e_KscX0!v~m>Z%vdInkoJM{RT?#LpC9v z*P<^OX)}ZzW}84xasP$_#v>Rxw*VnJEH~^O6@iu9m!~P}oci1KW?HZnjMB(?h)w84 z_=}`4km^;`($dntc^IQs2b;j@pw|^Vs%?&K!WF>nVmXKpf^^BGCB9l9gb_lP;05nE zLEMs>?hxk5>i`AfN#t(5AbcdAb~JaS{JXHjnZ=j<_R~Q$?z`6gjuTNp=L9Eg{)12E zAH&FrBp9%6{Ae86{``jgj9A6Z_iP?lu3VuKu!#p!vpUt<=F~Vd^3~26O-YxNjae=XlpyU#gV6R>ENFflic0)j@G!zJ^(f}S zM;+wSA=b5gcjnvlHBAh2%^>86KSPrKrKe{&^)bxQ2i|$1%(gv&<&~wDx* z|A{x+*?mT7GW7OQVjqyrZuA!^R^jell;o;=O@vt#htmz=9>t`@<0KF7ovxespWqRa z5`mDCp~Hew0W#_+19j-g$>g+9pap-BDwqUfkhN`W$+Z7sl#wg@EB%BRap^D!(0N{3 zvn0z@dHWQ`N@snR9fQfE&(FR|n-J7UVXZrOjy?&`?K(RD?~6D3Maj;Eq)02p2A&q^ zI<tpgT{d^`th_!;^Qd#tzZve%gu|x_Sd+ST zAYH&q-t>EU$Hgbf?e3Au!&>P-@Wx#-|f>d?6a8U+=%PY)uAwR@kUAtUJddec+y zk>N58wnYSc4B%^qZ0&rE90U`ZQ?=E59JzJz+y)Atd&e|m&;-BUJ;bE){p{TMYl;Sbx!WzbF@>+K< zYxlF(%<`8Lpk=Xos>Ldi8;D5uyP%7fY%)8Zo-fhO2{hIf6I*hRpB-InHrIx5-ytnr zUWNQoqv3j;v!j!RD~If9bsgbx{b{;es^fw{W+|15-*f@V7JN;e+BU zvEjsH|Kc}#)8yP*$abU}H}sqgE;zYnLYi6|A&8#GjaH`pjjmGaMp^$=;Mufs?vJ|A zK2WOg8eHf^gyiVoganTjf!zP$RWtV=KrYzi*PBbniHL&h4HbbxF$&;e)^v@-?&Wp{ z(e83&%ASBQH5U~>IBF1zo9_A)2b9I3VP|J`Dh{%o9oC!}af#d~GxF5@ZVH$1+zPj9 z65(C5hE+A_2$*%T6P@Rsjob*J;*kslp_}|2Z(tVfb)!I){{f9wOh^Mb?&b{tM!slo zkj>ibRSd-B8SDOWvJe6Bpc)1*+O#5wQE}8xus@_rt>NG(COY%M?}-RO9_1&o{iEFC zzz=jhyw6-^;^XUd?JjdK>wXJ|_mQr{hjW%9f58q8Nzok==sN6z2PyPfhyCqCn6%J5 zdTmw-a1*sM{yGFNw~gX9?9JpGf4ItE3zvVh*b|BXYP`C}MpX@s@Es=*_CZ<_B{IK$ z<==x0Qcu2R3^BDJ9k%C_z84*!xTL(ieB#3+m^Ru4_cGa+KMhRIkR^+H>%q%0399nP zB*w=lL$-IiuOOGs7_unnAJIl)Z_uB`?3(bF(08w5CWRvtX48bSH z0SgahVEiZ7@LEGK&ri-p=uvofU!qF=6Ac|3A7^4<_%+Lq@u14FYP~M9te5)z(43^3 zOYE#@-QEOtbANq^6gCyBryfQ4r$U$C6U`;R8Qm9gL7|3hx5maECk9z!UAF#qIH$w7 zz<#9O_*8S5W)Zidl}Ajqu}2RAzoF0lRm*v^NmAWrEunOYZcir=;8^u&;sVZX^a?EB z&qqWaNftp{n9cx2c5PyLkwrF{^1nWHSG;kK&t(PS`E|2$iqRBwhZ)mUyQI;t%JJVC)e& z%uWwWtA%);gX8B15>ybbN*02Ncw8|Uk7_AXB#~r_*(S(74acxNa6l(t^@@RK;Sa(z zTP+B>c?ja>(NO)Hvt(yZ2jWdc9f&TfHC#PU!jP1G)B2L1oqZ7ldK7MQXG3b6(npt{ zi&fHH`Gum--*C`&PyN4fCKU1I?4Un^;lEL495)I5+NWBs5&O9=#b#9fLIbn>9=M2L zZD^R5=r&)mzVFAVeK1>f2xZj1e~5gyz3Wwhwo&LdK?lNrweNj-luWji)9rsLh49&f z@n?64b{G86Zhff@>@U@{h2m${{!2wKp2Ptf6DHPUt^0|dG1gs6jFU(@b zmw^$ZF!G|AuBA}wp(9KF;KfH=GP1kEsee*iNqEzQ=w0fYcR6cC ztdIR_?7bJ~bOnr1GT;B~BD;aC40L;pf`S_R`}@r-2tx!zX|9LGsM zqx~la-#>TuY%*j?LHnQ)yivCJ{e%+;g;26`5|W?Fpbh?8720mCfDt$E3eipmDs(rn za?M;1?2Ow|SMGh1^Sn}^c1c?ng$LI#XW=BuDD{hNLHh7tzwSbYNA7W-^&Rco1emsG z>ZUDYobhfM-`kl`l1;qi_ovGq6YrvQ71aiswUJy4rtxkRbbzjtqHRKa&YHQOV zF4rbjaP{7*e2p8n#Z_weWaQ64g2i8Nm!eu?Z@>6cUicY|mG!`Z zMa*%Z+BSM7IoHz_bpT^R@2`1~oBl`0(9(epQ=WA;q>$T4+7rbq%u(RTtv--|9S|$f z4qQvgd{8*Hx#}tdJU)B&j7b|jk6K6>%-kJd1eecVA_+p?m^G9?2T=~V^$8&5D6j;< zNo)R~TbfRZQ&{Lpj1}X_3M*LLLe=6~2+N;T`l%m)-|#=8Cz4n=fkxTB+aM&xab?_T zx%w)|4B|lF6-rKpvBGvNY^iIKj8zZMBtVWZ0yacGEGXdTqoMMr^D}4YrQXo_(THf+ zj@LDVswWZ1d_U-IYpSc|V?5idHJ-_z!8zUW24}X@ZavY@z5F5i_usi_;YQ8sslfQ_=6^A|ms_Hf zM^zki;x&(Z1siU24D49PziijMI<)WFun>5Q-_xBKS`V+rviba%@=sOUK=CWaG z{j+ncd;&yG+33@?0fceCaTq7Hhp)wnUdKR05wAo7t3-*$i|OS=8Q950G;nLVtTFQ7 zX~=YA11kaLVsE3_to7VMJW4Uagp?-sX~tz(#V1HH5IX=M8J?F2h7;LfABg%P z>61^>{B-0hS>G?!e68*}fZ!^$L8dbRuJ5e*hE#O+j&gfU;66)0S+3U73tNuPkiths zhXzs0(Rxn?no{WhOy_X}>shJvR=|<4SN)!T$y! zCeIB{3{}6o%HzK8QUd5Y4fP73kmLdR{1tk76G(L$Rvp6JL(3r;_*fF=*5AYk(P@vW zWey<^bRme{{xVyVwxq4M~EA->XzW`nevL?pH+9kj67^{PFLVHi+Wg281 ze|jBhtC_)wyFQ@sghZO`9_K$u({`@*TsesR)~4I5ooH=;gYCUHahHc3?+2+x?dkoA zvinc6an!DX>R{jE?lo-;Gibg*YbM*=++4V~-Wwbflf_oL`J0bcm7F$q_oD(*RRjxh z<=ISd%pGh!OxU@MKR0HOt^9SH-jk8PJWIs}Y+R4)HQnbrT8t6W8oVFMG+yxW3Y`|F zAZYp?;n8>&1mPYY7-}&$EhM9c0*d<%borGIwBQ{nsOI|w=}|z2yDb$0Qt%A)xVkg9 zwjWmDp;WsW@6>BUX&FmaV#O*$>CqAM?hzLZ_r=^mkbgYyxv8-4A$Wg^wEU+JIRG5w zhBS z?{jNe0~da|1{Fm#UqHNpreStrVY|HLvIhiK!XW}oe1Sg}w6sVH z?=)X9k*d5ueW)lPKk#$~D0vdSJHNEQ?NijqODjG}zfhwvUwzuOVC+?CpMslcy~uUeF^fcUkFJQ2v{+#v#IrxtG0qbSNRU(fxW*!AWz`HzPFEeUMYj#<%6L;O;&t!g2gSYw+B-d8%zpbi9=DkfFDF_QPe~~WDfu^-Tw^Y$1Cci`G0$q}rCXF1Q@Yv3dLiRBV z&|<}<_1v6J<$W6%@7n!RqhKafWllIT&sZIdU&k|P!o2&f*Rcv-i85=ZWQqG3f3*o@ zdb@;~94WsQ`l)dDvn9~>xLrJZU()h>_g|J>e0@*5=j*~(mHBIIFEmM%MGvfF`|p&T zk?1#~_lEF*f&zx9+W+!Z?$uyrNcb?*QvX^YZewJ2aX&bB8)L2GCOUTK#D*DZYE_nT zT-}+ZpyD(a#ieO&^=;TxfaLAJGwxi$vV1?(cjw%O84Z)WSYkMy)t9iOI|rWHG}2p# zq{@#DUCG|oJq5;%mSoIi%wJz4Zzhy?zE-}Q(zbqc>q*L;l~Wtv=)6h&U=|*nvXKfg z6Cr6|>k?!S+B8)w2_mSEozq`iu=K`%g5AU@zX#l&aWIM+(27iWE)d+Pd121(>m9;( zrz^T92(y#P%LYCiY)FTLmtne3>kK^M+>Z@Dg2li^JV8j=f8J3mRf!hO+3XeRW@6ei zNTsx7ixB+DYfb*0SUPIiFqN`=B*sq(+?ky;Az>22OU zqmA+3pX+udHwgKbl?Q9T%hF1nPJDII3yZ~TOMKk9&^}1MpWJoIJ!3QL>FzM0;^JQY z^^3`uA^x{f>JeziKJjo%9qVwRHT?56YPM_5AM3q7KLQz%Lhod3Yut0aX)4;k#AxAF zQVHUG9y@FcB*}xs%5VB&bny3|B~xB8U`?1m7%Tp%NjyGXCu;z^$tiCaeqZ{4H~x~q zs`e*?;=RYUibl;3(br(a*ZX z^wl+NEiH3l8igW?fkCHwez^|(j%K;BbsCTA)gMpF{~+I^ngXx*@GgP;4g`IA14aw3 zew3-^&urmJ3}0INk^&e|bn1)u@rS9Du{1q47gZ~CWf2icqoqxLlmtesj-(ZbND7 z?av~AMn~26prleNEVF+Y3*S*ZP$8WTKXuKEZGz>9iH4heij%Z@BFG`vIwmuz+IU-L z?_vfAKVo!Fi;5H739D@yKO`{koy@n;*i2a!_zM_4MA7>rd?LIEtk{pq9WuO zspzwaVcEOq?g;yH8n3jh`|wGh#r2%2ny>c}K9*_qOA5UFIi^@2$@&61S(Q|4QB9}o_C`jZvfIFK`=VSWIW5Q3uv-1d`TCzxBjLY7QVcPOCFD!#GK*QVT@mAu zBYjGodl}CHx44TDzi*s3R(e!?d(BtXI_2K^bsDyqS58$NkjzhFA+*gKyPv6}8=WX# z6yS8#Gu1uqC_+@jZ+>puLy&hV30iU})|Ve&KhR3vKPZA@p|N{cEYJTqx6o<1V}paf82k{rznVU17IL?; zXosiN8BA6^FBr2WnHNr!-mwKhdg?&S+%(HWnX~gG#rZ$5kjA(p+^*ncif)=!4XvCk z2iU946ZjMFoO4D)R?aQ(CrT6~fyEy|@aKHhvwEsgiR;lO?7ZZSAOj`_*4AGA!Zi3Y zyb+_}od{C#*be?ZSDti<&ye7HuSbEn4YLfbda;}A7viz#7D6EM@Lx!Nh;)>`yMU!N z7@5TI>(5uefw)3WE3xD4(`je*P_XBbhc0`Bc$8hV`XqBMWU6=7ETbnZ0dc7vHFzn{ z&TmDFT3T-v_;h>I5M9TH-P_Yq%d99!TK%4(`siV&8VpGJHyTj+*?qSGswTl3hcxco zHAy;Dbt2Ei=smJ`Kx74V)IQ#dATe$pmk5mi(tLg1m9XdsVQr&VilN+rOTkz+@kF%3 zlUQv&hu0iJ#2zbu&f#Gb33y=24vc?^gwTe$pLS>>Lx-iJtxP#|JO8zu76UAn3)uY4 zndW)59*5?qov!;zy9B_S-g!Y(p)&&fI0L zEzAejhhyY$#>n)S3c{rwD2is}rVXov#|Cc|O`I7HD~X zp>Alci5goWwt%e;%BLE&d{x`dx!{=mkV5)Mc+WFddHyE>aNE3bkvQbK*U&a$)IjVB z3VYRu590@%W>_}N^ZRUkpj>4Qs`FH41Yjo_3R$NjQ))UkRX|8`K}>yW|JTK$?I_XE z_yq$!la^O(hHb?nRm=A6KFkKW*joBkRiDL5G!Y+oQ306s`F_m<5KMixosdDS9x9Vm zpjsNr1ruyV6G0^lv6}fAkjmPVlJO^rdu4fk4rqC^E)Usf$Zx{?>YS_Y0F9t)@vw*J zfR(rojuHozi#|`*Gp<_xhX)_|oZMXNtA#w&$ zZgF7x+(Jj>Sj_OhSmF8l`L&~>FQ_4Ja_vRcU{K+u3ibDjdC|{FKygDvGB_A$VDygV z+O?n%)v^4AxjB}QS_6f@pwC31Ubia-%6c-PxLO9vtV{+=OP~-pK19a}t6%BMAw-3N zuwBk9{SXvvqr#B3X9OpL!opI}9)%32({xJG=!9xX3Ma*lBbeA>s0{c{kWIgchyV94 zs7wH(hT@g~mwhgL4H^lw&M?V*3=9b|vN;VReQmPAUKLSFDyX4}})LL&pIAY^RZWUO;4NF*H)&TN!?ac zZC8z$sbN1E1-Inj;84V0fi_y8TCCs%VGu+NaFafIoLg z%dj_Se_M9EBfSIzdNLHMMeRH8i=aw9P=VB1L#!Hv3Lp3v$HaEedJ{}ko+uzjBGj6>NAEMIR5M4L*JJ=bo6Y9DUWdl)W znw>TO1^dvB3;#!5(EhkS^x60TO)3;1PwegO4a!BCjEQtMRy)@WwNJm(8zIxwib^`^ zv$2U%VIM&p$jHtvM@mYHO8Ol@Eff)u`+FhXM_pBA&-Drx)gF?mY7IwE7J#r3RRP)# zRH-f5Dr+)$&~GkQknrezKPXl~S3`Kn%KvZc6;Z-Vfuh|PIpKBMBtIK#hn_a-bc5UGXYJDI=5MJRp(rMfcU z5ND3XuT{Lv%sLLbfaKL~(9tI+yjZKK31(g!dQO6>jZy3bR0yb50tlueS2$GmqU0#0C`;O*a+1Ek+SU8=UhO5nnx-w-}%l1a)3=X*os6e+6hPDFpGf+Bv z8zc-I1~oxUA+(Ucw+4Nxa$&}u0GdjuIh9KjnDIHGt($Aq$QvnRM4gZpLq`d12ly8_ z14PzCo1rF4GQZz#XRfm8gM=xE`kqqM8mgd|2(;eaToSBS(nV$Xfxf}as?oNTX$K9d za#8j_7t(4_g<=?&k%}X2Oj`KQqxY$qLDU6;S&)X_-!KP#0t&f9iMZ;RKKj40BbEvZ zI|V{E=*V+R=@`YtbfFpv3erRtbc0k3#~RxcCficpf!^L8ii}L_!+8v=Qf$FR4~&2F z=8Y|Dg;AQ8eMj&QctK3e%&h=3u@K3HFiu*H!KPOGwd41xYeDLyt{(Q+<;%?dG?bK% z4X)l`$84_GItTiw>q4IhXy1^#3Y|kVk%TF=-G*f%4&&c%?N} zkQ$)c>-rcmU8q-8H8V>;a*`qz);F9wqX8<)P*fTguw@Lke#2P$u29+y`_ABYcU=?> zgUjCcTXZ5xGK*Ta_*_q3nvJ@sDo<_IEa(SjK!%l2b`fnUsJWg-RmC9c*MGpt{Sbzz z0;}BLiT;S{!Qu8DutoJBiF`u6nN?SsM*WG55QzPRfH_Qr-$pPEJ0dG4M{SZhM;t%IECo`_v)E zl1KXKn_%YzBnR(8zJxx(L=Ek+u*P-?5|Q{uu>&n=384yAs|`iz!R|&_@-LZg^(JLm zpu9lk4N$9!>bg({SjTm(ohc-5dm=Sa9y1df6B7gVv8bZ6z|yurOXG`Kx4?$;Bzg;D zSB#;(&4kvUvE%{&K(7zNR(WK(*K?NP2JwlBPP-F;i%_>Kp^<(6De9g8W$3$nwEFFh z9Y534baS^Cn4x#c$B!SG7ILR2QaeIj&%P#eUHnFf>S&?eioRLzm-?>|;PZnf1{8Pv zFQCp7pwBiCUixuneylTHT_5$JIM{GMFftn~?SBHDLWtnK=-0kyF)Vp0X#Zixba}M8 z5~SaLsKORvcJV6uP!NS3w*kxAMhQ*Z?F0|I^ zx@7~dx(EAvez0LwHTI$Qj}r>b4WP7{5_If*5JU74lrhT$m=6$Me&yT^fzy#5(<~m) zK|Q)LU8u| zCPb`a$X2-*rD*K=2A~=RlZ(?O{$I4L^03YBHq-cO^??prJV`)%2;e_?+u^7J>$We2 zd|DPB67c4IH_VON;Dp9V_nhWmKj@H)N|P)7qqz5H48y2-p+-wpzSb+53@vK#t7 zK0a$r5+o>X37-Q*hI1Ocrb8Au5Zbr!RU76OWT}opDP|#5y&{DH1Y+&ydXxvtV!U%a_lQ`TGX-U=FJxuh`k_OAGc6;FyQ)kLnhRq1PuW- zbpjz6bFevPljrzF4?#ZY7a_9Nrij9-pIvtx_8Jd%1EO7)v8dBQ;3{k#hrV&ntEo2NsL-kanHU)H8uwhN85x^dl z@3%u6g=9jSC*n|xodvB7bTT&Hyn7c1_34r@5f!Kshb3dC7I9L7+^QWLm-X+PB2X8P za*412yx@g6zxMSFqH~2p^1%3ndm+5?s{gv) zV+sR;LoE^b$+(sN@xUbsPbH^as2zqTJh10{!Gcv-kogcTpp{1TY#3kzt#ncrJ)VcX!SegtP7a; zRYzeVm7!J}pwAQp;?OAN)6O!~_nSa*8?>Z&o|u@J3K?ot(F?6hW=^<8wY4cBn*z0P zP}mL24!T0+LKf)J)SGXa)v;nZP^=ENBx{uhIW^cGXdLs!axfF}InY9A@>#BG7kmQ7 zm1%5sZA}@T(pcm8lT7vN0W~!>3$~`Nu6VNZ$WS-`QHYsCM~e`;`cMwUO_S|nAk#uO z1-W-65a8^u#2h@DYDqwnMx>8Ng3X?+k%a|a+Yf1PASVLIX$lHJqkeK~>I?v8=)ran z4sAJh1_28K`yz_)hB_(m4$CD0p+FgDxP*a&<5Nq*@A9Kq&{VddzF*MqVG@ef+jh5B z`gckoIgy&4K3kk+3j>BuA8YBZV@#jnhy#O9vFi=zF-84xOiBU}{{`Cttx>+KFI>KO zQ9MN3Aq;#}D4)z>qFtDnxQd-{r6nUwjtt9(-O5g&q$o}RC?z~P+Btdf#Xh$XmlWvDT zS7fB5mmre|OhFaV-3!E3>Wbxu4wD4_iUpRJnGS;2P@^AU8^Ab~ zp~*y=3lZvBwzt*^^t>srQzs4NS(9+6A6pvIfTIBDBaZVbw}X=r$bm_KAPe?+Yy#}xX>s3OdRj&T_lWqS@AZjMl5g_DzjK$Z#0 zIH5O}esIMQVG)1n!wsqDsrRhgjG81fx*R`JE{QHRDlV(1RxQCM;GBK-J?GS2_s c8!>JjoX000K6h6K`F$AdEt#8{H|{_CU$So(KL7v# diff --git a/_images/sphx_glr_dqn_with_rnn_thumb.png b/_images/sphx_glr_dqn_with_rnn_thumb.png index 0f0a4d10d2e8b0d5e2ca232d84f257c9fe2f98de..fe461d109879512da0942d9c200c84f588b60d12 100644 GIT binary patch literal 19305 zcmb`vWmHgM*DZ>uARwV23X+0=fHcw}5+aDw-6`E2Dj*F~BCUjgbc2*2og&@c-3@2$ z_x+&6Kl;i=Uh*~TNw##OkzwF6clX9m!fhgDAzv2p9igY)m*gD;SQp>}*9zi(qC6yHbAsD-s|qEUXdrgN~lU!9kI6xhOC& za4 zls57(K7qudd>CHwR)g~%<+pJM-i{F3ZkjuOMj$cTZV zVR(GJl%-|f##OG;nuFB~*{G?SE%8KNhd{9)!inuY0@mCj< z^YioDlWtqO9K>e!+hzL3T zG4@#L>b-7010y3;>xK4vO1Wwd6I+#dT&vAjDL%*euj8LB6!!?eNbTJ|UCW2`OpsiapBL zE+ZTgZsB+Dp7i$iI=i~cX=q5hy7G2+cPH@J{b+YH;vfzP3QB#~_ruxQd3t&pxe^{* z@$1*WQZr?K0RbBahsRV@-uwIZj~+d`g@c1e!N(Ur*AkXGwDxYQRzOftu=HS!f|vyZ zPj-%j7@LWSNqE68Eiw`x9?_XBl>Ah^>~FP;U3aoj&v>OB1`dwV`SA|Ch+e505w|sk ztgP((!or>V_x)rtQtg(y%TOfWyjg0GW-uQs!+swah)L$Y{oJx@%6>Z-XuwDXpjUEKGoY8EnOci4Jx1VjQ{;xI3hBVh*j@Kn9wD+dYSo5 z7uQspVaJyTx6zVZSD(nq%U8OeuswWc{(E2`dVSqI$?MWZt=#f8jA;-5-tAQJklBl) zDdVfl3sEt#-f}DLFHhB*-L`5Z6ch-~4mb1{J7aS+s}AFiUS$vHJ&TWJGsGk!B7(aM zo^QV(WY&_Fk-_=%2|LwkYceV(CNey{KJXrcNpH%{9)Tm0Cr_S~m<|Mz@;Pn~>xcE$ zxH;|a?Tr*0ocSt5NbAfQ=!aX1#;*eIG_Q1JF-N$4s|`YX%xfUq!S*Mrq`jav80 z_Px!TBQ3+BJk23a;Piu@(RI^;v|m#!3hFnkXD@jAiVv z4oGEXX1*=682b@S%=xNNg|WRr_fOP41|_JfG1(~CY)?E+_ho~{Q`u~0MHj*)$O;8EVQLhN zdXjSCJ*rPvv)f@==D9rex>(bW&Q&j`A1kwvN5dt{F)%h}P|nkk6%QrJa^LTjXonGt zhRwFn7=Ry`Le~!4GkUA;N{h#S`SZUjC#&?#%$LZ!f4WVS(izJxQK**NKH)T#OTyLR@+OhcILSIL4NQLyzM9!mzI<*BJsP~pk0+4GXVd-pCa zEse$F)E@SjcxpHfDevD}4>uUurcBvXlZjuP$h_XUbB8YQqYY9Suwf%;OdA zn`zkokqHT%LYF(Z5Tkv4ePJ`p$;v+0(V_VM{X2?}kI(0r7ztfnN{Aax0|WQocPH}c zm#V?+4pnnKfBwAek5X-IZJF$ASSv2mAJF}SgXb%klBoFk&zn6nMJW6VL`mNg+~nfo zf)PAfP7Q-M63x!7_I!~)#O`)z&c@EJT4qkfTzAfvt(;#rapX2u<+_RTyT1OKnCxE@ zjvS53yTv1&@ST;;JCEj?L$Yn}s%G@ftgN&JG1tD#*Q%kf6I(eTARzcQv?eJfm2E31 ze3Hyi01>UNqvJaL8@ZU6n7PG8qp@zqL_VhahyT0>(xq4590I1QhTQt7sX+t zp1?YkCAgWZ6eN=|x7?dLRBb6HYciNa1c|F`thlJi+RhGQzsBCANvWDTiWc^L@A}^m zr66KY_q`EXScuVHjJK*i={of}rn*a!qNJ#x@K#Pvq{?yQ78aI%d(@Ntt*K-PjicpO zVRdyvQ(jjBFsP5Yxb8DEGsEOrT3Y64)ewh>zbLnyFkcep=jVq3VAT8-Mfu{BPN51N z14HpfPft%6x##hRkcV7F`Ykw28WlQN4A}#L-rm>sn}cT(ohEhHhYKN)x3{-D@3zra zZq=SSucXHuk4;^Qi;3NYJyj34C@J9>%+r*D2R(quS8UuvLrd!imxhuFxK3|whW45? z8nBJ5{#`q`{ea~?20qR9$x^cN$=kZ0)zu`ay)WxLFOFfSI-hNnuM8Jb8TTX^{{8lR z+5Q)O%(Rk%f({4q%0v|x1m5}F^2vs&sbu)l-aJh{*dTd%d5r31!83pSAcaEoDDl;S z_fpIKl9ooTr>~FP4)$(1{&LFbJe!tm_UZo03s}66pWL_W(Mv2R;^1D8&tJZLc?%NC zvORB^`N+rea;~c*uPZ;L?1j=Htrr=6g)lnw^z`OqcJ}rLkPjfM+fM(!=I-G^B(+U%`LFU#}k~&|L40&f{^)p{uKl!hg12 z%)i@8MZ#_U9Bo>|#6%lb)ng;*k^q|;xK0Ckm6^t0Hs}#t@5Nk0dBqUH=k2YT~btmp@ zZwqG+6uImf0TzL+ZWMB!BQ}?MGDUgn@G~)1QKTOgwo}Aoso@$oE^YT6vBdS_v^1X{ z!L#7Lj5o#3JF~jGgpl;V3^6ohQ-Xs&Zk1mWM>ha%YkTI; z`Su@N=_LNj?!%K2fWaWd!snl`_z3bnao#BOumx@#T2Y=4v4JNmBcFsdoE-m9u z!V@{a1N*}dhm^Q8+A4%zxb|f6VJHcYh=M}Dm5dy|i2vy9^z`q^8aESE8IDgx{KZ>)dh*paZmlb(#-qz=Y2`U$zz3j-}mMTJ-yzL~ljt^mR zO240c$7r$<{opRgZ(74i~%9mg?K*g~d1T%gNgHh4Sp zcH-`?ZHbzNcNJ<%ExRfK+pZMGo{el30i`Hsrt2-K?17Y_wQLf{)6@fROiWB`TiX-} zo*Y(_Bx14vFPn5&rq|Yjva=Z=Zk2r!LUD0%kxmv&glh_ox`jv4WU;9pW3x%@)^dGshPa8vN9tfmQgVgMBp}qpLg$0 zPEK|v@Zjevb$q;uWk8@uD>#|dIfVYt=I=YzTA`4kP0MUYNfG~tX{PU0a+R30s$VK8 z5ia#4XUJ#BaC388AFiv~+S+nEZIa}wl|BMA3}g1oe&u5do%wi0I0WMJ^K*#If4aIt zO3j95=jVO2@>`~+>e@Z?KJ^X!cp;*hjr(J-ev!S?qX1t_oPEoRx8qn)x5Q*M&G8*P z_uDFE4h*5-)w$hmwCj9Mn+82e0@RNm7uqhos;;R)kPOrUkC~an`ui0$G&H^f@>?6q zr{&>^g%TjOZ^aov8MpH`1)t-(4n(Lj9P@@tbHV7QwW-8u-^=jvdka09vX>^D#GbsK zvK#+=@VGK%pDxu}&xk05&)8hv8bnVGqNiMc zLdRZsqEKdffI(@QaKk^-LDg40Nz2pU@$$9H-sItOiDKRQ4cBKgq0hQbOs(kIa25Pd zU!aQi|NJP2kFVS~H=AkP?H|hh(DUr>MxlTRw?~%0M_Z+X#&^7wU(~{)xlg!Mo!@n_ z+6IO&lHiAwcWh~o|Lx9yGSR?)VyaEAMD*#FEc46v{%YUpFxfr%+rIa^3la}S3-{1? z9Xlr~{rMyCV#J2VFU>qwg-+Ci0&2mgv-qCfKfTg~p(`S3`C|?Ov_I0ha^tFs%)LyX zD%1L8Vn8x(_9&$F4J)T*cXO6-E!nT#T;f?R4GzIDdeQKhN$W{=6Q(a7Cltv2naQDs zyN5j)U!SEt_2xTDxrS6dK9*{=~)1JTXtq!q~rCaqH`g{4B-3 zFCjoxgUTZfePtXZ{wa4$wvSr4@paqN zyy-25*&Vah#`PIeoBpBB{Qe3uN@}Bfg+e@AJ>-l&Z+&6T%Kl+uG3N+=Y|}HmTxQ~M zu+1#AD7Tz>l|LxxUdeScNScwLfeF6DlvOoHTHPt3c%%s?LvyZ%zl0bY_u!W9)CvDx zX2QYcG8h$@T!oGV>;QA#=&p~wnkEC|rAmjr#pzsko@%I;3FRu4G5b{T+@+ZPb|LmHf*d^)3b7juwNKe8+ubETuv5Z0{s0cAei37BK!;)slsN?KOmq` zKoEWewLK66ti&M*Fo11^U`jbTIhF^vZ$Eq%JZ4$-x=DG!+JYystKSO$YroJ(-QEul zMQ>of^z}ZT=)J+jJ-XdAAjwOJsmrWD{y|hi!VXG*Ha0et<7sbPYez?;&abQpD=@!s z;YwuO_v5w8<;ha)GYewC9$%$tP-f@mkaRBpL;AZ!7+GBvGrC_~)vL_HfHzeQX~R^( z8+RJ;%S&_mJf0^ zwuF(F3upn-g&DD6^07f|zl)Eby`BpE#_+Jp7beYisKR>J79OsL z@FvSQOevH7(2ie}CL>T?Iya8xcY#Ie8NW(}hXS}!Jhfi05WuCi z?aylJ{0C;G4cr>{YyHV%#A6%jNB)83(nxn}-rWX!}MM~LC6BDF> zTN4r!WesHNvD=vFmsS@1Oa?lmV~-?s|7Ptm>+MKICLkLWWJ+ge^`MSI^S*{+Y;25% zO?*Sx$cTn8$lbd}>!u+MO&)i!R)*nZYj@pPXc<$9`JxCcDb=DSeh(`5zb2NJl?0TH zUGkj5fG(0fPoF@f1xDgw_CPzVAtWhoZf=&Ck3_)G6+_g<#KLk}&B|y64(9RWCdZU& z7~D#`rIcP1Btif2!!7r1x%x#cI@=Q+pDV3u7aVj`{7Xn!eaAxiRNpVS>;XQ0r@S^P z&5X!3*$-qt2dRAC@(2U8TLv^&KIzIp7<5xxTl?e3kHC%mC@A<0#o;&jEf$^k7W30k z(m>ukOGIsCxLsSzdGF6DZHo)3c>=mrOeB$R1K&Z)BIL( zlioqQ96s9*Z!SlpaV|GaWAsx8Oq`Dg@qXk=O~-ns-*6d~D8T4d8EKNV*A-G)f1}?! zNNqGhF4nWXW+kDnd@9cIr)41A3g<_*W*}Zj(hdKDlgBf6A!ye}RXrm5*QUK;>lqo8 zniM|q@p$p?P0aTBgfDoe5h!e~+aBaS5w3t#ZwjGk5&v&ld#`Hlu}w>$wsliMahOg|MP zKOMQmszzkQnJuV)T&`5=PD*b$$~%M0QubKp!yhb1^)mL@J91SC@q>Kh@sRG=Fz<-m zyh{<%`s*00`e;kkXnZV*Z>;Ps0NR=JpF@o66CJTfLbt-*eop>egB;b-<8b zABwx9>D|wiA&$MW9478<&q$CGD*2uRwS^7yxaFs_xIMN(!^VthjQm`+#_ii{cYpu9 zP81atKfom6Fa82G?SoYJ6QhQr7yFhAf3lrQ#m0mmvWBb^N-KQ`Cp9+I`;O-zhMIP* z;|cvz?7bbIlM0r#YX_sfgT55Z#%Lv0_4nPnrN;CqS6}|Q5PdiQs=bTW=6BD_PH0Tg6cbuiZ%003uHDR>XXLb2{2G>D*qetzf( z=={ohy~`_fEG8;yd%d^^!mM|E{6qK;sMlD%F5U0my~`3Sjnu_ZWBxoTQs6SXc;c8? z(-{-yNZa4C(3AXE7(g4@%Dwi+dppz%1o)FVo^K)u8YZ(`Z*}|+ei!sO)nQY7h8`Fa zvH+!%;m&LmKu4R|MvSq!dt%QaOwP=TgPPPzwfel7Fo?t7vaV?X3RJG3yBScR(vf-63n~K z0wVi3W2~^t4SFchanm@A`EifIRKir(?XbQR?5EwYy8cx;N)Fi8< z)SM*X2CGmXmc@;mH+zc=rGRt;yl&hT#|bk(GdCx1D5Pew(9zHFmj@5MdueBORiA&9 zAxgrv4gE)av-Terh&M9o{=pS5^gy-vaUyy7iesa zuC4U|FUyg~aqe%0*p*j(L(a#ffMX!RUXj_@^r=S0=k0B4gbQ_i!uhE9ck7?z z4cg%`Uorh({n?=(9cD_c!Xlls{PUC71IlXmSMOnuDrzBS(r$oB%pXk>HI0ldj#2t@@xje>8p6=f z=2Xc)HAU-2B?oq?X8yDchZ(xLG5SW7>+v^U3g|=RJh{NQ%S5m}qisd`yEtI<@yOF$ z@jrjcKNVd_KU*pa?1wmnCV`rk zzMo2aU2-Opw5^kDP1)!{8kdE< zXKFQk$Jg{E2*h*;doqR{Y2uq8 zF&$X)BcbBxE%WHO%JO;8%@N}696bg*n zx90`W4fkBTCIN*#9FT-lhV{Enh#9lNR+fAKjBR3Ovo&n-;8JssPS!*ZfU zbJ{i>_`tClhVw0eWB%^!rz}C#fY8uIkeUn(3{ZfFB%fYiheV<84B}jCM@O;1p!qW> z4jv|X9I68KdVD+=cFjL5%y@gcUOJY|7iiV<%~}$Ybz{M%bX2My04;n%T$9A3*J?^M za_yiNk?ek=YZZZHYhGZRAnqcB9FGU!;{6BktjA|(cIU@7V{;P|6O};c zV_;#Wf_AF0v9!6i)&YuE$Noy6q_lKSQ5axnAXHU<**_U8x01+LcKCZ!_arUf@ zO+Wimy$lCyYq>V(|Dfg*+c%hm?^Nj;vE@B(pz4&W^_p;~FcJbMBO@b&!p*}2bymL1 zIY4DZe+uK@y@m3Blm?}vWZ46zHcn109UWKz*wvRa)5i@K(g!5km>7+r7Im&_6@6X` zf<|-m4gBP!Hx0h1$S$3fy;|drCg0^v#6d?#hm6AmtPNybAZ_pB;k|D&K&8ihzA;f1 z1G*fmaW_dEr`e|zIu46bg7<(J$>}=F4%-nl)P3%KC zAkq*0{9gnJUlha?o0j^&noxJ`8_a*wag@<3xj1>t<^_y+YHuqrmWWK%+T9I`8p0PY z_9TZv83d|i8nC(`MF1?h`w5r48>)xn4(-bZkR?|7v+xDn4h=TPD^U^z+`a&>J=QSi zrHTEh)V<*3HUiW7{Hl5f^Rs@!lZmIlCw-SbWBLGL0>gpQ^8L?iKv)WcmQ-;ts1B+M z)OU9Y2t=)|SwM@iU;cY7MEuYDYu5qqR8&-KgZ`!SES@#K>-gkk=6`C0j*hwisS&zj z_N!_~;~QGWB4f{VXo2TYsv_CZwhS{54GW?&!!cyZ^727;u2m*61#e=gOd_wQom;k& z;zQb#=0_uuoTp#f;i*kFUHYqjla3t5}yD+66 zv12ubto3ON(FJQ7p%7;geyIOr_J&D3m&0u09ny4C3xPYc8x6k?YuyX^!~lNVkj_Wu zev1AQ?_zTx+ulXE7`7@RPs>B8o*cYN)|nOL+nAw=5S{BuH(p}1sS{{jUEVM*4m`FV ze|r3jFH19`;(2d9S;?N0anmISK=p=A$@l%=cpl0WuP6{=iA&&5b}DYzigLm_Mo`{j zpK3zge+bTDPK?jQyZNMT?m#y=N!UN)ZIp+BdtJdf?uQaalM@&z>yPIpikgO&Bal#E zbtN;Od&X;RJVt05LuDCJ{JbU8vfkZ^I&yp#6ShTzrR4kZG>ZTpY4w=jd)FU17npq> zUGOJnON%7uP5k75g!HM$*KF}a)3j$Qhn<_7eYWQ<{)LuN?$|$L$&o_QCYR1=rSs_X zJq9<&K$Lr>kMS4s#Y6waYHm6?_<*MmdO7`bP*ahp@AUG$!V5>)1=0F1T^h$r7aOe0 z^A_g*AFC6H`s-sJ|L0lM$?ja4ttN{j(L2kf#EW5@AG1@X3CvrY8*kV>%l=xicLFt+ z&qO#%<+TMP24*k2;9v$rMzZ@M8GBY-d3UiTT7+?V(S8*_Vp0USQowhYVyMkj@$1Q) zz7H0b?t1blcN6g z3L7uKCMWmAXnVH(a#&L-(79IQc4P#(0R%S!TwGiPbh7HB#a%J_T0V7*e*O%xN$>ajYr&*^W#VfZL@~{NV-a83Q}D~nc2D+b{n63`yhD2@ zK7K7KDAP_(q#o^Floz*sFPRf5~!u(jY@3-IkgY&P5KS2xyM3HDn;OnwA2S z6&Ms`A<%mr6}7^8W+?Wzs;a89n;Wpyh!ue_$QRT((7dc29MXYu1A6^)^3~cs_Wzyq zzx`=VXh&1S(rBbsfo$Vm^OURKz&O_Z0~vW*ba6*4nnPjUrUkabfTEAtD;22b~W`h^&+)(vrV9Q}Dh|cas}-XAAnSi3(^kbAF1JiFM8|vYI0k zTQ=m}J@e-^@RJ~NGJGQxUA>id#z4RS0k#AQ!pMJs(S(G@)(5JqM^sc#7#R&f-G*g` zPeLLM^(G|79PPR!Kps$uZtrBdCW&O{l9;^v*{f70CeJhZl>WqxLsth~yLLRjT_Euy z{k07hfs;K2c+3Vsj^>mV{dzQe9Zzz-DP{Mu9c_-7W6z<{Kz<#IDoCS$SVF7|My z<#VVyi@BaCZ^(&~N_Eof&9*y3Jnl*3qv~gBVKRwYecJn$dB{Pf!kQB5Ojyk-aHW8u zB0I2c8-rW{0eOxpLL& z+CWMGF$B1y`N6l230*X-*>54XkhU`C>dXc@kH>RwZ~Ds&;Dmj8ISHD=+aZ9O$IlE; z1Y=c({}R0>q{$b2<@xUBo`ggFgz8}JnH30s;}jA#UwS9J5w@h0!O-jShAeYzE@r-$ z*GK*Pm@52CaVR}BrZEOiU|h@mRF!gWZTq*7NsE{8nS$L_V(TX#DMm6kEDQJepPHeX zz&NE4Ct&k7+v7fh6)4thHe`-}Fa}ITv4IojR_LKutFcq7i-*8bMEkT z$0sRh7uFn+s%vl9Enf1SmYaQtBIGrysK4p1omIm$PA%hDOkkUyVik$(b)^1}Ds4G& zt5bps3G!|g?X^dZuOVHE*vhb0^|UoMoH9`szxT=sT&mCe05pvn6c9H-WwaE@Ud-D! zUHDVvk)@JzVC$KS^3PT(wqP9(V#wk^)#y)6nHoyuW`9jN`1{$TKu$@hrN+lvOHD|z zMWh*uH^xR2Q+Lo4-5Ir*T{3(sB!Lt(*_w)CK6*K|fBFL=_DO!2j^ebptfsYHQP9oy zHEiU;5i;4j=F%+c_{EYv4Db~;iJgQDeS?obC&)MW&87U8L^%irS0Lv%C}1jhS5%!u zX$S|=FBZ@5aW)?SE3t7rIqy=;-gzs7zzTwLeA6-MPa)4z{T~1a`c4Lu-Sw3 zZ-;0-vA)xmfvPGIkRiZj;N7`X4*(dvODLfF|I1NjkK?lH1}+70b)bMf$9$y7muu45 z8w`@lBU&~#tYFte93>lL<*7qs6W^pbSTtY2TG{F@LdskVUvUuen&(#2j5oa#0q*rP zWj!yfdei6cf9sdiRyX(}K7dHt*4Fk6wG#5IJos+@f`JMp$z_oU1V-=_>HsTbzd23> zDfAng{rJR$jiY1p$Ow^G_(7oP#y=APz?9OOF~YAbF}}042;Ym|FbNA+mh1i}p}%d< z3QNgb-|3nj%Y(1LkOZb6)(E8>6?kYyN(!p?_uc!`E#zKlAe)qVRaH~~d2TZB^B#!C zsl6s+NyWwN-e}mU6zuHyKpY)0zvAF6mw49lAC}s1d-nay(vElbj7q*lLP_&))dV}p zf+*htcZper^%;a*L~ruNy8lvAQukk)p9T#VE(CSFeVl|x*-|7)ps|H#`ZFo>FKcTm#ta$ll_^z zk{t*6ssyx-P1Hsm78dJi;iBSV3=E9=p`nacO;)?yKv#a|1~~?t9f3JH zj9{w-67X%YJEb|q@D^IWh!dtuRNN`zpN>2s&B|`_C(dqccI4}#J=Rw6eSg=Pgn_sM zSAdVN?}()x)MB92WL8Jeb8wWj+ljn*kze`xR_RFvudNlWmmY2!`}r4P4U&z`p4|GA z9Tgh(p=7<$&t(AJD(gd4D{-hOk?^?z<4a%fk4GoJxag6-2tZb z=dXGg7Gm%DEfcObl~8W{ZRgnIrGh~6bnWiCq=Jt8myX5;;uv*}?mh;bzVWVrkv}Oc z%L`PwOl?(9MM;ruK6cmcCE_i3f-U~eHx?3XV6VZ#g>0gYU4&HnS{#Hfhi}RixF5(~ zs}RNffXfg~bhR8Kp^Ir2@aA!4hv;)oK3-silnsT5fJQ5|XWN5$dt<_P!^N;Jo=-kYhO?%_bLQQyLI%#e@l8>m8y3sbb z?*5K@K|~M(yn2R~nj5$G(KBkcxyi%*AoDz!H&9FP9846BbeQgaDV~!q8%^)$gE$=f zi|NDCnFLD;0`zYoH#kQ+ov z-3rw4Bzc+|)914^U)4Ya@ANVBt4w`uM}r%czOxa4JTFK8J$fRlfJ*Hfrj-kJ*m$`3 zy$vDdX{5Om;mM!y9Hdh}NVxeHK4pzBRuuz1s2sCHS~^hRj0kTjz4Q+y0idGE}+f>zm*7z@`Yo7x3D?VD4KmWaj%$P(A^;pKyAOc1 z;dNMTd|EyZCKGq?#vu_OLQ0Xy^16d(=SDl9x9AtCTAd$$=pqM&%cy=}dJ+D>Hw`R3YnG!}4j z{g93o0UPzgLNr5sTvxOiR;)A)35llw0i@L~C`?pKOzwawIzraJfDaMl08Av=g%n$z zLfwtHO`If7_Qn(MwAL@3{((qnz^3~wer2jo2#mq|>m!jt_nC_v)|8;0@ec~3dipd3 z=!ltx1z*r+z%mC;>Mvjometad0d73n!n8D+S-v~ymRmpYITIo^Dr7N(%U`%Etk?Je*)b2REs2*}8w#ix}4Z>-Pj}=g%_|x21aC-W zxOV$Li7KwR(2xH&w9eLSzxp}&w+EJ*2#0v6>r)^IhXD%*pUahYWGNa2H9Qnbm=-mn z3~GMKH+m`!O&WZxncn2DNgUk0IOI3vOb5n8jE6s4gZNnW_m^)x&<62fmhnMy`hzh6 zpW*8(1Vj&wS{izs5|@Gmo^+Cq#O6_I{fCBtP~kWaG)+`|?s!f6Jp0Is>4iPvX0YhUm#$_hYaW4Y~?qf?=$I9fE#UG_E{a z`SZoyXN-_yhKc?w6%>H|Ch|TOh@7KELG7^x=Xmv6-JR|fnBFC+7S{8$^gg74IEN`O z-t%d1iqx`Z<<(8#uRK?Hzx}X%g|wVs(HoLNV*_32BjdAX$-Y#IP#_K zZO>c2e$}ZJ{QCTR@BY%8g6l!$iByL=#Cv4x)Eg!buK{FT9|lX;`-U)y4KF?2^?Ja* zf*qY_eAeos>=0ZWgpubBresk$iJbsVf}Pq1zPUQHxi-eh^UWK~xR!q|G*Mxr_TNG7 zH4abvxBF_?Wl)fhkW9L54q*Pa$`%XM-k_JH;7Go|rMo0jqj@Z4U{^aDqvzBSpU_4> z3qB1Zl7)`6%R4aNt6z~jH=JNr6VYZ zh;uI4>ypUI%8Ew%>w9qBqCgFc_;~^H&Mho7L1WF%(UEam#A5(ZxZo~7J>2NHj?4dT zHyba-XyWdwScWie?Rey?rEoISm>17gZ}#K`XJkcQM-U7?@}%H(%Nro~b^^}pgu8*u zT@OGJ!UBL11R$++0{0y-QA~OqX`qVFD$^XmNI=p9?@{uu?-O9#GRq0XQi}o>2}IY0 zp!XlYKgb6L9bcXz0Rimtb?t}1kwEG&1b?OZR4r-Egm`h`PWc$rAX2XSxtN7XYI}>VYIElPuT;S}PLS0)m5Y&`Zz|hkSyLCkV!1rYhUu z;p1aB`AdNUj?zMv^&>S`%FE7gblQTW;f>{f%-begziJE|S2hU*r=lCqdo`EIXf{lI zNzq=qxbR4QVVr^Bhjc-JNDO*G3-k=Q>@?kXIp1kPq-3Fsef*YC(m7C34E_%=J!Tju zeW1^Ci_$YJESu^D?`iSrTQmR?Gv=A`LNm#s+VdOQGJB_=%l55kH%!DH|Mw$*f4JV( z-AzMHeFK&TxK(fA;!0%n?et2JgR=Xn%>WFO*MUig4vg0J_J+Q`NdH@vgqj@Y5LZ?1 z#58xa#}EzImk%D5pN$)8T`tlg&{kUdW$xCSesahA6fiag1uP8>o}@`tRaJAFT9qv7 z&@zzkB4c7g2YnI_iYa(MF%NBZt=+W0tn>6FZm9LIo(K70-IUfK>bc$v^*-{lijGeA zzTnOFglv*^t^|pZ$aLhFdLWjC{h~kP#G73R27V=^wj+cfKR;e{H@thx-Mbg1eT6LL z6(2KV$Z7s&V-%Au`@=rDSNGhL!6!50($VZcD7gJeUhf9s!~gg#iWPOi5>>%7G7)a6 zON-nr!?kpmvb7ka&}N0R>~&;Qd%r`AWcw4Nov$Wp91cGVErLEtKyB{2YTDA^Ai?xm zT|+okc}-4zs15%Ys-!^<0c^Drz3OJT zyh3+qG0%YO<)XYQq7KvG2G3tIUE|b9G-*ZNeF>F6&RRK&9HicwnNZ)IcPEHR2X}(F z;aKpgS(ZreTX?Nrl;BM=X*ow$nofF0irt$6jPcVTNP;)_`NoQoD>f8f4lX03Z9ek7Nr)dOr^v zzK{Cy#di5GC2TpTE|0*J&!0ad4Tss|o~Qfopu2-!phql~i;?#;gW)}M-o%@~Pv`E( z0_c?YE1BD*^NP;K#}1g#^o0J3Rw(anY-}jGxMF}%usxb^8r!@AS(C?l8U>hkFtBVx zJI~#R4?Cbi!3TQy!o$P)ug>>O(oRB5(%dKFS<)hfI*xwK&go63TZQiQTg(K*B1-u* zGI5Lg$&-NUYJQ`xxTZA8$YbcdVU499Iz}4p;<>CA0k$tBU!BtmU7fRo43?u_9tttC z2#n7VO(ev{KUug1ra+Gg@E+e%QbclN9*ZUtk8t_}Cv$Gmc8$y*M`xB47Fj=k)x!^< zsOfPKs}}0r1lj@=I>N{{AK*@*1qw9H8E8QP)&S5g;La2}%*)G52#!#4w}Eq;j_%fb zcuOSHfHRQCcK#L!o^Ma?ValG39{*wm73T2*p;k?HF6_qA2Eek=Si@ttSOA?T;Auoc zP<}pRA9OPP*Jo*33J-t`gEW3=xHN2=4r?s@7cxViClLL@;*=>!%Tu+>8@CcQY}Z^L zzf4jHJ~WXS#Us+ta;6H(H%N{1vrR#WS7R!y-$EQFy%Ts28aNsv*)6B0X_dBFxLVj64F6HwGX%XKD0(8;94@8ex7eingsM1(q4S}zqKKM5x-Ai`}hl<$W!c% zy_QX;x!l)A#j!Bx(B_!$*2Nei?(OaUq9#@-rEdj>rp$%)up0(6sOjT?sbW>s8W2UR zU0WajV=Ns}vMq4>kD#&IL7wv8?p|o4jeBNcdbE|_q(=#4JCJyz7hICi zi2|Oq7-sDskX;?Gs=oEDyp)!1{PV{fx^#zvm-?xNri_JRHE3RB6 zvm>goY-sXxt*O;==c`>^rN4df+~eoHOs6`m((kgbsdGY$irB#JwlZE>JesZ%gLR)t zhb{ING<(8G+pZ6@LSr#B!O2%e2^kiuaJ%l)Y5ua$x=)!1J>B5Huox|oMJ`8@#&wuk0(hYVRw-vi^kLrP@dL&^Avn|s(X8R|~Z z!-9ivL*I({+F-6?&c5>1|Zh6c7-QWqSqcAGhQB z14!|g7iWE`61dUyxj7EdY6ab&w_!_(2S2ds`k3N}OTGvc@(*Y}8i(%QpJX2yKnsLM zVvTC&aEP|-&fC-U2MPQx5zqsO2J1FIpBXxeD@;qZO5gR-Abr)~4?%j*o~o4;OeiZT zG=dN82?K*Z*hmyN&6W*r>}nG}RTG82Vu(W3m#1qG%11ZPz(U63e#`h^Is`mwwsnhn@uD5*F)=drlDECpsQGpz!zfX=j7x!ku&y7<4xQC!<4 zha>}cNOIqmYz}z{9p7`1kjl=0`t5?UfQZwS05mZYAy17aQwEF4>R7kUN zoHwoN0U8L_bM5gg7C1H)a*85iV(wE(gr)(1Fr?vd@BV!W=pcmUxn$*arXD@?9lVh} z;2l|p##pP+Phc@=hUdbNTS4Qc{PzZJqT6U>ZtJW_PaiCvO8XVL=(8ipN6?5@0cQyi zL2|G{)6>Mn#x?}9e}7{v26~~jmmp)*Ydh>K)!&~Y5coV*0VZ?5q*e0@Z~q@h4{gk zxb`b&>Oh_S^q$xZ_^8Bz7lDpJXmzOfBlpZa9pHw}ay9_(AY}Uty6dR`&Gu^&MUs85)i>h`vV0C7Xw%9pKEBVhD}Gx~Z9^(9KB7NN637wRC`+P=rf z&PbC!0*s)&5^*YnOeDO3(GNV|Pc<{Bu7oa+so-@Rdwby=g!{9zv)e~U8E=vWbJR)$ zou)iuz$V7#xUQmTR$~fXv&hy&j!YmW4FQCPjzcnyEHCJs{sw(|B>c{wzkYq7D8vCK zFQkbcnn%AuR|3c$eQ=HelF}hHB8LU2mRpkUEq2X8nS~q`P^$KQ_k8>Xu0SKWXGhAd z$e~k}f`cOp8Q}X`&L5B#Sg_qf9Y)8nF?*uYnANMM1=(g95TMY*!>igHZtb?dHLL zwGR&6_Hqx-$JEr;V2gt`Q1g^N2lbJaURBgQp2l&m+ z*Ce6D#V00y1xpQLm_Cq3UqA~qKt{fQj{^P3 zsjG_mV2MEbu)!h#R%%aAPk50qh%VD}b1%TP2PZrr2TZ{4!!aI;+4txrVqqA>WC?)7 zfU`A_?*}CJH&>kt;07E+fEOAX3cfvwgE~$zSww8g%E~%EK1MbWxZ65mw;`RN0FAoh zx#YF9x}ncIpt!jB=YdkBG&KQoTnni1aJmb4Z~m{tTgKo2`zJ>r2A```^=>GdL3#D{ zA7;u+f9MY@mr3GBdQDV-szr{&sQ-9#eWL0JH(4Hx4;umYfhpSn_9A0qT7<4n-oVnd z)9hi7?*cKg>2M3)V2tVdy%fPnlsgAsz#a$S2N-ByC^-Ioe}N7F15sO{d!?)e+L`yj zY5y5=3-|?)lP{(`&vGp+8x?`tG>u)P8=4>HRR|MC@&!Ve2$A# z%ic=Hy*1fS%#`NYr(Q zzWoF^5(i19&O3Sl3i>k%m+%kZe4fmsPNQOrBpD#!VIDGaa)LR{2Cb(&ju1xNz1Gm zD2HL6BZ(QrrUW6cBuHLB?}3B@rdQCg_0`92>i~I=6rZqpcHxW{I7UJo$hogvR%F1> zr9(D_7WuKf26|@Z76Ud`gH}9X)n3E6fv8JBNNBrNbM&8l0f6umxB~6~8%iKH151ep z1Zt>40n!|fSsBCbD^oOf+h2YT`aHaPrUq(V;n6tZ;cKImAlEH8S^&umd74!SEBfPg zJRHh!zQF7S?(QN0mSE?GlNX?g&~|(JInvhvhpWh^JGr~N^CK~fn%V~ta6HU+f#n1* zoQi=Q2w`nwqYHBjGvNmb2SyX))~#uX?QpgM3LGc|Z3Dr8m5>Mv+qlGRDAe=f)CTas zNTZ}mcc+weexxAM4boCdE8PuJ0wN#+BGM%t5`yHJ zi+`WJ_c{CG+?)%?aJ;OwzBgt(^O?^Zq9`wY6N?NB4Grz)()I<9q#7;<2h*>c*tIv+Dlo`JW}0vA}z=5$kt+@h0Jib*`JiMV% zpjWxCLs*vo&X};2f{7{g34!8ZeVN~*Cv7-y{82JIF+M}M1243qko#AOLgYKfHpUtao^HnftRnfZDs zPr>Q;SJM7e{`n)HyrHqxB}IZo=^DL4TItAAw?A`XBJxUcltuH29!qJid|rq44I)dp z(|2NfI(pe#!aI#$jE>^XkzdCf++1BKhsD`QSYhw{r!ER^ON1-A3yX}<;Ws1n)H2?y3ojl+@gKXb~A`y>RNgITTCP% zAgCPQ9kb^BJ&>WGrA3N1GBQ%ATUS1^Rfk8sHg}%se@J?EcE+MtPY@y1uA(3uP*TDk zCH$8}yC^|C2uDdv>#3t7*WlnFS}MO&;FW7QXdD*bsH}PKFl!WdtT=O_)-|Of$wPvI zuAxo8Jh)3rN-7~O9sA~u*w$1NBO_z$_;^ZrIalD#J5o=dUYC@Vyo!OrW&M+*Qkzvt zNlEwR{zx%dSZHW>Z!awmPh6|twFU}yHa7Z)4~eq|pFDepb%)oQik8-IVZr3hn>WiN z1;haX0Sk+ZxA5`BVOnTiQIuUnLqlp|`X%@I`AM7fqb6;awrAV#(b3IrY;1V2va_>0 z3*1FRHKeVtTa(?nL&|GS;_K@>JUXhPs~g^GNF^%T(&=edrrG`FOWX8x#;aFoLPA0o z*4FoEX|EU<7zE-{${QL|H8(fM#ldHo5CJ@X#MH;nwpw8Np3X${bgl6Q5*B^o1%QWP|s_0?BIxq#VOA%It~uJ zyrG_|QGFR$saZvGVId1lRy^>A1NsvO2TnLC>#0Ukw1SZ@at|jvY8~d6M@uN-w;GRD z3zqjic6N7@IgBp*{OdJ<*&F|v>nzl&2()WCO(52H^IcxHkWb}n-CG$-eqcp(=b^31 z-}SM3_wLQCtn{27Oe+`}QOC!}d!6o&9v&SjD=D>7o*zoz#>eOPKH(`f$_Ey?|6zSA0rF)X_ zJKj@MQ(OO8cI8z;N%PyC9Y=k)S@cx-`*7gJhTh-~*RNl9Xj*zW?d8Hjf22%1LkXYB$widAtf|vIc%a6}%&d|tpZ2j(v#f1j2q#GV z-)ccg+{#d114YB1&v)YKWD*!cGa1%KOEkWJ|4tCrnR#+{(4w(fzs5G|U12_;{<|+F z51tVE(}DjbjJ?@yYQXV$qlP(!*G8GwZmLlBEzi>r`T2?;3ku>>?3%UQ=OZ4*Wl2Xd zftP)mZ4V-Z73kPCscAK!ipo6?Y)xS=pXuqP8CPk?Gpgh=us0uO&N&Oj_r%_3zJ^1t z2rGs-Qrz+RbA4pX!IWn_A+tII9JVsdF0Q`5KI~8~l&x4!i;5M`p=ZTeAT%_Tfq`Kr z**v|~w&r=6CJCQC)fJ2zR1Y4+lX9CyCna^$MhS_5dngg0H%xj@Ii)q!d2iM?Lx6PM znv#%|yrih5)iZs5<|>~dax=9_=*Q2W!BSa|vjz>Tw0i~y%wa#hj#l#c(&UYejTzY4 zm%b)*%O-KO?rVd61+@>(eReiArGuD+PDMwD4vsBLk1voG8AB^w|2IX*oeS(SCpR|` zPVsc%<_Z3NdHcDJ>lEIHMqor$RaIc+uoWSZk@O-W6t8M)`M#QQ!|=WP_vhEvus=mp zi`xsN@sUUFPNgIzk&K!aY;W6Z6qp@u&z}5#*h0<77=l>sRFkK{1iKpM!tI1*w9w3% zr6p-=YZkl4KN$M@`W98@$9CYDaFWsxYI_sem;Q87E@efDINBVSEeX1Ap?zv^zapvh z&4R}ZEc)jLDuGq!^9Pl@+KuXQ?Foq=E6xxfca}uYlZS_gE2cB|JS;6Ozpd>P5E53^ zQocJ;z-57j!_4jf(z`f0aeI4v7ccRfcSlnn9v*I=><-}Hy(^a?@{;Ya!h(nF66^zU+EpCz>b9h#%ZXkHJ99EZEC{U`&UdL|>IXSC=n@MnA5@b}l`uNk5lVBUlclkzGm_y?1& zln*EDuONxab;|v|dO>_;B@Yb^4FeOCF$AS>63*A)dfawXLSQ8s-bak!DW5HPjLS4j z$E=G5_B@0~b)9bF3T>m=HSMd1#UAnZ_4R?ne~zLYcta=SHXA@p!efCa9YtX}*AcSp zTu-EDU!=}V6czx%jLUUXH~r;bEgD+du|{|9)8hl_yrJ2(wcee@-eg`IGRPM2DGf~R zB6Y}fkfZKH3VZB_p`@qB`tX}%%F~DX4o`D(ayT6qoE%pZx2W_T1bY z=Jo53^M=YC=A~Zy`MGb_Eq$}BI+;E{r37;?(y0M6)*Dz_TBVxVX5L+C^&;M-9`bk)E4%L8+1Pb^7<6qrPXS>IeIv4P3gB+iW^flQsj%0;R=f4cfcVb8zYW9Auu z5?fAk+V!1QzUO$I{aZqE_{P};Sw!IZ$&x6NGf)y)L?r`+OtfP1!gWJEX+P;6>OU&$BK6WQys6bEycyh$7E#q^w4+V ziv?$74qCv@7$&a#`%!e+WaOjT`glzgfDUXNW%#p9XM4L}nxLyA{4}@IZ`rEe7sQiH zkHEZYCQ--^YBUf~OFSgFb!#wp5mTVR_90GoU7gm(ZGXJUVcaer7xYQC3q*|j|3JwT zoAmXt>98#jb|Lxe`L%=JF#-YuXM`9TUqB!hTs*LGIlHtp8Zua^%{VWF0!fH@f~a*v z2-y(W2MaXVA!O^u_Fkv65Rd#@mhYiekY^QYz}JUzG<15$yC$e?-B`lrC=m; z#Pa&hn~R$bTe%t~`tUW!orR|uH_5I(vbW~|Ba$o_DYu^$dl7(1?OjIL5E_iT^4QV8 zKN__M{^@%-9UU7h4gqL(c9u1g-}UL*M5Z{D7V46} zrG6}>|1KVObN;pYQr@8fjWeZ>MY}Q>P#+f;7oYPo9IIve=o^dW)yQ$&#}*<5=-0K+qFs!Tiv5FbhK45soCN`N--Cp5*^P8uOE8UO|Dc- z*6CqG5i?wlG9V?pDN9Q50mYd18mVf}d;{&1&;wvCTtC-G5**Bbi$T68A+Zx}_a9;2h*6&_P&nfUz!QY3W@98who zpT(Trh`6rW5GOB*)KA`RPgR81qEzi&Erqy<>gW)wI=s$Y9u|zv)%~dzI~ppkU`nHp zR=+Dw^J?8CZcI@KRQ0YnBW2l~bm62ysC<^umv@*|GAnTxW0zN1c)7~Ml0}39(fn?Z zH(t0&?JFB;In^IJ$tbP3Upda&7gH34nG23%*O@&c8T93{-|o7Ye=xa9S6oPwL*@9;NV)_Vz5lj|5`1 zSp$C)=iZNUXkp+~hmNB^(bOaX_<9u`{XGK~8dOJKe>#bUPWOh$`Rw0yo49{MY%maqmJ4}KQe zRsaN$p*y;|xSxN%!NkM_x$r&UN6SP8e|uVaNuz(oVp4yxG7bDQel1?SM@dNuMcUL{ zS#&fWz>yqfNij^<1P%SJ>MZ(%2@&!l7JfISiDKdeaE`pinyr>kg!2zb}}s>TxR|0);9{v#Q7hHCrm!u{GeT~@V3rIHuVPiNx;R}7f(TK zQoO|h22#Gmu#1-?jGbujI5OATR91@o@<2bntgHsvv3 zA77Om_O_iH+)V@#PnD?IUTNk+%k8eD+mHgM7+ln{mgjN|O^&<$IKL$kf&nSAWH!6w zvS(OKcar#-)Hjst3E+?lMxeT)kd7pW8ldJUYHwKy%8?O9Ss-Ni2?AVEsS9t^CbpQT1upooQjsC(Qz*N=J-J#@$Eb7NgSHjgWX>zr?r5P%od6rJ;%~x@+!V<%T%h$H>=A zy`t45tfPIEuD3!eVMU^J{Z$n`ZmWZM$KHHR54SI$S|h1|ty{h=GNuz6q~B|z)#9~@Yse9q?Jh|}%=7(AH`^0-@Cfj#b0{t*w zPre3W|Lmyr~NsP)jEJbgL~MdN)qX!DGhz^iz-J{J};@&AaY*ZO$^YxV8M ziH8M}46SU5sf>(_vh(ur2?!QE3JqGk5$^BnS6Kk?q4EdQA;YU{YdziFhGXTX)??-9 zP5RA6n6v$mJsSkElX*B&?Xzx>tHzF_ck_p4)}Bqz+8fr4zp$_XBt37>r#lYzEtM7X z?j6}Vz}%TZETNSbPGo6*`B`OA@klZFyQn)am!W6i0m<;p_yBc zc;MIi2~wnQ#esr137Z(^!JIu4%K(dsYKh^Sw$ov@ym2S6@nqRX;6@e}7Pcpx1{?;2 z4@zGQ(Z7BB7RvwoKrED&mSR&_Rg4MLYEw&iei7B{`kQ60xijAT?MwILkvhFsP}Fn1 z_ZN^|568WK+`4`FVSrJM+m|F`(=H)G9CLjSbdSiZWmnZrqb4$16rL&Uqpp zAzw0Oe4n-Yqm*3 z%Z!7Px_EW1NiQHO>slH10AtYft)t(2&i_5RGA~Sbl|(4{ zo2V*08HKpk76$C%2y=Yq&2AdJxy?Y!!XI{WA`c2wO7mVz5;45r@k!F#4{6`|OlT@_^8O+^Xnkt3TUpc|*jtxY?@~$Ywm`nyVASxQ0nv@6v9$5Y0 zK&}5II!@^`)Av}Rv$V1rtFfa5-hXBLZ2+EV--My*$mVTt(Pmr>g&ILt7aiNviea-bd3K0&K_ysx;$mJhhISUeGf)PQ#(n=0+eqE{(X*QS#m*C_|cIE z!iE0bnjYBlJ`jW`(Jv@fAbkAXGFvAIFHPQWr1fL!?OdG5d$mD%a0p>Ds7uDYDO!~l zx8A>he-VquDuRGfg>@u9w4>N+ITrzba)T=Xuc(rBTH-}jfR5CcP`}O3uz3MNL6D_h z6GcVbc_^P_3H6mfSZDv=*b^qY)FdiM48dUwC|0of(HIp&`U7X-n((+6G7~Y72E-mP zmxq!N*qGSMzJhJ!MXWA=&P`HSXGeCz-MtYRLu@YJSW^9#Lo0^zv46f^s0A%zUP0U= z4=PYTq&4B;oigls)UI?b{4jcKV#f%j13gU77Qyd>?=4w*MJDvVRvIZ?C4m4e7>k&8 zKC3%@|F8}uh8yJ0u86PT%&QV4Y%myp|Aa{sE@GKT>rH*}Gd)5M2=Fum?DHQ)5@+~y zoGf`G4BOB!PHDqYLh!;@g0u40e!j7rEAI8A-Zgf;dGX0Ip^D%R4g;;NMr@>`r0baX zk=4t6nV=>zw7p9_55=FEhPWhKUDQGRw|14TdjKADE=E4on+X;;K7&GtMYwUo_BzcU ze8hnghmYD9haZgp+yBN;C39=zD`2L=!f<}4-`m^mxX*c0E@`%S3nN^`M$NQ(od9(Q z?pPYu);fcUAt9xdRZarT4NS|%4um8d)%T1zIy(BFnV~)p!NN|=Nt|3n zP5m44+?nwc#prXu#{nUg#AS-bn-bC8{RFtQf6x;6k71ZyT+D%#>}-{>&e}PkGthC# z2*L*&HDKKT3JPej#l*xgsnYr%8a#+VOs*|0v1@*Q1(iqQa4Xw}(cePD;4WL&Z+k8m zMSrkt8Ck?UZLM+c_qr196!_lqKY~0`EPpXt{X2z0WT;yf0FDk~UzONEdw3=XWbbc0 z-BL7wbG-Wqd5|qK^&@S=yU=mzuFRMizsU;_ug5a3^=Za}Hn9`^^rSyi2Km5=F}gX~ z&s4j)>OqI)%I`j9x_yw7onZ4!Y%~FO>x`w`c!2a6kbFO6FW9HD;oyM(}Rlu{V73u~T z&&~tdTXWGJGJuS|38s}fl$OTyScw1-5+Na>n}^433W~_~*-rxlxD{iv1L?w-I8yo= z_rA+OZ?@cSS_J6pEVF-NwN*!Eg247TP5y_(4PBQ|mmL4&s-VV(f(IG`@J-&7n^1j> zdbhT=eoYf3E>iDp3&74Hr0HNUr5liNj|k8)>3r;a2P1gIGABFxYHW`L)MSYU-uwX9 zAW6+^Y(zjil#8pplT&+RjM>G}NiVp%LNK+lq2g5t-)d^%^y4TLr#>VUytP-B%Dyni*D+1|L76AOv|A_qXjEB*6YJsW2P>*T|1zn2{;9UZ@5X&3*(#=G}_VZJ| zzafOYv|zBZx%+Cv4|Z41xNPqdhD8bEeFNQ3tLul=|lZk zXPbT4p2UeZ2&>NpAuxR0-)pl-^0JtCrA!Zo=MNnx(D?!E&IkTXb3HLj?+c z?#LR<*Nd-Pk=Xb+mZ%U}0q0mhx_>wf$3O2jFyLsF0{qpC~z6fhR z<1~d;>m-fHC z__vYd<}FB{UcO3?B7WP$bb&)k3VZLfbv!zMLOXw3oMePK=^aHnMAS3lP1C+~<&&2} zwPvqwkP{H+$y^N{vo?cy6*3!blM(HjCI2bH35FODMZCjS}A539B3Y=3Va8wv^ zd{-H07p2a1uuE%Eg?DSFeY^J2=L2jy#)+s$etDMrSeFc)__UfUUVZSR#oSG_-I|+o z2|-(ttt7j7N*l2k#l!Vng5_o(3So@hzkf{^u3zLr4+*fai4b{eO!1@X(9spLfPqFB;{0!n3 zA;P3Xf=RG;|K6I%4k7%hSX<^qF+cA6PrYvjI5!b@^~trJVXF`vF1))YGoOtHhk3^M z^pzCUeUs(t2oZ)kPhZAb5f_$ZDl5h@_!#3Pr=ZlrJm{HKHxtM1<|J+O=MoEMe(n$5 z%k!b$NpOQRb*U^kN4-NS5JJtAMKeqZyCNuK5?xVMa03w z`v?Ok)Ij2LHhu`l5r=6st_p^vVHrQ4mV0%9J?b&xZcBeob&u3DXSCIuuQOJ zp0>dx#KIe0@J5^z??tx86WkYR!5LK^3fCVC3)Knm%Wf$9r^KQ;-~%3PibV+DiC?*c1- zMFbTC^$UzLAte3sz50aMaC$%xM1Gk%4}^thq-IyBVD30hL&6Z0QNZ{J-OcQzz=cq1Yc7!wB-;W2bI z>#xFn=EuFw(_NnqvlZF4?#jwWU-F^UV$LZTPt|y=<$@2TgBpZt$tSOz9nM53ZbaNP zv9P9Uxs&+Fy(nNZKy85_3D%pW@sOO3zB}krjMQiPKn{B9BtrxCJ;%BNnKFJPMMfjg z<|c2xUgR>(y+`%Q_C9t{2y^h$y*6v`d;LWU@>$uMe{y0=PhS1tmro3|i5V$seDr93 zdCr6=*K5x#`81W=4T|O7`1)l|!c?B?d)$SbaWCMQlbO|bsEQ~uz1ZBz8{Ob8(~@5y z4UYv0*_}^tE+iz23MF_3djkCEbt$f{L>w$^(7Qk!hVnYz?CsxMa!D-@pW}-w5(G33 z?UOToFdHv>rhmAKNk%oX+-~aNt2@FT=Y8w!yV}p2P}bT4VO5q?$>(khuI~LdwOsZ|yQ&V4hO@SjONgFWXPD3+(S#TDta( zv17ax8)lPq=Dbansdgh>fNcxEZSkd8DSxW!FmJ4ig_%lvNW4}j%Y<7v#Le*I*1|TW zOHgi2ZY19+Djd^kqb%NJX2uCcA(2RlAd;M447z8hNBhu^2VQSD$9=g{0{sY&kfd{8 zJTt%QClHBLd7r)pPGE_Mx?w4#1tvYZvhq~;=?1(P*xbRwd+q;*W{djqwO1h`uTM3lq}bMna6bQR4}t>~9i25SJV_-B zXzmt_AmFgL(i3y{!0h`cd-|I<^2Ro^w`H%4?=T}JrpAv&l@W_9pKQ_R$Ntgevr#qr zVVS5wy>N`1$DsxMdgEXF+D&KP)$+jaOxU;IY&_ZNb#r&;H0j1`Yd;^?efWO>NaLKz zs6>64X%5k&z<&-3+U)Y9+I+Sj&7IOiN^s*VEL|A|pi144y~3lpF~Lb6x%{Y(n2zmc z4KAWFgXYs$L@i)!OoNC6dwP4He|mN4|6sDe^t%u?Hy(iNnvM{W%cGM{{y2khZ*<1B z6kqE+A@T?f$cOy=d@2r(==yqr%3ldXsu{;MQUa~6Owb!=_=jTgA9p-P10Bi9>6Xt@ z)4|m9pJUGghI?Y=`R z(5O`Zv$yA*GVofxKr(O0sA6oGEk_M>9|+X2Q?UW||ED!CL5@qi;l773NYAcfpwb>_ z)vLYQ+nh`pDbN5V!C&?B?ihEYH^6YppKE8E8Li5xIqf>D?zvan&cIHgO3FOd!UK{$*PE3!28+jr%`zEE5MU zeU64Q;u;%;s(LL5K}iPWsW37u=(?$j6dNegB3@v?OkwYlVIUBc;oHM(SxuFU*!7db z(P23ZSORIsg<0h$@WX*ONHbB4MatURp+LNfi0H%SFMjg9vbQ>d4H}XvnSWY1L4L3} zZs%pi8q5`L^L}WhgMKmNS5D9O^?5Aj^tm^Cy+6_u6SfEs*aY@8Vye>MuL z5^;5PA`nC@fl|>`SYKWJbHi41Sf5$DA;rmcu!09CE%#Aaw!hP1opXO{WO7eP==3Ycli6R~Pg%AN5}seE47l+N4wgmr!c) zK#mvRvx)Y-Ag~l_S7Aj+iNnjtK^6UQ`cYz_009kTxw0v|5x~@pR)e=q`JBH5YCMVG z$t=u9FRk*Cw;>QBd(A48^!5Amm9iL^ znV(NJy0caj6A*BK7VGF>YXAvFP;nP4=a{G635tLF_6rzx2eEM97u$bc&O{p zNyw!3&p{eGCGKsiX(xd+6H`+M zkRdya+tj=tTH$kC2(|(p)Oa0uRWj#u3@DI6wEIzWLko1phO5ILkkx1BMpK;Q+EGxM+vaaNC}bl4~^ zqc(r+>OfG`_0+qpX;xVh%E`$wsU8|Yj6pmzoKiIXIzGLkzW$W4CkSW3E0&-;_W*pN z(U1z2eR$}$*>s>^Tsw#LCN_4UU=;LENK484*aiy=YnXB88ju3dyCM<2Fc1TmFJIPW z%>{K6B-6H+2a{chn%BkU0r2Te8WRo+w|^YGO-TX58rFk`2o%M|#ltq1s{b7wRa>Ox z=e&RK3+qCI&uDwu$HvC~1BsX%XbBaB_X$A#v;cLQa)D|hwu@(BL4i||(bm?Mf|HYz zbmD#%8&9Tz5&@zIgoul5Aqd`2)(p;-n;y!$yYq(;vCcIgZ(99vd-<|y?eqaz#K&t> z{2&yX`SxBM1cmQ9=YeOTgGOeDHSaF?8vdO-1s)1qDSe+o3;46vffn=+#q5NrhP#qV zx`{zejg4TDmI=S!XQS^3gB?J3*Q|n+uOZZ2vY@mn!M{&Q_{?gA*jFX|2qDtd$)N5L=ycCCwYSw!J(lv zAY8O6X(Fl^EA&`S1Fbu>-x35jYyCipNi=@>$`!q>Er<50)f6shAbi`CWd+A#zN2i48+*YzQi#i8lvWx$C*Pbpht}UMaKDkFYZEE0s0&{6J@ zVQ=ahA?Mj`r9 zNJUXZ$mcyDueJdt0k`+bA<^{T5$EM^)HoDE-4LJP^bALf^#Gd~m1*iac}I{v2!&Hn zTLZbI*ZznGs5r@Sf~-Us{aPPEKm{tq3|Iybr(}%IKV^k%3$i#o2;CMI41g9EL2G~G zu0R}YrHZPmgsLjRix)3G{v~tbBlr3{W)8h35If$wbqk3H@c6CUx5Yrs2r>aL(0T7| zj3t$PkAZdpYyi1q0iqwZH5*#eCk)8d7!#`ZkYOWfferib zqD(C&SR@0&dcN4r)PrjWwiPppc%mTmsx1QXaAW{Bak<+cV~V z9wGsi&x=KrzCP#PquyZ2i=g_?eE04Z1jk(nj`2~VXFnhC&ZR;iY(6`(f|TZ$$pE6u z3P@$pg`3qLENO1005ooC=~zXBT&w`$>!fjL0+2r2&~J-LN$G`sI2@loLpq3HVx}PG zC@v#8KG-s!takw%c}WqdWRS9sLEwQ~28ny8_;ZPG9H`oCAPLbd!HOiwHu6WLyqTm%yUc2FrXRC%3piYJhY|CM_LBX7!OR zhl40~5YW=n@(&FB4v7u6p>8(t4%9F7pk_xdW&Hg4L|OSZA_3MG>O%g!^M$$Y{OtG= z$f#*xdblEouYf8UdO&PNi>3qu5^^gg5pO$;pROK&ft@d68;K#kkTCUc?l2_9R+ z7hBFxw*V@Go(#12ls+e%Q9?VI?LoLpgVL0yV6jl?IDnAV39#2TEE|+^?3ZW+SmE{z z9Yd%XP+(;S5SGN0`#Rk6u6w#Rk?6nqOH7 zX`eORUmYo~>qA4NYX~;HM(OqGSC!SD-Q6r`!!^QwA_f314EiCxrcy}E09#?F0wyMO zL0^Ov3vdYm0Z%6YPR&5}i^Oa^fvd7Twx!57yR~2eUqulysR@ zTr$u5w6$qv8`du;m5E*By8e?B)L5hA2?}DLc(Xb_yG5w z=-}QST%;LJ8;Sq~HG?D^3z{M4XQ$U8p+T_Es;y0e z{F(qCij9w#1hJ!og99=T2)Lk$8Ugi`E451U#ZA8CFUS?WuK&+#dpqZsI{9bo`18}u R;8G&mQ%QM=Vll(l{}-tB3Eltz diff --git a/_images/sphx_glr_rb_tutorial_001.png b/_images/sphx_glr_rb_tutorial_001.png index 88ec9c2ab928aae77f780d613f0065d552b6efcc..3cf04bf0611f94622097c23a3b873d480331cafc 100644 GIT binary patch literal 10473 zcmeHtXH-;Kx9uS)D2TRMNq!0prldFk?8FItK$=(*{WNUTjn2VW% zqZRI+sIa84nBXx>CntMHjEIQce|v9kNSI?11LqL`Cr`vI8aUe9 z+h4kG5I3pBeEa@O!^6Ylq1r~xBEGB2?QLzR#Kpy(8oCN>3VgSGraJSK>g($rg}=XNnt`PQ~Eh~9tXdEy@cCZ#+eeTXI7{pn*$>G zo-6mfryXNo^WaxUA|s?66ZQ1DP0n|n|MtX;0gZXuu116e#6%Wb&d2rn|s+Vr# z7;KUVeld7+Eo)1!s;a8CwpRV(#fu$5&!jOJF$^a4-Me>9gt9W3;h~}Af`X-73fGY% zYRC34cf;}qUdoaguICd7a=X~rtOu)KdQ9fjJW1^Aof~0T!+S*!>)6~R-^(t+%iQL*M`pXHpz-6t99=fuT2%Eb_ z-QqUn^lX}_MMGPEr9Us0D@f^(ut8IK`GpR{^4?w}cbOQHQFp)n=YIRkcke+cEU_P? z{rLI$BjkMvB_$;l%ds-<>J&rQXdbKHGWTmLDz`K=G{)StwZj{tq~a?oDv}#mU~BAt zb!W1-x4((QFWnlWPEX(Cl=m?>a^y(umoLociBsbpW8=`@-6N@;@~3NF$BrkA9QxxM$RKoW~gxp zcfdco)a?tW>u70t$EzInnYvVKo@doZ@D7(<5inkTZYvR4Xxq8BkVqsNzkmN8aBxjk zl>*x!cK-a~&W}(vGLc`8_$eqTM2K1hPE1V5&6eRkS0+BcIx+8o59bgN5^ASr5i_f+ z6*w+88%viS8GqOm+}T(!V$ZXnx~ zPbKQ6g2KbD?(WdoSP^Vjp&pg;?76Zidf!n=3Jd3kwLGBT!eDV%=-;f+h%za`#?gv>{?BEbDCpiMwPz&5t$ zp0=Xm6EC?wvn+jmeSvV&fi9?>d`>@-{^|#0a%`-LxIrRXjy6Q+cG~Xq_%p2HC`<_Q z^vNTZ@~w@=Elp$NSO*6OxQAI$xAWSfl{bxQOj#Un{edrUZ*P+<&y^n6_P#!mpc=|theQPqx$Hzw+ zocjR;9;=bMwq%c3<@=Gu;zyXq_ zs|aU2)-g7gOwQ0x>ddpSnIHNB@2s_i6B6<)8lM=({}s@NU7^~d-Oj()YjhqzI28lJz3V$qK@BOqgvbAw%uo7Y6En`E?MHYLEV0nqZ?*c zAYDaFlw~l_A9lj<4NM^)9?YtKq{~@auCDr}SolYo{1!`^Ss|I{@yp5@2Df!} zr7kWm-rT^dtEs&T4i0W3lU+Kg0RaK0_Ao!PgP_ly>}RldbJL-cGg|R0z3i!8v5iUT z>FL=ElP;x@HbV=m!k!sjU3$d^nN4BQ(VWelPymkqD~`b)a(3mbV~`-JWqGPwets!6 zEp2#ZT|r+}wUP1q4wR`b>+IgcKU32;-kRh*`|V?P?3||z*V59`R!z zvx~(9=wa^@5-k4?eN`V~5fsYWu<12{oUKzueOzlLsj1h3HE-QY^j%BxZFwO=IE5{l zt7fk>avf{>SC31#U2uY7sY^<3uKJ6ELO+{YzB84aT(=v7pbVEn(I_`YITSdm&2E18 zuI0*f&pxSx2y(&T>SxGv1o<}qzk$vJk<{1I%fI_&FHq)A;DFslB9kA?bi1-m9zxAe z%+D7)aNxi=P;8UY#g&z`{CrK7Bn@a7dIi>@+nJc+zYD{T-Z>%6U~g%8)p4Xw&Csyt zO^qb3H$6kYD3w4kva_>`ka5p_{^EtWj0^`R39gVu+$=fD&W`SJL4JNRkUu>fWau$- z+b}cT9Ik=*Y`}l1YgU+${>gECsjpF%w(-^)WogBCYbBV6*e6odoe?eVYF+jG0Or?$ zN9Oer@0XWdhDS%0gO46P>IBqkT#~r@vdn1a!{+3LW5>ctyzr%@)+4W0n0TI#Q;nZ5 zF(U(YKn0bCO1!oLTc!QD6G}_<<3hNJgd;>0X?_Q=1S5QPm#HDr6E?r$+nmRhCut4|P z%FF#Q7|f+n4jH$bz{25?)M8P*Moi{#eXBgo!O^CV!yi~HfhVsC;znCJbl`mR`lGVT z9i|ayO`kY8I%;WXoXDcEd#Jnp&+rG^G|}(RO>S!Xt(HU*KXc~y$1I0ZSCP56ETxuUlN@Is+@rbb~cBbd0m311pH4N`?1!(8vE= z9+^|)fgrwwpE>AvzWPU7ujH{sjLO{9K(5u+*K6tNMaV7Z1dT`bZ6pekc1D}(hDq3V z{0`-jUr6W%q$tLDLX$NKt$JmTc9q|Vl(1S~o?4rBC8q7;Q?YDKywO$Wo>yqseGp@@ zFjC)D;+!@?rM8pFiCXZ9iY=P4H(;JrY6uGE>M94_Gzp23ZpQIwjJ zg5^_<3E`m)93nP>HgX<~cD)u1`8B+-3h>$Q@sczQ;_p7_#+tH`&!3;t-@niSPq7EL zcbVIzIlk{25f5cPC6{ z5V^%B1wEpV_gJ165DGFhJS~0wwA|ct?lN3hbsR1W>fb>RL-+;sVfERpar^T__UDhw zNdxG4cqci_7e*Te`1v=cZbXP-0bju(k&yyHHSvjwiA{4Cj{RO(C~@H6K}F|Vut>{m zut?DT&4WSmnNd+3hQ72VkEM3)rJ>iV6C~r!T%Iq$G3q14QGqLFTFp8FD;tJJTVJym@+eZiV1?UC}K>whyLGqI) z+utW9R@*zk5%f?zk+{RkYh{G9hyrRz2r0>f!fDh%D^NSzc z^WXU$@=vp=c$^TzLWA@gQ03K zEcvCS^`%`VnWsqg^}A>|Qf|H(>7e%@dtXz_du3j%{P&N$hg?bvaD8$aIyuKDL{CU0 zX8H1yPXHvec6c()Rvj|d^zk9c0YE`;DLalfwC6R-v159BdW3-Uq1K69IO+X^2lUXV z0^RFhz4~Pv{rx{w5tNk8H42doL{A(Ninf>}->ywu(~_MnXF&16gN1e%47aZ|8g(gE zsM*v6!^A*X+mh7K5I7kLoBz}gip%XY$&vR;u&Oe1k5FMVKktxXgx3Q?$h{T;-V<0p zaT!TT7W8~*H420;K$Ws0r|X)mn>R$IfJt&S7}^t03V2tOQP9_#a^!~rNKTka3CJ?H z*O1euQh-nsWlsSO~?Vy)u{*udc@@)N^vkJw<#ZZ@kinr&Qk?u&# z0C*XBZIK3W*+5-sL1oxnjos3Pk9Fmmy||{VtS~CGFDJ4sI3Ne6KbVB zd5!k&u=-p<0kXoUwEtuljiYpfhlxykkj(4<7brSu5=*aWJ9_~XhPK=^$|V0G{;wkA zx9XSd;Isloh-f18_nT;GYMv4m)zC=1u7<@v^YHXEmE?i=hVXbHg+)bF&%X5-xw&Vm zkEV>lWLuu;%aZk6PA)FiMNQlJVUnpBFMN6tK+49(mI}PEQEojwldv|?Y*4EbQ5MrK`v@~Tfht*6>Oav8C#6>(}El<%%ns~x~kGWeC z>|--?^C!z$dIi_Cw6uVI0#$6It@LGq9P4o)3FRC{383}fb4bnLU)p&&TwpyO8~B5W zA2-@YPgiUpyh`(t+x>m(y788Jx)Or$JS~zG4*cxAx*7fZ?)$J2|6C~qg}QwB#?R+M zc0B#Vw!n5E=@}XA8>sjZ_Uxw%=*dqgz0xvA;qSQM}m>#a>%SDr;sL}aA%@}#biF+t{u z#vf|HXM1*B+`lHNK$lNLp@&RDon8K)FzCX27RiCtryT4u*%9|v)B<%4ONPVr@0^7q zdf^jFM&v=q^J2js4o(ORWP2GH2n#voq+(MPtS4V}~TRZIVxDe(iSA$@_a;86kx%~O_ zo%rQ08;{M^QTZ0sc4Axdw%>@)A_O6*ZH>duJZQuz! z>e)6qH5FPjcw|A3&0m4d|3u3Vhh4Lxmo8rr)dQ&ZW8;!Z{`&Q6_8>rC!@(iWlVW`^wXdO2 zU)HYJ{=1p()~FPy7kF+BLqo&;C*h3`=XfS95CHNSiT@4byFrHR%uE$9xU{XUQ+Mv% z>9jc3{6nGcQB!347UZ*d0*cG{DP)@vS%(gXqR z%r-E`z}(GB%PhIJ1v8+d)Mls{$E&%hba#d;9+A`p(T82 zBoY_68u7D+hfg*FoB14oAaCjlcylT8uG3M#aqe#YCJ+MOHPO`8PD@Qaz32?4u&*x> zW^K^l03;#N(HT(m!D2qF;$dbQUG49Dl$&hjrIR#g5?#&LOZk#32v}7y%9131DVoZv z*FmkY-rQJ?z&NMo=H}+xcAi67U9_l-OgdBy=u6hMA^fNL`HP1RIYyepFz*khcEggJ zx)|fy>#k(HF>omK?b{Uaoa$p_^})Vu{a z-bDP@uLc11aZ~Q~H-y!C+!LB-(#cE>W#t!Pg1X1EC<2l7iQenWk2$#;BmTy|IzID| zYz4k3>ZVS1=7~cO1uM*ZT-mqRMW%5Wio*Otywu9gzN8 z#>U3!N-v&4s|PkT26Y*AlEJo?TX@@OX=!=t@5Zl{DW++7ykXyZ@5Cw$ z<_eMWU>i$FR8)Gnv5zjUZ0-qRA$n$PA}xz8I?sLK2b}<c0LP*ZXnu_uri{ zzMEy>z@pJ@Xi&k=RrW$bgih!$%--H}16N4YB|T6)x1%OGxO&uC*nl zGjV%0cWWrpokGiA=h5&BH@s+ml|MmZDUkED?MGXK3ZBENUiOdo2zS) zmz;4223pgB{re9Ws1)^jq(M(}njgYqTSR>3SUBapbN~fOJY*|D*da3c*88L+0eN|O zCzb!20~}m>o3-DEXe<$V11#8Jog_EYMIz%lHJ_EzKGZP@-(Wcots6&JH4jKEae!gp zUv&5#w5mC|qHYk7haU2qj;@ZzYC{=^$)Si;H3mOQA#N5F;`%b7EYd3FH_(wHI`%sS z^L1cCaRrB|#EY-VR+F^C6`$#DLzIk-DAT&fVPb1*GH2@86pAQNuV zREwq!gJ9fZP=vi<8<)Z(taS45g}$x{hN-E!SL^T$(> za54gl!wGC$!5JFyqd%9&RVpQm^8A2+nCG(XkI^K^A%HM%j*97##t1i=7-g=ppVLj; z*AhIpFXZJdQ&ZEi>DW)0Dt3B%dT^dC;j942fSpq;+aIEG03-k_-wRGsuBNVT3OY%K zDGQi~yQJlCy)wLfeEu1_f1D^VZHo}n%fCuoYtM4p_&(PZ2H|XJX=&Ork51Uea?oJj z=8;N_ObRu#ROP3IwXaa+{)G!*+$(0Zt}cv*hV0*@tid+#XWjmD&HE1?w7z}&0`Sy0 zN0g~SuX^y{L2@I90E~`6k1XcJ(ypTu)EeES^ZTetH}_U8G|J` zzmtW<^!!q2e^4xap&bG_|0TPm9^8qn z>NCHO3T5LxYIX`pN>bJ;xi|Mzeu+;@Pp?}e5jT{nkN~#;s!J6tB03ZU$Cpd9mAm~L z&i)$R5G`$iUzBV5m literal 9573 zcmeHM2UL{jn*Na}Mny$Ykg5I!Nu-3JARmnsCCoU~^+|k3s)m>3S!uel6AdbE5AaV3(`F2?3OV{ts+!5q}HTst&Q!T>@ zLB8tN(fIa?Ptxp1{|B)vfplueo8}$ObFYt!nSa~KBgwJ*2jb{XHuCk%bf2&5ruhX70Uw`Ev5ZnKpmx9Sh$1 z&O@b>eR-H?O$efTH^;oJ@tp|XVp4L?cL-y@-|{2}2VqO?l9Q9uj~Oh8YIu5jI{N9k zc`E0ZwZp&oV>jUU>`_M?9WFEI#);SfR^+P-$PVNytv~QcFYjbU)cvJKdL8zvywRpj zWb5ux*?||D`vYtKUHeJ5+%zeySqFH`>Ix>Qxd^fpynD z`5Ah)SJjltMsW1eB?u6?Z&K(l*BTEc9cM9@?NB~ ztE5FKM6e-}Uukr}0UvQQubP%`TV&sMKSjmAG2gmwl;l4j@iW^2fu*Z$ZEam2KE#x< zAjNXCi~C2ksd>!xyslL3sPfIlmL=M-4>`h(HsGKQ+uEFQPzxIz9PFoj#JKwz>q3UwmeZ~N{1XDfo74l!Wv^c=?iWzz#@4La zC%H8q(^k%S@nS5~Z8y?sX|qT%23 z;RC0gon2RdKX+PM+8qJ55ZP~jSHW*G?h*(}bO!({`6T2Eul2kp;P)P#KBZngwq1vm@a?g#*OFc z=@SW*n3xz1JG*g?sA|Ugbb({nbJJ=+&wYZb%0fZ{0SmvB(?`R|O2cb9v+`RoH5S1YJ_uR zK?W~WR)*N!uA4*3p*@^RZqkN& zzcpBV#-(CBj=nX_+~St9zo4O!Cd;81bo2Z5>x~I_VLP!&6SfQCy5pARRC6QQ)%&y4ysF!%V~o*$w}_* z_wbD641>#;A5}J1`7YUXKK)km#)r)9``ujXh?);(Zrt(HK@jJ3OA<@f!kfLqErqE9 z%++A#>VYaPsLWQp8Z(-2FY?sVG2R>6kWT;NIHGRzM;-v;2;#)+I$d-}faMW+{~ulN zZ`}(DUCD)yFN$#q1%H9=B%*8u^(Cc)qUsQHGz8d?b|1xPZx z_HiHFZqUERTL+X%gP9D|G8ao?(8g?m%g5I~i|<5i>+Z6nmm%Oa_tATpf2a)G;VegV zJ#QX<0J(Ij;f}xvIWsHkUSeXRuz;wjXjnrS7iD&Xv|7VON%42NHBfkReRUo`Gz=t^ znVo&B#|)H&^WZptZPd$x0!dIO&jBB>OxV+fRX;wJt^N;}&KlqSQkh#cUPKZsdtHW6wmOptQWBNa@& z&!7Yed~^MKkE!mHHH?)!ZD2tF6+Wt8NlA%s$ITlz?gwqHm$WY+NY0D8T_gU~)n0RK zLwB0)(j0?d$J5gj?Lbn%Qky(ETq@E>PeEw0iOZ3*Bn7n%c-)0LL&nP()!< zb=X>8>B=(9nEY7j&3j=ta!G#n8)S9vBQLL#v^!KvEroX%6T; zpdiSn=y95dhet^0`Sa&OCj-8n`F5C> z-ZHcB`E&=m>`;^n&6McbXW0eN#mcrn-06M#cwo%|m;4(-I+jGkX<5XpJNua1P&@BX_V#Vv?MfsJN3 zubepO4>_pV9VKHJE7PF6EQQE#EC9s~nN_5v(UZ`c2^qwP{mfSGn17Rd--QYbb@U^2>QONT~vG3%E#G&Y9_ zTjn6qL}0@QO)T6rtNvR)EE%}Tf;iqp;kW>Wc&IKLkV_ST0PF^qmi$m)92^FJkr8_) zfJ%$gynNXfOn)s(eY~pg#>Vngv{LVH6sTlnVZjFit-?L>MMZ@|;*%%tQBM*RRkI3E zG7YU{?N9vt`SbJaY_T#BdwHG0EJ(n0esKgq1X!vmlHYg3d#3-PlChcDF(vQ0R;8eY zkze{jSIi{|XXWHXG&VL8OFgH1^?m%1klwyeJ6wTj4B*4MaboXg(Y`f$W!!+{5El9` zIB)RxoG0~HC1&~B#1ry7lQB{kkTWs(JTQ^VcN ztvCh5b$f%-_Jph2Z{>bbyQ1ign>THljIEtXhmfbv9&w9X<~QwvxY!b-0>mFV8lfMJYd z1eU6x*KoN0ayPO;$M3qw!x(~;&QJ4*>f&4Bu1fFu^07y{k-nt$m1$ui6!ElGz^Hu% zMo;w}6+s3qLig8#?e`gbsBP2zLdU>jlOW;wKK-I(Fk=%{W2wO6)WsHwrede}qd)Bx z$DKHTm($e-ZBg)q6_k{)v*xAsGJO`&Wdz-L@$D^ctqu#K1{#RAfleipONU%UJ70j7 z%Q(+AqRC~+X%@#{O280;3If&^cU<@ax#Yvo&^?YIV~7747U!Sho3a6~CDevfMOg4^TG^qqE`msPN|IW}nrM-nJmCfT8;f$T2 zHt!yttRVBs-ol|33dFHT{v@J4J)MtbVXk19o~SB7cY_`{(U+3kRpCzA)}gVn4JCb6 zyzevgqW~68pFJDF>r#F~E1df`Z?HXh98qU#hAh~vT6;1XKS8|wG@7Lpvwx4Sm3y%Wo6fuuPMoH2Mjw9 z?S((1yxyb~^uuP{-xDod2;C|RIkS(M&4UE2SFr9z9&oe#uRjv@^M-(urrwbVIDzJl z0KSne;+0~uxB4G=x8LEi;@);HD}5Nu(|aHvv_jcy$6Ml?V$K-aj5o)kL4iD&9}ABz z%>sa|s-@h@x!2o0Qwc6)kF+GBK6F}q8OgEhdamgkB?wiDD)4N}N?Gypk)Mc+xsR2o zpEZwS1FgkR+dsnWfhdQA1N4jUUxN8N+#rS9wqd@nyZeybaDaOfw6a^TnZr0Oc;yu) z!cb4)BtZS>cswTZn3R3}U3T74NLQ6dJwXYjf*@Kg&&tZ`abQE}FHUlV7^YviXJX}h z(h9V7)fOm$_AO3S6ylB_zyPG!%}A5eoJW?m|$ zr@A&~n_>>)je`SPL3xx4(VXM0TdmIKWiDIwl%0s9GrZlkI6JpGcDZ^(eU&2}YRmu# zGZt9!MF77z9Q?+4jwndIG{DG+C`?GQm#+-SZVc~0y1T4dU7KUhph)ktK9vEEP5{k2 zI5^Pc3v@BsP~fuF#B1oIV0Ro)A1~=VSPUn;*9J0BR8khdcLw}t@G0Z4m_iV|wcEi1hufSY}&4P1Lw4k7BVeo#aJtEp%xf}#xS z|Inlig#@oTqS+(}lB*ZHS$u{AR~x{fahYHOJp*V(_y~X_ExdBOal`}yyy2Ck3I&I8zOZc^0LM%`iaHWRInLucm!#9y`U zM$U*<5B;NQn)MI|Jd$rFIa&hboY@sa7JU$VOj%<#5Fs!jHRkvS@P`Y*j1r0AJ= zb<|B$lHB#g%nH9M%S%f;87F3TNLVZU^vHEMMbQDJ5DpF$+;yT)H7tCpBZI1n*qA4% zp_&~%{b$;&kS^%3jo_JU_@-dUoSOK(i5%?g?9{c6VAZ2%uX^-zoxge>c81<)XmwgE z)(n5ZJ|ePho$twt!uD%sY>75sX6%9J zvv3D4R(pBwqmp>#Od*78=Sd3lRZDsoKqmXqW{!y@xqcTesK&_0j3nPTE3!vL2oYk7 ziomSAj=Z3iSLGmZ@nL; zi-58IoQ30>)LO6p^(3J4b7YCu#_D_&`qHQYo$k#E6Tt_314MZ+-pbF3pfRNv4=Bwr=sdHdCAzwD7L4k=ZNb|{m^73Z+ni1XE8O9YKRSiKk*{EHQAxllewfm zOt4BAF1x0t=8|n`1!&Ui8TcT-QlQtFFwCZn*ZYfdc4qd0kXbxT4rZ)rtB|_89~l`N z+e2iBbr}X0Eqe6m(M+h?rnPyv>7{s!+d5utGJRvSm2kjC_YRBLo5j)AH8f}+4E4ta zf)h%7;Q9-3Z;kV;l9ebTYHK>iSFXf>QzG0b8W?J3TBZv70x%Zg-je*LbHrM@%~NTu z{I#;Qxyt!Q5T>@Q zWqb?KJUCZPUteDh(^T45Q^8-pI2g1wjcJ0(;r@+2t@Y)p!)na6j=j=78RsFEN88hl z@f#LsBI;7JHj(-AWufY(-u~Z5xX+qC*)AM)<(-Dn z2)x8vKGtcjzd#t~BYUNdK3z;!lsPJH!QB#fHY{3SRiTVfSojSoaP=c<%t>om*?njg z0gG&pMPX*c$;H*QINn13kxc+MIyyQDXV^Xcz6?7|hk5CfviVl2j$eJzSnu&3CW$eD zWt?)UUg<3#y)SA50Tq=in97BUo=nhbyQi0e1ntklUJh&&l79J_&9*PsQYWYHw+tDe z$=#bNlx^TIgbbO+i(8JOa}KDlFGnB4C!W9kwZrnxi^#l%yQYK%ga!hc95?Pq(-SG!T|8*z}UO! zB5026XV0E>rj}G-1IWB!XUu3|h8(sB3jl2$$?jV#eGbs89dY88i8(+*yztv);V5?K zS(?r>kGjUCRjW$W&~1z@ERq7J&4-&wFxQ3z)7K2-Pmv&GG!^dlZHck5@$nA&YFi#O zh$9>@>)r8%aB%j7wKnV?dEcP~X{XCHf5NK&z?(aJi`t&ZIq0jdUGIhLXeQ3w#c=!7yGW-exM_k}0(%uS3jkUvGgQB;3Fk41mKv(wQSvnZY`b_B|$OAsz70+k#h5&m@btp$Cd-j@{ zfxP(gxbkf@N6-1S*KA_4-{-7> zVaDw6#Fkxh_d1w~8C)>wLZbAUmcj#NN3n!0FInq1f13HzVZFD|^F^=nY7~cx9Q0YN zE>6q$@;H;K)-r?bCBTDtM?}_W@oO5yRnMEeVMRJWt)Xh>56#*BqZ0bZt;Z0=lOz_| T@7C@{;E#@`o<{C>*M9mJusbA; diff --git a/_images/sphx_glr_rb_tutorial_002.png b/_images/sphx_glr_rb_tutorial_002.png index 50e9d4288c88a4455175ec18a73f48321173ed96..7a0036586e8b8bf3c38352dd3df67047d4ab12ae 100644 GIT binary patch literal 10550 zcmeHt2UJvRmTm!8F(O8gC<20H1tf=SE)bBMlZc22NGfs_Du@Z{3IdX^3Y5em6`2AB zMMOYiAyAZ{NGNj7%s$#Zx2IqCta-0{rq`_XTuKnmsq_E;-rxR0J-DoWVfPM>9VirP zH~QjPJrs&D2!&$!vTZB;k8DftH~6IBdCtUB-}RcOx2?N9O3T*s)=gK>n~qnGVC>yJ z99>h2(U=&pPd++_Q$i>4kZ)E-;pAHyp(f+Gqg z{1SckR|B7faVpN!U_Nnkni7mYw)feC2l0pVk422za$bITQR=+BrMSZG_eU?9JrW{` z4OSOv8NBBS8RO`6=|DL}g&a*!k{Fg~k1ja91wV3)=~#o~HohlCB3paUzt<4@>=Ji) zUmR=f>iSD-LgI{_UHwP<@3R339?fnOl^(v$Lq~j*;$v%VO``?j5!w0cCm7%}tNAZS zP^ci=ZR+q%4Qmj5yvK)vpX@q=VuWA2hx!GDlG??v4TZ8{XJkd8s-^z_1^@Xj5vWYH z1($_Wq#c^BuPsfx%X4AyOeoa(>U^<86@R18pFeA8oSd~{XYe`Ll%Vi3A%UyB4z?W^ zoRcF#_4yix!Q1X+oDzA=t7g^ey2)5db%`gyf$;C$wKXa-a{q>+%Tf4oz?!plagP=p z605@{>}qr@Z3)U)iv6E(QUfPZ@o{m5Hm@1&9UL0^Z(X14t7J>`SX*+V`cGEQ_$YHI zVY03@C8W0zbVBiaSXeSDDlB4SV>#qp5;Qb5JE&Cd8e@238+^&G>f5&&wBk=`nHRfM zew*H0A#S#geJ+SfPA1CH0`%2ZKQ|j#T4uMmw@)c#8WTIofvbi7i!QRKPK|zyl{TyJ zam%uTG7NI&ince!>~WLjVhLRs`~33UqeCH!;->j$>+9=RVsOhbnyNyq+lF;EzUdS? zQ6vKUcUu1@P`TLWAE)e_9~U3*Rmbi9c(|Em>s@&K9ltQTms5?`&Gx;nB@ug6-Uuzc zURlQAQK%iq_4nHzWMd0m z92^=Fm6J1WY;26FT=?|qw>z(GYT*o6UH3_#{QdmeX*A+Io#HgnTe`A{+w`V-(*j{d zc^sUaf@o}&_3`7!HFR|FJ~Run+bEC(p!HY!$DR*p_EV!XW@hGs1nx+P*XC1ONHJdleu-cT7X zq0ud{_Z=-Qd-FDHAM7t1NsAXiOJDnV+1)*#gM;Huosy!W=gOSp!Gj0idRoEZm^^Aw z3R+)Z_uE`wtidZODS3@`ov^=pRTwr0ue$PzJeMjtQjol!H9=l=>FDTiq>%&tW*g-M z(LDGI4Kb3&_V%eKPoDgSDWCszW>5O7SJ!KkQLvHsjol6hUBL5nz|L`FElf?1qs_`Z z(=lUR&sQhPbzlQB($iaN_NZm);8xmJigBxQjY%p>YY9V1{@Q3XT0~sD1CB*QLt}1j zwz+PN1YK5Z*1O52t~BitEb*?H;TMzzeQ6~zXcE3cRY&dp&l~%H7XA`2dr)1@1KpHy zp8ox-HtPZ97vS+vO#D}1dCJZvNWK=I!+^5b{qurj5=^=2>FAw@#4cknMMxJ-Q2jr9 zR4tH*_0ZvMXJ_hiq_d5T+;E#ORBxVccMFC45f4DwP^zdN?2Inq0` zjg?)SlT;J~mU8n83M3VcjEvH}`+P6V&(C*P;i}>QJKP69To2oYLfvY-->`^kikH)w z{oYtUpume=dd}lF%(uQ&r`EZ){A5x^5xZ70Iy&0k-JNmg4kNlXTHM^TS!HoJ)*-3% zsuc9Tz{8RXrX?KGkyEdk=Z9b7N599rl81dfJPKOd+G?hS&~M+qg+tcU)NHUPD#^&C z*hsPG0shp+2k)xh&3Wqmi05d3C@=Y&TNRC%m6dfrP@ABC`0(MG)%BQ47cH$YWgZ=$ zhWh%$9i?#96~2DP-0W7Of0 ztSq*Esjd!6(~3{aHZQjF9P2IhxZ&z*?Bzx3?&+By%_L^Le0c_@mus!By}iBPP@=bi zwKZ{lbuklqSkyS@afc?{CpWAnU#ww*FXtXSPm+p%;q{gm4M}a#Nj7z3|JB*QIRwnU_ql_^p^npIXNH#b~iyyO4lP<%PdYckiBzjLZQn*RHKErDb5)9T1%3u7=S{ z#ci(Vi)r>0IhT*pJKEddf1M64PDn`5eYOwUu4vyWlv;R|K0!O3OjaH6UsFxifezd| zgqv%*FgiXS)jU)_Ci_RX8n=IEhDj0~ymn}+ZrXe18=70$=Q5C$y>*WsK5VB@2t`Gw z8lRmw6XE%#njz#g-@!wNtQN|C4#kWD7>Z}jEw|}d0Nr&RUtfBGn?{!?nUK}GkEW_%pJ&H%g&j2Wa_mUgTKLN*) z*3^~Ns!jjOg>I*a6m!=~*#TeXJv{A}-c&(!cc}*fdRE4viAzvWFukzQAYRTjynYR; z0Q0Z`RYA`w_e|xrmXF|de)i{F*_X@j;z+X&sTsbOo;z1ULJ;^5hw?&9t;* z;wHK3z_EdLcb9v+*19$17rIatwVp}+>gebQINMntDa7A2^0&Hk$`J0~#V^5h%f?0> zMq*oMwz;Hlz}I(S-4(tCH=LY0T3cV_+0|vFq@2Bb_in$(hYug-nv^DAk;zt20>=9K zkw!Tdhcjc~Ha77kYYIUy_1Y?YXC-_;=8HLZ7ozcM8zqM%EQHa1%Y!k4^L`}nNh^fL z*5P@LEiDtx%*_oiUp|8F&bNOwQ98tJS?=o!Dty{na0u1n8o zlg2Q$Yu$h&K7RaoN+ISXjLqlIpHF?Yk&-vFLoT}nT<~#PTpWk5a?(_EWTf5VMOap{ z$(t>|HxES$czJtY7@M4!VBwuz4j3I7c_6>ha)CF!xL7WrDb>Kx@Hp$X;NqN|9Ni=y zsP`3^ma{W6-)5KFKYe2DW81YA*~%9$j-vH+b)NtuZSU+nq&oEPL#|?sWGNBT>*D>B zP!G(g{5^u1X_Va>siT^Xjy!f;Qc?%#C2Uydi*t_z(2+tqoq(*QD{psnbavkG@iBp+ zYL`ww=xT~dN+3Z`BeaLF3HsHmtQS~EtXBb-}luFDSZ2o(T83$UAftvM+hP%||x z?Ot+$$B?$6fx&eUZV2OWbWA_x+Q&6Zffi$RVrj@1D-XSI{MzO+5Zl}8M?`2WNhJ&O zx>d(e7EY=rYP5;HHqWl(*29^%FY>6vZdx4vC&;ybwRFGqX6qLKKSak>R4AvWrjF<* zuRJBsXS>$tXH6+Y+dERryb!c(ZEZEMu*iaA>6VuT#GezqiE`=6{S~0T&6_;S&8>#D z;5>En)4MQEl6^z;lme%mOZ)f6ctdmZ%;@MtVcbeaP}m$?T!n7#0BOVS-74yZYu|*_ zT0kGk;x+=%t)N%t*C%n-7s9!o%=MJx;!ioZe#NWh!1HNDSYem#eJicTspZC+(PDYd z7`VxGjV`4iAg=^aHl72u+tIC{CG@!!JugD*LX~4MA0`(wOG@O|xbSr^-@G|3D<@|? z6L;p!nH^j2?&XA4RG{GwPLv!&DRu)ami+GV;g>tvB!<%oNqR8;1?ndkH6tplTx)0H z!%`P7B3b0BmK%pzSfFO?xBD|sg{rMR$4vC518S$kFp;dBi%9bQezRXy(}z%{?O16**v5V3tRGmm1t_hczk$8Q504v zCOF1jy=CX2A8P_i;X+=%Ryp5k?ziySVZMWiHH`RnOTO?%hltAZx5zjd$B3Dk8KfG< z#%_w66~6E52k?3!Y|C^Dh;2qrPNy7sdiVU?oUoFTIc}YT%l4vohBW(*<<-f6#E23# z&H&z9;LvOYfT*Xh@0(e`++6A|#s2L?H5fWCv0A8-&VXDjnaW=+ z)v~d|y=UKoN)WVHiOm14WP298Zg>k}t@x_>`!uUNK6U@l0Q+YS7uV(~1DcE-Wst1&T<~cP1rlKSE%vp+Skbb*IKSSxxXu{Jw_C z%}ta~j`q+tigKzpR{m>^b`v^PK|!IL9O&<3ZDnP(R3+Zf3KVv3=_}r;|4m3lN{ltu z)QV{Azc|qmA*gvpRT`-s0jM2{mA@8{&y@kTs#jTAVp_?nmXhS9D@#5O4umyq)x$@R zYF3qb@Zhj?^!5hSJF)EEeVl#Q`I~Tr)5mO?rr4^MLW-Pw(g5Q}>eM#!$Q$!SIw-nM zP032IHCERn1c(&QX=V7Jx)6Hf4;#hP8g#w-0fC!{jY7rrIQy-P5M%>aJhLrI^+b)b zE;~Dq^9DBlg^BVI*|FO5uw%j7_siISczQn&86zWY1VQwlT8rCF+uPe4S{WJ&e55~v z04hP&DOyoc@#sRLyxVCxs%K;h4SS>(G~n~+d;!YryE0N!&%vJ)i3g#cqxUW7S0j#B zqIX|9AsK51Lar*DOW_5ZmCvt|6;pQv5Lw=lVdytgFC^>ODlj-Wm|j+92F%8+@cNU= z8suPg;W0sLkQ|zM3=IuOcsKfapT@)xz;8>3Z4PL%!>go$|As6!FfcGq#lHxY_S3ky z8($HtyJav}tRdh3zR$s3TL-6oK;FKX!B#(TvgVz4VnpTi{p4^trwgmFb$5dU_Z)$1 zB*IYtoBd$Bv#1>FDl3-IGe8@5OmcE@8Tk5^o|KlBb?KFlijK}GFYh7qAtr!8KT|G9 zCffRh_k3(~z_BZvqaB$fSDNa0U!{3iSeT;6_s54Mt!}nGgC=)X45VdoGMMH#Zvt)Pi+sr*aHx_>#gn&k-{#-@${V;^IsaY5s-X9~NTQVjc0>8Guk)9Vq|O%95hJu6CsH!u2{VaA$pK#~l?p~87$=5?QH;0Medwd3 z4`)PSE$o5Ym&Ly*czhooQrq;cCBq0muBK+~)S0ELtsNc_83|_G@2#zRXuS&;Lba1s zvw{CLSWyPu>j&M>d0|l1B-j7oc2&y?@G;#22fb`C+WhDOGX6og^{@Xe$MB+euUjbh z4+Hel>8)QbDlhhW{E47}&@=#JWhfcfH<1U2^`Z$P5c@^eX%Y5aAHGftvu=Aoj=`_Y zf1Nhpg$i=oPh;Fj{K?Ul`5^B=S@8U;IhtFy3OvVsGPGu~f3VKj-TB#Z9zI()=6@uP z0UZr~vy8|0OJNW+n3|d*u!6u>)8W6>6=_JdUg5W8%FWBu1uR0$zfn3}R#`c#8MiUZ z!Op%dxd1Hc@t$Ixa_>nas2wESc>9R0=O@?uQNI8`M|mc@^3K5Pft+e{P+K+K!pIOf z=}&6|%V@5&IZ!*IFmM&4m85JMx`(%u+q>7ct_xPL8i{-7KY)qUN+rFiAhRQz(vV6hL+37(Kj?qRX@VoS5{Vb-tjch#x8W%A_|-J z;>GDd={}c=>337u{4#X|pi=4$`3AbW&sF>v zhC%ND?|LM!YWHrJppZ}|v~L9wtRI3-vXQQ?ZdTnEIQQ7#N+uI4E7%{*$OW~PC-3mQ zyjbhxy05xsW^ph!qb03#K77!CZGl3jKM&;rNwxQ<#1RM51?)N^rF^1H^vdSKc+b2s zZr(T|#(An?D}O!%M5AWx{G zie0D~5B3X*z(PYpLKNM<-KX+HnV*enVOYA$yQUr$73DYZK&ZX1F9)3ObWr_ZHDT~b z#v^;4`Ab2wYUV*vqwAmZ?c+|`KZJtzqIywAk~f!=$9Z-G_}%~y-zEmB2=J3(LiYzE zsf2`t5mKtj(tnoR>PL>CK~3n!o{;gB5TR^A9pO1kr_<{wBr#DD3ZD5L&^PS7sAb8m zU#*C8SE?xV4#?rW>xUpV8;+-~eLuJA;qLz8BtHsuZ1(2EiFq*RMe%j}scPRi>~Eqr zPGn?c7?_$K#&YclY47RD{P^*b0#|ru83uShATty-L@z{4d+=MuFfJ$AlUZ%=^Njdw z6vGlMo$O7co03#A$HvBbPoo+;fAwGAjoZn7G_eYQc$M!rkRHf9gjv-e`26xk_zdn=z8kbi(D2Cxmfr;+ zh`0fcn250Or}1K14p16Ik%NFJ@CUOn=+y~DR232{K|Y5={GH`>ERv38WM-BR-{s5u z;$AveyI;p*PW;;0D~adBNgRhe9lx1mKCwl<$;a26T$cU>t-kf-Po|rVhw-nHOEg_RTMF zWqL`8iI7fGq1!-L`K|stu&OBFb%lj8fus7#t;L|N@6%#$j4I0hwI$6Tj=yRNQN#a{ z}gog>BAbvnWeOf|H%J2_n|o`Vf)Oxsu}_JYhc zwE1(18$vv?y1UItg@xD0y7C}`ZTa%$_pr#i&U?E#3!QsT1r90ETBg6&k!)+WI`@|7 znit*No@_U&xO>;G>)nNp-LRK}c-V`-=g_h4H#Q@93^gHw8$2U$-zk|yaz=PK3zBi~ z9g5A>E-J9egb_d$k(At{MuuaEN=$SHL%K`8gG3+@>LRYfW|%=P4cyuY;uaDJpD6`! z@`?pa!5+tiImUyEHH$o^l@F6LyK3oCRW3rq8uCpDv|@-2oFGbxQQ_GUB9`3ju>MtT z!_LPV{3e(eS(CWU)jam;I4N*7=$Y2*H)_c+O3fh*h_=tu=8e2M{<%PC%}0Pf147O$ zBCE5rb4tOrV*1|TE%~fHYHL#03hG*UbJ|k56x?egt|lsaeaIJ+rqr|aG8DEf&klhf zmWIqua!Lwf;AfVWetuVuz;CwypRI8RO8s_p)naZ}!tL}4JVEzk0Ip1G2U zr8yBR(;%)3oPK0&06hSyQ4X7Rz=?ngNTRS+YFDy<%DFJJOr^;ReQ0k*w}D`R5rW!! zIz-VazO&!aR}v*01n8~3y;+bp9z1X$xcN9Bqn=)bnVH!Y)mhR}AZGoygjG~5_t6iC zp5HviTE0GNT-6Fzj>JkMKM2jq%EcrteM|q-&wn$@HcK@vxHb}P?(#$cupl)hC3y4o z(z74Yda

YQ@Y4Q6yq+`YmscIf-LkfaI zVRIupI#Hl7l9G53t?aIt2!D}Q1`lq~QxWWHQ^Ka}o8av*?KEo1;G@$aC5$*=wWn

KDws@zbRXCvv&*gn(E3h|NO!NM=^%Cjs|fl zIIO(nRiQlXywj*|VL`!j$U6jc~a%kE_)xhpoq6&zAtb4rioqZf?Gmz{JcV zd|*d7K!_OG;p{Y(UqZ`H?1>64>)r^@Y>?2cwL|VjAqnyYg!M7OCFZU}%|v zGapTxEC&1x1mr7*=9q^J+pG$FoSGhR;@%7ej5}EuKzN%CuVMo4c_6{MfnFZvB#=+7 zZ4iRQA9<~GJ>kCqYRpk(zFi+lF|retyv-<<-ih->cwzRHI+axS6gYpXC<$X zIdpbgFdV}W@Px|FR$FgVBP~qQT*2EkBa&A#ylQsKnc!6xOqRIxDI@UioKCO| z?Gb}7T7VAfmDC4=b&6noAzuOjlLWo)0JW6az!8@#``_6 zv+*<&+R{6@EIP5OuWX`>o(1lF^U9zk&XM+sa$jwidgq8Y&{zkmdxLm%!(jf*>})nz zCVT@v!UytUPKpyLPNfzSP9Q#vKxS&Sb@Q|DGDCVTDn8x`JbW|Uf&=c_I+eC=S;huyT?fVb*U{Jz{~&T{+u&eWy2$E@gPtk=SrDW{dzoP}eeqLPy2 z>g4L{yUaBdDci)c@3~pD)#(Y~5*K|c{vk#7ulDgjZZg@@>c6=;hkSE&*q%A Gx$|$_UC3vcK1C>{a~QK zaox^!7=~>;b6V#jhOG$1FuvY3tKeUhT4)3C$FWKK=3$FnxOVHNv)e6a zN1I(|=0Jf=!HkOO@Krbr+;>sGmIAxL+@}`NVN@#CG5N7bQ;yCfu()DP=2s zNM3*tK)PP4?RLW7hF#1hmf1CKV8`Mq@!YuA+{O+HiqrmA-+x%-Z1?fwgTIu z_x~?{wFfT>oB4BX8yXt2h+Ni4XP(ox?c2BeiDA8`-et?OCc8y1U%uS(?9^lSo9}w1 zU&B2q85#1kB3LE$wM$pN>eB4T^_qGo)>Ilkb!y8HWZvWPJ&cSL^4W>?zIAYR4jmmG zrLmdY)>az!c1v<2BO})x#~g4M1GpxSwK=P>)6v*>*y+%}dpRGop>n&7N!3V8V&bb; z2ZMuyZGQiGr7txkI5@nxo4_b5!uzo&iB(Lq9J{<}89vN`=yDiiGw721t2U53a_lAN zIN{>z)A{!#{Pv@#>!THYhr5aFZn*mNhoviOVaHG8y(g`6{gh&)c;izFThq$S>=B#u zH90=~*{ORqkL;g3DyV?<>Bp|entSrzs|QL}H^!;=ci6{=t=+m$%-y*)&8#Keyg)?t z=8rUZCHIl$XE>|WmoE?O6cwFO#sc$STIqLAk29ZO( z{7sexu9mk(n!hjhX7sF!;KQ~V#FX+Ey3xzqa~+K*nUQklHr>UZMn*=0WqxzPWNlgx zu`fuvZ?!h(cfqF2)YOoNGNv`n&rT)6wi}t63LC#TAC#I|u4Zs-@PP?I9K-H3@8iEY zH~Lu-zJ=ER(l}X9r;5Yu@BdX_B8W_;N)TkTWka%XR0-xHY=qBv7PT*zR3U5CA#mV0CuO9 zn{U5f^Nl{MCJl~$1?Cd19*AKiu0%klA}%pyqj$)lNEZ znGKykTG+G!n{sT~$G`$anzVWTw-`N|jmL&#Ijsfd+uh3MOeU{bT3SAciW=@y*loj^ z`U1Fh?@Ez}?e{e+F$X1==}o<>cO3J$Zs9xluqD|rzP;2J??0?g4>C&B(}gE*jkha~ zj*TS}*pt3Z2ju0$0W4B7GfDI@WhEtDV`JkmgC14WO7Pc zTBv1-*I*nTprXBuz~+{_9olWPF#ENox%qxqzDrkY0-hhs{bkRJDV2)(3#D_d<}Eq) zO=Pmj;p?ZzJ94A}aw632zkYb$LZgW(DJd}saZu>{<>VT=Fs$>j^1M_p!1dtdkgkq% zNA}*VcGPi4>>EQBaWy)&wzkearN>;$=2|)Z+RObSiZ(hrIJo&`!Rn-Vy_8&O#-V)bS>e~XiC8F$n#lr9FbN3cq;c802 zY~snXJy@X0M>t?Be`fWswjEpv9)-uD2$bqUW!A@Q^L)ZrV$J(<0e~^g-+#qsY?tCc z_XS$XH0_FDqCO@3)vH(g4;~C&xn5`>TwKHF(2EN(LQ4yCArS^@2jFLYqI8a)Gre4s zu@kB#JRu>W)CEc)eeo=YU9|>|T;j5+fqeWntnm(gF#>m@05{Q@2ge+GrNqlcV}2ka z3re$aak`G8%APD?03|}hin^6%Db=jT_NM^iOu2{dR63{^w$t+y4r(LIhuK$3)L#4| z(Esy#c{0$OUZz!<2e$*2$Pa%wVIW%31pb&iqJ(W5$0S*Z6W;+33CZjH6dt=c3e z!tNos0f~%6w>jRp5nNMKQ@Rm*n(i3kjcEsa_xMVqHR7n@VIMwxp#3M=&?$5y)@;-1 ziAlg7m9z3Pbt7#R?HglDamL984NFBN-f|1DLE)FXq6zu=%4g4>4fiYi`Z0M}Gczko z@l|T7xt$LdDD=UVf2x~9m}yYKK@0hM^TL4{_H7bZ+vZlv)QiP89@EzZa2g=?Z-zH^ zh~ne8F1pYP6@j>ffVjAo!)fLP^02hc-6h^`ch>S@>yj_5>MbX7Z9cvLx;4*t4)Ppp zg}T+99q%}@JgvYx+?ru2x?Wg5^zA(XeIk*lqjTxfC7oo0xCD??CK(nxPTkuSmSI_< z2UvvoDWiO0RCVxy@wz$Cuvc~Ah(D*AQh^ik6gttm2az3OwD_fQdqB(iCXyDzw=PmH zBt)TH6_(wXMU@CCnJkuh{P=N#VZ4^2ZS8|nHk%L2HPtnXw7nydkbVOcT6T7}gM$O7 zk}VP-R^~=v6g$8b1>sx$^UC$p;r3=i-ZXc8bZlzglVWgMlrT}1 zp|~6%1`!okiwBXBdcMBC=c5mO&zk6J3(j1DJw4QU9h;Kw`-b3(P0C%uSp1COJ^F@i|{pnLXoZKFl;|!|G(}p%f+kkryB$OHj+qHO?L}0;r7$v?*-xcP zQ8cy`^!PcAL#6C9h!r8Q#)CrSi}$0GlYZi3GkI)gs3GKigf#W_wYLcX2a0y}(NIIH zuP)_bSZ+SDvnK^wOq7(B^~}u7jvhUl`;Ky(Kxd7+SL~bmQl>bTeUgIZ21YI~cMIi~ zeABVce?yQi)5eup`ZKwJ&2_6y0|nlSAIAc#*8J04wh8-z`YQ2e_yBZM+IbUhBz3!{ zC*s1^{_e8YJz!8)Ev8p;G9M^ney4^ z3WF@quOIe;YBeVu#R7jm+ou`0dXpGgUy^tf@VFRAymlg9#mx$dJ@+2p;p*A1ANwZ? z=vqUb2#SG)-1spEr_KrSO7_*)Kb}BhE~9AZF|9n4v^3^kv%_8o;0S3bM317%&SdF$ z|7l{TvAMY@NH^y@L44R%1EWY=vuF1l9HsO^$p&$1)km5%X3D>n``wMALNUrN=zYgh zhX1M?ahFU@^-rBT1pp?&F6!!wDdN*QD7oTU-e2k|gvfJU-?=1SsY3TZ@&o`3*V7R~ zPI>t;E4+Shky@<=aZRNTVnXNIXr)&q-%%#F2C9~?053$b3bnPt!`0=Ita zZt=h-O}2$|cd-)M(9)$iHP7JTCj|M)3f^*i1&IXfphhd=`dD3V3e8CXYsr?Yd-q0J zY|-b2p7Zpa6XdO1gB?HExkSMDuy@jM*&_Adb}_aX;loawGrFG0&90H`5Y3U7nO!p# z^pEq=KV&wey+i}OyFE>TwFX^4=QoIxhU2_#J|vw%IfN?6JseN1BegQI$bb5 z9sfyue8@N5Cv4^Oy|;7ig9FU^BTZFX4K)Poq7*0-T?N#KrdDQ^j!FuY2*gamvB19Jtb zgzyqRJ=DFwrW)Lb)NY%G$4baeh-mryOwvFqAw3DiGfB*BgO~ymia(IqmH#zpF$v#+ zU$5jk7=ewF&UfzELSosIgn$vk78VvpKD{(XVpB6&pCVyoZOtohOG{4=11&={v9#=d z1C-p$aVpSWA)$2R(qt1zV+ypMYJcdFzGUqs$6J%Md7LF4%$B0(=qFl#O^u%58Z7tN z1Zz_-@3NJZMErccJ<@To^c|?TfldbEa$qwP%k8Hu_wL;b8Oq}VkWxzTzx$^70Jo7l zL-|MS%{ObauD}0{#@r~XTm=iqy}SSY%GfQ~)4{whNj_c!eepu5gr-^}yiR*LkwEhu zj%$ISLPXum`N6}7)xWIWYBT!jB{FKjRqp*^DmC}NKjptd1an}+DJ~DGR0P58HRf(* z+mqwGu3Fq`(Pj39DAYJ6#|a4v@@5Tr+r-swk&(j#(;6zGxO;g%o>x?9jC$+eqYy6N zUnm5Nr~OgB{ww5`mP+JK4{3tYTKwr>^SSdSOPgV%9^`W*To~p9Wi-D3Fuwcy;okr3 zPtTWZtb|aF^G3LQGnntN$?g*Bc2f&Mz}R={!?1_nY}G^zebMfxeXB4Balrp51#5|j zeHVg(U=)QEti)CeNQ9n~FWSRm(Br*(AhnQG_Zola!lvO3|9GbQj>OaFvR8BWGnk0) z!5&bQoLZ}dD>&7(WqHeDWV@XxtFa#r!Kd>wp|2nfNJ)9urR~;J>NDG-p9mUAk0K#{ z#IBwU_iwY&!5kDpn&&r5`CoUdFHUQg$~8ap-H&)Yp5{>}=lB*|zQrUy~(g zXwYP2G9-K-jVRzaG4Bn*aBeAv$)$Jq@YQF_x|T9)d`4d;e@jcWhztI`c$7^D z3PO`$MqRKW&OYap>TFSu#f9Bw_wLZ&Z=ROq(vqQb`U;gfhHF@^y6^^Ch*tG zBQ4-a&wt?ap%dBFs0Z4t2rmAtocORJ{IFh>yk+0BdlCm{9bos7UE5as6aQ+2{wUz4 zl_Og*_2q3MAb&~|3I@P>)B3+P0?Z7Yf87xi)8qQ<*ox!k%@^s`^fK2-TRD%V{9PT` zVmBi|7{psRc%Oj@1~|9HQPT>wQTz=jC)`l|BmMErj11Rbcku19wPhEK&#_^E0qrKo zm7ITYRvFU{hai9o+<~WnG{M175m|y@TR7c@yfBnNd%lY~(nk!VE{(C7-_u&M%;Ir5 zT2wn?czSxKVWe#q1lrJF2WR)MjBv)DfW|}M-Cl&Z?^%vh_tvwu9W;tJ2BQHi;mfV9 ztJ7`~0~~jmRxotR(vqy-DIPO-OnD6N+&bLeIlYkNH_WhnAFw6~%2Cmw`RN~i23lLz zEPD_5nTwV0VXIBDy)miXFAU;#_ERYoFnH9J!WNs^bP@?!iHtH<=Sj*ch(&(eR9Uf* zS`o|xzz_2~;TGB)0-P&Rw8^knijE(WkT$|G`>K)dDIECioDFYzsR;k#{G%z@P9SF4_VB*3=b0y|BpOExTFxe7WQPX03Ep6KQ$IXCki+jY>|$dej~$!cP_r zKS3_h2GZIrkHK2iuSpR$Rb)YCqdH^T&FNNV8H1<*-LdssmWP6N28@^7L1UwoAX;7e z`CJF6YP15dQp8XFl6G=`9#A;AQ?DjM7NL&fEW}ZHPHi<2hFUw2Q>jy^&|s9Z%JnAn z^ioTDe_o#rCqF15spYSl`s!6JwCQ@)&&h8g<;o_%i&U_FVrv#T0scq*%P(8A!2&~m zFqT>IL|4be)YLRZ(Y(8-jF6Mlq@`|N>f_FOu0T9cGCvfPBb%cI>a0$_cqDaFt6iTCMNm{xc1-bsx+V^XtVc zO}rrfzLH~i;g1vrnRS28R7z^9Oz-vhO)zE?6hsnEP!Os-==N%Xp>$JvIWf^R)9Orm z8)Dt;I{7;DduzsKa^ja{R|!anSuc&6qTvI|)H!XWr8XM#FF{Su0tiE0;O{MCGs&cd zWF#*+K=$Gw_n^~vD3nf}MA7Z;v?c;EIuBkV1j<@O!{_E??3cIq^zUsFw;8N`n65RG zd;vfL%hbh8roIHa)-D5y6Uu&zb9veoj91HxdI#dTwqG z#j7;oDDOE)fdF6DAF>@IzFWVA1 zIw@E>7V*7y@|$LN5Eb@%Em9_Yt@+Z|-El z7zPc@@mv`hnf}V3__OSro|MiQn`I(>2rbdKIMYPw>+9POv!}tjC@Q~z#%Azez;cwN zwq&@O+0hiB>_&%n7d0<%4I{rxKk7W$wL{MO8 z3(=5`^STEnVhH@81WTCgp%}NCzUmOXH*a^Ek@;@S+zi5Ko93q{zS)=Zp`jtfMjLh< zP6~|Jt_Lx@@ALptZZ>G>1Ov3v{@bfI25&V`{obui*|~i)ywe4nG9(*$bJo1=W3B0R zE@+>j=LVN!rxy^0=`VIZwdO6feTzACbmFy$2_Sdfh%k!AL5ZG8YwB{V5EoY)AU$Hh zBbm6Mv|Po8PPQ8XhTK6r4Q zqA`7%)#;RJyH(nt9!NO{WaLRo>uC90x*G@t+m4wg?f8lIEUALBC017vzI?vH%?>8h zwUP3ckJGKn)I?$GrhNU~{S^k5R~Sp%Zbm*Y(?Zl|Vqp5vne(>VhUbwEm+ zgCx8tUU6^0Y5vulu18r1_F*<5zBVLe=+#!g^MNF z{f-6|dMx^Ob>P7qNU)A@ODeb}rEaYU(wnkv>%tf2>=rppvq)lLp3hi%K{l++4z|d{ z1njpZVIr>s=wbcTjjJ_Ttqw5yU~rWPU`C3Za@k5Z6oRwIH7mAAV1ZsuCx^9y}6ljzrNN5Ry0)l{mB%w(Xlo82-jS7-;&Zy8NNe&EIf`a56Bq@>< z5y?o7l5@`I?U}Q0?Wwze+^RdL>inQ<(a@{c`o8CV(h9n#u6XXu#WM&5;+(P)`Zoju zF9Lq(Nr~YddxJM_2n36?GWxcrYvS^Vo1^B-OBL(0-=n@Lkg~C}Q|-t{7V5-kQOTG8 zrdf(2+v-g(ucXPw_xFFB_27qgmQ$*4u);EuN+MXvA43@&6j;bj)ha8<9{26w zB(lF$GuNJ@gng_-Oe~Py!PGlC;_%x;lV(yv{68L&(F4_?2K& zY|+mrc;m*pdu=MSB08R`dPH4ao#JuJtEXKV%Bjq=HP3#-E7G|(?AWblVAn*G$}EqL ze^Xj2bmZ-m)go#WKP(V2I5>DOoE4?^dT5zqn{@U;G&vTFO=LL(uYaWZ!YlWmhtz$h z7_apvx?F>*sJ=Y?8&-otxms5_I5=t!7IK)Ry%X)Gnmg-#d?+r7H*UsHleKFvcRiybClmk#aJ(mXZpqK)IRpm2-=}ALC}#w6(PCH>Q<~i;G2V#}OfP{G3;>hRn@9d$SVc zFOm=zA0L14^vGM9hK8onfG;~IM<6ud$c6)zI=y|kf7~`C`kP@`dzY=xVy`vJ>aZJ` zwn4<;qY5NhgA^-8AVE%VFovF;gQK(7!{vkHysUu%)9GG|w352|udVs+$`R{CbuR0Q zgvQ3kgPEzRskrMHd<0*t3O@$b)hcF5o3`9Xd`^iKK`TjrZq@g~g$rvNZTuyVTPSGx z4Zk%8ou417;HQ+@V}%<(%OLn-XL+c*!p6wt+aG>yGsXjj7z6NVA|f%~#|IdC;u|L4Sh=_Y zv$C!bQ!vpl6vdMO%jMPd=GyBLO$)ey)dU_Yl%*@6P51zsan`fP?li1_} z2raH5#S}?Yaw?DBhch}>bh%h+5m-=JD>g{5qPj%sd-4XJBdN%e3w@XYaWA-t&}g)( zh720rc;O#9BwO?a=$TtstnYh{9VU0oUZx`L@maC2+De{9p>AL3!~0okcK+s==M7z5 zUDw*tgMtF1`ee-KfFhq$Z^WqQrkZvAvGY6CxQ1j&4_V=StWq>}AKsU5-=_UYnBNo^ zQ`e7Ce)JGW7pOT+j6m=-ntcnf^ zJ2!Wbh}GbuGChH_&leWV4ZXG>z!%6WC=d$>2;fj2AAiT)UHm!mxwN!2|NEKhy+(?< zx(p7#zD=AQuA25{KS0aNzg(dR!U~}t!{VZi|czU>J&qZ1Rqm0JzD9xhif zh}yCSV2;K&$jHc4lO-5@pSH!!iw0p^-QXtH507DR#+|F*XJ=1NhVcK&uU=`G-JGx$ zRZ>!VqY}$^fsW2$YfhtXZ<3t){CT*$+ zNU<)qT;FaW4>%PSfsdjNp!L%ESY7=JX=O8@xJ)C=YxoZTkD$j<`Tn{&X1XTd*mW*7kp8AM6R;s7 zr9<)QQ;q=4xT81?5*fM4o=ad%Pb`(P8rp#eB)&f#efJN6$Ha=Sm{I|-h*Im3i}hpS z-SfGWO7ikVA+)?{#l=xcw_LjFeNM;6;0y{^atZJsmHaH!xi(%_~RzP_lWB(>YO@g&{1-sqN?nAS?wkFiX9 z0HL|Q+%~HTq_{Mh9xj!pU0_&qdUEKw*?zOsteZHq`%4su%0QjhEkL-$M(btIll@tp zYqTe8fzmJBEs>F&Y`GOO2V3)UDNRqa=M?S0rvyhnaAd!C8$ME4^aVYth zI{%wc|5JyU4YJ!Xvp8VV<7npf?|u8vVJ=E9K)GU|1jfpo#_= zdCH$l@OMW55ROhx{*FanZf$KH=l9ts_t;rt6Bmy!dfX!Tq?HO-)xUc_12zevsjXdN z*3Ah7Wy~xJ1go#Ziu8+g!6K4w`XVYvRt|i$H8pzz z*?4%)_-<_28$W)GXDiACWME}wbv*MoFR(RN)G2Tl8b^VHbQSCyjHpEW9KTlmAES$qV`!|HP2!ODCB#XU@3p&&2*L zdQ1XF#N=piot=|Y5D<-XSz$LvmHP7^&i_ay0C9ekk?|rY|HGNU&vt!_o30YK>qtLzIaDVff(eN7w=hwmUikVH4 z>!oZcYE2|v1lZsr+X-3q6e%@J%WF7aq^zub&7d;E>u{$t`@vOaw`nBknVh6~G##mL zKi$Vgi}7WG=fq=Qk&&w*m5*5$`|>`Ul&pg+8JFqpZ*||@KicdNb6sOqiMfU&q+Fe% z$=tR8$N*DwVFk3J&eg)N#n zVhtKjjt>|4jexHc#T+Vu9dyggX*4u6*b)uV8SB`}z-a(*s?|`rfyZ(g&@H3oSlzLY zHEzCe1{V>-s~^xZMb?!8d#vAR<+n6g76SW8e3o7Y48zNpFSizYLuzUyz)tFyTc$e9 ze&3F*_-Xm%$&-l4$lG`BobmJh-j76zvB1UN9C17kpHNK_|2-`Y1r}Se-urkCP}QAz zH?y?#HJJ1yCtV!1naQIs7GQ^7_5!1y>{QfiJbdWYY*s@leN?DEMS~{f@>%D){%Ke)!3~F^@cN9+ovc{DBoExi`#u+C%x)O**ADox( zWU430N~R&SLU3%9fhTVu^Y!c3KW@43Sq+w^Le4O-{Y0dxr6u^d`K-9p0xq}230u%g zdh8sH7LV2XxZj_3bjxydGn-3kCNt$dhzt=j1Y9jGS@Q7k%yqpb2kGJD;CR`aqupKS z<-zQ=rD5o?EZmo?d!L2sZ`w9~YAyb;VVkH?L6>pM86OW@esjqRt2Bo;kO7n40%)jO z`LO7^-Kz~|3~r!*wcLEDoOh_grl8*Q|B||UVay^&eh5RO5yj_%&(`vokYq_%awP~8 zmla=4->lz1_xta^!e+^(fppjRVls4fm~Q*J#NrMw}T}>kj#}4eW@t4c(q*wOl}&Z2`~_@Y~ET zO2B?vN#PX}Ls}3T9iI$v;*d@m$u_FS9(f|Gh`MxY%Z?c-UTa}WgqF^Dx1CVSqtV_X zMC_qByL9d_I4H<`z$j$I9L(KD2{$W-ebAcYJEl8&70r&C!({zEwf=vJA@b0E#iB2F z0yoKSvq?Bx3qy~*bgBI{_kDrM_V($drM z{&YMd=H})L{Hwc%@3XQ#&e+3zhGFPaFFr(PXar^9@(;8J+*htV0;3L&F4LPFV#<`G zxLx%K=t>_yF8944JCCrfGJpg`rN)oyszhtboc;W0q36BKh+PC%if7cVmCEPA!Ds#+ zDxKWITh4#81AZvOo@w`^ z?}w6{fU^wLlQ<;cAc(W>&;Ns8|IaS||LI+7g)Qf06tyyH=iFO=4k};cO!9i^A0QMP zdtf<(=#dOmv28EMR=Gq(c0voZA3Q+P(YYAf?i9>{^2}SM~IifP9GJ=Px+fc>46I#O|e}7T`&1S6vt!65<9X zy>jF0RR&@63y4~eU6ajU?TJ!e@f}i!q2zp(Z%#I#3JDE8D<~+aq^!*L;|GZ#Y#|m) z-n!76^Rvu?j`61T^h)*WyR0m%M!EtLfCb(cL4V76NjG-;@c0wc1HfcR2b|f1cQU6@@aTv%@R;X*pmi!bH)sTbJpI#S-3y37`h^`{sYh{B}LV z{|$os!S*5y3hDM06iQ9DvG(oqPaM&GB%q7{p9wlq1&$U%_4qEIDLrujCb8Q|{~GP} zP#+)QAD!49-oDB{wlEYcq%ICAspOv}rkk)D8-4mVy(EpZn;N>hK^S^C<9#hH1)z5X zbNH-}VF89-v)^6JD?60Olvhh-&1XLV^QdA7rt^0FvV)1tYsoVeE$961QEpB_AF$>s zL5M#goh$kERmbAz)!jh%*DOyR(iid-coHZ0gpjLBKwyTZ#mp;<*! zu$pqhH_$c6htO&m8h(F&KXahoN7|x4 ze`ams^VZVOO~q4I0zX7;V%Z)()s`pyc)rtSueQ;8+i2})Z~58X!!I2jnLZ{aBQg5) zH_kpEsdnj}^bf?W=uKYNaB(`HS#q;#O|2`P;(6h!?-eGTyzLJPo?q zf3Hw44``OYe(Wx!r|;aZc=$()tNH`aN=~Lv#sAESRmVF+?dO;RF3QV*X%>Tu4k0Wo z3_VD%5C32CmTb50?~iZjKF>kRXF%U0)}ECs+Vq)HvT-cghqsa=l8QeaU+o z=6$kucXXgJIt+l_ry(UAsB+-) zI@lsRe5ixC<+75Y7|!feUDz;;YX$oAFTup8GS4V_9dGyJnpVj3IH0^@67wHh%>-AR z%FNNDx-9ri2xslPRf*V-SU7{RN;>8jNIE-u;cHxHlU#7t5aJqT&J>%G_ddsBe?iOQ zwjk6qd^Kyb2&tnrx&JPFsqIUjZq3%C;(6rrebQet96&{{Rh&QafykSA-xr{4@qg@tKi+nN>&>ebE6xX*K` zvtPbUkkZkT{UArwagJ)LIV>HpeLJOh*?IF52}?vuN(Zh*9j>|oL^TfKy}`W9ez~l_ zD^-pJ0jC9Yn{Lf@9!=8KlOE(ozWZY3hx7L^-rZ#u+V=MLuJF&Yl3fh2q_`RnO#f4G zgPNL}5eW%xK)x>SyDRM_9a3#8Bh_+}zZl@0x*r_5!R$}`NR`876T@2fBKK``SjNxy z!byC)=bwB}6e~6F4F;buWh-hco`mCZ=jFj7msLYU=ppWflYQ(=SBwK!dwj5+{_b4> z5jpMn=DzE6q#`ybC>5reE7=v5(Ln|_19}E1@3no1r@QY;w}T`<8~GqyV$z-lNQyP` zj)TO}S><4A@;&hj%)Y-=&d_r6>}F&_g8pfR!`>R^gVUmdxj7F`+nK`yeU2B6Y7SSb zpO~271dW1Of__W)vRX8`lDD^1o?e;paHZX_`(mEuXpLCUL? z@Yv%Oi?q6%n^^ZdwW(LPR>lDr?;s>SxlwNUGm6o=(hph|sJf+6!l5y<1*rF>G!~n7 zFvFi4ptE3*_LcxM15r$JuB5r8WpilkWG9q2*do6w0J@8K__+vPVrba}fQ5VH0yi21 zL$d+ZFR@pjQuj3eZ@Rk5(3BvGii$9Ys?(Xt?!hpc(J?U!fKPCbgscJr$jokr$@v9P z@no+ZU4^iVaK?AJxuFneBNG$P%0N{QjK`K-jJp*W@EMo-!%MK*lX0fWsnCZ(!$Q!L z614reK%MF=r25N1i#JDIpX0Q9Ys*nRNn9S{@Yo(^|N4J{A7Gh+T-z@ zc2l89kYSZkRXvN~)hi`6+d4T6@`u0TydQK3RCIKTPEJn8)}JymG9oN_<>NW&BBrOG zs3(fz_2g+XQ78`7O0{>rRl$|XcYO}dBi_G%&m?9~=nL21+rr)hk4!+*uj!YEx{SI7 zLY9ImrX`$(WZ{+Ai#D@Nps20oq1gO~)q>A{u;MlhJniu*QD%2glQCJyeHfsTHXsF8 zC>#Hf_K~uw-KK@lfH}FC(h&%7U3L!KqHlG9J%=W|vQiWdxb7wsE*K7j#+7gLkKs8L z&_lC9TdZp(qJJ#FS3lO#@RD5l&K+YY-DDna)g_z`+0?&<&WkNU_&1@d=W~CRsmbmO z+#8#lRVN3FaxmgBdqgqUbQ_?^Zh=%!FJejmxH)tJ%9Tvm1lY^#J|{;ooINkCzC?X6 zZ9UyC@M)T`wH>Yx*IgJoB7!;^V8H@!PL`^b zdr7f?4Ih|db#%V$Bme&bDA|gRRnt=2Gp@m4# zwW37nO+pdrgou=Y^nK1ZJKxUi?C#v%on2@6Lvna?&ig*UdcyVf&T(%O+=d_sH}1T) zA%d_ygC7Ad4)~3SRhl1y2>Ic(PaFFtGyD7kjah5cGm8mwG0!4-b@&cW;SosWz|Jp+gDJ z)XQ!(u5D7&$ZIGH*7dL_bj{8D+WFBOd+h#P;PCN;~<}lwCHwz+2)(6LD_dUaZ2wFKdH_Wdi*_uMJz7X zUs_tKnkuCw3ye~iuzlFj!}5ZldAv8Hjwk?G?9}ThuSkQe&DoI9=hI5u!_st=#VqQo|ulbWM^Y* zo?76T#IIi$`8?!QcfXr5JXbM4BP7-?^={x+)V+Z>-R#VeTAKNZ6NtQ;d&Raq$1{eFe{%=FH88>mxVnJQzACbc*?KT(8!1{^6bdsiZZO9g6}jZ zWJV~|T_y}KuAmFK^w*e6NlAtEos-<#8YgE-_M5Y3ek(gCZ)T-ohnyF1rz&$l&>E>h6M5i--eP}1(Jgu$i|M0!)82lv)6y*# zqrNuZwk_Y6vs(9f^3 zKWNd~4*tH+XTZe9#zt0nXh81_NYcG=Vs1!jbJ9FD%v(%UZzqDBi=m2pU;Rd)v)X6M9kT2=x|eR^b`h;<|C4C@vkHolaj9l?Bzj3rMvK7IXjyS$PMk2?XXBf0XlS?>Mvvv+L9$l+nsDq~+07=?KLpyJ z3aLGR{ycMaHPG6p509Rtlao{MuXQU@MQ|1JO#er4gy6OZ7=XU9qobq$R7w4O^O>FK zXdj(al-*7sA@FP+3W3AiQJn_ zFRPdoy0MK7X}f%dCJu)yS-D-^=QL1Pi;(k)E8VMD7f=Wt<#T;ZJk*X+ zo?EERj&=)mh~(mGeptH_wYJP$ZEA0%*CgFNLXWHeAe~u$NL2Fx|6^@@F*dVUp=T=U zgKI%&SSaH1!cM5CxXe9lE6=M1_9o;hsecynv7c(}J#_Am34h|Cw3u3~t zn@(R|C<-3G^#YhCn?Tr&pYFFl(R=$|+x1NwB^!%NSoMuT*DQ?kw1&ZJ8X?t$YsUw? zCVDo2qvc{+@Jxhl;Iu!?vP)icDF5JGMZ5gxj2o#dA$7AMk9_~y>umNv@G`t%z4CP` zf-?#v>YuwFoe*J4o8iw~CfTodAhss$dv?87XJ=pC>{GL}(?yy@C`t$kd)PEYXnM!P z{{95|NpO*+6xOGVbMyJlt1`&Hw^#4+nhVndMIR#eIkP4^N||S>7}@VT#4TrAcgkBG(VTnCxO5eU+p&Xaf=XDwKSOTIz0(&{R83S=RQ#uF7rnm! z#WpfF=Da*V(a_M)S{Jl3KN4>{+2dS<_xC~^SU>!?cq~ukFm{Igz6Y2Y_NXM=(fCmv zbE8^Q*I7lZ{($KT&~$xs^Ms!@b9#O5^+Fa^UU`BC4ut$#ud#94uCWPmsD*V7;|6bE zCfqQOyKvzG3IUwq*|QIC(M{dmOH{qaMRD-`1TTm9xPj?-jER|n_4u)Fl(oXx7RDprBfk*)1)mre+DSCS)!z`{N8@^{EAb)+SCKV6>RJ z)mdHmuzdJ8((D8S0N+Bs_3bE%dKuFK{eik5(DSUNxv_jOgeds_y0gj7JkBO?Mh7-- zVmRiKX|*@=+T!5iN^E?*1g@vXuMD`s=n^Ml5nF-f@PG|u_Es8=C3`+SeydxQI#7g; zW*5m?P|4xhkw0IE7Io#rZ-`{FabFd_?YWc@Sf#_!=eL8p7Ft>rX@aSWO-c&rwlg<3 zPgKQEUX4cu4*W`h?o$rL#Re`xkeP`8vAzDa=W<-z9%M$0L~RuM?PJ{eKxwHX^0Cr4 z!((pW7fst~j2}V!M0fF$+23U6VtdU=S1NEMd!9#4L-u^^ff1pigXRRnDS7j2`}Q;w zE=T->Y%w)AQt1=BLXS%gdS88@bqIzEM`#+0>0-pX(4B7GGFB3dg>&p;;C(NgZ#Cm% zB~k~S{d&KyV6)@}4B9E*g0_&0?{EL~m`?^(GF)r+#U!tRphd@)S2{!@(a_(&3jB^z z;P2Zv!|r49atlm-sO36RxUVbM?ZMxDzYl*q-jad3O6CC7Hs;91Rya2nSkj4_xyH8Q ztM9y4XX-b`U91CFOLhGEUwf12_0@IxEZ-y_ zJKpfKvF|50Ih5}{Dth3At1%dq=JYdsJYo1>-%s1w+2vJKoaBERf?^ZyQ3~fjnU}M7 z+k<2Q6_V1!4AsjbhPhjg|CE1vYg3`A7RL>+1FF+CbHm=%9nH;YzzN1M#E^)nYfLxl zzUUCJ@^Ysf14|3e9PmE=6ItK0b^kM5%#ja=qZ1Q}`;Xa6?%gJ(qGIlPqWVuHO&oJW za~=O+aBgXMZs}km2hwu{+qLcgBmka&yQVj9UF|(l-eqH?BxnNZjYM7d2gEu5?5&(# zSwoW<@K3Vv9>k*dzU7_3^`$Y?yUotc;YSm0Hc(vp@Lkq$Axuvzqyg>TRl*3UTL;3h|B77Z~-V#Pm zP7b4rL5jhMOGwBZp`JWFBmSy8ryi zsnX%$8^Hc*$9NI4!PZ4Z8$>fuRP>*Lo_tz3eq^2tvAAU<=S0*8gjfozyn~9Z&Vo@rzud|H|;!?29E$ZnTWG=HL$nOZp&cT z%#XXxRwAnl&u?p@q_`Do2{1SS1_%cMla-SL zyU!R56ER)<*@vgey_N)}^iFb6l8&c|(Z|hifZ&j{eDg;P{{QA|W;4 z73Y6MC`_h@3AaM7DZlZV(2bXomiDR_@)^%ga&4{gn?q5Qy!xqkm1vG^#SEH?MxWP? zIyL*Kw5$wOI2@sVDEz@-#n4kD9UYyiWsn0Hh-#4B`7Y|ZNxJ^Hgu0F7?v8>ix(Qt% zy5kF#!~3RrVa?C`w^T!qOAfNnemU0UurT$lYPLZ}*|}3TQbfb1+Gn~m$*oQbLIytMhhO&N-FCujz6!2BTzIox|?foO(H3jiAPdw_~KG8}P-g zh3Adt2dX0LhYalOvU*;-xgB+~a^hqAMh&4>c{8PPu(1)qYS%W3h{Ov~*yUW%B~%@N z>vi+Ziq_w77ulIFLo|tvi4mg?DBwz6EH(1C5y_o)urpJn8a? zW|vpG3h6Q$Gob^)EiVMhEr^tnuII-w@-RK`*Qjf zeTn2|8PZs9wNDZFAOHFBnV3?QNBoT;)^D!p$463oCk%EQ=AV4DK9{;-MW?v5pP>U;d#g%>JGyRS6*+U<9h9r`K0@%`S; z`31ULe#pjp)sM$A!!s}BNZ6IBV=P9O0%g05jZ1HZL1krSSRv(yfhaF(jF(xAF?cN0 zY@3*x5-+7<^`bnqv$C>?d3grF+URXVZpyjxM=mNj>J7Vs)>vJS&t^>a*H*V>ocuc8 zXOzDcD%TeVnie1AWf4u9GaqM5RNTjpXKMlN(h3S)S@AYR*S;zhb;CceUQNd?kBf8h&q!H zYE9vI+OA(9Xr(`U=|3q|JKw5HB#}CMD?LphStlnSM78#g=3f)L%6(_9$(fgGLvLah zC9DoX#>Q`iukdn-R?zZ%cv9Eg8%`0_zd>JuZ&F{BDaDNBTA>BwuCmlm=BqI=c!+s5lsmWT%TS8 zT(RrFuU|}5!VT3&!Q6LJT8EAPNbQ-p7_ZOb@wpJ6EvUh@ZDLOAt4nZS?LR(5 zl!t5tgI2`Km^p#5s`~vSVrZ20<;xc^)dXN0RqrWDD7|)Ke`|Kx1QdRZJdo3vqQ)4C z((t}PdH#HFq>!5FnTI>VQ?Ax}j9jqBcbK3f2`DM|XE_yGlwTP77-784283>R@|H?II3GKPoLP z#R&PU=jZ1Oy);A%b?oY|Gjf-UMHkAxb$1J_1T=m5;uYAKot=GI6V~Jj;Fgh*0VmH( z=X)L-JJQ|cD7kmJ|J=OKRChXBXvfOa%c(~UadxuzTt@^aMDszEhY8BjNwOwOn7`SrISF? z9dIE!@mZOfp#9pd=~3w)-{BHbB~DJCSvCB&ClXGXg0Fi7PKJ2UA=)>3lA66K4w* zGW*#`!7PpSnJCru-$UTG^Pr+rQ#bw6o@Z2k^&Ll_SKCGZu@oPrYwx+x5o^M(6rd+b zBub}v_c-cB)E+VMiPBiFSYDhi0&X_aQ~5BVh=;i!|8_GK z-61q(_4Zmt?mu?6Nn@i1Ql1E1<0pnz+MaKwpbqyj*;$wb)KcX$P4a9~H$y9A(?W}^ zD}RiCI_)^2{~dMbCi$lSXi$Jx@q-WcIe~>+hTg##Tn-BFgoFhD`Id7gR#pXamJ|no zlpK};J!8g}?feeFW{K(nl!rS-Nclx|7WX)Jni?2H!#AQuSMb`hBQ(>{qM&x}=+Pf5 zNy5n={X_?@(kZ3|m(#)4L>^Q*O2XbL30(3(Ur}fsLcI_Kn+tk+olwA&;T2Gd`^Ww6 zGmY!j*tL115qLELRkCwufdTY3=)1D|0mY3rNSc{Y!L4IAh z!0EMtCH|d7H~rRRXYRe{{&DA<+4IfpnU$TJdhHnp2!oxB8T0zEj%HJ{deYvr9ds; z34%oafNB0_?3+p%4{$XmhitKJH~PdoN$Jf1A>~Q_6vfO><_7fbK5yWz<0v0e_!wqD>-8I z-dvwguyVWm@L~CES4No`JV=&k1PmD$2~`dmptp=lEh=sqsL)>922f->lclx9#Kd@c zc)o7*0n-Y3oI%`fycoKjq=s&s?R=Au-X)_GgmQbG`UeLWr=AN8a2hDTA`i1bA+4Xz zsOt*H!MuHZim}*X3-Y77{;{zV3r36=n##WJgg^q0aLf!!;aq6 zh>DDyy8@@{H0Fb}75Rn5v0Nf>>ZqdUY~(x{=dQjK9T@Cfmz zE1i1t3UhKaJ3Bl57fY+(x1_3}ZFLjHO$0ga*xTnONWd{uQ&VS`4?xh@)2#0x5EqVw zRE3dBr(XMN)X=-%_~hLBK=63|nEWk1KE5zF_hxo>HX$ijH*sNeg|sj?_YGrH_p|Lv znPYP}H+BT9^HNJ35!t#S*?tbrp!@B6n5n44U0vM%$F5nyir9}Ro7kW1{Y1dy+26L?wkz! z18i#`Tj5d4WOw+5VT0)Te@86|E4mkSyn(wWt z?U9t#ycb?a^Q#msEI7-`$T-p#`nQ&SaK%=r1`}zAj&E`}x*o8Ig3l3RFoUwSgj6do z3!=D;ytj{NX=$l+?iW?roP1*D#dZyXF1hZvV^Iv;e78G`+HLV`bm-)T^}M%luk>Ct z4cb|R4}Sgn!nDLZ^W(?gg0^}y1|lRH3%-B9NA?L`jmvQCFEX*LanBrct4_FTkrl-! zHya2Cx4XQe5>g`)h~|R0u20}8Ey%xX-(SuU4&*g7*sRTV8r{74)Y--5gYU|{G-W?2 zmyWr)f{~FCVe~DfrS;kz~JVluecA$_vynd z=5~roO5k|jKDHAD+1VNh1j4e?@zt$cw^AizRJRIjeWwmkhRQY4($W?d7khU$K#~~b z8ah9CU?P>=x4Xljjd^xCEe@1gR=e4#J~|8*O={;stg0Ngu9HR*3aYA1!KGX6xNTj4 z8+vJqCZkmkdiSv_3&Q-@I_10>lxl!3x<^l4{kA+_N5ggn=?4V`fz*!85wohA<0Ec9 z1E6*xqiZ9xj4uYyee582L^Ic+{UY81pn?lfNsma!>_Q`&@5SbT6oMIo)B}kDP-7`F zS-~@pmzTHipMcVH&Sz}uONP*g%F0XpF^d2K6;f3IcCs<4gG-`*{s(`WbI^iOMo)=F zg%GUU(O5OZ005^20$@y5cY*Zm_sus$s^t`qe?gbBaX<(aTFx}F4gebt!qGOP)u@c0 zgU%?F*)<-ogsrVD7+Md4t|=U9V*LQp6`+YOW1Z6bbG|o?Hsx;Kdf)KLlP4A=27|$U z;(3}R6?et=JN--2hE?68Qh=BhKiAi7@eQCO{uJcvlsQp?;lB_C%1FDa6UTLbHP zc_Q50+)iETDumj&iv~sc`C6~EHDkHLG`*IFB#$3ECXY~5R0JmL8yfN*9;7jL07J1j z3h?4~;K6rIl^;Gh0hesiyU>{M@FQgDfRA=}goTBV9DHKg7>FGxvB(C7J;2JMvi;*T zz&FcxcA-K}-B~xCU0wS$*i~|l^IgBh8@14SF~iu(>dkgATGfXgL;(cfXJltBK4?Fv z##pM@T1~`Vy}WkwTa3zjQaXCqPx$0v;E1{T{0u^EJ!5?oJvu{su z+S#J5`j;*3asHsOKzD|G1*-X2UbuYXWBY#rM6+$XQ)ZA{iP!nea-WIr&2KL|hLR$M z5=X_Vi4q2WSmj`xbueyBmB_Yh)dN9w93kqVQuCD)I}{X+P!^nTD%UL_xW1esu8>O&9oVC*C}ljBCoaru?TH;wYX!mX~rF9{L*3Rn9F+RSXk67d(X z*0G~$3IUrFpOQ71U@v&b&M@o`LgUX^ebi`P-`B4uI~bTqypBjbFK?|ENwcrvwBK^p zd2SOkR z5+Bz5UP@eYU(<2WL>-}t50^xeM3`tB^tp|^HP<&w$elCYj;c%byiXh5rZ;$U%Bq0vk+hG2aU^XFH| zYjT5hIA;X788@7oRsah`*MeAUE+?-%6gJ2(UHv(~be!KnWUH-Rn#J5Q1v_SaH!~|G zrGtEuSodY=jnvKM9z(L3g6E-0hd(`OboUkYGFPLqPNA=LVf%Qq^2634QtMdS60PVG zkMZz>>cWNI4AXhMY69Jo?*@l@=mjX0Rcfag-XC^BOPrpl=6;Ung0!l*v}*bX|Lrs% zuPGl~FE)t5Rlla+FK%11I*Pi;%EBenn8tlcaM#^j)`yrzbuw=iisMywS66u>=dwu~ zw0C<}SI%M{0RrMhJL&FbC>xifbL{4z?CQOrld-aB&Kl`Qp3T^vs z9uvG1qNBQXw;xS$QIvj=LZFN$(tSb|_-IJ!mbtzk@6r`LG;w_V1CFA(>UUo`n3&A( z5#HoyMG$IF>}(DCZ&c$EVGVzk#B4fHgGG0I$=+lWeTh z>S#<|B9?vJ$M#xZB%c3Vr?SXNor@<871OANry_|bjyp92co(!_K9J1La}<(OWaX%V z)kK6#!S5;ChgT4Q`>rP_@X0F{^?f0IeG!W!Tf{_)L_;cXvB=V1mMN(p$own4V?QiXkU1+mC3QH5(S6`uHRRmSey$3#+*_*hteuGffPeRpMFKP}O!ClidX%(30ERPm5ooE!QPyXlbpjV>J@na}#P6^(4gl zF~mJv@+~cIT|aE&HN-RL?cI{{U8i1S?l5<@Yax#{K_0ukzc-hap&~3S>g0F_rtt*0 zC;R8qqhL`DjpX(=s*N*0vm8+Cv#056$r)Ygoq@S}(d)mPn#6-x4VvUZnZz&f`)k`a zD(+Jc1(MbD)ApHIP%P4W4CxxbA{#u(t3yKq0&%dYW)iwyVdke3d3na`{3~ous*b(5 zbiQGn|G{n}TZ|KY^RXzkR#!X**<;HFiEsidJd5=vuio7D_U`FO9)8k0-;w-D8u?x| zKpvo;tkn0bqze~x8W@<@IyQ`YWq$6#!7E!m}9$HimFu~gO9 zIX{PzfVFr9_)VR^pIrOlK8u-=M!r@?t8zx}>Hf-wiejM1hUXiYxi4EEAQMbr z8v9n*-cJ4!0=X%Il7%fUGWO~wZ>B0G;_>z(3FYM-Y3 zVyj$-vrvH~KBhVqs7mB+a8Tw4yx92aDI-CSq{^Uu(Crg{!eJ9@f=+H_5aSV0F)p19 zE2yip0-cDno7b z)1uEQECX7A2s?{; zNT6zl>h4NRF_8Aa?q`OCTDJ`!w}V2pocYnEm*&7ABck z@rYsxY726nLTPAJ0=<~WGpPP>POlRn#wt;@Hmc04WxAd5QmO%X0Tkn<}!%sSJ@cLe)jAjFdUQJGl?}V z0=|6%aQpT|iNO?E7h~X4u)=eJU~|wefd1>HkeFqqc2rc9|6Jzt%HKa9yqSGhg+3hz zVlj?L?OK}vGOV>AbhM+XDWvgduEacOVSq7GR067kS0dnZ(i!wfp?Nm7&Cq{p2%6_J z6B16T?ELH{Py>|tnVruSGmNp&$-BTAOjQ$wW{lEDgn{ma2xJ$;93~1JfSyKeJgi$e zqYjeuZ?*leoJrV)TH%5lfDUL{W=kpIJ9o|mba&2xZ`;~pgmn`Na5%NajsI3!h(?0` zZ#5LUYWMuaxgKfI1PoUok)`OL-CDFyMjAh(jFf!oZfsjW7Xi^2) zLE|i|tX#sBE%9o*K|=0`sb?&0>^SUocg;f|?q6WZCG%1Q6@z zt^yQQ2zUTN?m@qR(*Pvy+qbWFji59`^9Ni1@NglJ>Dm@)q5#+a0X2&oU^)SG1Yy{e z`(|w2>};OS}q3njtW*w_)s1s02KZEZk0c4jN z5ip^P%>go+a@T(72bqVL*YFxo$A-*Hgt*2Qi5C=1W`zV*Yk@)mlaa3*uidm)e62z1 zoXuwc_^?*$Z2pzcVAsL}N?{=eqwgk{aj4=r5_+fy%9QHrs~GKA)=&ubUf?mp%U)jJ z>=}u<6Nr{Zub-#?>xAr!>>6Xof1xmcdV{g163=%EKiB4-iaCa#2fGkm6=q#kmpbWu@JAj1`d z!Oh}yYn%n*mX;P%-Azg1Wpbj{SYhU@gSWT0H+x{fG(I5#3{FgA)OKrH@OV$`l{jZ0 zD>EzlT5dC71%S>ys`88!M*(8#fwi`5@c&Q|jW}Sfz{+7p$yeJcWU7Pt>Ha!p4eKeh z9m(0C-UGpLI>1>$T1qNQ!E@HJH%~8dyb-X82V*sNt*TtRKR#h&N_^nVsOV@#M1r_Y z5eXkt45a6}N0go`W%XIyS4^j!Pm9s zWH7(-pG`)}0M=DPJ9}kPlxI?O+!P2%F_P6p2)k6;ebF0^`idxLiq=w*9b5~N3UdNRD;Eucdf-p|Ssr!C}B zw@<;?#KeA=2H%TEc%1=xF*{&|l0A3s+-%wILRrU!80CABQ@D$h&JPcAm$; z3=av4071ck4RGg~hYoVlM)~@H1v{L}2J>M08d(Wn0Q7gDb2F!R(s>}z+^VhE*!er? zsh+={ih#v}`M5A_e0-djkFQ-({~wi6W8mR`s)>X%@87^g<9pUAqq4yD+CrZsYa_u> z4zw%|=QzXm(nE@807<`NPDocNHWrPi9TbIS-qA)i(jC$ryb)oyvSYo55i;ffWtQg< z`=69~`{>XvvXQ;L{lL(MKz{oe~L>fZo1z@PeB zqWAy{;6CzH-n7X?5PE0=E>B5GsYG`1BW)DZ2GUgmzzkqjzJd=Qc}AM+#Pf>iyUP57 zApg=3;0GCb`GVzTH)O{|LqNQKKER{x)Gj|M9t3l!NEyQ#1#B$$gA3nR$^F@mTw0X> zXD?!bpC2kmSd@?bM-MW#q|N`2)&>N)-O7v|?eYv3M(D5n*DRuYBVsRB7g zTO54T)~2(zma#XsJu8Qk+?WU`OO`}D!@5sBUXxR040oj%01`Dj`SHmt@M|H-pP@>*N^N9dq-UvnyHq{E^oHwv$`rupG)(in$jLDI zQ9K^s3C2JjSvMm(KnK|gW~GjK`f1Js7@IdSHYr>N$}4}&FD=RB>!(TK=$)tz@TSV| zfGqpX=O#ukb~)%bVI#U8;-{>DfICbgZAw2w{LHUcgA`1g;yuAj nI>7`L&|L}&{Qu3LlK0qY8|X>A{}(Gzsv+1-eND^_yT|_ra7o@Y literal 8989 zcmeHtX;f3`w(SNfDNqX$X%qp)QbZ7l^a8ijWhv5BM_RZQXO;ePf(=f1Eeo8*hwveq=KSN%sD}^{qA6 zoO31Sl8MnC{)7Aog6ui>SN+Qf!X1GiT*Ke*g#V~^42;1aO+N!GKXXqPzknM)&d9|Z zeqL^#er~rM58rY2@xA5gp{$^;pdx?xrk|ge?-@l!_kVmq!P5t?C~{Au9d5$s^;c_O z1QED_zPMiMX5T^(>DY7nf4LHvK082&f4q|Ml}X+Gez)#@z!w38P)6&h4ZVaX~pO19&a9Au~C>7>$y96 z;*`Pj!EXLo<$J+TxTd!pCdvs`?aq7UE~n8)HiM7JC{ve0shYG&ai7JBC%z`uDbCgi z@*sZE(G)=%Os4xfcD*#icn(#qeJ~Bb%#h_mvY#Nvy{om` zY^$2kpaK6LJLc9BmBQ#N%6j!m_KcQRoQ^6ota7rYP+pGp$kVBZoSvt(j#Yc)ybCNsl>E1{%xY<_-z8a6B#b}QpkKJe!= z0s;bzpQ)W{N)WeXyt>50tz`E2@na0WJ-xRo$XDLBOi6l(T{Jh*_6*lo=sbVG{_0iX zt5>hi_mNu0c@CfDTT&yc@YVft%DzTBMc#U!?__(z1;uKWnw31y#^3d#M&s0a zwIlg(0sYoexhE3Q@cr3;U;c#{)a_ed?lh%LVpq$*<~=mN|X@4c=2LKXQ#PXQ6O`)x7-)+_N7=>&0|2! zRF~~H5J*pW@6V5%6@2V$ogy5vFTJX;u(0>d4ZS~8t$IV<`D1d~Y)Sv*7nhcz1$x6CR@(YZUGbWY%~9#hw{KN% zySnaTiVC8^7#|-e`_FXWASokCRVQP0xJ>d`ELL>%%bXnX!dfUKuiWZto#UoN?Xf@u z0|VnUrQek%tg5T4JNo-=dgtcmu#Y=;BKIH4MWjEtnqy%Aj~Y<}=x{XULp08DFYGqA zx0ezWl#r0nV+Hv6?N9vN(_@6kPd=bW2}mWD(!wj@c5)WE(eS8u?o^^q_6-(N=e0Ki zpLRgmML#So%x$Qu{7pe+rB;c@;KB7!thDsvdMJZdtNZ247k(Tua5P5j(4lw$Fo{*~ zoY$`*5_`(IkmnylkPCmSzsE}_a3%@-{b)SgXf-;=jnnpaW}7D2c$6QjVZAMA44TXk zRd#8OE(jf$!@!xmlZjL;8~(X$@uM95g8jzjT)RrOjm=FI70`pp_?t`wSH!2|aC2X( zjwoSKhH$y}I$*56zPxqekKK7TqJ-^Lf>hKG60zc*RT$PhO^USMiXUZCq>{|C429>G zs^`NLQ%>24SlW6UB&ViQG7aKJi6L_bSiW4yebPMF*dJ@06A_;#{I%VOc6^UK5aasy zI#s;hjxi7#M@Qg*>j+?vs0+8tqtQn+VCb49;ZO*N9fW5*7%L;cTRXJ+E?q%bwf zz~Q@Ar5<*HABQU;cmmc~z2WFdRPPT#rhRj;Gou?ouc_47E%zY*C1#NQTH`H~XkfL)9T!`S}Xc(%t!X;`W@yRI~w^ zSzE8)rS=aFN~o%;c6|OUTy8s8OgxHY6MLA&<=j@ID0E0WzWaqwP_U!BTZGMK11MOD z`Eu4LDa%uxSpXK&(&)3^?NXF)u-Df&H#heS2%xlQXhnImkh7R8`$M?XtLp3P%f?e| zMmtFyzt(h3WohXz{ry>mg{J{&qT=&%a^e6~-lb*H=bM>FDT&#orRu>UA-iB*xTC!AP}0@5)%_&78EGPYqHGijY^W@HM@Zm0JP?K^%vo(vfAQ^g9cyS zzDLg1@-`*%YHq!IO|_Z&t#I7UOika3hUSMyaZ3|zkztj0W@85{1B|ewr0D2Std!Or zMs$07`@6J@&(sVQQseI5zfZ?{0znw_DL(DlVMr5iuNw@_{+O`=kqQ|&|q1(znNNpR0H&c+OVu5vyR z!d14^u9a0@uKD`)>)4=Rq)ur;Rq5D^++0T4=6vloXRW1nt0g*cHSRah%Gr{@ufIoS zLR2AOqeCI{5{r|AmiA$)DGGK6O?6hT#7k(Yp|mB(vLG=wR%lcAZh-)D!u>j>^Ejd@ zdtC!L{|pi$NZ>GX){*D`>;>&HhfkqBkzXb+H#fJ}9ML$&b2$Ak{NDb{RQWhYZ&>YS z&;Zj&ax##f6x=FwfKY|A)^8YgaN4osp#*koj*9c}UgqEkQinq4YqI7y!&f(Ta66NR z=4Rp;3nKxOHWnhns;U^)fG=(fj}^jUnK5FRJGpy#&J&Se_Nn#ui0Ty7N>jONE9PwUn7M8wZyu0p-zL`Y{1T)(s9xG9M0N&dwW^XOm|>THokdn(6vVdpNS9- zbA5j-voh~gFl+7jr*aS!6iN1oII6ND zR%Z{=j&Scq4r93Y4hM)BKNC4ho7^EWdBu{F%O`X{$PmenGUeK_Wzv}}D=5f(OX8?( z?A+<7ByE`d*udS{d29ZHLQImSrN9CE(wk<2E_@47LJ^mw4NaczAI~yu9LA9J$Gc?Z zXWl~cwOc>ocv(GK-7Q@3@{ou6xTFm32((?C)3kd&lMa0 z$jOgg{P+>L)$kwdLQ2UG3I&fketK+a2zqOiz_#37vt&Zf_H%*F2!8&Ixjo(W@`;xE z?TPk;j?U~5n$)F5ctBb#8JFcT@=nZmuAIDD&zrTn(t~?bs$Td$il(*Jdnt%CTPT2G zeTAzAr-tgkkE;G-1-2n<`+=|cQjBRsaV=-&gp}s#kCgbBMSjI6bx-PZ4kZ5u>uL_0 zHa82a|IT~idFtrj6vGACp4BTJJSmT>#g&d4>L;hxikmn)n^|1v%u#9Xl!vp60W?0J zv9%5y&9`=Slg*ym`C>hUlmSu`+R9(tBtwVMZh@GmH=HMNrz=M5@>2_s-mt=X^0WZ zs;D?4a_ZWCl>JKLR_6v$8X%_ZVr)#**7T@lvou227Q9IO$fX~--!vF!oKdwXxGv%D z?#>+Wr8YvVmjn>^XAG1>L;YXUi%o&uyBmJ~ZdWEWK4KWF57-4SDkD(Y`z@G7*ecRLY$GJzN^}JH?t_9U<($d$%*T;eO?n32(LM5XxkU^%5 z7LnL)jKNBE5GKG9X1}~;jw=#0S+o73pq*uw)1iHvnVSpQ+1Y`LGU+ep@(K==FnuN$ zam>xZ;c$0>{Wls6fq^Y`&}dQ#2?>#yNfII4n1t2&hZ<3+T6p)>>>BV`r=t45df^$}^y36%h-j<}GjkZ|lmN<*AtP2e?>@8{Q7VI$^c z(A{T?u~LZF#`ksmu2@?im?VaHv_4UmL75~lh(u4qX1^II8qg(V!Zzm!UF*!5%$gby zCDSuAw53v*Lji#YUtU#DC*JnR4-NK?9|uj5$rLo!H~cVwWWjdO#Q zM@dv8eSKgX5?Xik@p$}=))yC_p^2rZ_kI&=1Vm#b2cI~AM0^_4i8$uc7%S}k`Ko0j zP&9ho-5t!~djd`7raHp98y!iRpa@YliyA*5*N*s<+Yb13UVKQM{6-j~qk*v+>FMd& z64)!=tAhbXAt50Hpn^IE1`fe<46s^2l3@FteSHTAOi_ZMXBE>BtcnIm^-&|;4YRE& z66cn_e(2IOTKwYTqE+!tGuW0P#BU&EzB+OR>d+aP~M#;J6$^~` z$ZCIeNPxW6o5M}<2ZSEUm?rjn*6REqh1G5?;zeTrf~33wm!UDBW+@|0)wTNpyL2en zReR%W7IWdffYF5u7f=YuFQ0h&j(PX)U8^?^e_38xX)K~*#Raq%&gR;bDp=&(Y7S&0 z$o{*Cycw^6WPD?sCC-vb90FqS^+;$`4Ggw9DK@!kv#iaED^rdTjJgylK2*^ z5@%=UuI}z1`s^(&MQ3McBQZvlZ+IeM`gijZ{Fdzp<_HqoEL^t_;DA`RKJknmLfgC^ ze^B*yFEQZ1;D~!KQ5?~D%LB5&)in;ZL)qGBTvleL^vRPaGeJh8Zqmz_FQZ|Js4!%2 zt_qaf|7m3c5`=}ZL$Jc3PMghXxI8PeG<=G`R40U$zVT=Waz7H0$Dr;3qnCWN#FKWt ztSv)JT}1J^?ONF1fhFwD>=$8F&O!wWq8N%oX+}myB<7i#d#tU3C;%xXYzV|f^SFpHbc}q>gw9R zIuznLvK9>lhTfDw_M7_DJh_B{MOqa)oeN#bu|GAM%M~$l84Q05#<@$u75}ihwlu|l z;|YQ`vx;ydKN|k~^1mO07n!|6zo|G|gAj$5Zb0NiWa!N^s}Fm8KS_f=hc=b+uGcQE4FRgh1C44mmG%4(xG;lm#m{ z#L}$2lD+ z6()H3>rFSec+^(WYpPY9sP4O`w9?4K(G$IMcsARjjW*+zeH2}yKBNyV9)YIhs|+f>k@)3} zrr*~~twbHI?p$l%0eS!}EC2|m4jGo#TjB4Dx&vSwWM*e)E4hFrPKN15Z}Ba2w}CPY zF??gHjM*d}HM8HO5?rmD;Bf$AHvm1!tgY3ZppsCIcQU?wrQ3$yVI-9hB^9o5?bHr1Z}iT@ovP5*QY<3HVHRUPbK{Pt}l>ZqpLhX>h)t$aoo5&g!HQUtwetv#Sd zsK}-5U?J^Vebj^cD8H%asV-pPMb1J;a{HJp+xPlvPOL`GXiT)*`}=z$XCWnXftGD< z^weJOEd{2Q`}+0C5HLwlt4-8C6cZQi)?eZti9sp5g@r{*H8?Nt)mBHk`ud(2=y!km z^s94UrR!;*v1SJNc?$7C@WjICW+1Iaa0e;QLX>q-P*C^K&~-6X2RN78D$LBzN(>2! z8PX|9RL(4o({@mTa(4%BA^13o{SZzTg|J2GYg4DCJ3k?qF5D>RZjSoY(<6$KV=&!% zEw5jf1cu!4<;%5(Ct-e7;6Qf_4Pl)UZr{G`I8+rBse0SpJpouRIuN*F49-649)sf? z71sX#cbFeYOQY_#px~cuTh}S0U3Ys624Ncy{3{mT?E-r+U+D#m{{TyOSvI%-i29P? zwP`?dj4cJZ`W=FZq6+1R>%I}1P^gt~BN2H%4hxQlC?8S$O;GSZ=Xs*HETm3Bixd>3 z*kv81fY*luw^T3D^2(KlU-*RhaqU0C1QE^9hHPE-6m%39{i@2HAR3@xw44~^8NVuj zZ6Ag)8QKisK8#U>K7am9zVZJ4&6_u)XZuTSva)jjrv|;g$|IGC@R(FiOiZk;Qwfq( z?ImLr0G46mc^aCaB&ZN3X?vYScKYz^&0Du*S;g4PPz6Hjv`}AkGy_$Cl`(bp!;*{x zHo2(%jGSS-7?Wt)?eFJ@ju{@htaSJ|Nrcl5!i1uBQcw9m=M$UpHkAL~bj0;c1mD;mMisES&1h25*e14?ZB( z83<6znCw4*lr99)#fX*5Z$>-A7-lGVCXcbpe(fgMLLx?(-qnl z%z+=)qZMLZU$uDPk=R8M#WP@l8VNMSm==D-LV6o*+C1wZvdc>md|v`RN58Pvme;-b zX#PG#B5;RmcljdMOy#fgfJK z3$-oA)zZT{x=N%xcqY};8BL38E;tIH6zrFIpwiY|>yc-0-KH*ooJcS;^aUJyPnuLo zpPxd%E~|0Hl_kZ2_1md~GS}d3MaYdJ#w1ZsS?{F#LXZZuhe*jJ@IA~+R62Nfk-pWY zcs`}qQ|Cp;W!OL!&UZomMo+fxcd&<7r*TH3WnbN?k5b++CHXy@Xiaksw4%~}dpwZq zw_nawj^GTA1WgQ%TtjhsH?7E z{M)=WX5{zR)xV_ntxNB_<>R*8tXMjWaY^3ntN23OT=ij-uV!E4v&zR3eG~594>T_0qo5Lsp`aQ=F|FiU5>pNj!>A&Cs7(GEUOHnNWHERTN zJ$BN#HS=L^C6#~6W5Id)2{B9v?3ANze=XNnZF{W@rPVDzInx883^FYQt9wqzIR9)I z*A;jDoz}V;w7plg>If!=gYVB6pUxV(wYbg%9tXR7;_xW-Imu3&U>_m~=0Di3UFL*# zrg+2dma0wbvh(u#1)k0Y%9iMhq&5s85_IPiz)IV&Oi3{Wrlr})?(8i!%6vz*QDCkBGq6D+xsQYAxRm0v~t)Q8APr~ zbtL5~Jk;1Bn$UeAA|IVO_*Fe}GMlU_H2!PD8@-4Fqnn_o<28c&yY5@@C#>$f_U<=p zPY-LuJRdq@3~S&;Pq#(tV2ocbT@OdzTPs0pgV$ZxviIML?s05F_u1|bK0F@yuAoH~ z?)p$XRj7;?!WbFq4ACmcQanoxxl675W;a9oq$4aa1a(q9YwXHQxtzYLB`8A4&lmDs z-lZ$+xrZmm!u?fzV+3Wt>MdZK2(pP@+kPl^jBJS6j$4eLWFGI${YeF$7FnQ|mfx~8 z8TAWR40hCgha|Coj|-EaWT}$YzzJAkx<36~2CDVHh4pco4q{4~6mR_l_4&-pu)-Y= zbQ&o4WTrM6K1-OX)?1A(mLdC^`2^MUSPcX6!*swyJ`Z4Py*LS|U zge3Yjb?|$F?~ZfRI3cS0EZKXVcI{@Ur(2Wj%=_u6dr9rnE3celq;d*u;O5N85v$ zsuIm{*oRB#-S1ZAA&#!k5C#f3ah}|`h42e2ymAT3(_5c^O$KB<&qsuqDpZ!}ZHdAb zg51)BPRidhuxcx7Qu!4+#^XQ`xz$yyGdyJ6?gTq(?R9c>OVS<~oE5Ep_Lzl~z%!46 z8A~?K`4L;stJ7UKJX9-QRlHD1@Y$@C@X^U2Y1rL5BJyHMN)dPwXyIE+(9`d8cjfv1 z!-uVxws#g+?H2X%0+DBLf^WCqoz;6s;0bi!3-9dg2yYRgbX_%lh&Du+*@R%io=%<~ zqCFGr69xb9{W!Y%^ZSJicj6|-QZfY%AI#~d;J2GD)G3XEo|Z@J!bg@-5v)`Gsqu-1 z`}M!o19qwki%!SWbGC|2=L?ZC0=L6dpS~nY(j6Fo>^>#%cOiq`L-t|%`e_k2f(S?c3 zUrh?qGDU6vexD_xio`y&e7WD7X&M<1CK&c<25G&Qm)eb z<>MzoY%W%-8yA~;mb7|#)*Q{w>*xI}FHsskd_YH;D3ESByxyHC`2N`3)s>Q&nQ09Z z$4AG*!~5lewb25*YdOp7zRi=ozJcLC=+nxo3o9AkDVp14qeFUhKchp2wkk6Ad{cb+ zE1O%BHtP@OU5~E$G^(vWF(oDNcqw$P=D3A&CYqjbE{IW;`N+a-OU0-DP2$X#xIVl; z|ML#4MD7BvaCqPhbvjq5FdjHpB6yi6ZK3)*Aca)ZiTaxCSJkBKg9)^dUJWKYNLD$c zR<2^2?E~(xYuPn(m7;%441KJO_T7ieA%YzVdfYa}Be%p)Uv^);{55&>iq@>bs<&&- z-Z8)8y)Jsu!_5o|i!0ElEbM24<5a64jc^X0}+WEy8~re z>BjwxtYnGWzU#(5afyiVm0Gx{(Ej&uXZp(jzR|_*Bsz+in3&H7tS|1*H7zae&EG2d zf(U1SfB*UGbXLVqo5?PDP_t)$^U=LD!D|r~AK~(^p~&hq{9QEfjv#dS@%+5b8w{$l zT)Fl2{I1!$N{M0JLZ3L4;H%f)L1k3p#|_5^dIwG;|L#DWv3b{`&;3#pQcVS#G7je6iDu(R)@BXm12ySHc$7 z*8^)gXT__5P!O&vHj*UR#%Dc@ZTk^D8c7o0>*MA`{4($It)V(rQ&7Cf?>HlC%y6p0 z;7y!-c^Cui$_1A7(6HjQm1$yLR8%ocAzeV$OI<8=gFMqi_-cLT!DS^Vz-q^}q z$?=TPJ?WHiZlJ%Vfcp0`!fu=4oQ8@+GKcy9y4@p zOe3QB60qh9t~Xe);Y&0b^R-oSguG-@*F^c(NX==ECN;H}dKwX}%Psu*^;=u@cP_f= z9X_?PQ7c}Q;$F)mkzEmYVynSh1iZYw>mP?1`sE+0p2(gKY#(@JF2+QHH(zs{PCnhr z4-dYfJiC5eT|-BadAh&2`8VI4Vtbou+k5i#cme|iWcaT1T5n6&W&LaJsDzrETrmw> zb=})XQSifEGP3hdNBpxu(36Y==v^ymRtr&K8O<$P{pO-6Z7AU{|K}GYVA|dL%uODVQp!+k0(EU}2elkf zIl~r^yJ>yGIu(zCJw}6Z`nW7r6tz-KQ>KG-`>ij@Cri>;>G+9GH|nv|{mrq3@9itQ@;tl?5%Zv|u>NmfN9)A7V6%{yn7rFoLl<{c`Ht^x;--rG{>;GxoKBFmt3M1}?C-^3})V*z$$=I0S z>oWo}$-49Xu}wN1kH?qql}?yIko5$}>g_2-+wo0qQ><^Z1id(%%r(dw!@jx}#)%!Q z#-T{Vt-~d^sbXMC*8(x;qcq?rw--b-9G3lh#bIczDM`^@n7|2*XK2x#k7a}-C{r&= zy8Lr{sZ@KLPY3nnQ}13{wnpCd>IdEbN|lfGtBIOl>nx;Bqo2nfm>QCHKoDxthYlR+$k2w{B}HQ*;xz$w@(R~qsO;vx1!Kx+~kD5DH;b)D5Ir$ni!97uhu$nnH> zYMrQ(Aoge&7)^c#Ci~FWP4#USbcA1>xL7x{9sH|sa^lZ*UnGhSKZ_oP^`mJ_zLca* z{bM(#FRC`>$4Rj17Uzs(!rJZj-Iqjfu3wHbw}&d$Gp7+hUJxOYI^CL>p>il**W~`L z*^BWh^i|Qnrv!ud5=$V1jg{v`bqP#t!5nZ$*2%Dw1b3o~@TQmoHR+5|GQ$`StB8&# z>Ck2F3N+voW{*X=(J&!l#fO+_zxRYhsFZ8gdkB<3A)!g#Nc=E!hUtE$l7KcNxuF;b z9?Z08`^$|*>Day+F%%a9WDTY$g4x4k{$tnI*i(#JK}pKf7_fY#*|$|8HG5K{0%pAh zQdb&$z#7?ye2f=g>wYc4&?#>S?YQ2s4iDCH`$S_*t@EMdtP2Xe-wo${&dW9TL^se9 zWF?r5`#iTY`qqM)-J!L;ttS0!lA`WyF)neXsI#FGZjG34>D4t;5|dvsHw{L=9rc{v zw3*}7ajTCtW96zHhgd)py|8N;JG@7X07cgDEI{{aPfYiTj*pyvAq#W3S>L<4X<*^_ zjzp=Ci1~j0SoE#UuZc{fK3aE*%;~7qlxbY3~XVm9|P@DvXz7|8*3}Lkr#c=4;3(yzYV6NWFY@p zz!y#*iV|OKf6b}Oj+>B-yZx+3xVJzUMAjm9}m1k%j6^nLC+wy{N}r~?PB8JdCPjpDpls)S5rme;tYD(a44;7kQK_0 zQE)<74vYhpjjWc{afK{@FG~?Y7gR^$ z66&8^=}wc<=~Go8Cg2A3wSxD?rU`x(yow+NZS?PN{O@k2Q)u@OsfL848i=5pl|fNoKdHqTymT#Ot&23L#|>D?q$CVlbczJ+Wd<~Mjc|S!vwLx zoT<0B+nDdY#XtFuG`~FR)rF0ORf4ON!+jfYAsAkJ$q}Z8n&%jl2w_g=&ZbuZ~qQj2%%w^OSS`vgA4I{_K9>>7Iw_{bVJ> z3<@jUE~F$LS`!6yr^6sd?%pdQ{8r;(Q?~`ehFNLd@^A+%hiVh(x)M_oNq{xXn|G8j z_x#Zy_wa>3*|d;#c3qDs)xr3LKI?}hE`neFS{E85DcH12c1Ui4(x3Pyg_XZ5C?Obt zjFIubBx$gbN;v8Id+-)hyg$kicSi8^-pC9L7kWj*H@j3|we!B03O6NLAo4)6H8Sd* zEzEmUtSWg{d4h8WV)u*?(=ramO}`YwsInLO*i*aLVMpVx6J{Lf8eK@4L{hq!8Q-C| zePoCi(WUA*oKSQ#@Y&oZzkjXcO4oE&1ZP^7BXc-!2+8#hSE5BUb(sJCdZzeV!fxGZ zt7opcMfK)|KqS6=_ys!fqP`4wTw61!2S0Q_$WOU9>DQZHoGf$oIE3xTTi&Q zQiO6NI5J)?DSL|G!$8FZcBPsQx3fg8T#`qx$^u=}uN^4Om?{Pib|!rMb+~o=3!G^+ z`-tHNUiRz89*?VwJKAQ3hP5)qcuj~>$JZ|gG}Fh)V};DKaF&{lQ<%ozjXt|9E-!I{ zlurcFdP~-sK+T`$_xE3VViG(T8 zu0-u(FZL95j0eb~p-8gU+-NYlKkNs{zV|w|3yCCb*m6+6hzX5Mw7mYg{%^zUUysP2 z{v6b79=}}A^qvcJxIt3GArHEK`4J;Lb|u*mjSNF|xc6&CNN^;IUZR0#rLtnNSV~2R z6UwpZB3Q+F9%l32q*2foaAI06gAxO2jm>EsBt_rkgoo*m=hAL##vv??+u@%`SF7J;jxc3vy{5 z?{r6(G*4P*J7V!7LJ7oQWQj$|Olvz8#6%U~iQ|Og1v~ok$(N*m`8!yn|0syz{mBLB zPiM;%P2m@p_TK7J8cE<}F&UGOyT$QA4%Q7D`H*i2B`ANXV8rX z8p^Lh;s&38#H$ux1TJX$pZ^3jaqvg=`QD*aqifG!5;fPb=d>s*F!Vpe+GK60`PkJI zJ5HZV57Xs{bE}RKYx4f4Jgq!rJ3=~PB7~$|&lwizZPpgGum*AcxC{>uzC+z~OdI|; z#{6eE2UQ{?O&@-tWX6Dat(SuY1EmEBAW$Dw%x=Ejho^e)pOqEvKC15f930`?Ad(eihB^VrR>q8;2(;y#hse&K6*HgO&?g1&Xca8;yEGct4_4V6wai|)xqr7@9ar)yGw^ zA8PFw4)`_9nyWcMwbP;l4|6&giWmj@mWR$@uACf^$L*-MTXjbAL{n@qt4Wmi<7{-N~TKJ2~gvnn!qlpg=pYhCFH{2pq|vRbr8L+%%KtH$=l z%E?Ln9L-=fUpkjUaTBh*weL(*q)JuB~+}HL*N&w z;~qH!CHq_~C?+jZzkp2EVvWn-_X0pQp1s$ycviLBhY;6FNW=M=*WfJ=E z@WPn5&BojYpbW{T!v)dHFk!TQJM-t&y_aY=_HelWLM7_bCk0NhDo%``($`dw6n>di z-9&|cAyfba=5SlJb!Xy<9GM%J;;dL`5Z?%ugOhPerHD-+QFDBMB}-t9n^H2ahN8$P zzOt4c52-grFflE7eTf$|1ihHp2#uC=B}n5%My;bMQe6|@F)TO09C#ilUk%TMr{2zZ zP{-$le6$kC4)qeMAj|q@XGtNk>u!_$ygYzRyT8Y(DS!K4oWUd3;;S-D2>gX(HZxzw z4>x+ZHsjQ+YV24c-Z3+9yiloxVvinn=7jIY7)ri@pqfD)(&zSGc+uL7FNO3p*%#7t zsU=C^2$6=^QQ>dH3{kc4p6NqB&Uio&g9;WIv##N{!zT<2VkL+-9wGLG&2H7>E(6cv z3}a#(?4MuP1h&+jGr6$(<|)J&#z4PD#dx~VqOxI_@$)xpiM(^1q| zjGc!Q(9hF;N71f9VA0Z?_atWsBT5~%09L#Xh`pu_*e4j1iixt#*TxutV|nmPH^)K0 zf|i7T?AO)~xz~VDPW!>WbjrV56L7hhB+_o~XiZe+g;v`mu}`eKKOcH$eqt`zwW`VZ zONd^ku=%*ie*D4n_zrK*WR2&|g&oqa>K8+4M3bWb1om`b`Sn1ButkF6*S+QQ{f;4`G6Q%iMm`PRw~cK~&18 z=+=;HNQ!c~;gKZCHwZEMjAQGUPw)a~?1F{_9~$v+gs(Ho1SiP^plnL#d^h$6MS%!Jgj- zNX_`y&u`f}{`R-1FS1JRy0$Ys?py|KU>p3jp{c|v+grFen4#;f4;3laIyjqlprQ~hi?*bANEqQGG}dSK0NWqw7aQ9|aiXkAb%SfMOcyklNA zXCk>XJd*2U2Asd^y|Q%Qi{0i#xJ1DDUW4bwA!)+TLsQi9^l6UAqFX6Was zru&e2Xi=wYe`8D5GI<+Hnc)a%7Yo%9PT7DBBuNgo=v)B#bJwFix$=AufZ-~FA&89S z+x2o|ZsB|p*2UJewnhh;)QMh=q6A8~!}dN{2|Os&Rw(b+ZK$-OYZfQKWnd3G7DTLv z4)=c)Z?rXJN-7-#9eyy?tCM9bznTE6BEkpiEwgIyLq0xz=CU3FIHG3X#}%rAlVpV^ zVh(P~G`zQ3%uhBN1-9Fvz0s>3WuX?0e7t;P_JRJ`ir|zc@-W531llEpT`=y;7g=lB ztf#R)?ti78%Q;F-l0<_)wnf5H=8dP*NBj!rx=4tcs>%-?uO3MCW~k_upa32i4wFKP zR#CfP*`=gOdQBh1jaSsXP2<pQuG6ib>OH+U%Y?-DrM?15fBUZLn$65>aKon;Cit}|;pWiD>mf+Mr3qxzS_ zYT1=*n8{O1RmQiu_+d0S?*JCW0uzXU)n<~|gdb}HW1;kC8D)143|<~CTuj)VhZ)S8 z5+tWqt$f$abF^XvS=3He37`ClTu9M|n^CI65Sy&ut&hZa2x*jKxyZQ`LI_3T>WrLK zkDhJnSw2<07C}G7Z%^C#J)7tGWsx7mrfd>U*th6RpJZU-1{1>?UIQ1zxzU*Ce|X_m z5+5Yr5i3X&P5{M$s?xskH=#-@nK~}D;P11;pFfe2*%ThN{CUuJb9#jif>bu&=3`YG z1tJa1v=68Oq%R+Sh&~`RztNIGZT4OGYkAP`CoX}rHmI~ zbvOov)o}bxfO*@*rZF!SCqyGrDtbnzWq@g2Z&~O^qNR9l0*%1qxY{_O z|L3bEF$2E3Qbu|Fw*kwflq3?$T@oTFRVYK8yfaY_u;;Ep!?u5PNqqZ=^*H?)2hWZ} z@ADz3CjTbmHYsG>)zfO;QBa$$a;njl;j0c~Ign}gO?d>R&I&~uzcrO7t^dQkeZ%0x z#kN?`tIFw?jUhh-}9xR6Ltf0U|BS-GTzEeew&!;_;5%34_(mSblA;-rMas-dO?1NH3i?Fj~}ho{WLh= z`Db>M4bvfO9YZFGQ1IVPBGav4$AhUQc9yPzFq!+y)YW*#c*b8wz7|wQoYl44f(ZZJ zhZjk`vj>#XmCiZ38g!sOuy=&d%ipoRil9=7`Kv1>(CY#G<~(J8_FuD>DbfjTp9~ z7rBE8oXr2GyTdz2RVw6`vJsceQU!!Ia#?i~a=zlAqWTJ zN!qiLDQ0-oZbF*jZ}z}orT_-JdW#{`&XQd`^&t#d6odTr$)}ybR#@RCR7Ya6qKJef z2Cw6xx1O}bK~rM*z?nWe==_V(=a~O!h%rZcP4`_T4eZgU0fH0qf@opoE(Gszr zs)c9?h0}0z&sPO9Wdi^h;8Y7%X9fK@N%aySKqtDe#!6>&R4%>`SmqLD zKEImPk+#Zlvp>N!7=+9rrrRkDneZJ3Q2N|eIHq0RffkWsI|jk7O$!!645 z4p*afy2|vV*KsoQ!axSLr56cBnGx0Jm#h}&D)o?Kn9YJoA!W^%#-^$KSp2h~`;K+1 z%PhkZ51oS6AKDud1Z5%!v)uq8H%9!QzzT80xvZS-OxiT}x8;h^gW_yvN0F?<&zBR_ zy1B}@3Alhs{_Y~qwkqxCP8l!RldF^%BvjZ<|Jk|0LS0lKjbSzjVuz(%vsYXu8x_{y zuG#k%#!7dx*3q)te(=N?P^3+pC4Wg;)YCqHvN^O8`^Kjg?Ak2l8ras}0amx(DkFsA z@Xqw?%HIl+(cyVV`e>O=Ogu(aEGJgPluhHpQT!5-DIzW)gNr8PMq&(zOl)!!Rz8__ zZ0|>WBpx9?G{L;Zq{~h)PDK)esgf=qaxDlOxp9-kPMu6gG5U`dZcaQ9c!*mEN2YCW zX_O#o+6n<(Ydp$!Ur_W&w;FtcCDuYKvX9NG;>nOSt*xj+ocM~VbwQm)P&=&Ism~5k zC-9B6DAXir-dq01xr({~AwsP;su!u|1&s_lUyx;ogRSJcF```4U2GFR-)N8*0sN0E zN-(Lh?PEQeM*2nv!$lJ=ou%h0k$5vP{^_wVAll{r`@b~x6D17G?q3s2w~9^qHhLGu z`Zz}kO`=9W=fy9Rm0-E=7AcTmCMr|fx71*5lSPA{MOL~Mue$O$AoPwqbH!T0d!dLg zvY@h(-Bm?>!*u*gdq<4JaC4ZlIhtnv`o_QJ313;8E!DT@dBKnS!wNXm&(An?Nxrl* zkaWFfLO25vhK*K0UG5|vso~KJs2~rnpqbY_U(=;U2uPnP`Rw15G_16J=n@TQReD{F zt^gg)xn9x^IM#Q!qsGt2tKZ7o>mUzt#r&n{xd?y~v0mxI(Yxt20oa0A*3Qe;Yaet2 zG8Va7>j;EPQlF^KAREQE{lt{i#4j(Nk*9O0Z0nGeiW+1{DCUEGpqV7!@WUKf%NqiY z75W(#IR^z#TC z?$%0KcG$k8=((Ev@)I3< zG&l)W5^yUnwmcF&MND9#G1UBMLbl6BeQv+krevJEV~7$#2lyAOFWT#eW2eEt{EBII z4(-uTM|xc!E(+tlm&A08N1?HzDWqT8y^b%k_se}}>;S@?B+7(w{5D)EPjOSN}Wh%U$nKaRI{n7^N&zOAa=YiMkRI+aF(}~hR zxqj98OmN5!Mup$(RJy*<=!v%xn&eZ-m$=$N|A^P4+ZpFv_eN)CWF!*1iRaqfDa-z^ zX7AwhFd)5SJvscUERG2unBmtOqCv=HHueHKBj$_Y>*rscf)%4ohgHc^O&h=5+`KUl z{u6?H$Bzn+f<|9#qVmU|YzbXIyJwt_4&z&Y-0P!<4abX~pH{(cmCJ>LLc;P1Mti8n zXW3C4;j^T~`x=27RJ%tSnFhQwv!j%wQD3ytw@Y`vC`+U-=i)LJCe1N5ef)Qxy0(%b zE=~tevvA4p6VpK%akZQHQ!E11^Dumthc(0TeQon>UN7g-St&hnI#hhtp7K#N{2fhL zL!Be6i@km!-S9>Gs^LIcm@$h4CCDkse&2lhs#N0VEJnC%PMaIckz9pnonP`Z)K_DY zoA6iz+#Srjq;Ink-2&l1`}|L!K50xT?Yq&z05%gA=KC>uYCCICZ%Xih`gFJKbi zF-Ys!;>#czlYwfs#VZ>{=w3*rOmx`pa_==v(Vn8tr}m8xHy)F5h#-WkEr3|A6Mum( z{NXm?G!{f)YuCxrxP>|&6xBuq&;R50dDmZZLOpL(sFDsIGFI1l0odRehpjjlhJ;=0 zy-+!zL4o>$Sv~ir?tB;8l|Ct>RX{%n`&Xe(5{Y#E$QV)l9xDEVp_EMc@MIx1tr~VX zG0$z6)OUd%(DwK`rJvdv{eNoz-_t)u1!3{7baym3-AYE5R|E3TsvXu;B1zi&bbeXP zDvphQAOvVU4Vzcy@e|?GhFq=9S68=4D}a*n@l(B6pA|z*O85s%Mg8HCJ@!ywtn6yC0#42Wt=V&tpduCV87=$=t ze^`4+>sjYMA^t#s0??uvyC`G7_$kiS2X)Z!E#ZU|AfC8l^(*SyMQxSK=BBE)rebM* z(~Gy-xT|p8H>4ZWieR;+Z*~hq@f&u_ejRf^jIr>Cd3&;K5%Mfh)Ml2lYZJN@N_$YO zFR;6BGgIu=0UU8AFu}ruSL@rahcQaIIABo5e=K7zAHPb7Re})Pogg9-}fbS4U6#hy#=)j69tSzDG{Fhphj0Ln+(ueJKlVX5l z4@Ci9eW?|1j1b~-yx@IIkT_AKp_~t7{K^jXt2rIAjTrPPY4H8!3nd# zNH*`QB!blP8BcNmhqja!)kfGd{4K_4j|0-(rWZ9q%R1QkITmNhFBzmE)855xB80Dk@a6Hu7x12LQNqPixrVP^uxw4~@JE0mP>d?|&BHl@;7T^hRp@ zz0$>_SwiGHHY>}fkb1~T(0br?mxSc)W( za5?0DiUqwQ|8%P2cI0;?3*?sJbs65UqM8XdwBC_8!RHL=HVQ5}2tK}9&CS`UA^kVw z2SZ}oL!ZLGllkVO7?!GX^$B8O(r3#<0}J;XFSdS!fk|GkCzytlR!iQVRWS~W04b89 z`(JBJzkOj1WYli_l*PlBRHjFX=q-0?|OYA6yQ&|a>_R9#0)5<2pkeZ zV$cHnOx$y_$`Yq}d^9z(jl1D25UaL^+vY{8=KDZahGsUgJh|f*oYgfUpKcwn&e;{n z@T71AY4YmHy7PnWzcD=Xwc4$f!=NjnIV}h=UJ7jKS{&JurVko%n0)Ec+`iY=LPYSa z?v9N*!ocQ1izg`)zL9t|%HS&{X&&dv2m zx0cdhH`B`p8|Z-Y&I3+K_H^9UGBKK!RCkg@%EuX3maKkKklv?}>Qd5lVv1oQGxAJd zSPT=M_Z5HfIV{~HS`;5^#<;`MdLFx&q?K}q8<@OuYOZ5Xb-f~tby#ZDCXYGq*Qewh zn|R?u1B6(j9G1BE!$$;tsMHc?Fb!Rg%&WhqvFZ;>;LKmQar~X2!fh@%%ZxJ+y&N=# z#=!l*NLd3^0DvI~tw|#CZ75-To)at=sG=K1IIAXdIAnA^#;(8R;{uL>@IfP{@;CQl z*DSk6Db|g|I~#8$99B^4=wwtH2@(%fl4Pbv?gA;pNJ8^Z5oSWL`%DP=bU_;pD_U)^ zU&+|j^Yq54^j+YQk}BC-Vo~hAbZu%s?dN2v(R)jg?Kzi+usKKz65gPrfIahxbV999 z!CNCTZoSNAf~y2*JmxaLc4=+wh%%j5oyYTI@vc;&aueYQcNAeY-`hUnwuT}$Upz>H z4Vb3_4G7KvQ;#XXFcAn!sX>4TQVSD6GC&^&s}aY4Yf9NP-<~<525qa7X>`Q8F=_WJ z)LR%HFdO9Op}vw}-IN#_536hKZjRe6>Oz#hbO5Bb1T~C*?Jp-8o*4goUOUe^!nJq9 zO3#V45bZWNrXngxm0;nn)bw%vM*ILz^vaTs@MgCdA>7ysQK4F>BotnI`Wyeps{41K zt=sAMh=FRwdh?ZgDCj`e#iz%WJqb%BFyB0;B*|q^>ze&n4EY$Y-vFuq=F9sq>Bs7ip#!944=Aj0L%_y!AH z1l?x{0v|X$iLB0KEAGT)hgP6%N_;y%s(cNLj4g$28I?3TuDN{GUk-Qc(n7%fms>CN zx8*8kMOoe#kH5mUoXfY!Tku328Ss>g?E zh560596UcRnucSQat@8R6PX;FlhFrH!cn#jiHmM;L|T1!A!0!^3Gq1@DrQ9q4kT%* zsHidgh~N*_JvwIV_~sJ-!qy~))+n$#KDwLp;UT^ z6?_<*my@pdbtu+0fe|?x3E~G2at{aP$|RIIP>gpmlp{ebO^o_bVdy8(bfga<)VLQC4cpO`HB}#0 zr*y$u=Texzv|nPU*r^3#Kz$$iWG)v}fxVW1_SKKmT0kOarAY#id_j!x9? z`VN(|VpL1Jf1oU#ariZ}NhO@fNv2X#y8rheap}3hZ4~Ybg$LZjqIHW$-I^;h4b4&oQ zOUb*Ma?av&O*R;7DJyECFbD@?o?Qpn>f|G=D~@)$r02|2@}2;v)+J!tic&GA)LuY`7s4V(;n>3W;^jqCjfRRi^6cdVLqgn&eAOM zgnc0IE*NRlc^VygyvaOkH4=I=HeA%pR0}-xGx`MjHcm29iNJvjPF(+k`KoCj8?yTKmC?gdqUsV6 ztdDeiJOia|T8&cd=dFxBHtzsu8cK?rU2n>%N=>X5TM9zQfX{+c3Ja(yp-iEX>~pHv zzldwe`8cIee2@Va6AK0wiy*bWAWorWWpLzkMt+i%C4%U7o%L=jbcR<^eBKh?zEWK^ zRViRJ6@|_@)Wgu{CDX1UgR*?qm;7}wL}2Vkj|@Hkv(~Fz0*A30A%`4;nhs@Vo(38U ztIRa;M&QwIh<7wnIQnihj$Si*;<5Zgs=eX6^h(Id*em}l$l=uqPo(ybJ z=sheyp^ts>^DZ*1@OaG`OV~iklvv6;%&$i$$_GGc!zsnOqm+VFjldC) z5H|)x4IpphT$fQ-H7rVnz{Cb7*_rPdR1hz=i{dCyJs>lTEhf*n!n-IL`QhJF$~7Uh7pMqbDU|=MjJ*l{gN7^8g!sE z6*S}9+W03X)$s0&f`5GeKh$cR8!enu{4rIu`AstcgUEv2X7`w>{4g`gzR!LGj z%9HU_300h|buO)S1w(EbmEj9cI)u^FLbE8;mOX?JBg&oz!0ROz{Pq!bgbKig4v70g zM!TvhwZ06N&Lm1x3Ii_6DUU#XUJ1?xisJ?^-Fz1f6f#^wx+SH$8Tv7Q2@C-CRhvSA z{9|zMsjAIzG7PDH)i=rvSl9%{q{@hJFuM>+0NvVM`uKoaiV{e z%-g4hnm9shd`7+(%Eiq#N}rRcc(ww2gee&juu%>Y?y>e6*Ai3yKEZ6cirVhf%@Pgb zL80b@cG3>c3MK`LE*eJJT1-_VzW@if$6U{x-0%8P{;y*kTyonQc3*1tuMEN5XBovN z3{!L;M6}Y1*Nbyz^M(nSu<-k)@VNl$pU*Y*n#35r*b#3`8bX)R`;lr?EWt_GJRWrj zrr~T?l^*)T(+C3LLamT8o&fPyA~f6yjRPZ<^gl);2+Z-T%}F9l`}*rqK)1d2FSyu( zbq|qaj~ov~U!RD|pF|SAumz4-b-ziPV(Av~V3d_#*p8t2Kp)ako)Bgy82@5Q5v-=M z`Mc*w8}c8@NK)B+C$XTXL(9|w{=F<43qS;gNp+Ny8}&q9rE><{qLcFe6JK>e-28D`hnb@i6Hn75c%7FzxOs}78kHdV3JNlTrqb&nEgCQ*R3P-bELI>>x z-_)x|)E}#QCQKReNa==A>wI7l?1(WMx1PZT72knu4vJG0`RKOXaR*+yr07s4+yp+H zvCj|RPTq&DFMXl}zyS_F`d-uzFqh3EA}>^h%AyG>lQ4~d;0$Tdl9~ zA<`&_HL)fy{GZiMLv@*_F<_3uF$dO+4fKJ<;O8lh2fw%^*gdooy!Cu0${(b;;Py$D z*QQekt%<3Eawbim-)+kmxoePLh8`WgbZrhZc2trk)KC)rJiygGNeWO9i8B2V7?#I( zrTL4@K3Kf5NqD?{u^~SsiPJ?UJU=3hL=j9M0*hTV zpn9dP=WL|Gs)~kS5{klLN^>QNCV62D?!oNMXZg6t$|;S3X;iucBJ;$}FfeD2O(Vf7 zD>jb%i30&6WAvlII1n7F%-Se8i3Gc1FB%1+Hn=YpbS%nhDy_g7#m_0@RgBt`%o+nT zf1wfikL4}5l%u>uN58>hN)$?3Lp1xSs=5gSQCVCF>(F&lVK#>$t)g_YSn184l?`No z_+)DzSbWkENT-gY5+Rp}oKOApi;1+*&X8LUild!juXr)3sR5MUDXUR!3VCg9YZO23 zLJx_T7drb3iBp3w_+!s;3ONIPKaLrE1noe@5Mr@Tf)ZIcGsVEFLx=$smMN}(*i*S- z2hD_3-(YgNtHx8l>EWmtFe@Sn-eYscz-gv|*w|vry(e9EGZ?|aFWpz_`=kw6Pu|&D z#F5=lFm@`QRdwvVFSvA)<_f`*50M834hN|w=H(zN zIsd5DqoIkWZ!bC5Q8r9KfA#LO8`X1N`(V(!ENGG$Ed$Cxu6anfDG#}6*q>=!-kE_F z?8C(L-y_S}z@X6Dn`_$h$XbMerLHuI$dx5ijzr11WGfa3(Z(DS5|CzDw5Du0Ik})BfW-=gAB3Rv(4MR;sLy?- ztaJm?Y5qWv_RUS5*_xCAlsaxjEeivzg%yof3TJ}HWlNcFN9kZflR@8KCDu~EsL{~( z!qgTNZg{TZ+^p+$SwvL{F_-ky|NYGGds`2Y-4{0&vN*gfXtl)ZgVmt zu+fBqg-Nbykze;B#Fy}7t+hRYnYSB#WYGT&kjY#lB5zkBn@mD?p!g3xAj+1f!Z`l* z7HumPABLU=JahhMCTNsq>Df^8f$8 z?bydYWN(uFwla?`^B@vgnWe~{mvPLjI0@N%L}X;|k)4o2W=4dpkoA4}{QmjfZvEA* zTaN3zuIqX}AJ50*{-idY%;W2kUAw)SLFi`6dc=9ZPCoU^-30Da_9hj9#d{IW=xt8M zJd~uCbaT}V?>mLxAxBj|auOZW3D!5tts!Q5^y#Lj#P$lh!l~Tk-Ot*`?^irD;m8}$ zBoOk?XYaUG9jp*QW)Zve8&7=y?GO8|#h+lXrS0y9;;G<7qH#s}!akvKNl2LlpRTkr z*o@I^5-`>0s}9nY(n*72Ly{pj^-Hntaiozyy$}N*esq$EbNM||8nT#VqE1oBt(^nT zL$#reqidQ!v9^S^87^SUR!u6MmnY(@wDZGxgan!?SMdEHg+cK`^wO6hDxLo7b`w+e zPjRC$HEv<#7RafLU_+zRi=|^9pUZgoTBT%tA9S=~B$e8gL+=4*0n7%G z-^+n{5PkbT#9SX1<1*1ZEubMwmzIHmw04;qF?yME1$$($L2GcHzbGi`uxCJ{h^q{@ z4e#@`MFkoQe?Ymb#yXwOVtm*Px0U~Z*St9WhXz6bdS9cODAq4YhPDZrx!Q*0DscKi z@BpA;QRO4QgIKN6E`CD!hjmj!cmBJhU9xR&l7`Zry5-tSv=<>; z-1hajH0|%7@Z-*=PVa)ESi0nJ{Uc{hkCF+3Jnj5Dl|qF0ov-cXh3Y zsT=1wobZ*n5@z0tq4|10!}9rt-GjK|6xrT*Wud}cnqUJB)*`sK=Dak=5}AC6Vx+Y^ zxeB4giHlU#(H1Vl397Lsq4`e?c)4f?#zU?A6VjlvDQqwX3*X32m**c-UqK`dL6mn! z$Gb#G@s!a?zfHBJ>&TocM-?u0?XSz=Td9ASj_g_{W=~q2LmvybrczG6-Cc;6T4s89 zyxw`Wi~ok|Vf?~IBOGpEk|<9bu`J~y#C=-*f+)(`qs0BEW5X@orzgjkB5qyF|Cj*x zBCXo7htnk6piZ)7Ac-X5!Otfw+z_D-ERWw9!RDywu25;#(a}IO_n}(abb4G>{*9)X zYH}B?B)p=0<(wHON|o;mTz~wYAPwGqVkQr6?72cda{^*Ike{d{p$#=)U-6_)Ei_fN zH3*AUF}Q>E=1KVi$4ck1E4Ru({qnbXu135@gUIc=Es+4c?^s2#a0sPx1-(nN7J=oJ zVq(FcYC-C`<6>=j+43!Oa+b-sPNl!=4YB@YidO+ICxFGe+)Uu>?DF|};ol`NA(q*H zsYrEWB_!3RUEco^NQN;4m4d^-G|_p_$DW9gXuEf=&u%|Yr4e77Ht^3SoqoZ9_1UT3 zB;kI7{RDFb#i> z;2OGz{BNUFKwUegc)Dv^l;M%|_@Cdze_hzoU0FO`KmK}p8xs)? zG}xr`2o4)Cwu-Y1DUPz4yN8PsYxN&ZJ%RBr<70=J?I-bQ(75X2sPktx`%@}ji(7S` zK!0SvN_zj5Q8X5{M{oPEaFFvFq5Uv!H)b7W7Ga|LPXvZ>pdQfUYc}`zNw4FwMx;a6 zuE{WU51+6SN_ab5CcTs5n*M!{k3E;52U!{BJu_z#qXko*sKG7`%(T{5NGN|QX-r$K zYPII{9K)IpA0txYug1b+Rcx26=y|Ua30~eU6q5dDZ)#^36-xc?B=!EX7{I>dNn-n+ zBTZ<_PpL&{^J&Q=A?@DNNE|ilG!LTn9XxyS?o1T}sE$lJ6?06 zggbvkLEA~qn$JJ`L>QotFE}-eJm5Dodll{1oD*A~$1#tT;s$wgTw&DRB8Z_P4x!CA zVmZ~($)2@>oJQCNCarWg0lXFpDUb^+HX7tpt3(mxcHcyVxDp}l7=qpbee>s$MqQHQd%uMYgD;>*ykg0 zrSCSr@A?f-q-TTUd_L-W<};BhS<1L%5HQVkuaVr&MYAQ?&F5`%$`5Eaq0O7n&@`Ge z)>f7CPZSjn!r0^iHIl8ndLv#wp?)om9j#RGLwVp(yf{XS;u}>P?DMLr5Kw!|lEg6DYm(7-IV@4m;N#caq`ed$gir6OWp;C5O;( zoQLu2uac2H9Cto6b~FhQd`a|DTqCuBxHX@bNo&D?L+Hq^h7Ej1Ch31zkNlh zOP6ZB^$N-)*GZJdl^TC8q$`@7wgO2t{8*%ZUARC=kPAV1>Rb8p*qaFQIryemD4YAJ z&66C&rI)X^crMsf;b>0k&Xy{QY&R2pUG@6vsg|q3jqGl4Z*-h?ZI_FAa|nI;9{IvR zRr7Ud0&-}h`D2>lnq$Sa9{237{JavPPlPm5TI15wiww+QC<_1{@*l_2E_W#DW>OqlE5UkR-;6;G5=DIe~G zroWFD2d4JK+m?>@a0d)c-WDxy7$fAyMS0QSXfn;IGVyA^`iY64`r>COARA4+V48Q~ zB$Rfrboxt!oC(iD(YyOqJ(!%`gRzaT@G9ACrtUc4apAU3v?f2CNjz4<^d0No^ z(`9D&TYL{;sF)5k`y<4E_k+${TzWGeag@(;_16Gt!$82&;z?scpeSP8Idl)rJ(#hI#oaUoQ`@-W<@%b6;1d>=VvHi>?#MS1J_lcjhDj$l~en(7``V#kXG9|K;}IAuV{9954$S(Hl|) z?Ghoo1q)N((DbVM@0Or`K0uxWX(>D#JVltH038-T?J;3NIyU4a5?L(6 zlpV%WPx&}Esa}afR-$f9TSkjC6o5YACP;!Y#IunQ!=Ks@QKE`uBglA$H&@P{M7fnk zH=mX}7{Vv{S(j^wPJ~_?o!J@B&*Dqa?A}hW^p4H)-gYJV#h*X*Z;wX57bp=a*H{-= z&n+SOi0QOnLA?U@10<0p0$PVVDE`jX5Dd!jHsx<4W0dL$)u^|lZ7jd`C-#NK~=^=npVyqN0-w^_-8#2-z z?J}g%Xye_#L2x{{dJ>(9$2qIpc80R-WhjJIiKzh;IGA_`dH9#xx-$2iHDXTCE-a$oz>gzfFk&X z65%jVr?-5@j!C?tqf!@L2;BRZ*BXa`ul+}uAorU}en9x0;PS-~2g|!>-PSY-m5){5 z?g+KkFRyEEg$97JG8~m)_*)EOL3zJaUP9{VaOvmv4@$(3aLOjshAEj;;STY-spGZZ zO1zp2=!TIoH_vg%C7i%8nMh|8ZL& zjyaOD{W^SR+5f8j2#_xBIr;n$WUbxyZ}i?~@$DA>RlEu~btBdQfKk}$GcC5z=1syp zqXJL(nkW*xzi@mPM2*x3j`bvdHd{W=`{BjT4IkLoq)HmV2HX#~r(k~F%@+wK>gVBa zqtCmq8|-f+oL~sfkznU}ffrL45?FUwU5J4v_Z;?QOZku2avC#0fJg=h#x{2^&!Pd} zq@eq(4vJ?NMw_1U^Nk*?I}H`YxB2k7)Q9e*Vl^iH2^YET>qnzhhI-%R8%&wa+I^@} zclXDuH})V3^{tP#&XP5omF4Z!x^q`Lwl68LU7eUpLH$=(%CB`B{$luIvi9p;3EA(g znZ8^&Do>lN2ADHs_gOo=#4+B3;uXGOqXF?a4)nxs^qzEOu~-oP01)0S6hEQIc?TcI zrr^0Jvwg;!jrv&FT^xskYr18WUz8i{ZuS4I(l0qudaU1jS4-M_C*?2|Ti|hJ_aXtT z2*LXudg~GD&=T&@f;;!2lP?_3Yt&S^{=F-TPFssETQ=tMZY8-CLIq|by(|^}V~WMt z&(7EeUzy9yO4Bv&N!VtS#)s%WKGz44L`aiclf{m&sFIvT2SYkao+LYiw(3;h=+#i0 zmA2yt`_h`H4b1|I<`jP$x6QY{4?z@~C!wqM&524oL^+swq}e}h#$`W&=VH|f4y@ETi7`52&%+lWTAIyrVR_v_rX6bezMju}qM^vjOJE3+stAKJyoDlT*kqt{O zI%Jdj!tia@!I$Gp+in*Fe(tSNIyC%GxKnQ4y*fG}CAQvudM9H6ZUiQbBy`8$gR3uA zuCplwGgM9e;*W*y%OU7XQ|3%y@Yepl>N_Ow+b+8_g?%cvyGc~cW}TS-4#&Rg3bB8? z+5AXI&5g=sp*(h`zyoXYq6zczztOoY8Qo_@1~_2GKJaSeShdN_fU6j_BBIu>H!~_Ha|yYyrXaP!FcqYr^k~*a z(?DidHr?vr^6g7Bv6_O#qU@A(nnV2ymL!zG2P1x^u%sb)V;5_B{1Xj|>HadN^9vCO~%eUd+%Md%D2r1iBshb1jeayT_}4@Vs@y zy;(FojQ|%CN5EiV2BiN5M_C%#r0rFV3;6wq8>yLcn&?wi5yl>}y5w$(QR*36w%JvV z2p;akiN!Cu)>g6XqCj%*70at?K&J8k70@)ef*P;;5GPt?*N;XsF13Xhjke)?E~WJ0 z#5)z|#n2{>z?$uD?>`kwtD(Fmi$t-;sLS6PWR4KQQe2)n|H{Py2cQwr<7u9D0ofSS zN4c^&v}Aa5L|Es)h$*gi2!bpqCYBroqUvNfo3GmG%}xF$7)*(VC!qjK=~P+%&=>SD zEN{kz3#PY}hOp#@gnw(YDHAC-S@a%sGiCcQR3)pJp;1k(<-AH8$yn7*J?~AOvt-W;vN`23CgkH8ILo z5zZW&^9W1d5U4 ztM8l15^KOefv1x-6cH02mj2OFGX7Zjq>MHsx(}I z*~fD{px8(P`8SHMAN88=mEZse7>#H&=7i7Fg0*Ulo8jm~k!ns#PJi(=M}RU+F;0o- z*S!__f6cMvp-#VKX&d-yiKD4ZlEichBTzU4HK3|hXjxalb&FN`yz4nJeZ)B_;>%_H z!H;GD*e$rs?bXShJsYbi7IPH5@HUus5=fAkpG(lYHJPF&S8Njtn{xkv)&`**EA_Ia zrS%_#vjwtm->%hl^7T!c3Wtiuj_yR>k4D&#YQAS?kIES?sAJ_NN*2;6+2-G~dh`ZS z&}>W_`zw6Fz^^;Nh@Nybp;KbO()`_mb4Ljl8o%>zM1Rx0 zCl=UDu=#76Ch<0KfJ4ygs{7?lP2t-ZHTF|Uv(NatE4~Gmzxho?9{GvMM*-IS|dwyGSG}@tm^u5{qx=$Ms)&#gL?o#(-Y@ zSW4nyF}Jl98DKUVYRTgLIiaRG5L0IkF^Omc{%BN~U00osCf40!x`yr1`LE3&G|(ML z>z>(p82-xST>=SJ>>V~3XY2Vg^PhIF84(1q;r_XVgW`+egnZEweX zj)~Hx;aZXA$W1&l5TWB1{hC4kiV-A`?U0(Qp)O$>pkH2U2P(m;SqVc$gUG7T8vmd zrr2SVIiIL*9?qSFN-3p^v3PmU5wDCisSCkD)kA@7_1J;FW{)S0z*y=gin6B)^e$?x z6AbbtTk1A>5*3QD=-w9~`E2}7mHg2J>2pCgeZYFH34`)7A~@R$RyAf-|xSJGmq zt^-63#1;)_%55(E%X$2cMsXW)%P=9)#0}fM)BOE{(VCLXYUo1z&B+Adh`U-3-It2a z1XXlS6BQ4ov;9_xuU4K1zbliU3KKvp(Qx}#w-?2-CzK^0aDhB0S&~GYZ1hK6lf(4l z^!QvOhmy&q&K@zv+3!6(o z+Fc2}SJ@o}DcqPu)R)cZ+7CV|ycCJsSG@W+owA!ei(%+74L+y^7X@Ip+NksP5cK@< z6Qg%2Xk4e_ZUyra@lX3&f+^g`z4ro_mO}pyj*6osj#r2JJU~0?o@pKQgclmN%;DzJ z3LCAIu++{r5!(Z`u{1Xy1ttVxs9v)D5A;-}g-ez@*f^+dk8GCaXm`5(U}2;-&TQh; z`2b&pYkCrjBTirVwa!G1O&Wo0R-iKgPJ;hF!Ol6~2|N4elRzT&`Zr4-$b zV#KhpGq3pK{*LWUJ(OR8*0pwHHgSZrsuhe`*nes94@n3kapLbg`e65KB_1a|qvtOw zr%C)VFLJ72zum0Kk6%_V$YjLLI>ew=;Y-aoP@5hdKm-^VI zCYg%^;cKzxAG@Lpeb0L3lo124RRob@@bbS&97WOz=(ndE3cBU9 z_ns5xpBZW#;Qb{(%y5odmA^VI5_=BCqOM(X*jz#O%uR7pckgRkRHOU(m9djGY9M{6 zX|(Mu6dnd>uD}v09d(3@G@kgT4_z6ZmW{Vb_eycWU;x!fX>~pH#(EMNmd7Vc z-niuAPFui?S4tjlW%dB40FQY_4bk890$p@jh{?5{1CCRgf%C$zsJQZPBE)H_Ok4(! znpOpZKOHhs35?Gi2QgnU7rVwtCro(B|9MKSAR{A+6Nc>iN_)z*f{uYwOJZ%F-@CPT zgRM6(ql~DHGmsK?m&?F*5{m?-oYmPE z$9n7VgAm}Wd5Mrj_v!xQPTFRl5Kv-uhBV70UKSwYzt-27SPAxoxIRpK zpE}{>wR9G`&hX={u$cBawJ(+aR#Uc2sz+ZLIW|T39&~+f_TWL+fWlwVixlWUzq+6-&0(&^(|%a!geyz<_~8bPySzZIL1R;99J zzgk_RL+E;~;{!O|!(uiM)<@9AXtozLD0gWkBI|6k;>8X2S@Jo#VCoa~-nvtnGB1wBU6>!vP}>Y_++#AJ0f&X* z9))@+H8VsQ7CPPKY1NZWMaOx6-Y}o}PtQ~ApT@!tMv*k!rs{sE-9r&lNw>>aRIs|) z?nVKnOEy5rbY}sckcd-9X!W-@hk^E8Ca`(ob|dhPk`aW9R#VQzHB&WWVHN6XsVW

R5xqH`}or`*fEgUeZ!3Y-Jy6ksK3%jZ`Et0FCTGpI8L`rJ7m3E zI`(gMgj$`~TMY+4`#2}h>88y`OLBvnm8J(d>1IFUwlORrDEnb|iIpz_XhjH;$2?;n zwf`xjSAum}wO-i4#fS_m4o|ctT8!_ceG6=w3{i5Fl;@Z9ozpln-lxbMJm96`*egiyAQmd4W8Fc zciE0RqTx{E`O;GOVW|ii?#(^sezGk42-;vo3A|3^$d^{98E})gqQ6TiqRt+Hr!T#5 z`9~5B-(v2bD8MiV#r>6wENJzJ3jIsjQ4&Yyn5HZDg<$EC+}Y0*GjsFq_*+tcrr!tC zZj9#)fUN*k6B#os_%aoH1#-n` zx4mVM;mOEwryGbphzQ9fPDHQ^y!o@zq-G)a5e?A(ZpZAruFK_*B%#<07OWK$&Qzka%1vE7>rKyYjAep!Q2*%7DfYR^Xo{Y;SLG zx8-j9|Bt;s`{XnR$~h&%>bzOop#lrNS*F1IeL5(56>s#^^Gg;JxV%z+2w?#4KM&UM zuPV+X6Ac#yN+#nwjXvuK0?;dzztem&yl;?K)Sc#^CXD^~zn@i~58eTa7?SAe9GFlc zyPmNpP>V2Td(MpIQmTo5{rI;-qlYa8n`z&Y4!N`d^<2os7Fef}>juP681vL_N&|xv zSLB-|BfqA8fEZ?iMjs4^I z5Hr+qaJwVyW`&6ccu$T28u{~}?T5Uk*nyGrH9n#x7zdLA$_Vxe zl4k?Q%e64WRx5(a>wiS_zL!}P0WO3_^VX!{p`rxZ(FfXkx#Rv8!09Blr_lT3{0Sco z)9Xq49Ftes-U#rpmGB(G&B=IkU4Vv;+5p}qI)9?y1FSH~`8WTv(fg1E;A;cjRuf_$ zYQ8>WBfBH_6ZySC0If8dLg2}HBtgePFm**5OdK7zo+7Fonk1MS3i)a=haEyLG!hh7`KyW(BkxHMq-aCrM32s8lh-^Qo&WE4j%wZy|L1v~wT z1OsG}TX1Q=>%YsRj*@uL0G23TkuG$&6IN``HGN#v7s%3ZO7M8Ck`7N^GkOtxq1r!y zuMJD&p6%s7AMEl=ohG_@32&Gzk^;pB_p<9u;LV z6`i|2lvjWGAQcl}d_$>!AGmfqO7ENE<)otghxmwyh#JitUZ}5H*gWI+Js5T#o(+Qa ziO`62E+%*LTREcvY}E9>yP8rNHz?yKJme>X@o*3FnZ+PsLkT(E;pOo=R=Axa2q7!8 z3HG|cIi5{d@2xYv?8I5&x1U)3@R_`nKIl>xp_HkeN;04E&IwOiR|}FD7MAOt|BC5X zb}<9dO`sP+SqU#ezV(AlK^)_pWc`G29k%p{*@${}w!j|_K507XnHSGxSS?^!>O_Kb zNE+^?%pQ`kS93)9Fd&<_t$mR(CdHLoZW?bk{M%sLg>9#!p(Yn?meAHQ`eI@I-HP$8 z5LSFR4p`;_><&d|jDS%?sF?O+o(~z~QiKN9S7`NgX`T7$j)bESX)Y{W1t6gAz>^aR zpQOSEL?u6NpB7wSlr(*I{|!=vt$%(~0~`_HZcgZpA?pj2yFZW$3Xd)C-=_alAhoE` zeM!x#vPNsw3$`7_N-dnjv#O-_FSMv$hyD3_J|k*cvGj{qXtizo<10@LeU>xJ=e3A4 zNJrPft|EBFPLvo?1RyML#@@5V+0F+vl2dLBw+$jxnv6SBOof5wL}$LUYj&=b>?ZNn z_2Oi&BY#Tn#rE=M5^5#FF-NJZX2Pl7eS1M*mYF{B+Y7nLn|Y@y3wz3?tAJ0(24Sg@ z>{M80B#BOsftYIgn{{8fn&^EgV{T|ef;4F`FMHyhAJ3tx?DOK9ZW4ANa&_G^(JmZW zlf_UW2zrVRZv$cL;oVV|D$ZpKL!Y0g?_%+9(U0A+c~Sy&@2E@?u(HO^ z)hNPQhE>1eDQk4T=r3>icdk!4Nds(#C4SEBHZNI(92$0)L_rCtj0qC{=g_+6f)6|X z3Rjn20sdGMx!wBt3K2i}a9g@+UE*447C7S64pxh^q4pVIU}Gp@E*&5odAaK>YoT)s z2xf6A+HA4ZZbF{>U2X(ycBCLeC9MZnAJE8SnWZ;T4!&eo~vhndBJf(O*ThRx7TX24C-Wg8#%k${;aY0d5nUP+88xfz;6EwPSW;+~|%h%e&`mGiU5c zZlT@-S>N%3akz81iqJ`)`oygn)l+qX7|WjxV6!WAxm&06P-QE*Wk2z?DvRy)J-@ug zP}%o%49Xn@)z0gex1(1O@eYJ9h*3eK4KGa>11XTC`W|?t^*p4UBPO>srK7g}qf^3f z&qqakZbF|syiCaGB{Z&O9QovwqF%|Cis}|aT$Kn1GXnBeXMof*eOIIwpmx>>?Aid- z6tJiW6mghm33WS(t*UE>qDeg43P=iIG|Es=>O&tqtxIV()fj36ZFbZ~FJilNFY4bJ z`J1Sq$UxvG%Esbj*S;DNsctgSkb7LeO6gVJcKwAtX2%~Fz+Kt36cvku(lyN7Q1OSj z3eUguuyh1s-yLlj^2qoctwr|Fr3`Oa418rz9O!G^Y3+!xko-E6A+B$eLJbz;nIIoy zc5FB7nL}FFPa*Kj!BVmlrGHmGnD!+3ln>uQ^tG<;%{=GMf9wDK>%s>|Kb_D85oR66 z67_b~4Ag8uln2OPW3DZ`5ofVHpCM}+AW6Q~raWPN7U#JHN1FUxu==4|`$NY6@{^4V zWx4dfu{*+@Vr2HJ=b^S(pYkrDuI-`SMM`Z$e%hKwk*NC79ZF6mm0!^zF1)yQr0yfi z`A*S$WX<;(le0#T4-5eX#dpNOzXWgN4ZVRN9oVNZMZh*m{aIvKLc#=>AXozi^mw=J zg{`j9-!UvlpUk5+yG7ZVZ)2%ESI}OG-XeSc#|JpU26BRk0l_wc4F*x_nHd$-Nt3-3 z6wbZRZ{uZmYY;u1;s++s{KT3{2|iy^KYKC*C~*Vki)QBYO)YIAA#Pt*VY`fRZJ6QP zZ=@r-`G^E1^?h@vpj8QdU$0fT3k%L28R@G_2bo;XFcgqb4Xa(J%DKUl(yrwD5azl1 z?f@P|oD%c9R63VN$p1|4tCY8TGp~?zYshN7kAn0OBlziSkF3Bnqv6IGN2l`@AOHK_ zWhNCYq{$qAT+RX2*ViOzHY{g;NE&<46IIUULXyc<+hoUnc%_r3gl?N6<^llJS5{Argw^Gdy%H?@i46xLOUu^=99IGWN)2hgI2xVh6; z{ja)&4Hw_v>FEUKuetctp_a5wfUpvzzTskl7t3*^I5}UD2qL2FcH@B%Bu0ti&`N$M z7ALxvjx|LB!B@BpZT8xGw}XxuRquEQ!yjK}OVoXm$(e|Cq$PghHE$WqTUJ8D3BM|j z9mP|HXKgB6;^%lINNY*>{Ta+LA%cM?4cJCTYFEGJwBk`l!50wV%n0m{I0ZBonoFM# zUr#kX^2g1d&0=!%;s^5=tPR6i=GO&*BbS=5+D&bwnRkBA@9AvNv}ETvE0p_9wA^1% z-)I+d65DzleQ`kZYk92U4kE7Wt}Uwpivys`8h;H_iPCa^CEE}$GOWndK*8IQFhUIE zeK}FjQ)8rC{XUOY7$`l~pP0y5%%N`eKKfmbPH}q*U@ulm1JLm_Qk)%h=Hoz8UI;vq z4OEm%)ULpFL}Mu-itF9~Y%p^77+iN9bntc!GDh3WQ=1AZ#7rHTVU5TRxz?LIl7f7OkA}kvNIU)S1^F3RP0HIqTO(A2$5tL6Z-Po7Km5Ew{kHnsS6+T} zz+{xoR*03)*99788^ktYWJ9SQo3_Ul@CXGTeLZI=>MpdtnVp6*&``Bdf0>-;&iz=d z<@!szlvo8hc%|!!gz>Y>Xuu;MXmT$THA>5ArITP&_C*zo1q4T%F8b03BjSyr2Wjj1 z%w8)+7`;7XIr5(@eN;pufSE#<4XwKa&krE~U*-9w@M7aA5yz-pS^;-0O$W~g_)4c=5G7hQg}n7)&7I!eH3|hwmKxg+c5j!b;7aO!=ZzT% z|DK_;8LuXMa!Q&=+_>aa2hBQp@xcuJ+r`i0K*a(|&Rd|w1h_u^2eOqn6#$J(=n2K> zAWDY2*cov8%KejgfkM?BF-SQ;)Zmj*&QbH+BOha3Wv)!qw`FC8)9`sAj*VEOR7?RY zO0{kB%1!9Qd~ZQ)e?qx0jYaOXx5gGnp1@CoN(``cQc`?^Ryi;N4{i@5lijjdC2#ey z1<)UkAYN_BJWP#|j(vTmh)V)#mvkYF)O7cc==`+#K`0er=TtYFPMH?jr!xr(&uLIA zoGLfI{A8vXs%lh3%GhE!iF+V*!Snp~sO#JJCd&MM{rBbHcqh`@dHM8{ki7W)s9Q#) zS8nt?N%}r?7LAFv>+6sXzU`Q+0sSNe0wLBwjXQwS9y zjGj~#Ot_54bt4xvD-=3Tzw0jzTb)i-)i04cO85Ngy$P$Q@q{}+h+b7)%UOE?#hQAO z&owLcP=w9zu$D6%7HRhAyHLMe!2|E-cs@Oh)RV*leN7^y|GN{Ta2*wo7bn6|XdA=> z#B)>fuP`_&e|mRm^h80mWt)5idX?chU88fVkk!mPDn^DSFk^VEvF1Q5Bu3O3&Q>Hq z&Tc&UE<|Zv((#0oj5Q-Q?^6sEfu=$Fo$;xSH2u{q-!6Gn54xzLNx72p_W9;>1JkvW zjrgH=83(hYEx;y0Tkv~du{xjs*ksmu}>M2#o4~Xo#!5Gxs+i>4mmp@g;>PNr~pLFK&Lm~r@S2x7Fqdp>| zR~#+UDma)@@RtpHZyX~`bCE`Fn9!sY1R68+U(P8`6@6S)tJ~C^8ipNA2@>zOyksL4 zZw|iM0@`p8&9uZI>(45E7N38gAFRHt+Gbz2J6Lj_O$4~>WK~ifJ$hND(oN6ed*@0L z>CziGm3s6jZAfkYu9XpOM?m*kcv58ORhbc*D#I@kZQkBh(G z9SNyTOOl8m2wQTL3FjX}cFL?AMA*v(pW*0)ubESW`+h|_JGK{rUEL}Y1^ppWe0guf z)LNu~o*+e=Q6M%YCZbuN%IfrJVE;_N4J*8+MkTY%DG07AyZ9u8&_G+&Fl_F`)NpT@ z`z--q5p+6dbtTsh&M8t**5W8 zL4;=`_N{Q-isb^>lTn$)qtNO_VL7e=hty#n!4y1AZ+dRd2T6_}P}v0#cLUQCQ}C+3 z{*sS2GA^#uagUSM>Xgt}QV!A^I4ylb@v?R9yflQ8c;iKR}z3pG4jWYfab&j7vXpxQGSRB^nL9o zZ{7ocGpvnW)VICJ-&YB#7yGHg$`_FZqrY_Vm{72cN*l<8f#m;+4CW!roO{b1UImod-)6- zsAxg)`@0dSq9-i?z6d-oKJ$6xw`-Hf{gb1Uxeje_i#>;8_y}$UXT;m!4C0WWheqZW zCIYg2Z(_msxc%_B%v%{2gBP14n!tkz_DA1jieNJ*lsvXMXrppACDeQKhGnKbf>A_7 zms#;6wmjG?>aqQ<>3x3txKD;q6z|IY)It+OQD;n5Ng+dluU&vdnjS#;w$zUnc(DrhVw0q02 zHuh-ib$BNN44(lP=bKmt+t0^RxJa0`8X30HSmk>Cop#w8MZHDCei$IM`>XyQ#sem1`uL?Xb7ow)*C<+jA>0}O( z4{k_{oI--adBy_EyWw7{v!6K7oeg(@;Kc_lJF5sE)+*M3MN+V3S~?M`cr(837IF~T zb~?qH~QIn5TeDJX@UjG-zeq8;a_|+O`;_8|M1}I^H%i=jVw}8+4A4B%@lmF#S z@8(WCO$3ZR!F%qj+C}~^Z0w1wPDe;i-($DCGkcw33po?eL^$Bz(EEVIL^Z^j z7bIEUjDi&rrWcYp$YO(xzcO+CFCtfw;*z%#%W}soDC8@yLEm5%FqohOb0~&EUUod- z=3go2Y>p1C*qT^P{UL@>sYihkf!cgi2l4pcAgL~i>OEfu0^ALzFpB%+GW_sTcfW%n z02FeCo<5!Cl{EVjptte0uHO`=RB8^(pS@pMbHn?-T7W84i2iHLos^ts%$F-y()bH- zYVIBce~JBJV5*l>$Ie~^YH!2k8R{?6EcnjB1uPu2YHBFZ9teWw^)QpKRr!6jP zc$=l}Q5c|0fxk17n|Y@^OKu}+=pHv4p56N{2(P^Qy}99hYCEfS%Y^Ld;rDD#u*p>e zu=hTKhKw@!Y=R9v(tWy0YL%hb3J%N@soi|w$#y?i2;=+mXs?GctH|W)|DpEAkGt?C zCZSaAY=)36iLVb^`S6JwIMQ^f$X{{g`iB?Cm8U#Rc0yWkf8J#&=5oWMaby^Wkez7w zZwWvKo08z+t!6J)*XpXNsS`;gthhChFR29U1a|pX%3(Jv1`*dfe$B0Q>OgY`rRhF_BCZb`2&n0pr?OJjcK8X633#& zA9FepyQ9e;MeaOCj9!9u_dxL?$8leBqQBmi>WWY*Q1ilc_`ns2Q9~Awg&mnAyOJUY zBM|b5QeG?~{l-GYtEI--{)e4=BFxTg7&a~6ehGH3h>O|vv8teo4*e9GX?KOIW=?Dx zk{kL}+*=aS!xtaE4OTSHyGm_uf7?#E1BrNtOpowwVMw8&d4&TgUU0W=rCbsq(~-1P&n!j za%{vb(`5C3fo;k$;F$wnFpOCa8whL0e)iVjp2QTphkVlHLYWVd6+imG%fFoXmPVHd zqRK)#D&j0-1^P}>@ap!D$qVz4kxa);Qh5X2>^sVAy$c%>Z)H3Oz(UX)pAppo~er z`=3ua%lujo7XW5t>^`f$!@O*KvCIS>Yn{hXxZp;p2S6h5Sd43QPxteBesCQ)2BloF z)ly6OFK^4|sw%OGEdM=)Qg2fK_0H+vYcQr8nJFtK2AC;MZfjSs~aHV>poi}A(( zQbA-Nkh;JO@whUJ6M4VDcR4zL{IiXjy&KEbrS#yqW&viU8!!ZVLRisY3!)no)G{KcTO15d zKt@1Vj8LzP20{&Vxnih!z67vl$UJM;m?)CLo`L-xD;mE4J3bhtZ6ReC7cp-5b0 zi*5BU2GYN2S@!aYbB#@Y6~BJT>wbWW#RtUD3b0Pba=fShp$}Z`T)#5*kLj_@vc)a8 zfC>kE%$46B*Ej-9B0>DDJ8>aUSiJji_87E=KzpU!et5Snvp7@ASe;L2vU8=IiE&g? z&WbYUMb!(#Tk&)jrW5ZkPIsQby7?B#nIJ4}ex_ltfsTsG()1O@c~@5}-?JuT)r!do)+57$-wZ}b{-=|wMJN<8p<&z~K9#6aw9~)`10mX*RSmJ! zUov}{o{7d%gRRu3%B3&ed7gU+e?cai7iIFxVF^5@QWFJ-BMQKM<*p4l9;dI0>v|ju z4u{zoXcBo^vLacS{&GK%U;O?7TA;vr@iWb=7#OD2#%q07TFqa?fgQjoK)s-Oi4O)- zNt#T*gB1JA@@PV&`Rv*Z1g;+jJUegUl+$N=cs2_?3Oba>l7(I&!}ybJ+iuye*ojH8(I$-8B1(h&w@ZY#Wuz34qtP> zD+x1L6*4EQ;neq`kwFu>J(@!izOn-@*$KfhiyXdx6j5@B2c((o&|8Zx?I_(Od|5BR zwZqqB3O@2FWlQVD2bv4k_zuEgn-I37pV4JNCRhd7^Ls;RF^bc7BEMfF&Q`lLC4gX3 z5c3}EhXCijU>~peJR#)*2<|@z%Uc3NIa9R2F}M91(jDVowb|!Qwk3^DnpF)D1A(%i zrbdcGL;Lw}_Wb#~Sq?=P1ADS7&H%6Gd3SDjs=+<}kWx9uWo`NuMvb!0zcP1kNV!jZ z!ATy+2V`+Bor58S^s0FmO3OsTF5rLnE29Md;AjS2iNQU_y8O|Cogo~*QoLu53YcK! zglh@gzZta1K`|30#l)W?wIopYTIT_)jz4q<`ABq^4jwMaoe;e0N4_k>5;jt-faD~; zF7FH{<^Xm?V?YuTtJqI!KE{u1Bve-TT0ZTNc+9gY2M%Xw=wO@b459R$c63M+{NF*d zpt>Ij2;*Ep$|Ljm#G|IOqV8YL?{i@IaBD`j4;?IhvP&r-9COh~>l!SNV{<{l120je zDXgu2Oi)1RKYYF*$j_S37_LwkbYsoGGx1+`+;6dDLwN?ryE&LgasSC|%WWeX#MtZu zRtE~{g6FhDp=Fb($(5l2Lk!h zih%~16Pjwt*)csQ^LX&y3Q!^2yd$T+cI~iK03MHSmB{ktYu(&iv=hIFmV^?OpC+{JoSioWZ`Sgl07N@BCZKwbUEB zgyT+Sl|6~vf&fGK{W}JFIQ#w(eo?80{9~V$NbCc!hX4o4XW`lf4>o)v{*F&AlGIoS z2MLk+;U`((g+#XZ=jIs0AKlOv*hOj(aYkL?F_k1P`t~+sq-x~jX2SA4QVtO+|CV$_ z5ThCU_gk$tVkH)1cm>q;N1XK_Y%MM8M9=Le&7y{-NUYwE``~3>* z)RN)@_;uj|R1w80`wI-`xsb6DQQz;CeNlm8NUEWy!GUM?jFTokACM(34+BS(Dacq@ z`H}KNBAw4!4+_a&Xx)WQ?uqx<6>(?>Lm&)uUKxrbd$R(UB=Em9Isn52RG zih2kR{FXZ%Ddunp;bVR|LSXuN3zZWe_+4~LH63oY$`DHwgs@+T(ACORzO@D`EziSF z{>7t|!~v^FaAQ1Pg{MYQfgh;>%GY)6mz}J=-sfVTriE>_&&C>LhBmh`&h8RNHJ$HM z+>&jPFVxdzfzE)BCArA+`vn)qon4!C+GRsdQ4w@7G!VAlhAI1VN_HsMnh+?7I1nRc zuHOmUNS%DFH$n8XJ*&~9<|qcM;712?oP8qxDd=j7>>9BNq=-3z2~>%xE~!Q+QlYuG zB)pS!wI*%SVGA|Jl)K1m>?oe=f(JFC7{oj2sBmr93O6_StJV64o$AT{3_^JmLQ!_DNv6jE1OckaAiKdz{%vjf+X;jN|T~w zF;S&|FNthz)~dGikJ=ScG&aVZ{RXrhRD!3-XwQql@w+0laCI_n^WXO60&%r#mvxEX zDkIdWFWot~YNh(xd1zR0&C~b*3(I63H{%So5WLTM6-$5XE{O+*U!@8qby_NU=%*j- z)7Ko$7~K*=k`2x`3*tbepcyMNb^EopQ3a&`g|vK2LNor&g%|RZ2R&VH*wKFZ&*%FWhFS^#*iVl-i7qvTnvhX2O70)B0tT+ zNP$s#qm2Y-n&&835t#qQyEvW=nbUodfJYv>tQWoW1k5NO*PW@fHuh?TunYyr0FzVp zcUhvk@}y%xaR=+)hz=P}Y|7|H_O`B8;m<>|BIp9cXG7U9RA6m+%^83OAB?RlLJ>YA zg@stD)ht8d3Yy~rhK(;DlcQQ({J=2ayZ+@y##v;XF>6@{hnKDX0#OeTy=vI9z0ZL? z5Yhs>eW}Hn8W=x$Cq%{p(B6wt6lH+a9HEcMQMd7{cLPT z~e%>9|Yqt2%d0q*HUZmpK;!QO9^m7y|;s>=?Kz@=3}!FX8G?dR(kn+b zv#0ix2AIhLSYY(A0M!s$yk#2nFW0KcF7Nik{$ewTn}6(O$LL|=C1-uB;isE6B=x}H zNS%M2ar}d`gueJ-kt`yd+5w+NAXcgYZ66L%Se+vct(#_Glm<<5A^ba)CM|ftO@c9v zgGY%?=THBLu{k`s*b>SoiLaISPUjaEmd{V`;J@Q84=&Ra-c#OFtDEzpI@zAyZMlAJ zC05VN%I>0_9l>`opDL>CW$`p51m3soyc;487a=L2iwCi{J^#sJSx(RCw{@JvSLu+9 z7>tF;p`k|x+B|T~ww;#EKaX^J)wkys>sE(YeETJ`+F-SfY>C{Q)rR4jv-^6J>P9aF z0hWcnECU@O_xFNWy|1Ebx>`dP8&N!K?luHWJRv_fhQ(%~Vb(7tqR*MO6e{h03v!9h z-1~Uj)i(3y>PvmU&TLm*bRw&Jfc_##f0#8MgPrfGucfQW_wh=j-&GenYyRic&Ndmk z|L;2dZ@dJ{Sak|4_q-+A$WFxC?W5C1EnpD=Ht+e7`+NLExq!P#I}kMH^?qzsN!c=d zESHS>)zHtp%P-3fl7GH>WGOs0vyDiDB=z))h z?Pf}-zyGkK8uvJgm4V$^J<1t27vMe)x=Kn8m>yj{Q_B0K0DQ2CNnTS=PlPyOPt@dZ zRq@z?DrNJ+sDZE68p%R7Dmlk%KXB$z{UP*yt0W=$>gu8kn8uBx3o7K3EFxlJJ~cMk zz1P5T3pTQiO_tQN z94$9TQPMgNwVtMyg2OW|LdPS!+4V5-WC$&n)0$aOF%ZxSJIW_B#D6U`tjN3NPozZL zkEQI(`Z!8MsUexb{pY2m9UX_qJ1f68X*eUxE~%=NXQZ(LeL zsfWVkW`_o5HY&RGeO%?lowZ83M66bM2+uJUATijk0r;aMP=5U!bN}#VbJsYG~kmKaZk*Ks&c_vWBC0@_WU74 z_Iv@OE|D>lcHh7MFmd%&CoOlu!D}po9x^q}qHm@cFBFUx{NWA3Vqn;RlUns}P3~05 z;rWmVaIFm-EOPt2%+jf9;n40KFX~TrvJ)c%KT90BA=cE~O~08gpX7q8)FnR3?G8pt zt@6)vd;Mbij%(UUbqhWuvhQ(-heGzaZ;f&a>QNxy@VSP*)_*Q)cd^CAKd{ppNWa>ufxb5l6#>UXv z(BWN6hsUriv_sWO49%aNVoCSNE;2I8K9{e?LI89a`w+emZ_|sANKdb&qphoe(`KE# zBpRQ?Fn6YAKF-33sVM7-QelCx_{k^BDpggBrWhu1z@BkaUVl+=+fqdlKHzK?-!o;| z>bub4fB@(46OJ^&SnH->jyo zHe$4JB{93m_g6{YUBhDse60(-(UPr$;4_4`O*R8vlxNOpI`!J>>UHh$cS_<%_~o$4L>nQ(EepV$ZGy1h~2^0_6AJ z&ufJVO$4${IkLyFxT^5(3Q>^rjgYC@%M%0>6xbF47vNkl>4qU|n(QxeO8;dxT)eQ6h1D<% zU4uoWKg+z$HMQK3V#e`Ht<}HHy4-FU66ULrboBB6jIF``A|^nC<&P!R?X4`a9~vAl zUs>Bqd9Vr=IR@DTxMki2$o^u6VX3Z?iipT6Hanzmal#vLk00-!z6;kev$ch$XBxZ< zmj~-DH~=987k-0Z9L+5dz*mj-cVB+-Xixqrqo=j<=HgLWbpKq_xaWKZ?L}v&hSk&6 z#c*&KqHl*wq2Wvj%IEA%$uyh4b9s0Cmn>Q*V*=MP8=PrQZF#Wd>eS|}jH z*^#e_d9(Op_l9G4GPnKyiKXQH!^shPKnCadp67p#ZeQawn_Ff&Qn-)t-cP*z3aklj z{xuN~q<#umPnI`}gxdjdqY~AZ&V~msSjy0t$xqzLby(R5{`x|l9S#0wGI2ZC2TbVs zkdCnjgTxv*Ep=WndYPH{F?96B^_>J>1?{=ey*6ASGs>g#S251#K%iKuXp+^JO1YO(R(=WSE56trw@gP$AOjoim@H3J?( z?1m`!gx=XH0DZrzW&{S;4BITflY>7*I_)=fj5Ih)? z=a|b@&7d@Nzm%G|}HrG2zn1r25L%cm^6^-215k!riwML;UYLPw}87<}~&N?GWt zCE4+_7@Uo$4ljw3v?{#*#+pigMYSiB{$a8O@e}!Q%&?YaC; zf2#L@C~h=pdYIyYft|GsV{z?|E<`(x|CP+TnLym?U6(W03Aamb$a(#ag^oPY$g@3G z8;sB1uKh3`+O3a_IdU%OEBGmq1asMy&NzO)m*~)nOj&AQdtN?{5N`}<_uHXqxeDET1RuJS4y!ARo>pWl z!~^GUZVet)@fU5a1V>a#X&gE_pEa-%=;kpx^ZOU1_qxmhle;h+TB`D*Zh_;T8|8 z^$&+WEb*6aF4u~-{*rIDva<~>uFkUP&Roci;*SA*=WQJ-=>)HsBns5Nn`uQ5Ww`uH zS`>=Uf?&S>wZd>FJ_~8Du{8k_(iePWCuCTtZbF zz!D|*4TweN&yT~J_B0jvqyWc#x>~vRkaTV}R#umlF!kq~E8Riz6Eh3*NDNk10X-se z7!@rsMy9N7X~PKijM(VfV>EL=&1_D-Tt zydoyJ>#e_&#l!D#BYSGhOc6Q*XNIn!M2cgQW(aTu`@^3SWj;s)+bzQPJ?+oZLT*&DSZd@d!*%70*)bo=!zR55 z8@i`UvC1SCkrD8V1ybBd=Tzspl}`0fa@%K(;usVh!ZJ<}wl@!B zU}89Be+du4$+nfmkiV0F1V4#MU1z{x?ad!WR4CNUBB0Sigsr^XyYUPQ`Fpze$)jf1p`_@(NA~i zYD~~5l5WbE?376FOoIGnsB*T#whN666QToERryP!PP>jTEW0+H3_PWV1;eJuz=rL= zTfsgXM6p1XpFK}UEb<9~3m7UiP0hnAYow!tT^f22;qZgz!KMPe<_!U5%&N&W!A_9G z>gB7I0}8wbBr5xUY%R2U;6~TclR~c5AZmR51d$)%Ve+<#0^^i0J)CQU0>XzxnxJmM z)A*xnro-*frnJ9JxL&BPcw<7IA`<&OWA(i_uaCarfBA)~O>(yBTIw{>AKybboC4MOU%44|`V9X~f1Zd7qIa0x^}< zpl9h&ASE^n#J+{jj>LDw=Q|(MvUjg{HF+TvTY08BjH<&LM0(az#>fek7pG0644va~ zV$BbuAEMNHj4PC(0KPnv>1N_R`>n`rp=)ZZx5H%g!6O~9Fo^>^RXG3N;Hb#(F(9dB zGJ!f-WR)9HuZi`~$TMHO5MYT7bcY<+dQP50DN^6*o6Cx)Bn*6sam470v9RY6iudfI zn|W1pi^cr397MP}5e%6P_Wf)dG8$Hc`v#gvV9Yk^I2@VEz=AlsQlk_~W01^4mflX8D@LaJH5tD(L=~SUqTI09+Lr6a{jT(1GV&(eqWCNB z9FQ!zffyerXbcSr^BvYNBG;2*Vdei z6sewHmro`#5$svV8vRf9;G5Ru*YCfmy9ej5@Ds1#rC`j1DC&H|nWqnUP2fiOh8@@( zy2*TJ6CIul>nMM6%C)2GYvKU++al}TM6&Z~RI2t1L&^*h@X=(9kpYEjY{Dm&V$tGb z@yYAaRW(ItdqpBAh7Et8&&?dBxpN1($Db8^x7&IG9_+o$AoGIx;l2Cmai45EZq{S2 zRV3Kiv-lj4Ym%COUX!C%wsZzvIO>)X&py7!Hq~~S*cY3XB7{WbjgVR`HQ1*tYJ@pP zi3(I82W(Az%;vj_P4Aou#GTurwDIgG5$Dl@Awl?Ix?w{r(Q)IHTBO5kBrdDIrn+Gm z<$L(xIrAk8CmhnkQO;5mtj%93=bQe6W!!ppe@&626V|vWN_=Au5dF7MOe>70q+t&c zqiqOAga}J2F>Xs`27g13T2M2OpZqpaajvw~@QZSd3@OI$p!?$kZ)y~BUoEu>OVCqj z;Ly>E$cCDO=CD67IRe+8a%-X?v2%Qbclj>_9A!!JLqY;R0yG6wg-qCpe`&~MpDkYL z5gY+mWo-=`GzRb(?)L#k_4yqC(Z`bT2QDt&X?4p5LKnu=415#nZMAy7cs{Th;~3|# zD2oGsgGY`Nz2jmjt#^D`P}D?F;T}9ZxuGvs|88%W&s==xQoTHUyBT!s_jk`RuvrJZ z-kDLv_LfPI8Qjr-`rGhFIC*vD7lFp)rr-6p6t;gciLT%TrK?%8{6xj*vhd;W zRGnjv3YJAqP^fEPg9Ms4zflng8-M!aEN_!jEA_gg4B>2#vV-ahLZ^Ypovva1_gkeo z=gg&RQIYj1-hx8hQpQehEO2n-D-u3Am_;1Y2(G1Qc}#7%p_;DdAW>y~ML$3Sp8LzM zVy(#quQ%q*)pdIdS+wHYAB^Ta8ZadjoiR!ksAyV277<*}rAHF^1K;*IfVH|ihv<**_7C{X_SPvChR_DLy})N%$Lapae=+qy5O`%+eU$4G*X!UuOj{exhb@0t<< z)ToWyn@!fVCDLL25GlBL#M}0B>7_0ubv11N?);D_>t4v}i-6*JG)Jg; z`@Zx!klH0Z7Czb=eAv_Hn~02XyP&??e!BPO-n1&cv1C5z_>-T87pT5t@U5OIRMOyw z3s--obC;dvINDUhGpL-QIa53mSI9=EE(vK)K#{-n@ka)gOb{kXnlq7v_Cv&y2nQmi zvJ@ECE@lXxMn9u93D#)8vS5sF0U|oqqxVyZ!~S2@*Tp?$6OLK9(rG*|J4`DDuYzjE z5@9^4fZ^^JuAH9v*<-K~5JPJ_tmRG!*~1x1q@2@(*0Imyb2>{`3sf99cEUCME|Wew za&k0i*E8v9siJw7_XP%jl}C1pEvFV_dvNjPy_YXpEVcU<9W6DOQjMA^Ef2-D*ZV5+{AOoh(@|sW4UcZJr|GqG5 zt^d=oz*mA7+Qtx8HjDLlm1R@}G%wYHWP(-Q_rg!X3g_0i`H%>Ck_-eHDr*FShm}oE ztAz`TG&-M=1MDq6tjbG*__bxG0s@Fo?F}nrlb@gHF*lpkSCY!@2nn>(36&>f7m(GV zhMD*LOKUpaFoeKloaKU%Teg7->U^Xt>ji-CNlxPZRqL z*AwWpL#-D6jU$7|YXVvjhOy z-whg`3n+q}5&3>fcc1pUuTbSrSqOWOtNX2Dn$M=qX8z+?Su{_gmdP=KxB1)4d?zuW zRdf?!Eaq0wks?0_moGH;qrng6sgJVGhrA>NDke0XjX>EkWa)rC&zTnNUE5&&Lrdyc z`?MUaSkQm_eZ2g1q*;21kORrm^LLrN?mw^n{#I}UpC*va*w!6bg(_j}>x}fDUTp}= z?$GgSD@apNQIJWCZrY%loZu>3eu0jV2-fF=rVHkQgy$021woj*iBxpix;=iK@0?NR zC^LfX)v?ew3)jqvPaaT>lVYCYfO>EnQOncjy=!!fpPw=)=@2ogJ*}S1*RfhR; zL^50`cPNL(C&3-hls(O^?bbayteq1=p0sU=OY?ARKY!D+w+01~4}R}(-m? z9PW7AG`V{whxv%tsO@FPw~&^?(bQeo5OWnB$tZm~xU%ZI2R^0C46l|ypRcGSS($rj zYI}p(%dk>7*Yt-yys@78AXC68aV9M-#2N|VY{dIc{RCEN3W)GFH*g*f#>g!<7Oc`a zM~_QXaRpfqFP7qDOsT+QD95DQ4Ky7&`z?^E+}7A%z({pAPFS@XcZ{IAUHL*W1vTr7 zh6TlkR)}uamb6A+RPMT*5+}WaUms=0F81TWk+mB?(|m;65YzB&KpfahnX*6dIc&5P z75S$2Uf^459tWfb?U8-hVMevgutwu||9sMZ3 zK%Eb=czX@jgSFA;a{dnXHbgN9jDW%jTxbf>XgAgfpau2Aj+sV=6ydaLEfNWJ@1&@s zOYB^q2o!%G+GDmlqjI|v;25fD<(5bpb|Z58^v`cdeVpR>k)RXgEp3u|_QckY#EoYQ_mf$&8F- z-E*`9?^d|a?tZv{S0@l*wyft0mq$%9K$97X$#xF)Ba~~qz94aE@o)xhzE2m%g z`FhG`9NDJ6W?wo5y&vD)B_HT?pR>Cf+78hLsaVMw$z;JFanz*`gfcf1m>--#FHk^6 zHOX=<^}hFY8sFi1fc^FFsZo%<&x>kSw*y8&t-w_feBvzam}y`c{l1b;dYQ!-x4E3n zds)Gn(WqOLi9@|qw8!&xnnfaqFB*`th4%|<(Y%ks_t5lWv?aG+smnLE9?{iFZiv(2 zj#Zlu*9Dw#bGQeL@f{Ux-w$+3i^sqRBuzf^Wapn8MeMif+TC#qg(P@^eIPMYh0*?L zB4I>&)MkVQ{8}ytQZqQ5CbuhOiwPwp7b_Xg{zwy!bjAp5kuSDVwxcW_k0=n!mM8ed z66}qTD<_aspv5P`iq&<6OpFb7#hMvTn_Kepgn>0eswH74pqGGQWD$HyGUQsPS8Du3 z!Tj#m#V~R5B&i5_{p|T}Nhigplxs@yS~FRky6C;??sM+{Ish`cLSbiTj`mFCGky|F zCZ8$&Ut)lx$J?i(RD`e7{ty{p5utnLQ0)=#jY20{e;fzpGhe+HG2t_P_*$?hTir*3 z5jFWW$;|8~ZR>~l-M_Ph8{1cx&}Y}+s+sQJQTs2!EaKIvFQ|u@8$eBUE4k?M>h%XP z^Jmej4Yepu=&#E}I^M9J=H&4Hc}3;LPL?9I-%q!_#&ZmsD~_`Z_y$5%}382EOgE4&3_0FBB(Qwxu0L?OLNA$IGTn3 z#+>BWz9{z>gN;`?w_l)FwC|dO+|}p0UMDa;$l}&#GF3H`w%HrNmO!sNQH zW5V7qn#IU9EFz9Qhz4DdRdL5`s7p|w_<2tlt3?gjvSui`c?zFrg@LQb++!w;5ON*eK=2Wu0 zqk)-QeJ42;|6-SrxRKK8sEBsjjFBjp{o4&{zk~jn1Q?if9liV%4NgIRYhN0nZG|K+ z&MCjy&;iyc#0n;*pV1jqSbFB(nnHg6Kq@@ zO@3n*h|pS^rCJ9WJw;T*Y{p1;VwSN$oqmWY)(q%cS*!l(8ysIDy%XHJnM&=(FFz&H zG02@&js~RkR%VPpb8w)bU2JF6^-U-|(AJ zBON!D+;58w36D9}S$cCE=3*I-rBBkualTk{IMFn-G=9F@$Ebgn2)dOwzH%aNX)i~* z!^`H6%F3oPP-g=ZznRp7G;S0IJ`#l|_0`cczZg`c2?`G|e<27Um~|%0Y#%qq(4@tq zcES9DwZZuZ-n-aOekb{~^KJr*6AoX5{%e*8INf&pC}I1hn5&30%LPC+T@;)Cip5eF z1eBD0&F?1&3Q?Pi{kT$|nnD@2B*4oVM-hwMjJV$@gLV|{zmvfwyd5`cidSD=`jY@16PJ1J;OY)NOi zyzc?)Z2cd2$$^T2nVk>lP>eQG#)Q}~bATn*HSGIh4~C#k zWGE|>}L)SdWKS*r5cUPlN_Rq@?23b~J?7VdBTFSNeZ7 zXV=o|J|01bt|B=Zk~enk_;Iu)HIuP>Kj}x!nq$~^3R6*rMXu2lg?<+RwWAZY!Cwp3 z5ow}zD?y(H(>g78Y`3kac{hkB2vzZd>Bn<(rm6=+4&baM8$KcuhEiVYIs4W;#2Oc6 z6UF9^_MJEaqB*6ElJ3-$RXLa_W}JVS_frbnov8nMdxW``m9nL??u?Tts&QQ&=4Wz0 zG+fG&iXUxrSRQP1&Ir|)GXFct=gJN~V^HxlAVSZ4`rq-eZZlkS0aAYju zuZhzGqG+(px9mn9vklDdp5Wx_C}&a_h8JRDqPNTqq4m?+Y_-Qo_iz<{b~G)lX=$OIZ#wy?mi3ywC%_ZGGL+^ zx#qyd!*$y)b>c|>uY6Gsw#`gaaFc$&eJlG}(C{U7+2LxAacIxc>YbWVVOWp81WQG8 zj6tH2pWLG(?H%uQWxY$OxTN9ZH&?=)_m3_L0=x9qE3Vn{GOtY|i`I5)8Tx5i-F!z= zC$sAgFf(>lBF{y-D{#2v9E^CdEWhj0S@e9s4P3A*;~gI7^<~Y2rFuZ8)XBe?FU4Ag z2vp8go4=fL!K~Af&M#-RThsu>xs^#PuKTRlZ^C~b58Sq@n}qJFTo-df1m2(~;y<2+ zn@(1%6IVDj>*0U2utH6?#5@Sh#GW-!WD9BY`hV?f!J{0_Wl1~td9Ary!*M_V?J{$_&;hP0ELABz5a(se!oQfKqvcn9Cmzt zbnJNOyciVRx9fo=hjj|du#ogXltBKwf(_c9+gnPO$#7|(l1s`6c(nNyQjP8<~+(o5sLWBSL> z1-8^hkXS<2qob?#--z^x@U5klzMC>Ce&rFM^6Ms6Ew4^>|9sbE zH5aPm39_rWDS)-j`ORQl2@ZPv{V-mOzIrDB<|?N0ra^4PViGH76~(u-nSSLSQpK&a z4yl8>sp@-ZpIa97>9=|Wa#MN^w;o*Qz|&#uRb2^p?Vq6Yc2i)RP@6teGgY=mPvW-3 zOwY#JoDqiDGaA3M9T~Q0oss&7tKeSi8&gW89DxwbS3zDi7O-N*^zM#+4iy)>W7Zw# zxxwVe-k1}}LeCN}l@s;fr?*=BLDI{!Ie(7;r$vcUb{`a)kUww7E{cwxUjHO7csqLg zDSNwj`^6iK2D;3?@PQKrc(>tjWIpJk*Hof`%HZeu$93?F{a(6NPVe!22?VJ7POm$} z=>5QG=w@0pZr5QY{o?sqAeKxtHuYmM_e1XhHfrhaNYGrHpR7cfFztIln`8 zef$eaHx!$~SK9Q!WE%fM4#@&G>6M|RhkAivoExHn&VM7S__iiwh)&w1(#?r6 zGIJ|#`lO{eF{#i#etfU+TB!OHozTMxbC&x@jF6&mrs`LC!_xlm#{@QDuefLV1Tx`L z2Bs&U@-mM1rG|N3wfVq1DpbXz$w1U`ANn{Er+oFE`^MJ^;WN}R{K$uOjEH=+Y;YlN{RncIhHwiwF| zFf+rzzd<|uqlqB@Fj6mgDb<}V?+b3n^Nt&(4Yzf>P>{&uP7v7RfXT>ugbdX2G-*HN zy>&w>^m^IvF==Z!KVrp^ZfyFb{nf~bclpOKW+*yj;xRNbaxywSQ)qt0<%rpK^3k0Z z<*RtqDAiBD1fFKG;H5ioy;!%gNI3j~3v-+k6C!`vUPjV@K{cOt-qa>#_=J*~>!k?+ z%aentv|Lgpoh|tFN_6Dfj9x*8qGYUmq!`VJX{juXh+jI8(ppef?FANwwKHSPT)=FI zIF(gj@sy|=EM6`hEjR7Nob8Q~KUG;=D4kA4P3V8Kun-=^E~`ymDp#}0P+^ETgm2>= zFXix@Hukk4qVr-deBb=IzNojeY_`IrT%}|pQQ&F0tsV zNCA7#0^NsCxWY$w)#EGV!F~`0L0JM84i2Gf&sx|pJiJ=$_{i+UsE+?eBB=vBfz}+m zJfrGl0tjrGWyXhZ%r??Xryf0|4hS|+MwBD^F*Si%dymm?Jby-AY$Cl$R%`A_mQf%8 z00y4lEznc(NDyy%;;K7t6{Vj>l|l3CzIcpuJJ-w1VmBnN zQfFU!i8B@?E0AN;(DNckZ*u}ZjpzmqAKaoe^V}{tTT|G1q0c{dej~aB-_h#6QGzpM zhK$GT8AlLq`25eKtmb~_id31tVeyc)ekzm`1En=7jZ#0ckxi%Vsf}%M^!;NwDL>7yj9pv=D+4m1Z7QBG9!u-Ya0i(oHQ)O zu@I2NC*nfRkK$7^vcYQ{U`vb;RDhZH(31$F9y?~(lCX4L=N2(-Ch8OzDPm7UL0iB@ z_jt(L9l`3ei{zcN3@364(Q)B>!P&jMynL09*9p(s`4-}Fu<8B>3_g!q*;vat{cA1S z%ioXoAu1ZIr<~hI_ImNco})l92AOz;TPC6VhK;eKyQCyWIp1Cx3}cwF19lGx5e>{n z>dcUAMDYr%R-x7rWBnN?ypH!SyLr*7UVkVxX!GOW!H$w*?@1MZpOz$3WT zn_#y&Q2=^H%0O=eLmM#Icn@UrTF#b@@@AMumVt|SSw zB_9+4rUFvB*d8aN!!=H~d|I)@{k40;?D+85Qh*h(iD3zUD3PIf9t^3UO$y*SikQl6 zz7HPUzHqNu8J4%O!0&i(zZm+QsOR<_iGFx?T!yf6?OIJ`0nV+#lan$t7#~0hIvh?A zU>%Jcz1LAGUtlgd`YsUL3nr<)iI~qg#{LtH}!Z2PE$=Dw! zP;xaQn~IQXdT$Llk~&4EJ3>&sb)dDonZJ6KKY4lNJY4hl+!FTU(|GciOWWD<=9W|} zWmSY>m`f&382VuOX}l4qZM8#bxVggr{uwSy*CMf#raa&TXQd&JBf`p>juXfXjb@-~ zSzGyx{#Fi@PDV~ zQB+swtZbxJ;S?NdaruCf2t}5hyH=F&gW7QQ7iiqZ&A{0#R;JI^D@vjFia%|hG$0R@V7!QjA%+4IDDp3I+@2E z{yeH46E)MTq%7)>{JRUZ%>ZFy_`M&2Npl|u=o~)Y9`<4d&mGRY?;EQJjoEsvL|=3} zZn7_+LI3G_KKFCtsT^S>5TExw^Z!BmEe^YoV5MvU7|`Q{l}M1;aO`eX`+0_3?qZ{2 z^bkyB-Nv3YE+Otv=v1EfE_rrz_~k$6={?9J`pDncr@Z2tV~ruvznzIr4G4ETbbl4_ zrrz5h-cR5A(xqq8CfWON%0~Nt(^Z7D5dB==8d5vbEMn|i;|Gmk95nHCx^GGCpXZXX z0QRiS6j&3azO&a-zWA&Nlb#*#M@nHQgrt~uAY~yHS7Murj@I~C_)6l3aANkVaWulu z0m_2!Yx0|7J6MtwtVL1@klko{sYgdl3xI^m;?4<_C6x=yfR`ny#88P3h8dgD;asN< zeVdz-1${m~b77$i_W6e_sgDXxWP9oI3ZA(w{Q}RR77FsNXYuXB5C1k=-~c>UwCqb< z_p@0HG*i;x14ccFgor>wyimrlq0!@tCQ(tJ0h4$EJyZGI3__g?EIux7=*WVgCN|BX zaBZezteK1!NbTH#lJpZQQ9$h=v#}>PP$^ zkvawt>ArlP*VM5jf}#K6*oRl^t*)p52?+A%?L1a&Ijw33ME$PlK$z&ONtP&>^y81w zE7E^&0dXcHBHDR|v7F%!Yq+*{fx60f>3%$_3-)1vFib6)v!0m=6lbLMh~@^7BD@@{ zIt2&lBn3Wr`tTTKZNY0hak5`o4XH0eb6JJ&elv??IkR;_1TG$JhZYNvOh0$&w`)*f z?kU6!A()dSuZnKq+dVb@+{w^5F^JQoDd`%k8)%?EP?DqgHA%i7QBb3S#~lCb^r;Od z`mZR}>s_9TD{FdOt1XU^bt&3d%n&Nws@m;gHH}?*( zZLhuFn9#U=mJDE(KmJO0!~VX>t#%caNFt(Xs_>Ys$k+vp)-(0QQR6a&AJfdk6 zLF-TU_E!c1BzkWqdKmn1Z~wvLcT(bq2)exZc=}rwr?zrPk~MnZ9sF&bLb5j};_ z`Zfzi%=T-JXd@W3mtKK)nr$EZ+f9i2YA3546PmwOw|j$#F;k^j<&;>&rH}VmvBV-w^l$wT?@ZcKCj;XX`1L>_7eDh6r_}O(9c?=E69w~Ni zTcdlV_P5}s|F!m3QFR4dm@XD1I0OssA-KD{LvV*+!QExyf#B{Cf(CbYcM{wsxVu{~ z>&a_w8D}FktM(u2nK?)~xw|Rd`$G%Yae0XWsB99Q;Bp^2abk2qv z(|`-D^yrfDa0ROGlHV!b(lN{C_2xwJ~1zaCxau~<=WY;sog*>g$W zToYTiwEKApX2D;?-UKhFxYpPjr7{ij3;7H?ikF;p%wZ-ey|m*;f&)GK#@JTXzQ=_#@4UHz zU-P&^i0H@Ey2*_BoM^(ACE^u><{4sy4U_CJ7*IyXxG^})0tV(B_J=qp-h|q+d$L3v7Y$i6=Nr!A;i+m3s6|;LLCoybW@68B!o1sYI zb#j>t;(zOsv5-fUHcc5RPgm+1sUaeDzn+ARcr7-gSUI8+FSN(naq2ijj8HIh!YaE-ej>gXEgzt(&J*MzMzc2jHIP_-{<- zd=0|Z?9G9@#YfEL55B*8KHUjMYya1%X+o#$;U1DB41!B8o;3 zsMe@ylJ7L;98vnH&0H9%!~{$<6U_EjOEUr~*xg4D_1AG|BA?(UFRn_u3`6mwhOnTX4J8T?s-arGnV4`6IC$udZ-&LIno$>io+Ik3?oT%yb0f``qQR` zJ|Z~VPJmIA&3c*Dk=>6RX@_wGO@p>bA?r$4V20k!@*CYiUp&bVW}5}Vk-mKOjw~AV z6+0t(=ul#n)jaS%t^p{~4XH4dheZI7S8=U!GV<3FD1!2>e5;tihpZ@?+DF=dhL+#C z%<~jzl+T~o>(Q@2HWgW@J`+5dA12TFY_7OXjZHOIWJONF9uzzHHU=X5P{K`UQ9WOm z={E&z_mL)H!*Y3SB7g!%Bb_n?=fd7y(N;6cI5EpW>9ZYz4?wd5m{LG0#+~|;t}sPG zV&`b2WD?RmhVMiyM7H00gm{yHdtyu)=ccwIeKrxZ17-P;Y^Vk!mvDQkpyG+@fE@s1 zeu+;@dj!zW&eS_+xVJEWf4k1!?Z(}irLC~f)XPM!94budW^ETD3{`gHLQA1Ug+h!Y z@WrcB2nR=K0X2w;zJeX(ycQ9>-v!XaOh>iw$7UMx2xT;2Q^q9p9ORcK^BOiiTvnsE zS#`Agw=hz68TI@7WHrvVRMw!YbW!qZ#AwPX^9o&rxI!tfFJd0wi!;ZzKmX{~bWiv~ zUwOo&7euv)zsO=Hy+nQ*sy62Ow;MwAD24TSiEpR03E1c%gB$%jIFzmBK(LaEv-V?3 zZYpj(&&d9rCdFI@;$gcnKa)?rvzZmI7`tW)BlId%F zOU}?`V}*9ThZ~hD?$d9@JXg3bFo#)}i=IKFGyVtr{2imRdt?k46Z*0{=D`d)t_Z>U3r411N5L}uX-OzzS6 zMufx$FCk%jAQiH>qQ=UO^=tI>_NEL@?wv1PLIE%{DWX24xdM6GnW|3USFw`Z0B&SG z$#l|VDJ?Uj47+yCA+2P#e~Zo1wO3DyAx?Q$mmR7$VQ>6_ntvl zH*?4wws2l(oO%=9tuaFUhfxTBcsprHr_=B>)xTqpirkd`lps8ka+MUIS3X<}tD`9s z;RkU4yjqzx^xQ6HlcR*G_vY-|43T*#sA6@HLi;s%&BPM^+Y-B|B&=H?9bttp7NQ6v zxx(AEqZCOte>Tg7Z;XWfv*-Zq|H zmh+IG>~Mkk(IeF=k)t+njx^B!!F08z1|LXJup0hA9VjO3?@|{a{ck956>o&37)p&2 z^*t^Dzdz_Av>ucbcVezR6A`_hOeyf6U@bnb`Y5e`1eLXqp?niR8)h|r6%*2)l8VuA zddT%Jp(X0#e0!ol?m(}mHuKQaTBo*xk-nfFBB~+aJ-qhqe=v`SnmE`UMvna*bqHWv zsk}P-l;`5X^jtTAF-wxqq=gMqQ709Oy*f$W4<}}%Qvm@(<-rPlWDjlK$B%I^PW=!l z@LB#W@&P9Nu|)?QmY9{$qD8uTrpIvdo38ztVUyFpi8Y&g==Yw zZ18h@ug#x&HS)iU;C^|2vMAfLH88U}ynbba0octgeV$uV)-Muihf5$jFLl`ieWz2HNhVkb1U+GN zmdGO{j1MV_^~pX$aqntsY4--5igjLxi9y_=7uq(XBL))SFjoA+0Cb89c<~9Zp%CN> z$>pdq<@$|@JGwW}2HX%AKyQ$r79ZgbA-l6V>1H21ch16!0fDOWK2+GCYZ6w4f2Gq)j z)~ME4ro5MknYjoe0P~MZWtjSa+m{1nzvQ1N>Q&b*Ijh7FgTXN)Qn=7?fe>kd3x4g$ z3(xQWVDvGHW;?$;D?K$LJu2hB7H2?0t^ZJBC0abLIG9Tsg>X}mTG#F~>hJAji?=?& zS6x!TXNdJ$Gb?EKg=BX@gNE?1MDpKa{&k?mNX!lEY@6`A3*a93_YX?{;UCV%zIj%U zlXzJ5q6aX<-2+M+=nL(-`*(Jtwsq~mv@T+Ymu_(raNTICw$|1nk>p226m7jIPu}dl zOg;zizSD7A5)2Uwa^w+KmQ()C=RB~Q1l|E2Kxm%Q%XX*y$!A1c@Ya<=UyO4nUa)Ny zRgT+bypu~5=w~(2&EifqZQ`cIs4OGVHSIg_wno`|IXmG*NJT(Rpf{tBh;I~X4iO(l z4pc*F5RHrMiV+~49$(YqQAviVnr}0lWa!4B((s==L8HH(3mqC=Sucp?(8EPz&Uck; zpl9XqEK66}@O@+!e&91FB&yGgt-2a~bd+R*-o>g0_@Hr>l739@{SGb)j-p$rZ)avr ziI{5UsAMP9>T)H&DD#&Qyd<)6+%C(%3NH{t5GEOH=9=yZaAq$@uvZH)*^A)Zz%S6V~9!GE<#gmuP>}Csj7#|xk;N;+%V|~ z7oH6nF!CLjfzHsuLHeOm&0Ov~$@6^F`5xwOCI82qTA%G=y6xCPJm0zGH-Hidizd56B@BJ>L5#Qo-LBioXFdYJ)p1{V-%X)Sy)X!;{ZgbGd zgXsoL2*SpOy}pux+d?t$|CRD9ML{VkSa$+2ZO3Nl4x-1HPrtgBE-?-n`XZ{HaOJ@X zy@hJ2o$SQ!($`AZG5#qt6^dE0us-;enco}l?_JV(WOeP1@k+Y1;JqX#&GAy1!0p`4 z=$h~o!Q@Eooyw$xT@P4v_{s9Q~alFBJxJ4U1il)YGF=1c*?f{byI|XT(Lw^BGxe_5|sUcitdBO=Iw$}K%p9$ zfu7-4u~=>$>IFe~59u5Hq1zrFHe{>}y+Gv@X;U-;T)g2|9rDtNGVe}O@!~-M-as@2 z1>w2xcFCF;B}_;Ufw;2k(fqq%$G6ixFDsR@%NCSz+v6nzFLeS~Sj|jTpnv<^Rx61c zUtk&OY3)+ITIbeh49C$XYV}&@GZ6Ev3q^-cM`t)w=;QE#Q%yc4+K%2o-4o2!eOj+GN+c4g402`Cjy8(Vpctu=YZM}> zuHY~9UyFfr#{l@Xr<>d^z<7_NK>}B?;0@uRtOli~X2e6UguO4t^&gEyx&qNa{!C=* zlmit#KpjN{iXi%D>)AYrK^seL#}!50af?J1k5D}9voZY3uSn*@R2bi+yxTt;^^Ox_ z7tOQ4nW;KNG!jlawB_26cP!68TvL{G%%>vC4#Qwa_+ipHVc|L0uZgsyAz%Rkjo;4Kc{b3M5;?fNvt#1T>_O zFLFKb*6dfJWI=AxbWFCOrf$ya4MEZf9SOQjuq5i*=CyfVco!wDSkK{f#u=l zm3I)Vr z^+|KX@1BcusZ|tM_sRC+@EOB>LgU+z}G=e#`6~x1gKw zle4#7nmX*h#o7)?DY7-7>8F;;>UWhS{_K`OSDzQY1G?4J1b;2Qa*nnM7ckBci~2PC zp8?+K>?U`=cI2O?C-n1JKAEXk?}ndc`!f=!;mn@nqkkp2Wj^>L5e%o98!t2$HMh@` z>8p~&A87^PWE3SGDM_9bZkkEI!z&!T{@s`tia;R$H^<5;jU#ECAw2>!Q^NJ4ctkBc zJP&b(@{%|uU0o3lk+hKf-L9dT{6|h~;YUDIW;fqTZlW5NH2!bv#YZyp{YjQGo#drV zP&B#b^OEEGL9qmJhoHs$DoM;*`@_x>Yi05YlO4$_0!twd`{`h$&Cu-Jf11ub+ly!~ z1r|jZ-v8YBM`6~Bz-Qt944;?#@J9Fh_XVq8wMY|0caLpUP4@|8P0+}pBi-rS0R7|$ zlrW@A>NlnE zl~qc%KIy|b0VjF1CaD>xSXxwN1|oi}X0W*ReRzg0n^PUg4Yx~F~_lG$PaCbq{b|)B`375sjDrVL@iUDEmg-a zsVd@UUV|yb&q6mm%$qirRe)Jk48mQ5i)8ACa#g90KO!gNL&_>cqqAV|7(Rz(Sf%Wz zyLo9l&F%c?KcIHIJD@QrFZi93>gk{;VqXUMGMAyY*FY@RNRePy(CbZ+0qE4@ka%5I ztTcHd$9zZQfu)hej&Mw|{C@B=9g$gL<>WS-u6#X2_a_w1^)iD7@z>!+1xs<4=SUe2 zCQTRkLn)hF-sa6?InZ{YKke=59PF_8n!22aE$QIJwNfr~x7XElF328S;J5}uMh26k ziVTQ;v+1sqJ0Ov`pC-PP13ZC)S^Hm|9w0<)zewd{iuf@L!BZ+{{v=z9%@<_<((qJ1 zV{ylWq(*s3?it9Jp2FJ5x_UxQ6*oI98Qe62<=j~34_Cw)K8OzeV;@&7l@uT8gLGCK zqkIbTo21Ui^|1dRCc3w%t9Tw^bq)p=nAyJX-lBgfd5uU+q|~emkbL;NAGZ{mh49|x zA8EJ@r?QD_tERRSufWW3%ISQnKkEsaAo8pZza#4eJm%lO|JZ1P<5lr|QkX7}I29`~2A^SU~coS(+@1JFh zg!5eE;+cX5?#stWf#{9*qz1a>tZatmcHHK=rrbOz`!+8l|MtB%^QCnGPM!gJGa<%j zD;Z(kI8w^4(v*mp&K)C2*XKB#6{><+AI8l1_Tc@7Z5vBw34NMcbY`J1Gv=Ta<3eW~ z&rg?s(f3rxlhG{%^n3Bll+CRJOj6?zrNA32S}Vy4BJoBF#2!;7qB2b*)mhnbmY_h;9R z z+L^_?(-6-w%>lwVbk-&|sc)U{v4>jpiD(Yfm?23&U+PpOQ;0$t=TYQolvDD4pjX&48zv{Irx{Sh z0RT?8z;|2sLj9A0@T4Tu`HI=5i z`3w1Tr}F9Z%2LbI+2UMmDA01qSQwH&7f-M2KNPYa(sI*U3W`l~3yWa_`3QqZ1y+^>>Ar3s5O&D++inM!r!#(rM*2%mruyqk`p4-3HJ4Ql zO7A+&E&Zb6fFuK~)$hd2KG=>?d?N`~q%hdpr+GHVRD7-gHSv9Bd{nx=GqplHu)a+) z=&FjqErhwK?5Z`J>GBi0l=r#qn^#$>lfXrpVAo@8een|7MBc<$mpvHnh%rwk4I9NF ztmFtTG(3dJhB3W|V2XP_70-69oN}(|j2rPoLgIrCb^2KfXAa{B!-`)cf`NixD_;8* zJiW3x8^Z0`KHvf$oDp5 zam0}QmR8ag7EANCt1*-ehTPV}DPxZFrfuQ*Wi#P15Qn@r@q(gHFnEA#-L@iiqzj#X z!}Qs6zKUDvqowTbv{&eJaL>Wm4}UJt0i#^ea?Zp-`M%~8+|Dg!_XlFY{Dj#(65Ykx zbLj!|4!z+{VvEE0aklFQh1(WBB{Rq@khJmWhq4-$rW&L!kH&X2k|fAhsH)+*F_?l5 zSMX}JEOSCj`8mg_hM+nzq;r<3-lO`&?F)k}ov4^H&uAMlCQG(5dt0of4)0f>)b>@o zyiTwFMWF8f?_u_MD`!6tP;gmMQO9@d&Ngk;_^#7KuY+Qm&HgC%N^^>{28&6gc_sUq z-v2UAc`ob-b3~+`l1xMZx7aR)V2}vpiYysiLGfL;ndcc%qIc@Q?UG4@-p**E10)+af=s!pm+C5jv-!68W zFK>QJrrK$h66>I0Fu0a8SJpr!RQK247jb+D>ib8Ml>|{;tg3jPRtKayMsB)|LOLh# z{W6esAG7w_`D>e6^~jd&6~dEtGFj_L8L$*~O{GYWcO1ajAAj>MXnPtSTGSm z{3WM=>zy%4Kj5!h{=1e&yJrs@os^(Pue0ls}BsU2{Yc^G|xd zGLfQpHszLKL6dmEXs8v}`OYR(yfF3BxsH)^V4C}{V~^;0ADV|FomR_BXlOIiiA@lc zWOE){JYELA}D zpi@O+d0|IeH@-tz;@1-NWJm*4yZYP`$ZxVt#zn=G?mp{N1R|;_as#tzJB>dxGkCq* zz(uv`*Yl;C8fCw+|1P6$=gz}ts!e9DiRnE>&Slu13(?#>+V;bGRF5muAZKNVuPlq6 zz8!Q`jpJ_lu8Hf4_i4a*{pe1DQ4JttX3T#{D$V+S|HrD?@N}!9-iV4a3;T0AjRy5| z>F6_E!5EJns@;26;{*L5ahB{zBpzno?RO^+tk!K+n?cGRE4_BnbfSb`ZAOZ+ps*wG z4!yH}+ZLR5QpQ*iF7{!RKJtg^&UJR`y<0BywVAXiybL3UHh#!39C=oPud!OV0c0^eqfRZWKv8HQ%n47HmN-@V*Zv$cQeX<2@gF)SrMy4;>bY0Dk9jZ0l91AWR zg2`YCA0jvBlzffP3(7>T2RvZ%%$t{zzb8gw`mQu+nOV=ygr~La6N)qpcf;qV03HO< z02s(3ON?*S$OOV}nuhQ!5UN<;ScJ9Ia8a;hkYT~#k%aX6Vt>DYrKbzX-Sp@_q_y7d z6$_GSO7trl{pXFa7N>4-RrNH}0Cl^|acuP(rHPtr(e`N5;&TlVqYE5nx7`P}ZWd?@ z2IxI2$ogF2uoy4%A0ehzoy@$vj$TzX+*D*$U&}l0gixlI3eH|Sp0HAT(6`K%$9_+Y zE_v4_2iNk>`e6F~Ncnt8#Z|_6eecp^doq+pnIPF$&!j@uJbJ`{EXxmKhL(N>a5i#w z@K)#_J7(mawUKqBGU|bh(#M>lsE_pc(jWWj&1lqhmV`!Iy*zW1URE9Yg)@ZENWQSL znrK1MoY~$~Z@Fl$|9cmeKuwZ6hQS?(g!wO_Z%R3~QwBctSImtDSzS8|E31|3>4%FB zFHO+p(GT$Z%Hm%n6Z2`znel6{-S@`!*-KjLR!d}MH3VaX4@p=6Q`dL#ldDBRt3@zZ zB(Gjq5n{8l^3mMLikax&|?CkSBzOfV5%#o znHH4%U(`+vu4tKbl|K9j*^Bw1+%uC0toPD|F>?FkP%?eY;Ba3h4Q&s}Fb1Aqq;WG#^##JcJC`s@7g=;;V zc~TZHjHcl!9XLK7*H10_*Oj3g=_d)&gddEwzi;&58UsRv;p4{L@kGt&Zo0Flgr?$T z{6{#_OY6JE$(;k55i9;k)Y2iQk(rLeei&#hT18gZX-egBD5#R_slJj9D0|9edGuWm zoHq>)k7YF5Kc*!LU1}=$^Eprr-2cRQ&lMjK;p6;~J{Ey9o4 zQXTKXv5}aNnl&xGt(v8Ztp%I6Yuug^J1K8BshRr9hazgD3Y?;37h$ zjd^t@)%+9jR2VBO1IdIUb)!#`RcK?dzO8|x<#P1F(cyyIf>iX9lhhx-8;GtZ2$I6U zd`w4_arl57{cj=)+vS*Aaar5m2 z3vd!sQ%7S9{v^AA;8ZT5dO2{-b}S3ACH*N*DEYwJAO|}x{wLGDEYqJPL8cT7gZpIK z*Eo=eJK+%Haf+69QANpW_fFSKJ zna$Yh$H``C6RMgu0-j^MQr~0jjx0~H%bK-VPo7LEse$7Je@qnt#b;`?>Q5nM{^#Gu z35?dOX?;+Sri6rMe;!G4&D|H*{Y{+~hFA|E8TD$wTnR8^->u(Hq{NT}kf7Eg42P5W zbT~t%u_qKV*#@=yXkmnc{@(1k0H%Bk^lzArs}uUYl_Z;~T$HEZQ)j9ctc~2yb1}2^ zn;c0UN|njEw1(_xzFYNjJ97B1j*^vVXmScx%|wW4D(>>f-iNO!S;AJzqMWx`M}7Mp zCfuHq9nL87jy#&jA9f5co++haTdt9(-4eoG(0a6T41ibWdhrus0(NDTfrg)L_DrzM zMBL+NsJ!4CQ%gb6El~qmj`T4(u6vp7Vo>>}*YPMO*UC~uy2Qbv4_N0TEG8Zx?=+U% zsvHI5vZn8Z(mJiMj6v0agIs@m-i;lZk$mbz3f@CZS8Mn@pkB@Z>-gdTF5ZeKMpzy$ z{^)BE4|5PJNTe!0_?Qi~YCO-blGNwF?@$MNP}~7su6=+1ZUfx8hF-JIh1k4;TJvC# zg*2tq>R}EQKCvWfC*wr;M8siWg7|N_d!V^fgau(IQc%82p@gEC>9l8~GTpN(?-afu zOWS#mBdw9nQ9z3|LX!Q+iHLurev3<~Kb51?>j@pcgtLd}?W3B@XgALAM0D=8i7+9Q zYaREm(`9vvOdy->Q(^Sks+0Bk=enf~N2IY7=j{ZGaBRb;rF)SK&!|0gZ|rG@4tYb> z{?d8V$I3$P>kHEUt}Y?Gydgz2maHLJhzzMR{huK*wj(--9?qq1ml^GmTMHI{oOb;V z_xRzNw4j?|Ai!W0-b-x-)@tLG)R%}#m$7>73)d-5ZQzHqM0#q(=e_9otedhSVs2j8 z?b_25X4Dpy1oyERFGjq-*M8SAa|JY)OgsRmo$-)FrHAiK8^-$i7$J~3i zOQtRcQs<$ciAhZ!A!sk|0|(aFwnY1#)|YFe_#&<{dk-V^M3OBing1R>@5k1XKqrj5 z9}8$HKmu0bf-{E#ZDWYzYTzZ2C5sgVE!2?D%fS2imTBS{sE9ohvdD$Xq}lGlev(z;UEbg+?mL6 zyF%!Cns@RoEZAS|Bn3OSow+9tiI0X0MG!dE1uw5hM;xPQp16_?F2T-SUyyx}J~ zbtqw2FxGn^On%Pyeywl}M)1^C_#W|1Gg;gM_-XzlPcOS9#46Im> ztuTe!PAaMkeXNj?B*Q*qk$+LYQ)o=0&gJx28q*fg36Y3V;@GzONBw#)*}lM_KZqqg zhDzBKUY+;xg-y0cK0>{PhLKDD2p!dtjMMZs1P)1HR*wAvGXO9E@Cz0|w)$+=}pl@U9>A^{kxch+|`|yZ`?lv9}X9=M2B6qfzzEnMV{v) zm;GK7>&HRP{w8N3BGpQZv4nfL(o{&qJS)@6UG0>@db{YezB>8Ky{+j+tm`G51dc=J zO!Fc8BvOzp<(PZDU+Vgm&r0HewE|m;*GWKKs<4liib4HW{ZZx68_#&su6S{onCq1v>k&7M0<9#kBvwk(-hx-lW{SQrgVHPrmF zd8qIEijz|IEgt7b>L1W)aFYCXz{#d|=$7T;-hjD0IBho|#iPLU7$iQ77OHZ3gSFb+ zQ81EB1(lbF=o6ZXNgXFCIcv*7pC{jwX;)WnJk>>-S!xd)6Bw@py3M{rjSc64P#3K( zp6uwz=qMF*JcCt24=CC6c;IP~An^~*r9DZ(D2dT=w;?Jh>=9$0=4u!o*v|6IB4ry_ zKa>Jy&R=th1{Ahz%_}d1LlqcMhDeD;onhoPgmJum2V@D5k>pc@K7$6jQHl~v+iWf( zxb(do7rh@1Ga!3`*nJ}m^iP|!hxu@;grzpvS!-Au#Vk8xFUZ_-QZP(LitAh+<)t)+ zKJ^uUj*JBp)7*SpaB$iABn;gVAjVnk8QfkjBIeA4^)XW(d*+2-J~EVXzD#E*w3+!0 zMbFcbNN=U?@PfWK6WZtTv7eNiyi4eO*^PPML!MY4@!x0-T7Tu7UJU2VYD3^vAn#QD&@>=&z2Q2{emb}IeHckU^t0WqXMpgj zc@NNu`#l4)eD^)Bv7?4PEGtv8x-BF0sn;e3mz&?*9aYF+%PYTi>_A49w#oWzakiUc z-B9zpMV5*=yXF7DhCt?bqvv@mo&wYXPPavaZLaB`WK(Yn3~fpPiW39YtO>R-k>S#`zqz*a?{=S*q4(pF`Jghh+9#a;7ZvZ9q9Ep7Jd zU973);`b}t4l{iFEDup<&D#@C+o?50Jk!=pPqwc|OviMUoDBQEQP4ZOrbJvj3RJbK z`xf_S`!`1fbTMDCFXM8Z8n8EbZD80E0#e67z(7C-M)~LC3KlU{QFW$?xS6l}K%@@# zkcuEhMQXWPmRku8D@8>~Yr9L8%~=kg7Rw42Gg>3xuPg`Y7Z}uL_JjITSYz#j`n>&l zc1*xK)|vhx*t%-m7+z74KnC1MNvi&WQo9~Ryiu!!vvQ4EAvBMX(G=9Yi|TZTc;G|u6SW5oWIc1ui7~deF}z|{rX{-92?Q!Vt;96qP1ZZ9L%8fRJW7yClNiTYW3qc! z%plOK-Ppt$w#Hk%L@ZmMm1#LQ42sr%c_O(-LqeFQ4#st(oD?)vS<|!ty0@65tQQNy zkqZw#0rr6ssQimtoS{aeZ9+KZSHtr{X`?ee zCQIjRHc=vs4iZ;k{7ywZ-_>mit1aYV$)*ZlPcXX#LGs|D@;mn7fO_pPQ=Uqqt>GioMH za`%3SOW`Voe86zoIcaouV6GsNph0W%YZA@(=p$8q)VPnKon#x3ln==7OY3}Y96Z(3 za*AaZ{M8dZe8(Fc)S-$>g~4-ajX6AwQRfn)(lkkd$fD~HygB7gWR5&?b8&=!i;b7X zGtv2#!XJNZ01jzBJRN>_vFVIBEecUApNRNmKEO?z=g2%rM0A9hPQ6qFX|QIbzUQT?LWHs z#qxNtkZ+8`eUy{kE-n{O4-1RZL6n?}8t8XJFwPLkg?|iWqhKv4pA3iEED0MUAAoDj6 z_hf33!7jOnQdRspK`l(?nLM4u6}{3gvFKht!bdk(FhE?(cS;O`7Jfwey z8WCgw`j0CtHWH9g{*>Gd~WvgP=xSVdL2HI7!D$)1eeB2Eq<6_3`3 zxgnCMW@O*g2vH)(zLI!RhqC4Q<`0dgxg&{TJ9VjkdVkPL^>6WhhHJ~2is)sA1^&TB z-L2r<{jMB{&UYjvoSZ{l^1%^K@LgMq^RkZ1Zsk)&oU*!BPYq5>x^$+QEhPiGqZxBp z;DCgVz>-k4bu#%&4C%~1-kAs38QlAL@4O2Xxy8#v4%+g>2;g(kwE?#t(^dl+-l_Bz zq_bIHk0&G9PwNvZJVvr#khXEF(>$5Uh^1k=9}hl8kpb|eN@4G}O~_u8@|~NYNtVGK ze&V5cIhg}b$8V>H#gi$?bOb71iGMNl+;E|tq=bhUyAW4IM;?Z7F!sRgl?F2;1*Y83 z;)FG&IDFx)A*?!a4l3h0&$_)iMceO30#Pz20mIR+LAb|{Mg)BY<2v8lnoMWftQ`O!ch10etez$tt{vA}r64vs}!Fxuu^d!2(Sm>ZSCRjgZc-2zhX5e_x4dm)#~~3B5%1RF1Ve*^g9AaJmvC{-LhOOHYaUNJ z;qP%X$^ZO%wBGgUI9TDoZzIK}Duvw{^gqknDujvg--3dN0V(&tK4b!VvZVhl8!>Ou zk9Bh5dwBh)e>i}#g9G~QvJ-0i(>5bMn4fbpBiwDG(j z-(hPI{Y_8Y>omdd=J)YbP~i1`V)OJVvm;Q)t_>@K`RV2KwcRN@^vtT`#;S2UNvE>5 zHpuI=4JTUQp$K#LVtd4Wu4Og&O=t`f6Ylo2Un~G?TiX+3nj0KFmm3wqYn4dX+oXop zzA&ehgCkMm2Q>ZL=DCf%zqwp42OoT&1^|L+zKc-I!ig65lV$GKV;j4kiwhP|!yJ6u z@%sE}#8EK3+HOz9{7s@c`^{YN)=6-;ms`%|=5Ms`hYHV`k_e~W8uN*NQ`s-IP1%d{ zGeEEygj?9_%i1e1*yFbwfy7TFFBgoj7!|(PCFgHKP83Lvw7F+-MKw}eZX{oc9H`VUb z!0R3HxekbLxtmOG4@ykLYP|W4cYhr{Z1x!cCZcjA6?flIvqExUg@ns_<##WGs^ zt7Z;y_SP^KZXJ&;9f!+;;5&6fqpr6P%m~qO!KJN#)Wz{i>$s z{zm%QcmBcXdmesQ@p|3y&zSfT*Y|kN_n72I?Jn3*0K^%q;3ca9@8j8bLF*I3dLFM0 zM1#<^r?ItOQB?k*3h!;&J00NAZsXVv;3e|CGlKXXsps-DNN?l10^nZ(hsKVZnws-r zS;ORafvX(o>4SqV5Md+id0k>a*xJzCEECw}C-8C}onC1NJTAfb5qY0=`AnW2KtVk8 zQVRe^Al`a!G?n$r?)A8X-KeCbq_(nB=C=MR3E@0_xczf5H*D`-MKVg#%ZTfLMkT5Af0&b_sTW z0;sH(h#vxPoV15HJB$e3dt)6*1FuKf&o$rDdi2f3#5kAjp`VjqFATomx4e&~^K0n@ zX$Nnu0FL3gAct{>)3)1xU2w#FLSy9&d=GoMZx-M@F1Z!v)N`)I9vqPnoo^ri^(o__ z<#L?YVaW!R*r~W*3{gA0Jb4sGy{W#vPMQX${|2H8gkn-FtOMVHyYKQDZ<8d$$$MYc zV9_nJ0(%*FeSRD9`sY71*7;98P#N@^O-=}Jcyx4hpdm8&JTQbh+|I$8^wJvK%VY@n zEcSX_rmsa@U%MD@G-YkfrS^lwpjTwh6=%$o_D5Uqb!cKREug;1E#zlO;%Gr_eB3qEy`uoG`b%atTWT)UA+$%)GnlG=-*_1BbX_A|HJ%`kiM?MhrX_=1hlyT)e+4qILguvHQEl; z8h5k2>>rOCHi4(;SO5I{eCTPq4bT3y*GFJYx8owQqPIl<`g7}5K4ahW?OHTv`*|c> z(L&ee+brblxR*Dlw-w?2>S9)b=L2GW!gOq#-n~`f{BARPGoR6C-?zj=Z5^w^{arhV zXfU#|L4E};ffvQr$CcB5(16(gv805FDe!aiPq%GG&`M%=W#$KMGndoOD5Qmp%jTQW z^e4W9vnrS**`0Zwkx)`yvje&7!El@x3|G;j|O1?KWp_#9iEFHHE(1|g81fj_a$C$jj# z38D{L_J8LC!~^sV%K>xX3*#ceDm?T5mqejkEExRO{pP@UhQq-(A0I-4hsk6)!c0&j z51Ih?y`1lI852GyPG}-2DEpP0`-R#4`LfCOBlHarT;AZ!cR%%73xDg+yX9Sh@8G}c zX=Qe#-upLu_{LIbIcc^6-d9KO71yA>wK}BV)HsStW-v)mrwNO+4RB=H zD|{-_G<)vVaqIPFdWawA2ljN<9TTC!CUv|fD6qeNO3^bJbdm0oem$+BIds> zD=>a9D;IJqZ2!#@TYo6M1>wniwk#OvdWPIK3$eSuuoa*j|Y6C|{o+Ob+ zZ>+=qB;~^pko_dhYPlXMHT=9K8 zzIt0MBZU`?iffegAb+mC9ItUWJhXo^wSE94#GU;>t%(7B_Hu zF0SCx;Ms$}DnzZAl@}cR&U0ZzU*Z&aeY5~vv6 zc$!rI`vLI$`~Tq+|NlPlKmFhTk8kn+zD}|+|2G@z|NM%xSLjb&W0(+<9l;P_krr1F JD;F^g_#ZcT^@IQb delta 70898 zcmW)nWk8c(8^&oy4+I&_2ubObZWuj4Bqc;ZI;7ztMt6fE-AG9)-3UmC2r{}uTDso- z-+kD}XFJb1=RVi{yRP&1JI?tcPMt^&pq7%0TbP%9?R7E7JUjBaqq3^4Qq-$K2{x_Y z((gQe{BBhp^IldB3lFq|8$yBwQpHfkV`Mp&V}wTWda#l*hWHu5U>xJmfApPWh}GcI{|kEA*Qo%g)u5;^TG?zYv2e+k0Et%h(~2#kO_nrw!CyQ`ZH0f!P)sUNqa%_tKvt)3t_vB>0u z-Tk)iX)tVYEFx6Zj8yt{;aY4&@*vN6OZ(2anG)Xxpb@W!t-2$?G#@xkxXXW(FH<#C zagorFVhvOINMH~zNzl3R7MWl#uDbkg+_J~YW#?;&Z=++nf4aS$+DID2yLAG#(At(^ ziF?63C1h5fro)VN?AnM9%GV!W{kg|v+)T6FcO2GNUYJ?=+XU1LVga$`%B`Z4EN?jz zeQayOGxF;-`vB3dYt4mrUyo(m${Ehi z+r^_oQyyz)XX36?uC7oo|A0Nj5FWhp-B0A@?8!|V1J|E&>u+B0#f%n>jpqb$T7@D3 zFOqhQo}NAx`u(~nohJiJ`$mdfEw0 zh7|r~KA~5om6K&GKib^X9D?@qDb#D|BAy_* zpcA69er5ilZ~0c@b??a9f_0azMvR_RpCfXRtF}G#@rvQmdSdzU7I-{5@$b6yzY3GN z!fb!I*=Hxmzq-zQ^!3Tj4BBd2zUPs?*lXp+`@K5`Zytea(Gw5J8=%CdZU3SPr zEEXUudY%g2b{-dOiXFQQ6H{vsR{NyDxFu>2mH_ zKvI)3mxuG8A=0uJSa%050L}8lMT`G~7A*SlnBf8QVYBNl^9uKIg#iui;h5wRTvb(d z1*FPcKMB~DSne5O0OF2-$6KHEc+ulcUVsYi__piu_A31K753fX(E|^UX{)Q_r9hR~ zLyio#GKJKTdr$ zZrq>ZkJksXgbc)*l|e$_28{}M(OkR$u1w!&5lZCAFZn~CY#lyNVy3-iHD2D&+`R%s zpPddb?#$gE5lICz?8@k@(~{or)|r?n%9S(am9^Nh=tmgG4Sz%CvM zc}{s|hvez4^EenH`ocxQywex`ab;Lo6E>F+OH#8O&OrORf3I;(pCAWmCr%b?D40g0NmP+3+k<{E%-VKTIcl-mr!`j>}!DTafji)DA(z> zlVtgbd-BKD-wi8C9#m0kYr=U45ZPRP+OXGx*(7Z}f5N4HR!2vfOQ})(#r2AsGy10I zMg&q)@27UOsSX?Xu~n)Zxsa(?D;NXkPn?kUrkFkYY-#P!+Ym%74{=j8o$^yn4(zm( zzdf1y;h&G7|4It^mO#K2+v@3zC*%A0!ju<@e{l`Nctf>f!MOt?t{mZ%5mx^|gB>A}U({<;$0&%MYcNmX^?a z4c@!)qdVfD{gxoEb^1J@faYD%c9gQ}I~n{@0uM&4xvCb%exG(vGP-g8@qu4YGj-by z7OATjJF)T7)wix!T?dGUe@h5zl3+*ANVu2c4YE59Nu}**THS9)4HfKM8QJ{dg(5h| z8DT>=ZvRH!gutPRo8kB(&6idb$>1e47~nPjbCiIU-D~KYI~H zD?YbUT}-9ZtBDocF4T}rt)1zpq2FjZ&w|cGfhS!L`(3#YZGRlsPB%xz8ehc4HKfhh zuf+07VS+=ue9tg_9;O!H_l&K<>o=g#jG3kPdK`` z9Nn6eE0w>j+P(De5z@>m%?>Psy1m8HieNEJB%?@KHT`b{vOAW6i^ZzJ{M6I9w4bIk zeP+nF=e|Fw0i#Vw`QinE*M8rh2i~i-6WRj|3Z`B6jL*~$kB>>wHm&HdbHW$>^u9k= z4&WS6&mjPO;Nj`ow_xus-0u>CaV-__k-o|Izf8Qe$vn|oAMFSpZ}Yk$l#$XW-ftz# zy+4tKnl53KU?r^6U7M@n*G?DgHiYgtgpe_MHI$rd|%HP60L zoD1*^^V;2c8RHB7Put8W?+0t7#L0~E8S;2diT&%UStwhS^n3ggnl{o+Q9*z3-~iKz z#JcS#UH0ghQEpm-ujXDEjvx!6l+%40{)A-lyVLX^tmArxJU2X^YM3#6V^p0LdIgk{ z>ODPwNI39$gl|nK8l?M+wMkjoL3{Yh)z{8U%w%ZDd11vNB(G~|JZ z^WwMkhug!&HlNEy@A|sBV76QzjK{UtcLaAx;MV2jZ^OjececF#t{cNgd`ceEZkfBt zM=;v)S}gCH$@0z9pmRfj0yxG6fM7ntla8Z6lI81h?`M^0^rdSK^NeP6;+wa6+MY+E zaIZtrKVzLY*OXIs%_n;_M-16wn(P)vFU);U>=%4nL;TCwe=!yJx6L}|d5R{`k*U7d zCXrVw=eMKQo0&I#!$DnGQ@~Sv;~vWUvZY7ZUgk8TkiIevzg!e~>|F_Y3(Tc$C-qLg zFL{{k(;Eoa!DlXeTKS^sxBdX__tqiKTm@*1nB(DUs)R$*i8nNInW40NFlaAdwFsR< zjU?=bu;{<4?9zGtEa-4Mi09rrCG&E$>u&Ul_i?jpMKow#)B-8;-=R-*?nftc+aMGB z-w{{G&2>M{a6iSc>JKd6(s!Q3y9C2yUf-0w?mfC+I*Ol#;(@^%9?wPwB%f}Nw!S|i zZD-E9D+})j`5k^&pQ{$G|El)`kz)N)7S!Wm$ZPrDm)<4F6;lq362lX~7FFXs@o$ml zlW`T%Y5a~NMnv%b?bUIrgdK9-;rGShpEb_~Fg*WH^XheHB~bWxmFg3gTDefc6^L2M z$Za9Q;%k;leNyBg`+Re(-*m3(d)C!gjuOP7jMRP$#!k33+g#?7Px_Bht$;?v!R zGLKC3&VN_77MltVuTa$})(RTwE&VNg>Z4nyPsN{jY%&QAg89)gLSg*1 zm7XR2gIWg9i36RD@T2)Q=9a1yo)xsGLJG6iKgezZmgvRnO*!!@UP5o#sf+By({N52 z0Ms4Gv%Y7U*5^%tz5Yn z5~RDjXp~nKm;`QrA`eg54!cyaCOHfEis&#FOdlbKhpLzcw%WkEO>>X5*O6 z%CZA;$P>ozEBwLlTXHb&Pi$y#J>v4f}4AqIc8`pzRa;vD- z)_^ne3xgU9z1gd3Zeb}5z%a|O~@s88YQZy_ZesY1eN8J}b!^+M3@_1>e zg*2k*QUw<6khd_z=AHJeN;!S%A4<(v^#j0oWXeDa{C=CgvtvDUP=6RcD?DZxGfCBV zf9{kX2Q$+ZLRafk#61=wTI zz@}eY@n;F@8Vn5=G8e6(=-`#6mf8W|6mrx|;)_3#Xge=(XVO#{3ZGG0FhPcH6R8jf z{hSoS8Ra|P*z}m2ueRw;=79Eu2V2^)Q+n7nJ1Qoo;%wlpj-ic#xne0CXXiOGKYrmI zG@(s3WyT<5`<6JFkhT)qeTHcVP=^&b_?+yjmx~y;p1E3oet3h9fic2<$0*xiGept$ zhEen-FR$Hjx<*EggIL#>;4>})pUZhCEK4C>F-Lv&T6E<#QD*zl(s^0lyw?#n)N>0J zCA48`ZGvl!QV1d3ct+$#P@&{=GOCu?!}hNyKD{jZ^QcE-%6=xCS{{`I@YoC3H=axS zZ(OrH@Wp` z-BGWVNXxf@PvM0#USI@38p@7HV%og>t4yZ(ea)QSJBKQmsxYY`_+6VvO72QGf`;9lm$EUpd zP5KKTf$E)%!t8V%HG|-o2Uuu)S&-1otqFU*gh3T=u154Kj4D{xcWmN0uZ2fTMuNgO zvmyGw8w^Gh zGUS!3AR&9nq%aY$bRbnOgH`Qs*`_}uZ^qxnL2a|I_PBVvy`Gwwa#8{CcGVfoHo#8d#}TXd{r*CDVAP;W?9pbii)I zgr%<=v5en-Ut_r~8H>LbQ=(`*haUGv-8Z2`w(;7P^GoT7^~&Sciv3r{?CWLbLG&`d zM=wOY9qNbL&&=p?e73tDC+vi%*)vD~cps9lj$vj2Pz2cG^FFS%RsbH}?3qD{B?KCC zHD^iBfewxa(fW=mqKbUelsvg+ZcZDCqSH#OhYc75HFI>etmqkAT*KQMj*f=b*)>|_ z)00%5n)}C&@n}$1tnKb7ntb}$&-))Dsu$;n6}VC-O$?=fxi0Gs(pd}LYjMtc1<${Q zfB{C4U^NZu(Xya!&0%|QhxkslC2iAJA!%g$NdLYc!WCjfmwTFuq>aTHW zkb-7vY89u!Jo>Ph6jl(avhE8*p+O7C3yoGmmpN3f((n(`&&|jtSn=(4#k(DIDo}e?A;t6G(v{|jq7gpA~o%7EYaO}q{eS% zv?PU;m_)3?-+3>QJvSHh8Qa?yCOj8b<~l>?ZreRLjg>00|6!6?vi0a%qF z!mkCIFR3}lIIzUFEi??Uw%wnFGHPhM2fDZ{KogMpZo+?1$5_C)MpdwilR5}}oR$5c zGKY3DE>7WWcPMp$|Jqrm)-ACakF_4H1OMZT8qo#I)s^?kU+;a;mzJum{cCI5wQ)PO zK|LiiHm=a0ClqG5q2{w0IyfuifH^ZA8~<1bVF=4Ykc-nC8x()3#q zqO@1{J5UXluN&cBk0wiJG2iUps44utoetv^QZx00&Fu%|qlEw5Qqk@z;0fRPz-gy< zoAEc5Uf@BV-mNC4fR<#!yaO~nsq4@PEk^B)lkbbd2wmR9^K7NLctK3pXV3!BwvwqY z`!i`9xV%LhJxc#{pDBQH-9iKJY(3hjU04W7+3a7v3G^qCXi|pz5%6GD#*28y_Xxbd z(_X%!ZuWY2b;i&!-Ea@E80sW|b9ZM{o^BfmDA#uws&~*bD^yMcO~2#fd!SOm@=RnS zVDZ+ctoNAE3PZkvf4Vn)9hq<#sPkdEHkcsf@u4q|u&I-@{Fv#DWGOQR6}qLESmtig z$4h<4S@&V7JBTC_NjAZ>y*`aehYj7(dC^E+LZ_XS#)ufaCkN`MczPfTg{mpym3)n!nsyRkD7NE}9ON{Cau38p@6tbEMGfQSE)An% zC70x|doi)G11JH^^40umLh_6;SbXH?m##jW1GcWa3uF(qkB=tPmYSGdA+4sGUfIC-xQ8bupb$Pny@`*N zX+I8al6F7^dX@NCG1s(c<#(-&8hF;JlNG0@XmYBqz~$;Q>gR2?dF%y~?}@^5@L+a1 zDxg+s&i(X0t0l=MKJ=%>?wGAOrJTIo@uIC<_- ziX%i7Ma=(ta>_^UfQ#N~cw|H~MooIsgHQSk#b%rj5Q(tTu zTYxy(X~@f`oON_0H4G@QS6b5}L#@!-sKrRlT1}Ab?_@W>C=Bjs$Cb{i{qH=2sN2efYWOJT!1t%iVmmL=pt@a)^h< zk%uOE%q37VH2SGNg~__2Pmr`l1tvPr0s<6|whf#80f~R69qm8l`qeuQee`qYFCmW@ zx1h!m+kR&rZ&WM<`c`ULW2)hCf5+&L>D2N&7%a~(ppl%R)^AUz_Dw%BqZ~7ypL;BG zXX)~U3 z=BHWJF3EypavPsTPhHI;8R-6q6vV_j`dSi~)>Qnk?H3M*hvwK=h#%^$2bpZjjjOJS zgrLB0i50QD*+2$^-0GdIrUGKFRH(68G<~6=?vtR~#mJY?ah|oqd z4Vw+Q?`S`Pw%Oph1c`Ou;~PLOsxqQIAPAcV>A!2*tbti#MPFJ_F!RzNep8+vZRJL~ zmk%-QNQ7~=uC7E?zLSDAPb(6J0cyR_>c5NR*}? z^D1Z_hY=ccR0|(rCS(@Nl@Z3AoD}}d^8@A21RwZh1;;+BE_6PEhM@3@3)<*%?S9!= zDxMl{%i1ORs)O#lL83gX|8_%6l*eEFeY-|Sv6JYBR$07|8V8HC(r;A?kz(t5+3PoR zbMu%5oR@rr%oIyhz`9U*TtArPcgwUx96pbjaq}rPIEndGApxg^{~)*kN?0_;Rhe36 zjJyD2?KO_9)3zqMEUJK&L4q3daZJP$1UfEFLzOGSM0DEb(uwNZ8OM9t(h&R9jhrHT ziK{6I2Gm+?>|oJY$L*=#o?#OYm6-8^y+&#EgKx)uXmFrhydPU-)J+y`v*6?8tqMno zJtX+A9c`ju7u_r-w0J-8hgSy}&P1s2>*MnhXCW&F;Zn|X;nH8~gJ(LNun)XlcakFB zm39)-98XWe=5E#a+?4+ECCPKl2_fAod(((_gFjd|DVuC&F)%yys`Xqd1h`+47L#Y| z!lblNCnsP_{#`yvf1lnvYHad-Rs=BztK%$aOTf##!?j* zX-W0o5$x~{^cH8xH-U|T)rn`GRHFnGiljr%PM)2j7&FR{3R77g#b?oXxX|@GPUK0# zzb&FY`*ESVM!v}N11XC7=*=Yw%l*B@*!cK9<{?r}S*6Bh@4lmsX+4o5Ip!~S`HV{5dy7N*x zm&Qn>;ib~gE(dB%N|u_9gD%K3Yb$Et#mlGLD9wVZWD*svKR|Gp61P9v^op~F`q$SC`yWM!=q6;|C-XOp77UmyE3Fo#ALGB&I$otA3pB&qnu&2vl`< zuRMQ7tx1DODd3d$x3q4KD6BDd2Wec!}?u3E&8dY!qcj9>DsAKUS-K1yYTJvngUJwZGG8yz%YcrndC zz9h1I@>fP5hEUE#tJ`(~j6&S%A&(_(iWK!vW4Zzk=!BeX|2E08-p95sa{K!R@OcvD z`LA*)6*Zb*=4A}lroGDHQh=dcz3#8UHhcdef22R>Ou_QJ^M@BBN(TSdZ=?$|0@vg* zY=@uP;;fK&L&6Ij>HtE_9~W1#i)u`9V!e1uhhcmRuM_k5S@L0zUv(Bj!@RJvee9Fn zH{-4P`A3pkH29QBm1xi3`sXK{tj84JWcQEoz!Q$pGvS4Q_RJ6|2sMrZ>+N`=KLiw^ zBt<+@b85!1u_C>EH32ef9%OdSY`me#?*z0L#vAhoMHHL({{W$kDgm~(6!2#g4t_@V zoH^VtD8BGJX+bz#PIM_t(^eKv<*D~51=<=hV0c?xtO)4Do25j*gLWHB*tu{S8OmcG zWJKg=O<3An5*zZcXMac?bMRXrMUbMZ5{gVP?L8UUG~MJ4hvJrS8ZEg=q4jMFva-y+ z4!ZW;(7=obGQ$2t_pP0e6;c#z;rw57Dvd9~_&k<)2OkS%h{>mrrtZ7pj;)wev}D)gWr`&S@yB|v1A`aNPUFDv@Ws_PKlgvU z=g#R%eb-@0C=SKC%;8kwI(LHi?AXJ zR)O9TCX{|M@oy@aFF^$NZ+y1WnF_^n&xnrQ&OBL}dbt%YddtI_8Zdg&O6L#VzaVCc zlghyDD58s&Rq}I&_?ha6d|GJcE)a1D+*5w6vxu{@@5Df!>&yK{D93^^6805f$=SbF zlcUbixHg%*Dw}*dU5hm)rN9W%hc%TWpxcYw@Lj*}v-`9pu<1(JzPA=4fpv{`A8Ft- z{(V~O2mUx=H=*u-)+|N6i4zJLHLjUbK4qI0P+q5fYVl4&zEm~l*{?#!Y#cF4kUTqn z2tOw}h2PBS#m)7~MGD_B-*P(I8&P{CC^I#sn?(Na-x=~e=(p6#)ClDn(vM~UxUgIz zCY-jNF{)1)H>DzV;@Km;yEGV9;6PX+&%ismaVX5&PuAIJ` z>eu3bHR0sP_h2X*@WGdgD!5-rKf^wF$lXd(p#(qNGB1`>i0i3)RO`>Omq$HsCeqJz zC4qJAAQ+n2tPc09^4}bxp3?NdOva0}YA44sd&2BwarF|?*-y=n}DV<^lX>*e{=i;s5u z&mQ%sH#Ept;E7s6Z7UivpuvPpCF^5U^1lL}Z)o`BlBif)SEI9Gn_1Tp5)I^F$Nz-> zc1q{n(S+)1siKqGXfFX$gzzBa@t(d0mTs*70wb-Lt^{rGX%hBJuEpT&B@xZ*vetwp zR_MTy3qW;b-WGnaIInSoj;H$(w@AnUtcz9n9K=IB1tOfzwcnY{THA|-e=pObSpU)H zP%k;PG9Wj_Za10rb69iOMVtP12mua7X(Y6ytc^eMeMSMrK+HsHFnRD1?yKc_1ALY# zSMx-aL7Gt^a)dg3j{STt#kNt7?0>&&Tr@KqX2P?T+`_Ftf{ki4dPze6>0p;jw%HGB zl2#VDAF3&aL{7G>w(P&t(IN%uu9xjoS2mRjlwNHtRoRCTgfthaBBf*?eus3}tgPSj z9gJah<3OY^f)yN2isBQ4;x$7K?dNb#F!t3?&b$U4 zo~`<(QFu^?Gl*v;77eAvCDQvkOus2^Lbte|q{B%~B!m&9YVVDq>C&~5s>d+$NFzYN z(8l|tLh$Z0A+E%qr%y(%8fcPo!f@$*d|`mB z0H1tFefcJF()QAjV zz`C>CabK$?V|TkjrE!{+X*z*ZU(F2rZXv=AZp`NO9xus-z&i9nh){eFfU*O*pOo5n zFB7g#_?){6xI{i;)EPSEFWFg}%)-Acn;(o|zRWJLH-o!c&YO4qQAWC<7C`q|Am5-4 z2ZbyMJ5kKoX?s$b9opLXjd18}((VtacM3n_X>Dg*IGeem+iu~{7f&$`7FEin?jT6f zW!i$0R0T5MtDe{QSkYsE*>8H=cmY0Ty(T;~4(Pd};tMz(*`TiknGLzZto0^=jV$%I z2rKEW#xR+bg%9`)xp6a$*4F1uEix~XL`7*4N%iAm;T8L6Nk6-D{>a&)q-r8ww4ti< z)GGt0Xwfj;`Bfzva0*Q1mnG!`OF$;Xzq$HN=dz#IHcs2nR)lfPuispF9NxI5j!YLZ<2y*cJr*Gcx4oShMj~DHV5g1;3l4=*mgoE z3BJ_p2m^D3fiW6TP>-9cvoR72ddi!>;74}wNf;!(5W<|C54(A9s=5JrLfp%}HPhoO z$00W^aFT6X+v_IPNJoim6ZQ!bOA-0EbH8(0lk_i1w&Eu@3bysQ-KX*XV{xDSxfGuj z$sVq8D{;ZhviI#QoeWasYD!Yw>|eO<8u6z)8$Ap9=B^8H1}FWBuPy$7235H%X8p)@ zU>?5iK#zs4#HG=vuk!M=3{?yKZR@- zJe$qoqI5e4*2Du`*LmKUR(wD#_!#;>FB7%*^!5)5kj)oLMx&LC=xxB|{k#r5|! z|IU1{6GC!!SX%H5`Q$75(v~EFyP=%VFiKv39L=5tgr5tenJvpqHHG#^*bC65t2AHU zEE3`Ut2w1VnMczZHklO0QDwD-#H}p?ajrQ>E1%a!W8O1N^>MKu4KUd~B zrbb5-UzYr*oy-K+6`bFER(IJfBzX3IH2<8Sb^U`&W5VJ63WYCuHm!T#09#-C-lAtz z6v4*;Yqw599xP)g|MG!BzO6|_#tT!obyq6552Z1tG5b8(}#~U zEz9rPDf5Cb+M1pnO3l;8&b^fHCBg{sJmaZZ?v$xlF;oqCSClOz-AG1aNfk`ssv?mMqdYB?r(c$iq}qw#iI9|!vMzCUI&8tH9ujqoka{ZRmi&sB?_EO$Q6 zR#+*Dh3j~To{D3}qDK1B=}OMWt_H-h5{Zs-m(eY*ex-0I%u>~unqot-NGW|XWzI+A?vFNCHvsO1j>^ z^cHcY*z~A3H=iIlHJBIm3y56F9-|poI=ZYU!Ai6^sxA@`C3!g(_R(X6DTB=SkD~4& znopFNva(vOzw-)^l2;W%Cg7_RB=7obkckHHt4ZL>-PBEi!ER2 zP(}pZG+GJGuizkHJYBs`gARqW!VX$@x8Iv7j0@E1a1<SRV|DwYaJksV&*)_OYGm!rOY&FMjdv$G;Vpl)X!}Tjdu^e^Bu=dFe8{*M8)GKb5bF z?zDU6n0>4dTxW4Z3DszNdR&f>x5%EM76w9tXccSfWLyWN{WyN?ne!X@M**}L@z-kO z@pt1x4k-tK4=U80yWMvdh&l!hc|H%~v+wj#cdsPUrklZXBs0+w!6Gv{)tx ziw*jM!geYolPtu zbF&nd6oqwUa-x~PwV^&?I?$kP-kbMuow#zwrw7Euv1AfN4V{a5Y}0pOP6biE4!97| zd4>MjSMsO>hrz!*Lqqbl^Lnz=T7k(9G9gV&|C84GT7EIvjaYy_RQGYrgf^0vw3Z|t(6IG{!)H;X9n$+Y;={~+N?Ip-)dMTVAgtFF z==ZXT6#GP5-78|Ax7PKi85eo+7XGo_pF};^1YYc6delQjjH-BJV0aYIkII@n^=Q}O zb{QzS-nS?zZv-0U#B*js1yqp*Z60Iwrg95Z?jVX01D3-EN;Z%l^}dgv2+HsB*v%M) z4j$R_Y(95w7!@rUhMlnY*wVDI2<)4D;G@eA%$m`S`4PoOqG|cUOAXb>Q$S#Gw zU=SeudyC%tCWO4+i~E;p6jQlXPSnt)ALGAqhYn`N#p!?q9*W z)n-Z-<0xh2S=vJ)KUX7>?!RN2+KWmbjvG$eHLu>t!Qgp}9DK-%-xMACdENqRv^X=a z&Nk@r8AP+^`mN_#j0nX^HsCqc`q?OfU87SY9k1Z&TbMpfxgra-{ZMd!J;&#ZXTO>n zV>nDSSU*1TODR3cub_N>;JoZWj1f`lAijN8^)bZKx6o#7O4nXxp<1T(1SuFk4)OuuAD6;~s0(}@VP;xeEhjjkX z{~ST9a(+qk^a9@xIfew0SF6f*7HWkltZ#%sAPtjq9c z(}!S2q>8jPl(HV8br!$tEjIG`V^j^l7>kGX{MuQGAeJR9q+!p*FDEA`Z<*HDm8n24;ui7zaweG-fj%mLiaF3XDH9<5 z&jY)(D~pKC6v&leOuQEXsP_}Jw@F#wTpzY*O!pia?~9+y21<( zCD&bhbX|l<>H7llpi|9K?ZCZP<%Zsv36Pb?#cWH}dh6=Jl41vCov%qb@i2Q#;`jZT z1n+$>)qe6Y$y>-t+KpwFCRcJ34GyAw;*_3Z z9FJRJ2&K5)GpJ~Kz6V0Lj`krNVU0m*+#kK1ed#mo<4o&6$b!(9Nzw-0NqX0HhkPD0 zNw>KwY+)d|64U;@pYp~aMg$Oi;CFn_ct4gLrH5CXhMA`hQL3X86>d&^LQ9xCS-;KS zs1V9d#&J?#!#`$(l*7R zSyeZGN~y=>_m|Uv=iOPR5#K+ctNP;D=WI)ix2Nkg^2TQrZA@4x)B;&8b?tn(gRe$n zMTv_M0%*6#*5mk~>|<{nE&0b<>WAVf2p@w)V;*cn0oo(RX+w2orRZC)Ogh0PONPhEzMkgEBk z{0-i&V~G|1nJ77T!(hMmEJ}MpB>^#0t(c4=o35Ml7-b; z?odOlD|CU1b_J&AHPlZ{NB&JFK?+d|(PuB3p#1l;UdktHhzo2H7lqG%p5zEK^Z9yH zPz9FFi^cXPsl|Pc@=)Z7oL2G}z)T*e9AwW0_5=tO45u=ooHi-KxdH|ny+w}f#nPIn zj?|VG4)X~Ljz5q>spv*W++4~PlE+zwZZAn6pyy;HU+UHJpm|5M@-)4~WhB@pi<@^` z4j)ejr0deyEoiJ!k~S$65is8SQ(lR+%0Hy=)$WOrY`8!l-`-c<3hXrNvia`i_7ilJ zi!9dC9(Df1Oso@NCzOeUj*1VNSBG@@-J1y^$Mr#;*@Jaogc4Ct3R6LXid@+>r~3h& z40!KT=WoP<%JmH<3J^pcA)V!1^4*8pG}n^_GWyRhedl)yFe=X3)V_qXQa`Ho1}s#S zFb5%1T_r=m76uQp6UK+^V~D5bXQk#}s9kyrsaCX~F^Tl5X!h+)F=mxocEaVqzUto6 zq6o&aMkV^lXlMJ(tD~bxF1%1-CqS2T3pLE738Ud`oWoidW>9avXNbY&uQo3irzam# z7EevpVIZM?40f72wvdTP&J*c;T5OJ)Io`2!*B~3x%ikjFmu_A$n|>i4A*j?Tp8W8n z?^sNcNTlgFf&o!JVFM~6^gAAd&PTu}BbN#W!lIJa zsFK8rao~^fSP_DDUi_;~*$mf!zq_G^r!ibpe@B!oKfROd9R<=@(1y-0eDek!ROoqkSJCa_pm{C&_!`JDR53i}Gl?jh7 zhZ;#7o0O}zCpe(_aaJ{^i2WN5qag2Za`MkbG-PbAS9}-51Oc=OR~G%5!kRd;P@(7m zxGI!XE#X}?6=i%>f!ICDnrEjZSdq7={k>C#(=8skevR@p`bc_1zVC@oD?;=7^bE(X zJ=*4HyF0r&tK(j#RF9Ec$HZmA@p()4A#6r;vhP@qW~fmexc%v^F3Kp;8Ajy@`qK%j zP{_(j$an0f4p41oiLjZq@I?!qK7uQ5@&Yc7;6y( zK`ILA%y#{FH<<%0rv^SE#edyRaXk{5smFWFUP`nlmw`#QQQK9gTJ)0QFG_?FuPZBr zZ#7@OLuID(b@6AEkPVzf$y4e)2Q%yM@`#sQs3sb(B+pR$i{D4ihuaiE)1^CLn-f zqg3IrsF&X-)#x=)lv;=9>Esu>0V=T)Z1^t?$yKK83SsrYE` zxH(Y`B_sI$NRXeJnTL^B--gW^l|Fm@=x`QQG~@2N|4f*cKd>FU4rtcve-&e32}hdhsS_QsKKxOY7*!CrN27K(SX=Qjv~w3 z46)5iUyT1sC3#vU!eg3m(#y1@4q5{HJ1dkHgMB5JPnd$PM7kc@Uviz6l$9@L61OLH zw)W1@Y&wF;TT`U8;HDQFgRIBtFWZO>D)UGMHpNIT3{@pt^*24~?)pwDbA)|v^nqLt zOdaWR1BfOcH^{SWNtMt zrESkuYZzK4?vG}LPuSLn4z}vP_3_I;eaZaU<>2s)Pn|I%Pg3x1a3C99tY{L_ciJn7 zx?I_VE9yK{6JQ|cut%Li$yH}Yxf*QRs)lm7mb$zg-kS5Kr#>r{&qD1$9&Q}q|3*QfJPPw?oca?Td;3JPU*4d!;pKjr1s1Hts%D# zAI+2pJS({IeF;!PeCT`?M$*7QmBu;MmDDF+@_CM!9tisv>ee0p!iSCxdh>ZDU#yqv zOW%K^TdDt*0cLtR7F9vYxOyW^U*m#u9$gFK>u3dfO1)#5}%lKsvVyB#$qb4(3uRAF*^wH$fDZ@ZG2gj7FvlpBfa>s%!nav2Jz z-q~heQn?8sMI2|PHu$M=Ui)q;p>?C~pU@TViG$2$T{n9iid0?7A z<&Z9gf2$Ni3+lzb=dMN<;W1I|s*%fxG_>!x*{4omB-XQvlTH zgsWv5pWUt>2UpCowyn+Gnq!AsVtyDzCEHZnuS_xuL`I-7j0pss$>xzY9A=hoX;9hp z*rR}dM_FZDk`Y6grE4hd zFrr-e9_3%d1|);-##L^ERHB$Jep?fv5)`qmzL(I8RPHzDV9>~bd`@$5<97wJ0pE|d zic=k^_fO9(q-=FWDMt>Rbj~>887PPrR1C87RP!*StY?$93Q|Rmf$MaoH2nYQI58s0 zBFzfLiDwBWn?Jq!w!dL00mb6^%)Peu)#mQU$D=-y1U@e-6TkOv^l|(PjF z`TM@dcNSMA3ds|zgP(Bo5#48@1@2%8Y=TdDW?y}XsjXXmU4VnhXCL2mzcw}-OjqAN zUiX%k=d)M{PpZ?veC@OQ|6fOe*N6@-*~%ZLQB#Bg)HI(^*)|k3Ynyq2hDv*!OtE?Q zux)9KezN+)0Pr?QS!1DFRVw^g>g?jaGGdfuqDM^6VjurR4PR@qGX2VDy#+ zYuMF9 zP?mJ2cg=Jle(G~fC>pa+#x|2%ZpMp&(X6K>GhRPAH8@!R$I)3wMcH*xoETu}p(Lb+ z91xItrEBQ!QbauA3$b>4W8vQKUF>S46A9>|`PUwA{Ml4{B8pWutuIdV zAmO1QnGOq#`T4CE2A`+`Gc2{IfWg-R|2>k}M^;ZumViL5vYLD@v{GKd; zb*wWd^3sBa!7aZyn|`9)VC5bB+Ka0Pf&6g33pkhIG~A0s4(`vG*A zTC<{U=q9p&WuBXD6MN_>k|m*7lzggVs8TA9+)(nKBKPB7F_}R7F)T=7L^<7wF69C3 zQ5pIoB#uDz?DhAwWoNb|Ow|^9hhUQI@}3i{i|6n4VWGteuwwOlsy+w-r|jN>CGo5E&Hiv^*HCodKjnR6IQ6MXLkfljU!G_Rx3mFA$&5y z>pd%`%&!<0%tSrdNTCpcekS5Eq=vXq#%X+VF6O~kCRdbmpD+>6So)fsps%YsM$?9h zA>t~fhLzm5C!!?;W7XA{ADvE*mmFTO|vt>}R(H_Oi+yli;1(6y)I7`Yd2@oZR;TWeG z44kMv(j^jVEEb}MhK@Jwrg|FfG`9FA#KdS)(vNHr+AH1-IK=9DF_kmXc;cW0 zQ(Q*AvSIo_KH$+U?A3npg(`4Avf`*K=+^N4{91q!4s_q|Mdi0g`7R<2Is`qHBTiE^ z1MRdc>hX{Eg@yP0(s--Ppe?~6qaBWpx!S1v=qiPO;5&9Q71~I|4E}j;i;s{0S=e$* zoJd}uuHDYeO&>d!N`$5)rO!A2O12*|YF_CJ;*W|?(n56OD&CrPkKg9KU5=Is20gBT z=v=1iEWz&4fMnR;G_GFBJBy`|!o%du2v5ZTxtPZ#Wm*W2rj6l;Sq6SQKU?pup+W{` zn<8_|Xx4;8sW^iKiKT96*&znjCY5MFf4Jfnz=sb%;lM~wUc0<{aBN`HSY92%-o~vg zQ6fob9yd);){TV`czrQnLxQ3gbQX32C;iSZhNPd*ut=~Z*uFKf^F`BVR3+G|;S(hm z=ayuNAknlF2}B7wUUeHyvXmUC7eT4Pq$pi3cF%G#isx-?B%2NiAm+knOTt|F^$Dv- zG>FAV6+LK%@F{U97{Ptlqs4za(uFgZDlB-wtunC5UYKizu_fXqtOAk6Y+SkIH&M_s zy$=eV0`mRmOfE<@!{M*HACZV&|9@PiQ(^?b`-X;>jl8mdKYtV(j1v9cSTa9i<@Z%M z$_k!*a-{xR(?o%)h9)Yb8l#fi9NU<$ZuMUYuWu(QmjwJstqLj|i5FJbs$GBrQM@qf=bC0cM;7T|=?@TvKvDTz`5=TV0PJv6*-m zmRiiJW@!%VX@vn#p&pNg)G9R0oz0N}iIFI1FR-3`cr(^QKQ!<81%@pA>Rhzm!ZqDr zisu}w1=-qJKl%3NKZ}p%8<1HREvmnhPnhm*qvfZMoY-bik}{_w2-?-Vo@(ld@)%Ca zD@+lh)ZF}tRn}I%(BcFb(xSqM3Be`Ilgbhwy}N*6fKayJRKP@G&6bH z+jr{Hl21B*qRbKU!G&6Kwa}sS5TSGMchlULjxe44-|^5v<;b_#78SeuBXVTSy0~-^ z5#y&80wp8kMyO1^+I3P!7tms`r;B%pdv{-+iyd{%tU&Wf*R7dpVN-}0v;a*@v<-JX z;79eN>G9AKM0qMyFD|u|EkEQ>tr;VO+6r^1!_M&QjbQDxdCRFxqkc#azNY%7_0DFM zx%=@|{#s@AXzHO5HIgjER&*mm$DS_SX2+py-NAZYdjoU?;R(LRk;iMT79$C375Nt5 zP=vgqp#?_RP6>llvy>-B5d&tP9n&J^ax}$eJQg0EVYOMD2N&`MYCcn^fx_7?K!Ry! z-tsSqW}0IrT4QOg>un|Ld}zgIBtPeFX+w7Bv{u$y>ySCyo?2jL+{uG;ci4f-1*>u* z&{#{tnzC(-{}~rR)&N2HaWlaU2P!G0=D=7DpTy4*I%bChUXCxzl_JG+@$ES9_ogiT{{(;p{9@<^Wf{DY{8&krlbcGyA3)97#o&aBfEBKL&q&Kbw%MhyhJwG0R$+$Jc zBVqJlt8sD!d*s95eVprorS{mz zjow&>jpUXzD=U8=eO2&M<+ni9P+W`u4k^}Y(;e&V6N*wkuccEL^Z@Ueebd(o=kIwB?0onoo*vBc z{Qm`k>ehM6>%VhG4!@!{?3>Wx`_<4cocxjWtNz<>x+!|h3Fxo(lmY&FT&>?ul(-`6 zHJIh)F2cXneg)ZiIWFDO(Wk9UeJAI{=VEZf;VkB&LRun}nyMMBBwUvuQJ3e-U9&5| z=#`@6%IO+c&z7*9Do?bX{jwS2b(g@29T97*auk2uUD%I0zccKEObh1F>6F-OSd!4- zl;)xEy@jnd!7otgH4%GPDdcN*NSP{6ChIR=Y&v~zMn&}@D|jzeV^Ur{#*<1jSv4x^ z?D7UQ3Cfyd2#s-HBH-d^fr-1b{Z(K2claC1_}G(gtFZE8vqU9LL8veX&)3%(^Mc%8 zc$Bz(1iTnzPLBz{ef!?mm-xHNzU(FIQRQOGi7eHy!er-Z$_tVOkHf(LraliT3!=3f zqM>kLVb%XbpbGsb^ae1vw#C`aV8H=Au zc~PGrk&e>JWzR6B&Jd0oB21R5X8pxIL|HUR&Q;8!435gzDaR6=xq~jBv^p^fDEf{k z0A3uvh+>N(O5I95A9^?6>ePOe7H4T+pSX((7gZCvoJPx!Ry)Oh9;-bc4Y#mxd_=!D;N_2eI8%p2>LCw&)fNe!`etw&F zK3y-ed}rk%;$sO*X5-ys0J$M>`>>F>5y4SQZ&OD8%K6m?1g3(Udbq!Q7i1%GPg^& zT^a>XM(0pE=a3)FNSG(pV>`->F`fF5OY%P3{t#cfQDZd|^DKFo(ziDv%SrXEOw?$R zxX=LtiE(K^{8J^+25He|vkJbh`3s9>%gp{4*ViNDW3@b1 zE(YyIog_4iiH-e*KO?%`mf^23Lv>XT8E{kpwJV_Ys($mD7hfrt4Yl`X{xl^tyzGYP6rJx%&1!>V8NPfZv??ED-m6 z?oorWTSx$FW#u2*I>(O4jNkowijuakj14dw-BsSZ7?YheJ7379L>2jm>S5{6HSj-+ zf{ma|e%4m=Hy_|#tRydm{%(nu6yG$?m~dWjkhWd$abFw5K8&fD(gaHkGys9%uIhI% zq8RA4M)J5Bdz`7339we?M+1O)Rq?aWJ3>rslM@0&n{;+kVyj;1jI1zmf*vJt67{B8 z%?H|MdRz=3t%A=^A&2(4v*8b~h1j6zhD|v@127oY+bjhLKWEZ6?$i7rUye6-LIx=k zcOIRP(jWwB$4@IQ!9(|hmOJqc2bV^sBqLJnoA*T9rYt2@WbQNB%ABuG+cz=%Xgi0E zme&$IK;W<`jqqk*w4}I8$?*F6(aUm07VWmUyMh!*pGT1Jli#l@axJ%fQLDWK+0BH2 z!lmhW@_zXXh9oX{O`~_8Sfg$$M>vGe&aofkdIbB&I|lw8rF~MZ(~U8*zkQLfYPFt8B-2WXJa~2O0~s zT#PgK2Zp*5Dkb~BSaOK�bjlUJJ-)ztDD$?ih?rwtPEfrpG{R@!erNJ17-5vnG-@ zSc!OYex@Iwv!00G3ybi{A8I*y(jl~Sn-(*GaG}j6A$MZe&OzlXs>yN;ut^0M)Tp+B zD8s6ZrUEx~!!KypujDUw~FON(gAfY(Uoyy>A; z#p5B+vs&y#Eva)&HZxprjgqcT`<_+&h<(Be;v>FC-{0JYQIePb>iDVkA}F@2Eg!>> z-RIcO`!jlSe}eB@(RirL^(8Kl+A0xft&?Da!fJJ;?QvBrjnwr5W@x#9+2 zTl=%mdQkVum@u^7x*wx18^`KW*U{n-x1w$F<gtI8?12BIUHtT*;zd7 z6vUKRp4a;F5vH|p`l&uuFS#yd8p@HhCBMjN*mR@2y_ZK8U$sLi+_w##S+|QvVHB>$ zrCTd<$B)60I#D*n>SUp#wrasjl+~FDB-UbHj^;MgiuLCxAFEHvG#SG;h=#$r(g`LI zIMi4lXaB0iQJIFkz~oA|MbT|?LSS$V#-o5*t<`(r9ze7Bubpm zC69)rdPrOM-e&p6CL_Ck4DJ87`Q_ij{}U_E8~C&DjDr;_8f6MyFSOsdgbxm2Oiu}7bUqxD|psR7kU_67HI zTM54Bh~z)e1Uws)-Gm-~BFba2Z%Owl&N*_lZ;z(_BL?o9@sqWP-`fcf*|{^LORI&$ z@q;3VxeroG#}x;oq5ma|&v5`O7ERWmtnBioRpk*OjvT9nyF4nCS*xdzE}obuPE7w5 zGEJ%LT-oI@T?w$^WUHiJB)_bC69x}i+ww3*%l3_}SnkV32FG90AB(-YQj>oQ|D;G{ zbuhDhP~BjQ?iKc?B=i$a!kgU8R}SsBZw)}I*waPU31F}Vx!HY^FH7JnH27ktRU6<8s$_AzIgC+{~a}xx}O&m+wy=W6&$&Az=!C5Uw1WLe6B?Me+GM z;r1O6N_2;xEQ2eaeUZz@XmfkR?-EGeAtIz2{v6@5|Ln|~-}p+KVucpt%>Vd_ zy*ZS&%Tb208S=A2+-#Z#^dW(WhY^dn`vgN2SIl}(cC`*~uSwoOBlMDAFN)2O8>($6 zsl&K3^u$k=v8;``M{H<*@E$q#`t&<7RW29=Gx+)}T9zJ8gQH6c$NIZrbQWf_ll2x| zk7{d=>3F=R@CLd0fSqT|5OnOmHNPQ<)T$AQhDU^K;`yGQzNBPYt$6PG|JQPi2FUNo z%IoMfbdzeF3`gkiHmDzj%aCu-K4&5LVPcWfHj6M31u)1(=0>g$h=D$Vq|BBR^f`{V zBTjW92g{hm>_<~`*3P6&oVfC}eH5Kz;yuZw1F1o&;2FmSV4|&+3<;`^=Trpxx$qNa zX6~}k^SV+=E@&O41GztY&w!5MG8Pg1Q<3XJWe(Zc=!;((m?Jd8O0Ps{N5o=T2v^*r zbn00b^pc&GaGzt@)AcnPV9NMg1_chhsvKhG8i|3{c2y;F_^=g%_z zP*9%4Z7GgOKzSD;88%b@_N2jKS2^Y%l3Sf}}Y*$f2zKvEWPd>Tf+)W;q+|L*m! z&}QfnQ*Hze0d_G_CqFG!*BoUk+ppi`V7^FK+bG{%3=NH^A5SSL1s0w z;bK|9Apfvu28Y*H*+O9GDY~jz#HO13*_=U=K(g--&s%iV8g8gy6z?>!{7YUl|FFYI zY9vKH2D`QvepFpa%7@ibACkG#D1Tldx0?*L5s-=d4L4nRrc)UzN4^206fy!&zD$O!r-+%J2%ecmJn0sZB*ED0Y{TuVa_^9y2Nq!;+9Fn>AHP1;v^L3o+wC0$>PosFb~<-z zpW;xTVwKu{hR1OLx9+1ELN62dSXh~%(-s}e80iO*fP?jKDwS~ILFSfXk=7R|6az3( zG7eOnVg3qIRji@dG#%CZc2t`3pEey_t=QcL+?@a_wt2u*iE)0|R~6#zMzaW}y2`lkE93a-9E6`IX82YD>2`Q1R02)|I_X9->lL zF?2K~CZ@T{fY5{oZ)XXJ#TxOZX98EHs`o1rRb!gd=^1dW{Lzrc!=y88vCxSM7#8nBPiwj&@Go3=R3{En z@|xUZ-SER~XEi`&&IFg{r?1*EShJ2CHW2VJCzL%kx$up%A%Ge2{DAZe@`Jr2C{|3`nBUeb2#Tj3G>G$_&fp-Dg)0U#2-2pWZGBWQx2JGH4(#gG7zh8;n^Ba0*oT z*(-cC(4@sm|8RO*@Q>x1xnFznqYuj;hBcNVfwmww%}J%vmX(*ODSC->qaR5<&R5!| zmez|OptRlmRrF*4J|fbF2HFP&To{M_zdZ0b7Uu)DZN1}~)JqId+;YkJ6+-%B1jStz z2FA>JjXbwpNnt4s(wo~w@ica12WKp7Y=u8n+EHqLa?xn=U|;{L=f@fNnsXD5HtN`N z&`=widLCAexO>aG&4ZaR!83At-97Tp_#3DfVmie{vKSRI1QY?AFP$_YrNsAW+*z4_ zNp1wPS)hAnXw{+=22$*mf~Hng%$BJ*YvL_Q5=vRi5NYjDe2_o6!J*-l`U*f;rRZus zNzq&-{?9b;2OA8=bZogzIoVd*nsDWzc$Mj?GiHJ|cl4irYvtM{EAq)gGky*d-!adW; z$sKT?TF11+#1pX91r<-R_fu{MDfOlV>1bu^ub$uUDYw#CA5r77{(0uS&o4z!YVuHM z{01i!Mh;wxvsN3}rJTtWc*Kk5S`k8s+;H{#z*m87x69bD_BrC>H+|W(}KEg zId6Xzc;P>OBeV4P>xZ+T^2fEScL?W^bwL2sJ$wLg*!CY5hJ2~7$c~}GG`*zq3fI2u zMOqYQOUfOyy+DXcGTugqhJ=vC0R!F-R15z2t~>73x5l)Ie+lz^aJ5jyIpM6RV}3pH zyt$_??#gKl%49=%c&KFe-Tl6*iEg$eq4XCyekW3Jh%!yoVK|Ieq&J*HadgGK9V)k1 zR)OxF;Nqi_Z#VJi8J;}Xis7caT97#<2;TVokaQ9oA1jRW;j``!o&Wwr6I>d2PM*m7 zcBcABxN6U{ot$~#+(lR!foc|SVxD{dV;R&r^$nJxv$i|7C?f$AW zjQQq7V{<>8+r5Gtq3bo&b#g%P#vQTq-wEp9_;#1(i!RZtmt9v+ot>SR$N%k(!=m8- zwqv%Mb7gvWXBpQz$NJpr|?IBHAaqk?^$ah8`T{DLy zNI6940D?Hm4B?gvD`9}x)6>axy@M#>KW-*oA{APPs{d65kvCz`9AqXURjp;GF>J7; ztT*vYk@Z_odUFA9Rf2S{&^gP5ta&KB3YlQ1u_94VvydjGL9>#FYcg4l1=&i+5<;ATGX<5y$WUZZ6PkvlhLCk|1ILxAPqU)Zg5T% zi41i1MEX-0x8O$ymGHA=A(RDP#XQFK*@vz~H`LWakc@RU$5@`k+{sHO)U`n8?acw8 zRxfsEc3s(v;IO<7I$s#YGoi5cGEl=40<>RL32lhDH7HUKPu~WS0qj~3@W{z&xaaCg6XeG;LW8S%pdIgNt| zH4x)s4-+KpZY43Mi(Y_XnZs6_KA@!O|F-F={Rn7Dx^lX|-K9+)L0-c%h?Z>*M;KxL zHIP>;Go=SU2iJt!zgG5i8q?i@t)PtuygXLF4gi4*4%u zNKrBA=~R-p*C!X7x7P*MZf*~OE8}fPRBLPN%msFcTkuIvA$s+6?wQOxl;+a;r1PWm zo7az^2C-d$7UFf&--lr;XQ=MT?=7`)`#IQV@;_n_m*W5P8ebD1TB&pbAWzOOVq z!st4!bz335JtRHaME%>mczL_OwDR`f&f7x(Mwc+G{PyEV|H#NlC+fgHJ1Q~~2Qa-E zzwaLaHg%z1RVj+^S!Yc!TR7Ybj#^Y`G6OCXs< zvDtE7F+t**QP#b?Y}Ts7_IN>zyKParxe38Y*9zNy9a5U>m?1@4J%=hi0{s$`F%QZ= z-)l1HA)3}%Z_ohcDV%s}hAM@$o48n-Q5CwvkU+Cb_G~CbUN?I9NRT1Q7ywJ3gvtzt zwM7>`Nb@bm$^LKW@2kgO1A3kZD2$hD*?#ojbFW6pcZc7h%Q$azsO=Cmmz>~|{w{U6i3RwU67kh@wB3Mo8u(9W ze06qiNpU7yYx1+P`6Uq)e(`y35f`2Yo8{Kl|DeqKNosAos$C=%;>w&6q83|Cx;cna zBpd1wtq~ysp|3)LCRJ@AF~AO!g@P;*r)xZ*#HTtd;Ij|&|8!g6n?L*1MH)a7DF>Z* zjVY$;ok3{i$;}~-aR*Lp@cyH2ncZ8%&DBK{_yw*sj<1|`{Ab{#>0K{+NDGJTzhww= zXQXN?UjcOt%f8HfzXa2wEVAqv<)8qIg7(6i*9Hf);+)M0@EJV<|9pB1h0jPt^pv1! zf)acrqe|Le+{k{6S)v$>68gfy=!AX9obSKG#ly?H^0oE}cubw4fHZ9x5D>6rSByY5 zJ(d!5gX#E1;>D{{mcMMTXTSsUu%3(ID-YzYs-<-Rb=_vkq+@dK?jsb>;@@R)S*YYv zfl7c-rcgsWfAUX926GsOo>iw_RGkp`4G_y2{b->T$EzjdUbR= zVJQ@+F~o#O1HKhNXT58Y&To+HU8Jn}{rkl6F&TqYd{3qLt7B2B2#BUYUq@(j-BZ8E zO&mrq*)kO(sfdr#1f^*J(@)S%he3uY97#){Z#)0hjeMj(iN?UFGg4KMGuZtTUS*KN z6lto}AmBws{tyI-M4r^UfFB`0SVhw(Ni9G3s!=2NnW@^`;_SMj^ZuUYhsOn#sO)k8 zzijc}rvE>RMUy0^@tAR3O-75cfE(N0#f2C=E>RTfpCrbz)3YnOom25e|6Sg|ZS`kZ z7y!t9jS~U8*fH+%PkkyC!JnW*s?GURRfgzz@wsI?&^Q_X(r&k8M?LBXe4b&`$_5gu za1hK@RC8ErVTZ@1XVb%Yfi&KMeC-KXt1wlm4|vZgyepgrBSk&k=d?GgplB( zp7GB}VTw>fTU9pil|XRRl_ygW_GIlkGKRPou!wIz#I6~M!wqoV`(K(uL-CT|ogk9J zOvQy6gq0{>e`&WVa*;@(F%Q#bc+Q)i<47}XS}w>~rT}-78)uHzaS+!BLKV&5ijjU% zZ_!!pil44)V7+X29V~Xlzg!BU2KpzViHS+K+s#+EmCWGnOm{$L|IrzAzw79JSEyaS zAFj;pi3}-*@6iDDQLS4LVb|X`U2!sC;)N_t)Wza?XY>J>-N0##85s4&!(E^PU2a%{ z94JB_E|4V3)j?y2`JuEC{8~=fbi~0xcyV`k75yZ8+1K) z`}djd+qt_zD%Uq%x93N0|3I_Aq`RFz*PSQT~Rq zL&!FR{&P(`;6xQX0$1+>)V670;4b4=k(WYlT{#Bg@e}mP@fz|5~JB3S=6Z*np~|q$`M%;fW<)lA;k_F3plYdx6iXp2-jH9^~m;RL4QYO%G`>e|=(P zWMqR%0p~#d!^f$6fE`){>11Mb;`<_6h-P+sT}_A5iOG8F=#%0sT!th8m=!Q;BOh;* zzWL*=d6(=iVu-sf2dy3o!AZ~q`&Rs>5zr*S&L077Twi>iPy}2J zRS&3v*%vR-HlQYmIZkxvl;htxQ)k_bq~Pw#R*K%L(704Aa43DXUj^1iu#y-X*L}bn$5NLnRY<@G0T1UraC-F>MRMxV2tiV0E96z0mmbdStpE3lJt;mqCx_y7nm z7QPb57s5OLZLyYR)lB#0^NSjQhu<{L1gLQk%atF)!AAj{NkeV#``l#CCq7Vx$*lJa zpcL>~xyq}zAwPC$c5&zHzC^4{|0^g#m;XVI60*ygO5tLvk z$!uHk@@qB?zR=hBjc)sUJrmxbkH}2Jn;Qh{3qBWS;48l)#}2~Tfh}K@+T*Cl9hcdf z=n|D1$)B){H>6y|%)Weu3G!AwC()*rTH6c0^$Vrr2aG~0Tn!(Ml_@Fs?V1Yp)Ie-4 zzr~jX2)flx9KZ0n12n?2-&#(;It(Y_5{~cdE+2D;Gc6ZQ4~Dy}r+@O-A2H>qGm|78 zC+se{5F@@wLd!1r)HgQ}%c##&#iF}rP#zsxt`!gn+w=ZO`zFJElT^ajUOr*xYKb58 z9vk zGG^vO;4k;Il;H(hnKnj53R<&3S(4+kr2i_gctc3S+*`iT6!&u9HPIJ78rGm(_MgvP z!eJhvwx9FALxQo`3)spcQil750G}vZBZ#irbqEtKJN6D(D_9ui-18lLpH;<0Tr96W z;i?^Q9xLpz7svF8Om4PgadY7JjzW%w6bbwy4t?+fixJ8w8j>4k@T|jOE%CfgE@s6c z38U%jMQ})~CqCI`y$hbDmlrDXsvhRSw^H<-Tv@Z1wc7N*^0N1;B}OoHE=zl&+dgBN z+N-M zT+fmC^89w5Cc*|qC?h}Fd8c8gKiJgtb(#U1Y8y)j@#R{TnW3!d z=g0%}AR-QUU&|yJrRV9kyWtVl!$B>biT;iM`Q8j$IFeP1{x!;^w%E!REPkpjfbo1H z_`uudb{txUpgJ}&%jz3E+m9hDEb>y2wdTaOCbArs3$sAQ9Gtcpk*DU3o*sJ)0Z`%> z9sddl=tQNAZ-N-t3@&pT#RUInVXJD~Ki5exEIHWnSomp4ju=d8E2W8KGSV6;XoL~9 z7>MpCOB88eTx!t3ekgS=T=%mbd;DZY+eE+Qz36{6JP!-?xGjR5s3#+4(@eoRz(t@U zoAh!j0~NC^?nPYgfGB&#zc7)8CO1<%+D@cbGKWd=O%25!Y5B+oWxMjEq?lrUL z@`ai>B6p~od8E?xy(kaMO3No+??iSv9x>5>H|1i5tYLaUUI)Gwfan4#PVjG2Nq1A) zAA*o3$THM`Hdc!#C`Uh>DYbF(iP9&p)uKq>o_8o^Fzd9=8S~|bJJ9*QZ^h1Ql9M9| zkg0%RS=8zEHflcwVYP%4FFdmj^-j$WCp_fQPo^@4Q$|f|F3r&`nwPFAL36u%p%o&O z!FphUCDV?4f`e>5o&$}j-Rl&+ViyT8Pc5dpm&YVdnq^gY-&6y2*RoheU);_}Bt zK^)T@z=R860IL^$77D{E_z}#HuK6B0Ytw%Cg{mF(``(?~Lq_9xuSI$>@YY&%e@mF4 z19%0n+r7`>2zH?~i@ff4MAsc%CsaQ=&!I1wYLXS1Fe@eNlo}H=ej~(str5khSr1Bp zr4SJ03x4>8Wc=39&=lk&M=>^AN#nr{wT!++pYXyUb2&J_)QL_8pk>HC%u*sT{l3f8 z?g#3Ob#ofNl13Sm-e5L`@8y8q;Yy+eXi$(b>Qi+@jELN8CLTXIvQG<}yt4neFDw0F z`;T((2{xD((Ooji;G32|lZ0so70r+SAk&Vi21SmMK~@^ZOyTS(P+5UVa)x8;{0CJA z4gyi-p$h9U=(+=td5zUmAPDx?*3^Ly3sJ-j==eiPZz>!<p=CJzC#C z_q?hGCn#Fgo4H}SsJnEQ{?^B#8@%cJI(`cs=V zpl$;oRp+7jZ8>2uNX3F~ApF0B;mCjwkAV`4%ML-F)iKX{6N3-!8~up6Q|rT#BRf9o zp!Ahi270*mLHdVCA{doGtIxQN4x~n5U-4X2ieXU@VZrUclhBVF6Yv0l)b8kp#YOeU zoBgGMqVlpxF)&`G$hhm5p%cE=| zCRDpindO!dbvw!jwHiN5ld|0TLaux&v*9{wdI#Dle(aWDl<vp8iMW@Hi&n_6;`?K6|vt zBtE<};un4XLAXGZs3J-di~1%F-3o)reG^Il?h({}w6E-bV^KQN%SP=o5u2$e-l2aa znu15E&ejc$bfCF&=2VKzU;Ntd>-0>E4PZq6<=Axe-g7V9)Zw2jQa$Id+%R_R=7ZUTz2m^?=e~rL~60!^%!v_8^e2VxUnYz6&> zxvU`UBD7$~@Ao8@Z9TAzNR6x6r~38#fEt=NABD_KQY?YXClpRkV9G>3#Le`I+_Lh5 zddO{^$m>vf%srJEQqM!NX>{)}a$Gt(aBSp#5Er|TllS%VER%JR)5~Xau|>PSm#9cP z_oHh;PccHYkNG?11d9beA0G;34}R6y|zrxEN~; zE{n3;!sAud4^c1oWx~q2+)DQT<^deC28D?0QuO9!HO+cRw5i(n4;FodEW&vh&78pB zQ4`Z6=(Uv{mCIM3MOZK4$9*8p<|r$?;kcK%W08#u+`WAh%a@q*%`YmKm423VOECSw zC@bKYT3l-%7f9H_{5dTg1#A%7W|GnOKQMKlO7aiNqGBFn|1IyPPfIKqg`T@b!Uo1$ z_>H4vI0$>!V(!qtCgu1K?6|PutO8K3bSG&~Fwo)tQ$Ndz1w}Nx0Z6_|jkT5cR@I?! zP_3ma|ALNBEC((B5{Xl*!cgOyZw`-1{uE9<9SkB|FvVg!&$gJp&^RqS|3S*ad+!G> z<50!64o&bfgZ_>aD#N1y=G-MhRT|Mxtm*o7@4zPhfbhirJ=G{Qle@-sOB`9p-8s$Q zg^r1kr99f!vmfqnajW>W{;4!WfYuupRXIp?t{iE1m6$t@KMxP3aEBb-z$ztWHA^Z@ zWG9EunuQaK^muwnu_DNn6_Uobiv?b_q8w!G}<{*g+DR6PS@>u18(hsogKrU z0E=2NU>k&ntVfDnuRXgEGn4#)mFSSipJgzmBS)jjGZU10F|zrrSG(hw);=K-#jvWO zuq*X2=A^^l7o$u8rT|bp46}7+?;Jqfw+l>+i@aOkh3GI?dco;v*9}z-&lsuHEnp^t zX{#GK_s1ptDbe&)IEnFg8*1#=$x9ceX3|~NAh8PiA$Q>ka1IXjn&I%Ao#DgDAn<)@ zv!TCVgSq;C3CoO~u%RFxhGOb{S-CGRiUg%Ub_D2Q0Y^31x-kJ&Z=7^F`G`?ik>tJ{ zZ2&KmCT9o}!k+{tYYj2p*?8LuN}x#gg5;A90=e!)_IF1qKY=i&y-Qn z5@>=R6@d(}1ksSToz)Mwb!ZdP6ancLBtpY?FEQX2sEE~yt_#z^8>eSq+I-yXCqygI zy4mGs8Vq{9K0k}9#-xb>=EgP#m99CvV= zyIRk+DcCWw)3yEfh!+-?rM~|>PVgP0G8|$aaDp9iRL&Ej(DA(&_)g9D$|S#YOPBdH zqM#TcoCM}c)BS$*?^xLlIIXLp(UBmUiT@CKG($nXvJnV4PjlxEC<&K-+(zG zA_tNfOhxuAcBY^+bH{COXu7iyN47|iL(U&_9OFc-tH`=j1q1Vc(eo8GNZ>m8fbtW1 zUexjCSLg4(2lJYS?6mZJCOf#OWT_k^BH2#n;J-4Ehc43NW{xp%9G2te{wxfjD8MHV zpq&9tN`Z+-`;mHOP9H^|$pL3r^Ij3jgT~Zx|5Ru(;?(Lyg-iku4un;a?r(pl4KV2E zvr|{Ak&9qMRlXCEtF)R3ktzy0*9n&VR}rg2k#}$Qw>m-@a#S>1E;$Zns_*O+@ushc z{UAbkQ128AUonQ>BWYLUpoiZJfL8zqt-iG}b0e0XlRP_}2gp8G!%KO%*dq9!yk8nZ zLnTNVF}Hqz|7c5)o6FL;7Wn{}ouT7|U@)3H0g%Zcj66RZiMo;3R4lc^45i9yYpX<` zXY@xHq<^7q1eGl5#ML6PeBO&g#qvjGRbrne7p**qBj#fhE+&YM6JvNo@9Xf|q68oE zDq=iT)ygiP31oN!D(@L+*>cV-y6v<1_hdMf?tYikxsykZ#ndA|;)kXlq{=c~ws+34 zK`wJ~3L@pXIEdSlc?8}>*|HQ=s?Zhx(T&uNh(_%`k#ELKr(^C{L7RpbBB%Y0lMZ5D zSQSv_`oHDv6YYOKd6|;E84L?kZtVHOPYAA8Lj9NP?34sJ|Az|PHwDA)%0mIOInoS} z#6VPU)cPQ2kS2qA(_?+ARg}K4-SQ5c6hY~GP?7`u5vNKNpuyp@S0pCQ$|9hJB9@On zh*rZ~j%fF8#9F^BR0|N{>)&QfGoRrT!sc2T@ZyrADPK7>e@fH~J9zq$_SXFD)JRn& zLb5k;;atx;=|x-&sWO$d1f!%3Slmi5lCiWe1bSG+3(C{w_Tu#EVX?VYeZs=Oh@#rL zJUYMhwDu24kiV4~8LXtSQ6dsTp%iinUioSTl$H4cy$U*M|J@_0Dn@>vvTe{HnEN14 zIbi0$zL-9bjz0`pRlxYIBIz7eS9UqP=G#hJ#!p0i_x1x6{c_3umx8qC&ozN*v2r%Y zTG585Pv=LAUR6Hm%k&y|9@1WKC7y$X!r3Du8;u5G>^Nj&7+8fUc`&sKfBjWV(4*=$ zJ!lyoEjyvDASS+7o*Y5bcI-C`4J{GXUcXhT(g>Eg;-l**kYdLM5Ouv&Z6wsE+IzrI zd6fmXu39zycto?)Muqu4gA$aE)2T)<1 ze;aTrkLAojF(nlQvWi42TDJFVU5MHX zO0DLSA5ng!ly4Rrvt>SLCq2ab6<7&_W(9~I6vP>&_VNX zd;`m8t)(rzPv`nvYd!vKPD?58ciGZoK3@6}`r8-#`nW_6`a0@ph_;grrZ$0Q&`gPFv9-cZ3k{YM~v!e6T72g%Hh{>7LVdY6(~ao z?+e?Y4Dx;yBRKlYz&y$)F%6O5sqARAs}25`Y;f5D>|S)&W8XE3|}_n?L&CAzYYbe0w>!!mxJwF)Zh|PuF7q06krn z5?Q}rV;{`!0jmPTJ46YBijbd};hc%s4u!!@kUP0=qo;zQ>1sKB5244T&4)9A2rY8r z_rkrmi7nmHZ6OdF@DXW965UujTFeZI-aHrSoe@&|r)bsjf&uX1>4cMxUy}5OGnai) zIP?5kfUeO_ph74+-Rpj(_tR>|w;sYj-kJOF`q=;1|A_+$M$t%Hr?N#d=lC16?QT6T%&v ze|Ek7-)T^Q5f~262S#907$^<-iPL3+KqPK&md>}OArTmyLB9{&9)Gk1Ju`ff7+Z4u z*Vd9wN39#NE2vRUC^e?H!5gHIA>TlwkA>HXkb&@&i&=N{~hpJ)rh zaZOd+&O~8g(6Dq@T;yfk>i3iIR}X%sT|W-_l51Bki^ZV7hRg2It=P@C^l+K^3x+61q-t)XitcF0bYvt z3uE7K)MAa3Q~JaG|A@c(pz-TO%&fCM?v5+I`14uHB*Uv6@4Pf*DhowqiQ<4S)?M7OwiaVi$%B z5+q^(VDrwSbh(4xS61F=M3TI#CN?tUax z024ulZP9;74427@XPW~Up;t|519CxTta?xZqkqe^;^6G40MrtoWSIZ^(g^I$7jhve z=KS}TlpsOkv_#i07R?0akN>Bq_k)=TSeEE&&kXRRXl=OQHM^IvmAyy>OqfDci>^UPP)xscqN8%7JEOc5UJhkK(<4zeoC zwnBL2iY+F`I`6%xNI-yLteZxT%WgUS1)Lze` zY53+dA*lYoDUZlhCay?)w{O;;y7bTwQc~;}la%Rpt;L*^3XVg2oTIW#YdilB$*UlV z1;zu^k%(J=?DW&FSKMUH_s!JY;W}*wJ*!<&aq4}(a+G1!{S9inGg_F(N_ zUjHX`u6y=CZDWP9zGuJ_+5aIAqnB>t?tM198FTV2M8f312ZeveB{=;C5x_Vy5{b1K zc<|UU!mepIJst;T*5QQ-OrLqV-#$*Mab)LFTO}NfaCf~N- z^bq?7r?}uHVU$s36om`m;>R}E4o5#duwU#NqH?iZb&Z$(k=!jzy2*k$h=E1Xrc|UG zx86!$=yCm%Q$DbTSkjSrDR{>rschL+plJnxXd+OYVemk$)8>p!Y}uY|{;1>s7a(#U0(iKR`4iCRe06mUajq+n zM+)$CW#<*KZvJsleFW7Q=!)0PDJFVaXyBLe|Bt1s42!Dm zx--KFLpKaaOE*YLNQZ=ibf-vn$57JUjieym-4X)QCEY0^-SC~~y}tkRW9B|{_PzGn zYp(_Po2rU4kwK{+#1SFNqa&Y4kb$*Tz{ObIQ6eERt%nWSI9R3*bN+nGB=vh=OeJSRpve{8l`n%mNOmfh692wQa*W+pp%3Kf0ypGS?66 zj)C)$AzfQR$jCfdf(PoG1;WKm3Cz)NmIbl+@zzyM$|^dA5T6w>^ap*42*&FiHrsWa zqJaEkRlxQJs64!`AqRsJXWHjRZ?-75H~f7~Vm z<@k|Yz;+;a0Pd7h+HCVGnU5}X!O(*1yX${+__ru2iSl`RZ$*@L>aSkF5zngfJZcGwZxq35!gwQiktI!mK^}*we9{g1r;Twt(Cd( z0%nMZu=6WA^<94{guRs&Ya)1HAixk84X|(sq=MCSHWU!(dHL9N_sfbAZMiuaBeZ~+ zOD19a|4q)v@NPO4M)cl`&~Z-Sf1XyPb3VBvITu--pDfV#_mnBY1^~dn(#MIk9f>J z&+9cJH3j;o*5V$wbfIP(k#5$PNubPhovfG`iK=G*cK zZtMHFs9)oLJLf>fY`>bjA6%H;3J#X1(>No`)s6VqR0$|TEYnzYfQT2;BLD3L+t89$ z=zI{m$GIIkrLaxUdFsb2Pc6b}G zd733LBXwGZx9wDnmONl^A@2J;Ol%Mshga2kbtN~it5@QWM|fw~kUc4RJ!lu3odq6B zOQ2H|uB2hhAcInTX?~i2UeYGy9255c2w37LJK?Gj7=LSByEpqGgA5K}p!*SaK}@b_ zp~A844EQUx%_28{Ky36i9y7iRi0aKNkU&EPa^^0+e(-X?tfzS(|4XU|3!{pfWx0BZ z`0XX0^sTQ}@xwdZkjXrs3CA8&(LqKh0wxX(;+pu|nWO^g$#+A>!tPu^oudK| zo~sscM4?9_i(pI4(mxz+N&rw3MGtQ$W?RMs8u_F(vnD>XmEVM`D4h z5kMUM#Kguu*oOaQ{*nO!prrt&Trz+nqoNI47I9|tJ=iCM^n2gGV_XQZxdvgP1JFL> z9D+;OTp?fJbf9e>;MRb-W_5?ILWjsl`5dy~!b8p$H=CQ9g}U_Zf~#S9@?Z@yhl=l8 z2`aMNU}=R|UR5xFzg&=`(aKw6tL12iGo%thsu!!mvtY(vz-CLFsekd#?b(x@UlPIe zrLqi1WZH~(-u_qPs1z(Ih9g5(BtenuyJ7if=1`=g{p0wc@RerSQQ)i9 z44ihBeQ(CwT9h&7(6;}C7+Acw2q_=chkpYV3rMr+#S(G=a{Zbl1{37_y{CqwNwMZ# z9m8v@Kq#*0Str6K|3oXg63b#ZgGo(*vU;~WCYC=ZFK%)|2@ZgZ2eN<*2#Qp}KtHI^ z?6!sV_w6$LFr026XkcMz!?uSGLc+umt0s-hGbS&Bx>e=9w7-3&@IeNl!no~lIrYNk z_)p${t{?@@s`Qu$t&su}N7mHig)~m_NP3=kVkFWop@ZP<;o}9xXWqWxnI-`LyPGb=^Nc*cu6wLx@ z4v=neDvgP#Y=U?dLf}A#X_Sf!2eis9*y)9(zVr~3)WkSo{k&N@c%d{sHBO70@PzUyUE`KMA!{WU zaQrYPz@PNu;?=mSRs-P`=|eYiwm4DBQUZlN5PRvO4PE2Zb*X{KwT;T-WA=^us# z91_J15FIT}HIn-x(Mq4uK195v5MI-~%XvlA7;GGD)e%k!n6arT&vmQoJo=eh^FPj) z%+J83*)9IZ@BsoK1K&sT(PQr)Dxn4W3wX_Wo z-Otz0K7^G=l2K{9XUzd(o~q}-EJRhxadMgj83;b`QT(^yxf#+nzhBNjhZp<3RA3AmyW|0Pd>VHl43gE(q*cz3L9yB@}RB31BuDFb_;b4(*h*O z|CT{cLv-TNO<^L#tQDVlT`*OdcNpd`P3_AgNUB)bKp;T;^&>QQS^TNzl`AYB@L&Xt zIDjjj2LlM3{ZHUwkkz+1prIEx#le_yyim!`_BC$&KTQxIyyspMP#7moQNXVwr0dQa~X1pF|E+)JF?ufb(Ug`_S?Q7Je9pnuZ_}KR6W?GQRnK zxvMBe3!?^NM#E^ZWGu^leX8%Acody<<>i3p$$j*2(S~};N^R=Av-S^VDnUh5|S z^SE(WMW5(*-E>T3a>-jCP?h!E(qWo5WWxi=X$$J8?5fFX2{bnvMZ?>%3(9g|fC)b; zSONN~d&np*ICxby_FUBB?Yz$U;mOma$mHi{6uMr_3u@nW-;I|j=VZS$Y1g+1=R#(rsOF^QBE@$QV17;`1G;@n83gkm`N zfsunmHRk5Tlk^Es!h$QqbRMWnFfdkXXZNo09b%B~Q@0yGsWsN2MsmF+^G6{IghisC z_xm3%e^G!5gnl@0AVKo7LLYD00A>9=roU!mrNTf+&?=(8ZbV;Q?fDwp|HU&HEUPh1 z(X=@K`$xQ-H?pRZPz&D#Zub${ZSM=Q4o1!KR2O=fz~I0x+|rAJ2EQW68l_#YWqv@2 zDY*M?fIi2^%lnnW0KAu~`}y3|zQ+u2BewG<+4koWyORXzKaj3vwvaygEY2}`Vh?CeE+ zTpLJkIiXb&H&x}@Tx{78uz+I}wgo$X`jb*KjU(aKxc0P)zqFdeGU#RogmJt~x!(9O z+2^tI=Y^o4h|;%Oh%IpxxWfSZ+*xuIGgQF)X>+!L+n~=bHkY2{-^>mU3bN^ibV!T1 zmZBH7WQ;*~jR3}JA3yT`3&^+mkL3&qGLqxfA5W|!5ywQ+JknkBeGU_YXPweN8UByA4)M4i5|CuDKf7~%#~oBa5meG2~X_@+9g z73py|X?vC({D0DZ#}Vtu#zgjI9UV8e^~GngKH`QZ#|3mXEm64UdmS~tWAomB3iEuqDZ|!J4`71#npM58fz!3&gL^ThF>l$#TR-nVib>Q)R32VT%xzIjf;W5coe>qL!Ws7|64k(B{-NWE>6gur;=PV z*aNTM$vsxTUc!)RMrq{qxOwK}3oP)f7UPbeMH6M2nw=&SamlvsdIN6DbS&#HZsD7M zueh}yh={jbEg=PySOegZTcqCB=6Qa-TpIBH^|MVYFFFD(U{_%XtxJ0n^7b;O>lIS zX=SG?q$m|O8@%xooryaopLhU{CCM3Vlvj_;jv-0bWsC@$Cr7@c{tE z$C*V>7e+%hf@4|pXO54LbS2;w?<19b!Y~1J04^}THhZNjw7U@QCZbSg^5kn%cXu}n zJnbT1^qW=u@jv@tbGS%;Jcj;l#w@db>2Woq5aX3w<5?B`nZ6>bC2Tm*Nx_9{$UZHo zm3R`jTN}~a1}o2-ELB%5D?2(v(hBDO?Pp58L+%JKoBZdyVy z3Evc-5TD$NfzOU2OCas_GG_cIlaM^|V#)3zYfj(?z41V@Tj&b5F!Y$b{Ygh-CY2+& z+4ijshlEe(PkxVD_qhL%C9R@B1}eI^vA&aA+{#f8QkdI|FWmICS-2#CpnstrZf@r5hy%$+(s-&)P|0 z*WT-jVdC0LZxI+?zu%N5Y25@hgWv6aMlmWhFNJl@XN!wW#0L~Ba{H%o#C`%R%W>K7 zJQ@L1Qcq#;!y=O5Rpk}=TpkOIDCfcIwsV%Y~6x&2#e`{)(8PWMX<1AN)F-hB*QP#qH*Fh0OAqseY$D5NF z2s#_E6}L=f+&b<)NN2TqkYF(GUMHljN@U^v8{LH@)G@I~eOzA4ThGm^ZhF*#_1X-8S7jcZs3~5cusk z!`e{{lj`D-CUhDS!;6W4M*+VJoE*;$x+n$}Ht<7Tl`ndL&ShJoYn(ZWOd^-)bJufh z#-3;L3_sYpPZaBq;Xr&J%D#r&14XmEHa1b!t(}e{${efQZy*96 zZ3giicl7dgrI%u{aj9eQfg+iYpk-hbl`7cCcp6`<~NHCSfH#A5zpE2Gs-)(`E zAy_P-xVgPGWRiA@FS;uIt7=Q9Z`6S45639Rm>n$A`GxL$Ect}Zvtd%m7`S?6iOz&5 zP4$;SRVXJ+j24B^^G{PU;}0*zo3c7o)p+A)f6hPG-FMW1fb%F6(QM4#w-Soi?m&fP z4%r(FQ2VOn0Y{D+#1%+oNuFj+w%e{yJI5&giTjhP3%J)g_R5KZ$};3lii6V`iIBm7 zAbt-+K7%I4;`|pLEoY8Yvx{fN!sRDY2l@hnZEE9M)=bgQ_em!cc9q{nfxnf3>jR9v z%GO9YT`Y{iF@XwUpyXg_-mnn#`wOkozq9o7^*f)Q7$^}?%XyedS=_Z2%EdcyBR2wGqqD;|Um+ydUes4??CStHYId-Eky#MmE=qTn zjrEoO^Sm}?7<5W)eQNl7YT8hDMfn06`wH^u@fWA_bA%6IdhhIv!N}5o8OGXFvT^s6 z)V1MSH2_Qjo;HPIH7m`bJ|}wEmfR9=Nj8+kfpK0y2FoBWGMH%Bzp3L*U-%9IMuk$y9 zo`X7K43lMom`E;?qhx3L`vLL@d5?;MSN@uUhoT-qev}=YNvE}PGMimGD?_SP!d@as zxP5m6#ZE;w(iRXZhWF#+nAP?6xT);=Avh$6Fy~Qh$qy;(XT#<;b~Z-B;c-8vWx_3- z2IIu+cyi1klLE}|t`CxDyLi0nxe`^YeVSWg-Z0T9bJosMRu;C2y2&V!Ko3~>%b;cHkN@KtcR0tjtT{q_ zAp@UKub-_fyrtayfwxg9iQ4JT-oI;Sm-H3+JtUYD21;-|0nH31njVt&d>`UF3DEti4AkOHgi+Yb}A?OZu5Nc8-; z!y`(Ng`%_BC7U>RjRW8ltySw;TMLK{BskVxvxg_9^~=nm+GfEm3Q1XzJ8qqyCDHCK zC)q{hKh!!WNAAYDnyjswa>d97VL_n29YMu`Baf@! z7WIKF5Yi6=J#XrTV`*`lt6M6iEDg_f(neWe0=))dK?>+YwHU-QP9dU}&^QEPDVw== zj#MRC*4t)Ue$m|K-fuVgC0=S}3g5C9*ufWX7m5A~7ti0%sg!EYyY9A*WxZWdJrr9+ zlnv>2UsK!z+0Op0|5US#T(dVCWCuaGchs_Qhl@T?hrhA$L|^zL#`6g|ewKFh=~RD0 z;eKqXomibZr(6@$rB~Wg69{2OLjS!ZlM>!$@CdCg%{d3pQK^~5!6rSXNf@f`$|%0c z9QiluQkY^KWa&i_ydSX2Q&d7%-~Qqp(^B+E#f%g*(skVBJCKcI?99`<`+51zxUw;k zZ|Jc>%3Ryj-8?*8ydj{?z+33Q+9;drfy~kFvY00H`@e>$EjSyF;L>kz5A=7&0Xt^c z-1npRf$meUHU>|8Uw1z4<9lory%r*R8|fUfQEfPOfJ+;+bLAbD57(xz7j&_M;c2ya zP_XP7_H0=OCO7cHsIQR>3_D6_j+aKBR<5@S`6HaU2C6%qeug!#oyo8{G855Qz$+?1 zap1UfPGSu1a&Za-M?BLDC-QADi&@9R)CiSCjdYTdJgQgffl-%o!WMUHbs$?@JO|3o zbE@4N>h1i@hpI-#ix?YSP-->g;E8f532+MI+6ip3kA?8WnTLPwu7W3tgI zh8$Og$x*3BAU?;p@TwKs;DFi)Y{`EC82GRGVUE-B(#y_>L{I^Np|6#G$Wsk5zu;P; zWl5gtaFEq`D#t0!Q}N5i^Xf(O&I$1lXH%o7vW^0!+PE$TCR4crmG~}h*(l-5!xogc zu)T2^5Uy0pVA?sR&)Ho{P`yWOz>@=RM~f#0vh)6>#D$j#N%dQN&0~!)LCBcn=7KTC zok*c&2zn|)6IYrmq)#+~HhDUsu^C>pcJlMFP&`eFtM|iSAEY6XmP`zCT4*g#pP|SV z(#5?BII|aR=om#g*FJttq^jPb{Wbrvu}a@jts-zwRS3g<~N* zZ9wwS49390i0*+bXG=Px@&{SQkXgkaqV-G& z*{gVo6xkE=phUy40{NkR+F_zNB8%~3`&yh&{pcsp;fId3H@a?kgE>%*<835HX}mht z7hCw8W4N3#ejMG^9D6Q<@+Jv$bJ1n2(-^FX%I34=SM4>*uHe*T)qRWT4XN`9*5TsKnXRSEmIA-&g;18!h)aC-=K z6WXGVDOL~&{oEM_iQyTk?yNz@0lH2k!-rx1!X2BzT}NCvZpsy#+*$g6h$6-pfqvc$ zpf4Mnm(t~Tc^<@)^#%h%_h?n2mfllW{P|sN4_p8)fQ?qhXj=4w zlVP|Bjl#X~O+Bj3P6RmkM(yzGU&&&^CaWh1E%HBZ*1eymI_|4ZVr+%eFwYoRrkK=sR)`TQ;f zjc}I4s51CUYoK8=!uv*zp}IvOlREbbmJkBWS`A7ngg>tF%h_hS@AD_I~_5zyqDvy z4D*p6ZE%rZ;TB+S700X)B|DrKGFXxFVFTzk*s=q2|M9DJSqZ^v_yw%bFU)Vq(ZLY= zr1c(o^jh!=6W)3ME||3-0jiOdcNRBlU4A@B#m{}WN+^`4pBiPU34>thH3*3xx{GQ} zy-YimZKE9QKqRp(6npbt>nx{c(h!AX)avNawG7MB^c6+!RkzfHwDdnx4Y1G@gZIc} zvB`hfHf41eycZ7oHQ8+ZqFh}p(k;tedm~_|Ni$OlGT!+w!3Atlsc)C@BDMeqXuCXH zKEG%CE`6|HP_xc|0UT9bRAG8eOGXyt$Nvx$p%zl9k@f(cmS9EYfHCcu}i5doi zfgXPH)-jki2Isv@S`=UX3c(ON+CXSAZ_oM8xn7l$ zMgm{<2Z94$rylrxxuTweRV$4`3u*ZG7XAW?Eb=`1*C!9Y&}y}1zzlXY8oe-^?S9@; zE8YMRQkpdVdGFU!G5pgbYehxB&*(B*$>Z$GKV)(Dgsl~68vkU}e-GvX25}oPLAb~w zEw%=^+y3?o=nhMH)XG&-3u%QnKr}f%Wci_+CX@Gi_wfyG&*%FJmEyTlZtxC`G5t>B zoZPu*-Iu6gQ{y)b&Z%;K-0$yVB^tjuIcfYtSlN7~?dm@@3;fJ2lK>X4ilzGV3MP50 zv;cvO0f#VpBCA_Zo5fc;8dk_)`7*GMwQqPaCGr46PWoP>C<6|_H2`AQc?$0atbgun(hvK4{_W0pVexkz3Lr$U zzhRpQhXbj*4(!)602L=;#x$na=|6dgw)wgI7sJwH3z@6wV_*j%xuiT}1VO|f$Kn>> zps$5*qO2b#jm#Y`K3$1N&tZvVr;c!Er1EYzQ0qGdCp@5njL7=2@S>D%n|Vyk9m|iY zyWBIiQue}`7J?j1}7f4CdwtdHu1B-g~%Mt{NZ0#7≦ak;e^!Z&_=uV?EvJQ(RB8Od zwX#^#FWNPtMGtKbpGy?lStao}pKlX{VKl`q@LLNEN5S^iT1LQ)s|*v@q7jO)c9&f; z<=nOpqkYE{Jzru#V>rg}uk$C=>blv-GgrFcJ@~~vz`Rn?l$Tc!uK{KJ2YPl1I2<5cBWXh|e&L@%DdsW2GIAOEXF-s2_+-O?QM7 z1O`4kBU$35{xv9zwQNJ4Mm$X1PYZC=v|7_C7~gWS*x;R^ap-rnQw6ryv+uMtw5w+; zp=(PMuZ6As=F)LBzPQKoGR@MolQf}9(*32L^Ir6t%TR2SWv$eC<;$CdNys9t=$3M% zMLF)<1$HC5U*P3@EKoaCe2e4`dxg+yt}Z9Gn$-EB{{ZKn2p@zYg5Vw6C#L26QS&JI z@T)EL->ik~&D}Y^E&JD?W&uvXRsUW6~GBiT;?^*25)_M3W<3eTPby7rkCCOv7s!{VC)Uf;gaW;PxYIs!>GLa$r zK()Ow1&Y1a0Lvab6(Yvh8+qJJO5J4fZ)MF*O!HqJfU1zhxEHwyMY8!MflTYxuy)*N zNv~f3Kp5w~0Ni^eWc=g}HRK?_vTI$KJfuKizyq(epWyNxHz>;S!kc<`H)LUfjQZDl z{ozh-zcVq%R{mmBjj~^jiCUrD7V4Y^2X##Trl@)LE_u=s0$Drq-p!RRdBpFwQsG7V zgzP2#m#wHELUfVgwcC80*Y@nug2SaZHVVmE&^XVTt2krX!GpvK-8A$iT+2U0=88^4 zhXT_N{)@C%VMYUMn_cBTZiiyd;MCv`#43iJL5jQw759SHXEii6s>M{lF}4Ui?0A11 zG!UHo8hLicA`IXqx1AV|oZVAo|N8jHH;QI4Vsn(MNl>GqI)|m_OGjJB?v0BwqjQBt zT(uxJX5XN!%xuiM{ck5WrVkGB=GXXxa~FP8NLr7cp+wSJL>c`ujB^a^K^I(Z^Hx6YlpchC-<#>?f(cM@M`>{Qhl&Ju zfOk`|^HHO?q~xPUtgX+EcgUKDx6s_0x&H&}jvJe3d@{HRv}_tRW2Cp8XG z+5u8>-lm`EDPs_*pqPGX;4m!wn5^lhw%g8g?JFR=v5LCJjxML$GCGAlbR?J?sjc-i zBZ5C{F#syVr`AUz@sb21zm^~6PG&UN3)`}Q|1Io zVpn$BBG2nGnu+B-7vydTIT+Xmt0<>lCL^AUv*i4xkZe9|GM`U2R@BclBFuhpg_iLK z766Q8{zKa<6pd#lJAV-|v=MPXOr^GzoE7SNqpdDQmGjrBiIIC8^I|}dWaR~MP`UvY zOBE4|53f6iQz{1GW4+JQp~1*r;Y#etJCl+@VIm7{f6w3Mr9&3{4GnH_lViWWw(}WJ z9#xIyYY}O8{9GhE>>>iQ4mWOVokhPO@Apys^aDhD+&L^OPI`){M|Bc$sTduc`}9LC zSEj2K?}Z$6MS?(Y91M;S^L_uF-IyAtLPi{PW|^rOK;l%(2ZOY9Gp}7$crs71vv`pIH#`l- zsHi>fixf^Vc$p>O2CaJIM*vXy^?JV6_L23jbcMW5nSG@^;qg+h6#3@GX{IH*wmAoG z7Y|xfyZ(4G6HyJmpHCg5a`{`Po@1HKaNKqF4TLMXgNpFjJr)$KJTDj&Zkl`YTZxo< z;Kop3!0rY^!4sx2KRymsP|OWEYEF!PsN`jsa6|b(xPeusLH^S!w=jWO-d~o6iipcV z=jXpMicl@u(T~{YK@?u%{=SkixnAdf%WfV~kLRx*`bS6x!s*AE)BbonFl|kgdJWSB zEz?+SlhPqR+zLHY+@l((V}ERC=?L9#p-ZEkOP`c=U3MCHX$>Gv94zFtOhXBTz=>LX z*u=>frydfEuzYCX;U?HXkP~_NHbWQCic=uYNDAxx)_As;hFyWzJ;wN(2Izg{sX*^e zvO1^OaaGCwU`&Z7+D=sJ%C}4U5zrV@El)h64k4vud{%LQrlr>1)ZLT5EKcSN9k!r$ z$zm9c*Z)*AtgYQCr<9Or>NP0aK^JeV{J3Jq^Y&oZ^wRYMhotr>oP(&r!SqXcN^`!B z-A<{w&sZ%>OS_qe*8;gxr+wL1McpJbdy73P9_0-kW>e!)9*(cESv=py=3kmg%4%IoE%jTxON^jAg++#hpJr+rtIYV|IQ@D=!fJNn7~ zti(>d`1xFRf;ECNa(j-yEAnASw&6$Xp88~e`tSH|d0T6_22>dmMhJW^o}LTY8QrP! zJFiFQ=?yN78sM5SxiX!EMlA2cY};d^xDdd*hzoTZW0QI$^Q!cv+WRVsT^5CnjiEBkX>jx%`_=oqtci z$Qo6mbGPit?4o)^a6y`^SJiH>njQZkJ8pGPu!1q?zDz?FljMqYUPlLdESRW+*y!)< z4`}ZOP+_16KS^r&9Bn;h{@k9aV28gG!&|enMLP2r2;B1P>j&c)v`E!cs?rq75>+b# zYY$3tXzA?BKOWmC1X=hNazk(WveVs=#74g)UCi;&&kaCP_xKz6Q`)B=n4QD0CZ0F>n zKUqC!f$)qhzc(l9SuRj#+>td$d+-^}1^VxeY(n9erBt_`hjF-r5#kxo?@xvOz;)*{ z!B|$C|EbjRjd<|q_5hynIJ$5>R2JviW z0k13?IwO@;F3+W=xDhG3k7zl)avg8^z^5ZQFFvukzWQ`iKnZ&&j5{&oSWlz8;^c=- zq6_RIiv)uQy$vZhma1S6*9E%%gU6zZ4v+Fe9KPl}{+Z6^Z>y(&cszw_YHsx_s z62>4|@($;kb_+m;^l9aWFt-cAarO3jb{qBO*%YIP>56Q!dx*Hh-PiGeL3D${9?sPr z%-ffhl@es?Bz?i(^$3Rr^T@}CmrXw^(C#JKe`mzoUJ6m8h6y|^>aIqOlv#TmwtR#~ z(^pjZi#=j#dt;J=mu*KcB3Cy}rFRAnY|$-1fMBSXQ>t5#UL}~(?nG2>iU5#r3`q5# zC?snA{msISFtaQd9cbaL8Y8vPn{1)V>hS%W&oed~mmp!F04aI=dKUVJz*&>pvTJsy zcVQx!{^--OCxe39-sy6IA%n&PJCQeIS;Ye}Pum{4qg&|FyJ6wj`SVfdGm9ZNRJQ{y z9i!ngGN{V3y$Z^$6>hDI%^#n`L!GYOnmYkD7EE&u1ks6{?`sHqjG%IbnHI%Bv#}w@ z06_jwuXB^Bz=yw36AzHstzu`bQ2kgO#XTo?IZ_!Jj6Tv$RZ;4ro(Ef}P$W|(y}Ba zRcdh-VeX)`j!pA4;v0X)h5)fC! zwD}VzFB~9;Z_b-wCn@_gx%CWB)O#|}9ziYL-@Yz1!xm&W)eTp_3(XSU{!1qg1>b6p ziI~LL3tG~S=6|&vO1Hp@Y=QN^DqyOrh`JKOHpOR5<=6uUQaR{8vkv@Wz?^&Cl

N zPI-E*XP)^JrBX#hCs~`2E}TUkF6P zE6M=lS34eu5+MT74o7(bQK)c-VDT_c5M<23%oD4rh-tN*bgPU5hdq|<%|MjIu*5m1 z*g#}L7m~St4LwQY7nQ_#%2d(=T20W8ne(K|4JsoXMGyuI1T*2*pqh~g^4Y@=WYt|m z8*^RKa2+}IH~nB*I1SZ4mgRfHf@taM`@p0nlr&8MV;zaB7!nL{j#SvM5f_Y0rxw@~ z@aW?X2@>6;?QcO(A=>3OuPgR z-n)1y(?a%lEMMjb@N3Mo?$g%LR0#Wf!D> ze<>mG$bT2o>!;^lX*AIbg6egs@!!Yak^2;in)AT!tm*K6-gCb>R$aU|OBU^qpR8K;Z5X2jz-mLxP?vA0{#Ch6S;}0NOg> zU`vNM)1|_;j(=SnS(#I5+Euw}I49_?qk{3$ogRmMOOwk-$xj<#$u#$q&sU48@@?y5E^TwoiFNokL;Y=Xnu3J@~)doJ|2T1{uzD7 zZ{V(yq*36ygID*};ibLm5=+%?>lxH)@GvLBt?U>CS@|gUx~@`9Puo_FpIh@>aFxOz z91h~cTW=W&E;0_;X(5PoE_DGr$8fI0uLQ8zkUf6&fDlq7V|F-mCLy$dsy@`q<>PXK z#_jApSs&IjhxT4XZU(LrLNdaX4SNqvyTO11ap0}`2xD_HG8V6Q;S>!l_v#{iMP!MZ z=J@?gX);*OG#@a_Q+Jb&DgA~+k|5>3V=Dy14e>Qi&E#|7wGDjOl~!S0QdI~F(vzaw z8njyxL#Q++RU~%B@a_VL1BiPwa`eNh>fDi$Qi)AI@}f8&ejIBdJoGufbOp_z1vLH{>7*?J-+#6@Br}vd34C_D%O3suHE6rKBNzE z_&HFPBe0J8?9iy9S zO`a$zFAXx*6AY-F{lOC38BApzPA!Sbev8QAFS7n>2tW z?)Ao>-*qw>AHOMYtep7q1L85q?IB#B?N^lPB=Y!DTH0&C*cO4tQf3WkDZz+6kG|}x z0o}C+FMvAgYh~pQI&dziejR3vsHqX`9X>?P|7^X@(UoKFl;n0g#mug!*JH+Q z$(kz_;!zvU6C;CpGDiF2=R2ZmY_1WA;&qxpRX+`LD7a#Vb zR;0T@whV;dSRDp^wYk48ny#`ptPm7tavE-{vb!0_)TTLNFWpAn$t3sfIyu ze*_|vMsG|h)yiePNI#Kj?^WRGw7Fd760-3YC3W;HqR$u{vm^-#jB8$=Ep*a;DxL5- zQPvl^JQ%M^KCW>7Nco$1??;K=?TFg4jOh>iwb1!P>tubEj=$+MJ??MC?8@sB-&p4` z5j#{O5MOReuScqJ4ldt#t1ZV@aJMXmyGcBfe8cz+^Vm?0Fn-$;&<}MEqJUGO;#p|H zq0N?vu*_6E8=2sS!bR64=GJ7}))!k|cH3nh?;dOQ=WVmk_WIzOYeQ!%M1dbr6_E5% zM5q!{nr;rxiPECSCt}_mGxHm&f4%98vi_?xi|_`~NMsE8286@J;SgFJsK|Cug$W26 z;_~ty<^GPMGH_t;F%gFr>21)@fC~aUV?oAbZ|##Ap(f(){Wm)JzE2OHWP(mmY>^9` z)vLxPV^>$gP;AP9|79@PKOc8tf;=|E8GwD!3rUZgjnGrTvAN);m$=iv>y-Zq*#P0W zLr5m#MF9F=R>S{7EVAArC?5T~YL*)scv(3(wqhuK`2(xx({h|+HjF@HB%1=_I73@P zC(W2uS%RUdz(Dfw#dg%j&<2uLS}qc~Tqv_8I@RByfSR;_m zCxlN7U3FU(zWb)74<3y13LrvaO9Vu}6Gh0q7-B;(GjgIf3_8h!Tv6g~3z%1I^J>E5 zb;~OLM40S0P1kYTPRhTVnn&MpQ#FRCq~KHNxbCvIJxb(!&zYs=g^te}&s|{9b;#Z- zRH*(!;kBgCwNEjZZf_9YXJu+Kx((C++ip2wlquD1QF)Rf1zYAD?*e;w@sD z3ejVOgFEFx)8wRpC-{9!km)qkfXlDtje9f|w@B<TyH@hjssH^gnGc4)SBe&Z2VuMjOn?%ze3@0~flFFqPr+i$%PnJtgYJD(Ww!YY ziPMWMhm9^t`@HZrZ`A|rJCls<;MA{Fg@P||96~r@4v5d5SX|u8&JYi~FB_XBGa2f^ zdzbldWuvna{j$ry>2tqQg{o8RjT?+8#N65x(#^UITQCm`W~uT1w z=&HvL{QwIveA+P_h<#j$-N3Z>Kmx6groZ05zF+7 zpKk_Fb-ONglh6CaDbLT*wbqtx$V7@#ba_X(5qj;j!Ws zLM6xbcC;`P6CC(IiC2$w%slzK8eF6;D7Q(rm**9jHT#0B!8O_FRU{t^OB;kYKvs`0%GcUX&H)GnIoD7`&NgJYsLypqrl| zcqDK@`4fUO6+{Rn3k>X~5oJ-s*pbr7=4lAVn^sIbTpx6m1W|gdgN5(*3;qjBXx%dR zy(pmU4}JTvvFQP1EbyM-zpT25OLoyBv}h6u zMdRyhkb*}LF3S|SHxiE0s8lCpzSuL15sSj97SjQdbVE@%8p{&Tvt|MR=S^JBB)*Z& zz-fsxd;>|`M9karHf28R`36~;%%@Ojf`Cj0t;a^ox0-5u67)y~Egb`yDuy^(rh&u* zy>e0D*c`L`%T^?VaR3#gbaX|tOP67R?`}iHQ6R`~Uy`zS@9ndv&kl=WPnp5x_ss_Y zx!??PX=rF*u&n>CLs&TeS*W4;#ou+SBx&$}Y@KyfRAKk;X$C>M1sqzsQ(96whwko1 z@=($s-6`GO4bt7+3@8XFA<}nz-``#L-nH)Ev*yHe&a=;s@BZwbkNnDJX6(eq?8F+= zdA;r=Uxa^Szyia)wr?#Y@VuDst9dLw(+G^T3w9 zkFdtQ*4Z>uG)LRw2YUk)4gE1$u0)2fL#Kig#t^wZ$mdP8$O_zvSbR@&Bu1I-RtW!DTQTOTC1^1G1 z@2m7l^f0kof18!ck`h}(2PNa_pTq~8k60jh1Z=qpKD4{n?8op&?Po12)!zmE_3tM2 zD&+La!#t7d{2Ird`6R`JNDw8AXVKv(#8i};ikYXqaTa){8ax-&&^^Y>(15$&1CK() zX0nMIxq0;#Y#@Z6M%(meu)6*{cNSVkx1qBlo*2~t+tWPTUSr-9GlkzT@lDSShv6IF z^LA92(`j@+pZ2Tgwi^rX*I|`VvB9KU<lg2_W(f%1@0SKlPCo1OI+}A`wT<7fq5Q^)*VjrB`!Q3ey*ZG6tani-VvVYV zpiSxaN2r|vEuYCq>7;5=ll+Dt5hgF#dQhp!H>E8y2$O#^A#q^o4H)WdpZz$Y{X1jp zr$*6f6zuv&bVe8=bmmISsk8-Z5a0!?f8rv{nIlnL z!%+|-8l$uuxwBz#ko~Fe;gCqQ)GaQ+Df)rIj)CHjbdvKi5x>#%CrY-NjSD=O0CNOy z&a`$vlP(ZT=oehT%PsIW?_u+}&S|H|bb1>WR=}pp)pd2n0C^AXd4n)>X+p;D3@0xy z|F_uao;F*^8yDuMioSyT7o51jp4i^SQ+IE;vfn-)?AwO%pNVUqc7sr}wR!|$>Gvim zuah_2mV?9E@OaM>A$2XsVCLK_8qwUs*w-*8^!HH*#&3zQ+1Zt~nDwv;^#SC2Zd4T_&vL*ls&t=7qsz2J3T$FI_EE zD~>%m+He3Y#t%Y|E|c%AknEFhsu<2X@-xQ)B2T0)crG3;z^LBq%<}b=oPMYJVTIjS zt3q&(vr}Z>0>#$=nr6$oOk_mtA%lC4$6X+Iq3kw@z$iM%%ns1*6 zfp_yL;(;^3^VQ#7RMChedSz1+zy$v7-#*k|8@*2(?@PS;+R5&ag1F`B893)m%}u+B z#EFef0x-QcJ-Kq<-{7(u8Y0Wa=?{Xx)x#S9hR~!B&|pdC>Z(LZ1e;87+_3Bcu}vx= z`rGWcoNlzCC5$QAgJak?U&_W%iu5FUtv1{Xp{?hUV0tH_%b!@;N9XSZf%D*rBi4LZ zRJ`_w&t|_velm>5?NDh?3%E>DwPIElG7Qs1u@2CEsc^0EHePNw{3Q!pA{shI$ zH&I^&3(CAB(owl-ViSNj4&{#QZ^S3Ts%vTsd>8k7v60ObHXNP(HQ=NURiaZh!C)w4 zv=@&@o+cqAI%4M|Gli|XYBpFYar((_54MXPD2|-@ztM}{$@yI-?~nz- z!#ZWVZ#1*%Nj6x4Na}BMNOHJDZbqKy8&9Fj$F0@wv@T3ufn~U2A&(qqSGD1aE(z_t zk~M$LY|g<>A_&&05ZZShG%C4_)omC^0>?Q~k?Se&eIB3vW=$>?2T3cJ%*f#vf#&i` zoAr)LquNeuj0wMtC2wDl4A^-Zu3tR+*W)lY0-9kfq1h~uR4M5TKf*sSMwc-X?SM?X0r8j{ z)7uQDQq~6a(??)gOd_^gsyMvbA-DgS%oW(&*7y8Y-#^2DWpSiUDJEex)a^fhJ`O?Y z$CHdm!dDi$5^7-f+PiywLxYrP9rKQK;uotke-;I_ptLmX<%cqrGS zE?=KxkdUA!Iey#uBl98It!B6BvitsSM(#kS2RMPD-E5(a;HK=g*^2B+9DjmSc+3A+j&CFh7JcB9AE>;B5k&5i%lUv`-IS`0LB^eLD>3W}e= z03-lTmgsWE5UmxMco372!hdYup{hrN=1U6j~$R?9Y^ZjdkH9X;I{6DJVnsCVXTKa@_ z84;9s5VltMPth0{bdFVjgvg|if7$S9KnBPSXFncQr)bX z$zZ;vBJ-hxdxP-UByV0pILwblz%362j9L!stHj?`!{7gnj!?=6n$e&BwO`Q(WOzt0 z9xkFUMNDRyeQp77Y-R6g-&mepk*Fj7^eggSZT7<`vyV0TfM)@z#zt~RkPVESXC!9l zN-fw%QN4&tBCW|c z?!QJ9%%{CS|A~&LgQ=$mJ_$7lJ{;v%X4Lf$AsPD-o$5(x_8A|&*KDq0r(Z|q;@H<%PxbqDc|$X3Wqin` zZm!zlUTs83Il+E*!a7haS=@NM>a$px{B^VJ&aEyl$iMgKjZ;sSWyZQkdHx#8cm)UM zWWV&YJZ7$i-e{fc9p_QF|Kw{QerIPQdD@~G#vMlT_hS@<9D`?le*8y*HyUl45?OiVh1%P!PU1`0i-LRm%X3yll8sN75+E$FyiD z<@8);rO({qQH6{i?tDD{{=M`KN61JU^{#NB-^fc$aeG8%6foL${c#!+7YLp$?)tx9aB0U{o&G>=>-X@ zA`A1x9b8P^sU?}EbVdo`{rLF_`kkyzr(rkw-y1F1^@LRbI}w|}WZdG@D8^eYaq2e} z+h61deQ-7`QoNr!)?W*)q^mk6^_*!`-IGUGcnS{-1$kEQuk(zCc-K2$tliY;Wc)Pn zzPfX~6QzQu(V#!u%Lm#)^|6-u&v%$GN)x-K0xB- z8#XA0cwS@l9vlSz8G;HQ0Ww+rP`fi2^fUnzyf$BY@)Rfn?FZ*ar`WKfA;$^nNe%Dp zS1yJd9Gx(lTw|f_P!;*}r!Y}p0$XT!%BJGxq&*iv=Rf_pt}kpBN5lj&9y)t-=<>|n zS{ohs!wqCmG`>7o+$!u;=eo8Ql76R~YL?@&=(f!PfA{K_0*J>7C3C3&Wg%YpOrsdH zg{HG0JG02*?C-ipjf4R4=nI6!G5VtUjM_6&>stY-gB-QDv|36J6=Gns&rG7&;*aAJ0y4dYx;7?=1AM;n9DQi&p_noh0N z#N`4O>lW=AVSVjN%iLQ{w-HTNBiF~8k6PXaOrKtJelIh!6n@_=4)u=qy-X6PD(!2~ z?Wg%|u67ZKjI9&Qob(3y`p?-2te&_1X~hos{qu@#KjYYl^Tef8W#{%h7-0nr+dR=Q z+{NAey@I)gF_b)17E1NSnlpIxu&a-1d;a_lrJiZ#N{Rrc4m6ntNc_pcQs*YJQ(O1^ zqo}XpKEu_(ykgHQwz=HDhqt#InSVxp;;s3wV+Gk;!m+uh8#G`dQF%w7S)&PT)dJWR zsLw?NR9@YC$OQ|S!J#5yiHR!(n+qq5j`LRF)iI&0`15Spy+7nm41M>-K&(9^ z#6}DC)TbSAQoQ1wX^FLKQxt%MxS1j2NN3qa6mn49@tTkgu|T!emip{wFDMloGk)SR zhlt9!O!D&arPe^fU}d;V&bE4IVbqZyDtb0PQw2=${+^ln zL5O2%8N~7-SWS>Qy4PEUYEk|lC)g_tsc|0m9AJ&1Jt2!rTohbo1`RsGd>1wl-nS_se zqjohY-V?K1orlg->r8>C`h&ow{+$6=b90PBHZS1{6#VcbLGlJ(pU!g_Ch#+tbgD6n#>)|;2|LdlVpbp10oke%qn}5Yw zAIZGE{=JMq792McQ3#qdhe>(JT6q)gfgVkxZ5pSFF0E1r|L^>8KwaXmv88TT3$uKO zn^Zu~;qsWuVhHVcN=f;d6wo`Ix$8`QgbK$#&1o6rfO!T8Pu?#6Q4+kfiL@CrG8oP% z2ohTNrw%lICBBVc71xzGSNxp31W`Q4n^kj8s8Vn`oRopr3cGCjnA7{_j`O@;NdHs?bnTtL`9N`w%yID#+D*<5rfDXA0LxIXD-;DXk%VdN)Ly?^2+EHZ2e~ z2yf_rs`%+gN+W+(k!)l2ZCW-LEXhnJ>H|YHywOW_>n@-MVCx18_rS1^$9S>L(l~;^ z2?@r1+e6KJ=krHep@#wa^`-kSlsJ^J)HHH23MmO*KRwpE9|zW4I^+~Sziq!i-=9xe zv0Nwd!~D-Esc|9HGm%M5Io`0~YqSEbXQhRVOr(gr8i7V$91*^D*Ud9RRdpaGxvK3% zpIfaI9Z{%c@#wI_LRzNM+wG)lDH@hL)T_t$xI!U(hsQiF*jQ|4e4M%G0ttFCZ;^6TjEbT+rjQgX} zr=*Of?MpqXSmWakcCBU2c54|OyJ$Zs3;rE9uC*TGMAyff!NXCF^VpVd;a{NG5Ne`r!umvSUoLXtrO!GAG+W%k}w#4};C932W6bsyTX- z?gBSnJt&3s3QSR3dc>(|gf4^67G1w^7Fidns%0uSB zor!;C6H3i*f$bbxuu1G2;26=L59xrAf+2rj!5$J#TzpAn_Kc<^2d!IQ&utELy{>A?7O znAasYR>$^L8{S^}$O#;P^21Jiv_zz9al z{Z%p~Ol=ItaqITXNg-4(1j#qiyuXb5j18COf`E*-O9Oeu#jZjdmd7aVOPRyE{fZLN z{kCS$r?xH31J@=I%1FW-slO&!CLuN<&sh8WOf{3RGETl-Co`A>CE@d~eu>;}c+5eX ziG{~hjDU?;OFs;Qq(jG8-Axn*5dV45UT+N)@5Mq1i=E=wUtJ&kgazy9;zDv-oo9KQ zv$~f-l0-cOg-QjQgSVahA5_gH@^`QjXlw?f48V&2BvW%oVVTEX`b;1-Fn=JUmrZh%ZzKCB(8na# z9v(`$DZg@|V*ws+fwRF+oc%|#nO$kOEdPKspU#IMunA+FcD+;Fa^MDhIkGX9txKh@ z>5~;dm0Y)gI^8f&c(TJV0VPPaiIM^15C;nj)8Z85@`&RZfg%ufX{l$vL-mMH-}n7) zm`6wJnQPTV^`*ec#IbAGp6=Iyd-?_iM?WKNI3_9U)+Uz!cTvF}}0TIMnvOj~PJ zbyQ!Z%`}yfDE^r9*W~A7cYs61GI6C(HfWnhk!fIwl?0lGymv%x1~YT7OJro=tRlpF zdz)hv0+=OkaLp^sFb836UqsmWMN(8wldidWuYLnmmn@z3x2WEqGG9I%euSK1kl$q; z{Ur(C00(&cOeiubLmhWcwtN2A8Zivh$)*nb$Xs+dvFTKe9kZ0uHwdhENvDhwuQzmbrN>SoiNEFr!eZsK68}&BH=t=BD<$P-vuq-#bd3R`H z_+ASrwR68OuDZmD_sk$Ujxyz0tBKp39*Jfk&_I%6^%|m;QZTlTA~k^L-)!pf6ZB5D z>2fqLth(&^=#uNlddt=LHa&yS3l*JmD zOXOqqTDzPUSTKrv?;dYD9H+B(((BI*3t9mhQhiCqS2ndMS}0Rq6mcO1UEfB5(TBa7of3ePS1epOguc%LH`v8h^DsS{5@i`V>AHZryNSA#p)^=hfBTuyw-|D(%WE}02h9qckgOD&(_@}6642jzH$M&zdvDk}Z?RS3f4+ zgcw*AU7}I;5rab$M+Nd*61jlu(vRnv2WmMVt3IrlS$ay?#g~e@p)4FY1egkWH@hwh zxOGSb80z&QCPzyhM!?GniKn7~e1xSEOE2W#D}?`R7j@7&y`RU!vH##Hos4S!fsPYq zlRt4X9^b3p4RoR=(-An+a(5iUYHHc89{a4(AGuV`eFTlR_ZxPW#({M5)r=r6N9uH=(km4OLA(7Y znDvi$7Cs|+1RO3>JRBe!C=Qnl&we^)qroH_dGJP4KMlgTgQmx0C9a!qhB_{2^6ac-}o!OW4e z%021p_>bNf%9AB@XcvT;!OE93dgjYvo<9#i?;bX6E8G!yrz-z4- zWTaPh#N=i{>{PNVB!(SIJjv#M=!golEabt_yPr)W0GJpSiJfSUec=;Y^cOgv!(^Qkkg)+q*GWAY^U<*^GAo@$LVQlstaL7` zX)56P^sP$aq6_lHP(%c#ySFyf0~tqcI^S?9@NJFn5Fo+d`f(m%cD(O>tjuKXL{?>rX6t5DpCE$3lX- zY?9B!b|9Uiy`cfU7jziBY@GOB)aJ`KyhwG5IO66W(cW5hl~NNc3>sxBS2vPx>=W% zHHHf-E}iCo6<7&yPwIlb$5~5d#ycz(#3HKrr;p{;V5!ogZ^db)6j`ewY8Ttz@F|i(>^$ik{@dp-FIl8zMpG@OTtlT=l2C3XPjUU69ser=T}d(xng?>!<@*@2xdGGO!1k=A2(+mGo|VwpUIpQo7;eo;p&Br(%aek1PFXdsr0y~ zBiTqfzBlk!B~if^rjnrJY%YUMPSHH}*BsEAm@C(s-dHinE_p3#dS^IFIRI8E_`I8L z-JR0XoO9K4s&_Z)JN#ZO{_Gu|YardF*qV*5=W-lo-Op>UuV*;?SXu86 z#>*KzGI-m;Hp6>l5@+-|mH>%_)|07R8)?^b&BjHyqOre?!5wMyj%klg{+NXr90~>8 zH-Y%n5H19_b zQ!R{jP@GBh$t41{;ecNl-#8a|51avq*UcqEwz^Lchn~#n>d3Fu{QNeGdFI%LbmP^? zpI@PwF%Kjb@+G5wlvWy!$}*`SpV-l$3(pSEm}oqBf!@8Uo{&~cV*{{CCLvvXMOz^y zeA)~%n-s61WRCF8h5?PT@A&F25}MK%_?ijoT*oYO?3~cDQ-GKTCG)&=x&{^;oB=~4 z|G`5sPgnuHb<>^N@Y8Ps8|@z;Vx`%7ETQ|zw2t%B7z1=JAy!G5k4(L#3w-x6^X_?if3M@{c2L{v9=&@Q=!}{b ztR&-ntxXK=fRq{9(kTHW(!W=@V!A0utlOsNM)?v4+LeU{)@^QI0(g$)EjJosd?sSH zOEWeXmgcy36j>lt={c)f)%HHQ4!@*;D`>Kc!jLFgJ>?o#WAVofQ zO-z;UnnJK;CdF{N>`tXNz57YUbaYHmW)7QEns?77K-N4tqH#y(&For^&5vaBhW7hu zEJ7j<7=)yRF|g}4b?9ezSSxK9(iVoUm$aw$Moi>|ForVD?4JUM)Xc<26d^Q_bd*Bm z6P(k-obN9gyHjH2liT~VBZSm{Z{gRK3lm5FzJw4|XINKam6JVHBz-Z3WGBJ?}-C75qv-X0*LtN)r|JRYU2vl+@!#&ZgH#o;j32 z=_R{X1~%*!8s-mnzCY{!gEB7A-cB3Ofig^@CN^b9Xd9%*bI~G=31K32lt&?y**ja) z)|0{x`~F!NaWLznV1pnG?PDG7#QcXE=_%fmBQYxJuTu?|7H1($4bYIcp1Ggd7_kI`ofyy){CLE<-aw_1-SNUPQPcg zQ*}H@v?|R7m$}{~au>&!9D0;YX5W_YxI&V}+5tp@lcJoI_MD+6-QyeJxH5Pu*_&-Z z=(Dm6N^ElMB^ks4OV7?;pb%on^?QSILM23di!-w`5ZUarhX{rS--74v{<|ijjc>S3 zrz{cr3w?dr$eSer9`ohLjgi!dW_Kd}x_=Ac=0CG42g;sPsUgMAcr?m^XT=URNZ;bv z(~zsK zWdJ_gp%~(BRYFqJ>QfjcSb$2DbZKdJ3N_-IY_Vha*HW&T8O(A8Wj|pGoBk$Nt32_N1^oo?+qK*l6_C zsUgWrt@Den+Y9h9t=b`xiPbt$?x9ea?Ld&LA+16FjM2gxny!m|{bX!FwXSO(m0W%Q zk%`zzu_NcgckFlNpFZjm=o5EtIa6?aCn+*cI%z&Mq(#WkI7j8B*z&8o-7e?hVoH&L z7cI|XnU1U)ha-n#{rozL=}>1H+v0eySGEf_JvLHAvK0`yBw$i6b;eWq2h*6PFL<#tV*d0N=)5y#Ho(C0#Q+q65f+TAps}iYf2Q=b=$~K3{L|3=caq1_^%usu<%v0&wr57<;mc$%L#BU7P=Sb;yQgh{&H4mPzIddZHJ zfv@W^N*lS}!+N9mPPtL^sYyZ!(B98~vMNFrPl4CNixhUbU$EBAjN$mrKmsy-OR{a8 zOMRXb?c?>woFsp^HI9F1zKyX_xZaFjMvFJ8_jJe1L>>-o^~n@WpTATs+Z#7!=3aL! zZAP}!qwTL^2Gj^sL^l|XQ%$(vpis)999Uq8o75AvC?jghGYSMOubI0sW%G$sm)#u^ zoB$E2mg4F~liGo%#6(M-{U4e5)Zb5Ql-O9OipbSzcBz*bdHG>yRXK}X4smxo43XQs zImWlW&0h+m9i-i9s>s|J7I0Uqob6AK8BDhz{=$dz4aesR9#-l`XkJhb$NgtcitY^K z0%+kSDHhw=rH<<&Q^R!~#w_g8_Ni zPf&`dzcaBUwW-h6T1~H6|4fskd_4beLjS3C(oHd6bTQ8+?76bs|?2ILva*kk@$ecMHUtf4g``zKFg z4<>S1(-KGicRzI=EY0%|TZ$j7Q4p=jK*rcdrY;f2wxT8p^j_KswH%YHSb10n>DUop z(GqE-v5~a3^@n*3l)0o~c`y(qu7%>>5TgPdAzBj)FP*|*L{9$L<#7^lu)JdCR+W0Z zI5fS-*wwy}rq}x8_mgWhd9?}Lgez~}wd_iHTEvK^HLR#1&D{jX4PreW( z-&d7J-9xp-6x)~AUPbOeDIOY0TMmM=DdSQ36OulmR4dPH-sCSF!2n*UQ;-2EXp}Vh z33Tk;ZtLg{_P~Z~14rz`%&4PMW2TEv^!UD95`aOrgJCtD$!SLvmP|M!o#PtM8w~*k zf)3_}JuHOQSpVUD4l7&ZYg?+^zL3@#lsZCeZrqoiAPHKn!2U8Mz%W-{vo?k^?xm&i{D)A0pfH_^rNn}13Ag3rJvaNAs#-y! zp_A*5oF1n=$8;<|FO(XO{ih;N%PG9^o1~2{H(fz^;~G}Y5^E?y(D_2>vPsHFoJuP!$BeDaBEl@de{V}VO-wftIl3dF%{6O(Jgd<{X6%^LH@{g|` zjMNuwu+Ol9KvE&oGoL04UaAV<477*op{#0d2f$B2)L&$H*q8<4Fi?yD1cKYxICM_q zo|&d+Q1+;!_$kFK)s_?Gnt!lv=L7L5ykoMttXj~!9iPfw3yr4txDt*yX(g^*@p>h- zQJ&s6A!7pMp#05#noi;ZPmDcMT&h=%TUjJ5;j?42F?Dn+{=lF}YURQsEzQ$>8ZP%<=GJF2n`%!xZN%trOE;Yh%*10CD<0hj znh(r=HJ3lR+jA$&Lk4SjKQ!GqcwesRsc=UK8s62r1U0u15`MeUF5KDt@Q+Y zE*GfeLolQsB#W1vjS57YZ=H;C z6bGk-$6gGlgL)%jI)@6dM?Dx5R=7t0oX}-E7hJ?yOfgi7#4*wQc}5&xhK= ze9+%XoUndP-Wdx*4L`m;5Q4wrACg8@ACuL=d?MpntXW9qct{}i7?O5o0g-c2xrp@y zs?R&(woy(3{7gzk?>R$QF4EM4-Ae4EF$i1*_e-L>=X|%H=Z^IP9k#0+S-o)v*{C;YExd)rezsD}{ z9&3gOI7}6V>J^%HGE@pl?0qb+Ir3=cYEVuO6S?@fJ^p39!eEf#tTJi6;u4q}YtGS+ z#dwi+79{Dy6^@wrX!(|3c`?G?8G{py!4JbDv+aWTKg8?7k$mVQ1~}QxgHKqLb?sXe zKu9!wk?4#kyviX;1O;~X=_MU}7Y)0jK9!!& zw~LouEre(CW*x`JU%!e2_BF?4ikhzU_Hx(df$Y!*Mp62J%e-!A7RCN&g#?W! zl|%ss`3jRx9YzyV*XGL0Y)8{*=JZgxo{|;C747AO> z)#{)>qK-3OJ$`j~8et6MFBn#~X_0cIbb90a-X9^cE22}id8tk~SJqYaFdN-X2uMIP zJ3WcCm2?22_i7>q>9=V!I>;IquC&Ym1O|~D0b|s$$0M<0Aj0bP?LKL6FkNIO)kn2& za#~w?daXy5pD`p6sN@rhZAIQ3*nT-V)81*#z0pOrg6|{Y$CIUmm~surmoN}7>f%tx zEHA}qF*gs!z|65h$b`u1xFg@tXBN}&dl);44=B)sE8jeEXh}*X7cA>dHJB^5FT8Qo zdMx6YHcV1dC|PdxGs~WUJ5)lhTvpKO8O;1qCzh#&vb8e6-0a{R%2G2um1I>qPV2NO zQrcv*<&jD|m>!m|^E9fkT+--TV!gCkd9&K%X3ts4%`_~5*$CKKlyHmb)x)%B|aT?8JN`V8+iVE3Cb2)*}cw>_I~ z6xty}S~<9PAeMWOv&wSI^>r>{fIPgi1GbHL4&@0j)#gKazfH;>FccP8H>Q)$rw(4X z+V=XN8>cC)d;6Y~B~@}DPUAS+?V$=B>Reraq&lG@TkbwA#Xv72|D}_(=Yh8YjqhFa z5xo!4P~+{97sQ#>rkF@#lFv7Rv)7G0S+Yd8HYU|u92_bqPCBe5I;z=$>z-|52GCV8 z50`n(svM34nmn7ejdmXz_w^9ND0=y*EY3fU8j*HlO zGkBGOE-2VC@mNU_V(=@5wU6FBbuA2;wr2B{8^mh&=0bwg;C6-JfMZuE8`h_G$akKg4AB^ttpk{#{;D^7-31P9 z{7hZ@gd3GHUDjvRuzNdrv zPu>!a#>MvK@j>=on7;ZR2%-YA87A`V{gBk&1E83%_~qCur?H8 zr1*>G$xabD_RJz6LJhuAvGZi`XR`cu9`Lro^p`}kPUXsbeCw@HV&a2%irslgA8}G; zFd{yp8!UJGs;-BRE{F^DQ;O5q=&p^OK~nEY;!1B6$L4#T6^$%ry?oXypQmBPFaN#( z66SCawp{2QO}-yxjHey1ZdjKAA0EQhs1$oeLnTI$t`Z>d)qQmCQuB;QL-+CeZ1eI` zfa&<*lY13YqegSsUt~V<7sSsB`(5~o6n6nwqO_ph%%%X^EC1eqFHoUa}!SuSeW*xc3q_;al>mtaPE zm8h0apW{cO4IQ zN3+tQsGXP6FwkP3NYpg@aid2#rnW;{n^~)s>ru|QKwJAG;4HJIRVB%`t%1oD?A$IT zd;nwdo@3Z8+Ut0fEG|}$E!5c#zx)-tv%Pj(GmQmCc0HAU{x?*UL>V7XAi6f1rl?vM z;PuK@Vk{tMza-o!5|xJ0~HQBT`G@RdUG-AT(yukb`_*3q#U@ z^5;c{%Vz349e(p=Q%W>CnbK%_F%A2Y3DHT}TQ1P3j^wwwty+P@sepr1B zRKbl;8~lltNE92US);4?X2`^4Tk&(9MjW7r2)i4ZXPc~|v;Ra+fAeP!od%xl`oqmR zZbJ;^m>La<*tdTE*@Ga;1^)@wd4{(VFx7UBM3gfvr--qp(au)eSV7Y2VtX{Y($cS= z+34K5-&N^*B``Ly<&J~Y5~BLOlvqiK0e-}YF=Q&*AK9sJE#L!!AfATo{S#7GVUC+# zA1Lyi<;e+!_&*_q9DdO6E)Sg?qe7_M`-=;PEvu3y>Gs1Vyd@uRag&r+ho(rwQLFCR zV}OY1Ni|Wa#e8X=e6Aw19mwD{gFSVv!W{F=LbkN2ru2!X)3@iNZh#Hng}pQL4#QCHN$u!FKpCk@?-FK^goj5Ijsn zEuLxN>O0EJbP1|$ejST6s0?J1(fcn89OMV#Ybq@*CapvrFR$4d*nK+J$2p@?5lWgv zKycW0*4(;(D39mC62F?xaHny`?bB^PtBPf9r#dAzj{CRMXh14QUJs`i0LeAQif{*G zwWY=ng~QIiYigE4K_`D2{mV(O-Z1u$jd;XOI9)MsRo&yDBVj~20PVs}eRDbWh{rO2 zp2heswO-0faFHM``;2!u?imX5`lg8g`)(MS%A)+ISYy?vfZ5R z1rFijZ9?`f;X`t|f+{yEPCpS_oG9~$Tk+RT|}<~DVvZmFb7Q56*Vo5 zWF*2_!$(gUQLGKOjwKq>D}Rx(bT5M5MG0l(^IQC^tjyZS(7c*frO#N-?@P=vVlidZ zeW}v(BKvMUoo8uuPNDIazqRYm=7)|jPIEoaB}6@rI>i|J@uS+gNVh(fK&(lJx1^$^ zIaArI3QSJm>B6-yr4o|R8#vMJFJOg?Ho+N0LqM#E8X0kvXKSfc5@6)~KF#lcE_yC4tXS{hh8-4=`esexkXAt`H6slV*r zu!Hs%XY2|Gg9(kP#f=eC^6`?${h*43>H@ow`9o&$=%VO6nkgQt}_ zy>5c~mH76uSI3dCo!B$!k%yv$ta`@Rpmu^;;j|lD1RX%p8D;XO=oD7@gvB4D#6Bi) z*y4b>t6l5VyZ*ZroUhz&;~4~(0;#SZj54WmE45#!Qo!hzJ1#bxb%9pZ2@8ay9P923nH4&_ z{PSmmjBLIXU{mo{Wh!uRrT*?@W^`f`q9d>lTggN2R$ulv>>1_6lLRxoU zGFYzD4V9SCv$!H@>aLzzZZW3bx})I95u*D{L7DKkAFuC;)UxC zQ@FtdHL5f(CFL0Hh<#fEO21R=q-un0NPEkrNd{i-XXkXvi6psN~Xkda;wB+K; zHy>RoBR1Q=HjUn!+w0YmKCO>A#BW)i8-F%)k}}jR@s~O*hzS;Z#^jfMy(x#zXjB?@ zH&wn;;MpJMRv)HZL+y}bU;F5aGpcm)0bu#3vF{s-CW41MWdmMb+07Sx2*)HBbhjS3 zzZXnRORH@ng}@xKYycjUj2{k;-{WL4*Ga{pzNIBB%drEEt>^E*Uh$eH!4;$q!7K`c z9K|m+(fd))|ZP~ZRgDJ%}o^S{R@7yJq9 zsjK^c&d$|G55PJ)H+@d4i7~_5Znu4ZPdNo#eXMj}+Rb~p0t_9`Yo52fk8_4@{{NUS zh|0m%2&Ctd;Bl(=j?ZQP8yfrYFVW|b7xo%FoPaAn0B_{W+mX#pvh&Uh5uuw!b?Hp` zG}gVR3qTaMx^=)y0Pwgu^F+qW%j@}@)sslk<4+^3g*e6YcG|0FLAEjNt96h|fy`~`*?lU;D9 zF;z(!-YA8M42VjtVCA#8Xvjc_!Q;(W@ZxuP&gZMRa-#W6@+jgGL2Se|jCA59=0#9s zWaMa=k?!-scS)7wsAHBD=+-mLXVdQg&aJ>X@8NUR+ZU zxYo1mHPXvwm%|k}mia8$Y{-g0L}2-B^e*F}e;uJ)MM!yUg&D+K|uCM|FR+(22kw|)F{{Lz=N89 z3Ux~OKdfurV9@W-dL{uLXGe81Q?sY3scC!4dwRp7FTDnHc5VmzUwiCn^^lX}xrvvO z1ySJ_Lo%BS-70V*0C`*R#H@*no8GPt3Lsv zUcqwc=^h8d0n|G$%(9cu1Kv+M^aSDNjhv~WO71ogOD1Xy{4#pLqA<$IlS@IOQBx9u z57x~>MudZ%tHgfTr^rK?U`MtP#MZ^vGH#Ey`(W=^u1qww$i;qG=co_Otn5?{kp+$Y z{d+NOh4XwcO$9+%mhGT|X&sKuw@@m_(Ks3y7+BydomnXA`N}!raq?*D$17R^C8#Zt zXiq8Ic?tXlzcKQmi4EDTfH#*#AksEX?HrDLo*9WT(34Xm4bwduY7l3 zh%Gd-tfH6vGL%bbGkRR`yuq5BS%4t$UzJ>Y|L}%(z$YX)o=TN`k>OsRWSR>S{|Kah z`v5zvQ#3NeS6YGZcPa{u;%0PldzwcJbt)8!z$e!`X3F5{Joj!hU}qV-(5qVQ{erGy ze?qAccIiofYmDHa5JV2aesz72a9aW+=ZbWx7+g(r+GwpVJ+(VZy15vw7@`~Fdkf`a zLyiqpxZ?hPXs=V~nMF*6{tOJL9*@s`-cUS`>q`%b%~mfiT7LEVp}2zC$cnJ|+>)l2 zmYbkrw$9!bbjp&6<>}oO;5(S>*RL-*+G3BWly6H7iO5d|Mopf1@Md~X?)PaT@>oMukU?xEW7Z8l zB{wv(V2-?Xd}A|+UXz&vg`)XvLaB24p+SHlz+}#Iu>h_-%U@!t!v#*9UTo_-FF6gs z4&=W);**abKR#NOQQK}-b3I-@0o#$ca zkyk{R7^4#0ZU#?Wy1XaNsSE>g(dN0CIZuH!U$x z?ndRuf~|K4%xFSHFIlLT@!Zh~Zkx*D3!8kKfWy-RW#le_TO;TL5BwuAkx&3D`*p+b&l^G~^F zV7J_&r$RMkh(7kG@Nhd9nF||&AtKX|#k+(?vZdDA%FYz&V}d!|C1q%|TE_8kmBd_5 zeGKAgZ;PrTUY)@j&)`2uk?nC=Wx!sTT}E{6iDTH- zp+GC~pM^~-%1@0Tkg8b@Ayo5nhNu~o>Y|=~My(f$_5Um>6MvooyS4Ccv=b(P$gltg z=y{e)4sn;HTfnS6;TJ*Ly?hO4LUR;Uwxk3Pht-0x6=#I*Xw#TCJ8enwjg9 zlM@qMu68?&^&M>gJp%cq{h4=5Sndf(vSIbJzvhhp6oIi6z}A8t)ga`irNm@ozFb7f z%&Y*pwjH)Nz#k`ltD73u`BiIl07zuHBNUednYpF7{S!okF@nBQ_!mczY@d$sfGW~dA-Tjn@myu e03ZIBEvF}PPNQtEKl~5_en~raZ|844Q1oxjj(KveVRv|W zIXZ;x*K(`0P@LZ%DneHkgLma@N6x+RpI%o!o#;Zoa(_b;5|oW;n~WG5Rz3_F%YP9B zf&6{q1SE)ynHh3fT@3=!Vq=4RU}Iu}@SYcjKtvB6g53Wr=>PIfI-KP4hoMEq#i@cU zkor{898;8obkhb#Wp72p9Ge?CTpAtJ2&WoG?*1+2wRW}v3@9_-KPR#CW`;74Z}sHr3ep?%CrC)GQU;+5m$^LCNWVQM=GwUxDuj%9t_}uxVSb( z)^pZq*k>jcle0*!oiA%xy5r(Hgz42BfdDs61$LV^f6Vg!wSQG>+MO` zT#`n7W(43p)9uM#^QE;EtfgyrPp+Oo3NHlB$~2d?u<(SjXoToIaE?v+1i;@hH!T;_g)?;&C1H^@ZZ~;Q6)`8 zt4hI>o+_7Q)(kBCn4Wq@?h- zzmd_1R^EDZTH2=Mdz|<)!Dd?XJy`$msUP{*0=B0rnyI84c0axgj^Gh-`qCZPX%joU zEGTk&Wt>rvr^0T<$Hz~u^g+7lY&vJ^tfX>ta&$0z0f95?M-FHZ9I0)G1JVkUnmGJl z1C4)HieKh8ApY>nynQDPl`>NmpIuZ`w7mN0htbWOF9>aI)lbLO;XQw!z3NGj$e$&< z;Spdl)iY!A^po?hb}IFb&oO2AmNU;~d34BYS2}j~2Qjf!-T%l8U_*KBn`qJv_pGwU zHC@L4PR`D~qR~oO?h{|-)|Pj^_K_f0O|^Pqd3p1Ptx*7u(zv;~<6~np z2L~-QvyH8vkB8K+d^#!yPrmMEYH6ALHChN~yT6vG3x^vc5Qv!oSlb<6-v%%!SR0Bm z1^E#D={$@@$bTc&wA3QERnYggzP>)H&MK9xBp5wNCQo@caQc*GXJ@bD59rH*^U{Gk z5zx6}Tr*~LdAVtvDI@trjMO_9O9uxB^i+bGY~a41gQH{HGF6iQxHENW7?V>|bB%|G z2Y}<^V6`5dwrL`KqU*y87Deh+r@jl9tlk?*CF(Jj@CLs(MT{v(hPmf3=%CtR?_{lL z!BX+G=jx(be|P1;<7C}`-5U0%f=f!`8t?4v>?B=r2p9BQx#`nnW9`|kNoa3ZwzoZk zGlFDDiwIlCV6l1B(Lmc+om*H32~klE%trF)p4Lo?M-Ar6)UKApUTRq&h~`sS52B1p6qy_Cfho&(vo^3 zRkA+4y;E=lZ?q>wTTQL&p~BV@aZ5b??)oc^)o9;=z;*lg<;EYw*#|IIuC-Qz(Uab7 zi`2H{q>Im-iu{nswW(=Bda`67K48tkv2~*2VBA0_hCDMrBpx)Pt=1*FaPM}5&GVb> z^Q6|%Sx#ExWjLlayTkE`Wd+RqV@65MwZc5Do8*1hhBmRpPH{sNYA+VUZQEr3h>)1D zY5jO@ZL*CJ-rBO9*fyg$=|O;aN;AI{?B3cWvHR`US=lU)uWmQf$(#X|stb~KGUmHm z5`#V5oE;yBTY8loxVa}g2^eW{?U54LPG#jpXlq5~RNIgE>!KQr$@lcUKDr{x zbz?ZB=(r9*UoT>FXzm%g8jpTzy{e7%;|rORbA4z+V_F;<0l6iXyi$j2}xJ zELs_98db&z%1xjerr_`})jK9r?cZLfk988laW*KFg5j12M(DMu@GKXc7w(f z%1mJR!3z!h)a2tdFW4yz&oSNV>QMhC-vf3n8yq){YBv2whS0EWw{zvHudD0Wg;p`x zEZ2AOw1T14i3!!IRy%{}^@9o2_o-FCXW!;Oe4dDPA+OyMS*xj)Z1gJj#;?4rNx)tl z>KfbV3wp@LhW_DBvdV7MlZu75h;R*Hd7{HygaSnNE=&&|+(TFvw;&KS^r*@XJ>YPE z8L{k)?ScvJ@T>vrS>ndEN z{kSRZqlr+<9!#m_X5uBwQ&q4{z1w|45fNUdu4T-{rbt_OSdZ4QJ>Em`N+v5zYXQ$Ka?D{E35uokWuC={hmm|Fht+Uc`dVWEX;P(|GRKZE4M~6DXwF z<$^QKJ6bo}Fi_$vb&ETQ++GywS7;T5f_6AP_EO8PJ>Q0s`$paU zrka#_qOnPKR1%+NQqn0GS5xST7~&wG?Z>~=D-;!e&A^71mhFC_{GVkto@1GCubbQ* z5m;^x4zwK;4-fj_?us*8q6-;gy6|{e`)}vTrS~uI|Ex8PoqnXrcTUkvdOV3QWS(Mw zI5^e4`-R7)BL*WvY!M#`Efp?PVq!?zy9a2y^+$4{pZQX-c}R^=f+HD~pD$Vd?p;GO zk6OCA+S5M86)w>1h#uKc-^YObXwCFFj}frexoPo+IeyYuS!V(#*xr=I79XUSGlb@YIp z^|i^)Hbwh57xUHRBUIdda07Nye^GXg>3EYb57H?-Jr3z=TGC`){`6jXRMc~;t>xVh z%Ma>?734)V@^kVfoy^0(*b!6?{CIA^?U|Q8d&Ae?z31$B?bKv*J?#w-GE)ZdebJtz(y1JGD8LTihH8nStXxpD?8&J49(OL{NJf_NT z2jx$j%U9T4sPt;#G4rDumNI{kdC8-5=8K(7>hoV=3{8lMi`&dsrNeZGZyupg@4|DlR>ia)h{+JMFDi4^)6AX|1h&Yx6x}zq7aLD*bd1) z?h;N&NI>@Fz!j)N9@PPKbg4~~MSFXD{r0a2Iq!vgi$irL>3(ZrU!w$egLmy6m@{yI zmrflIMHm}r5(v6r3|ntle_HL`wJe?Y=5xudMIZlO`a5b@lZD!zVzIV9h%>?KQC$Bq<@t%=_%w|B=G7^CO% zkdK=P-MZSBKhQW0n2+#|LDFx>X$v&n=c7;)4;$$l4@Y{{(Abs?ALQ{ zeLxhX3JO5#1(@cTqg%7Pv$ch`_F~R!fHscNNRx!Yloq;pApCkaj{F-R|CfyBf36v2 zz`p!>$+p=FbLtrDW{;jUa`jgWJ8Li|=jn|SGaDaG;5t*7UjzlmF{^b73$rp7%56mH zl0}sc5Yp?@?Y%WF38A9LkQ8J0e&f*H7S zm>$sFJ)jrL5CFePW!8fg4iPp1I}X5$I^&v5f&3bL@1A{H%BrBG1g4*+WKOPiBmE(s z^7Q9EPdZ**xeDid7HKw%CFriYyT7K>geZ;ek#$PJ*=kX;!!Q+L08 z`(^}u5LDvo)wp$02n`CR2&&KqXBH9?lBD8a4<_d|>Q9{mUMB`>?L|bO8ipBFzCpzw zSbw~41ZuT%Xi2Eq=3~v`2)_`do`Xpy9;nLoPE}h>JO+~m7I!OVF#vBHCvNC%CkvV7 zvHE)S|0x9d&ujCy-PdNSO;%;iXaMV-uYF@06w+9}6#wz!!a_L4o?P>}cW=~BB^{Ur z*l7=RyyzObslo+pgS;|<%STBNd5HPG69rMJtrNzYnjrxFi1@&RY=!5*J1crG z7{N~Wj(rS{rr}wqRM|HYJcI?KX9{e5_)BnphPm72v}Vu7W@&%7?nEDE8F%wu8Y;X8%exuO%2+QViBz1Kc~fhAV`p5a$`~l}^D7SY0iEhKh|HhMijcxU zOD$^+g#1=s7$`2vT6+&TV1Sw$LC;^}5Ky=a$k7YeS?Aa($Uq%npny9h4mhS?g45R8 zq&JrumYskZuU{ibiorp{py`_=IY3|xFc6H+H*<7xaUq^_Yh-xZqJn|~k1{bm>|+ph zBq{k+7~B{?1fYaLhv1`0mmj>G2)(AdJ;ow;?HVP?xy%><1r}zW)z^1dKUD!CAtAwt zzVxJW1C`p07(*gICF|L!znNRpCU$UeP}aF0#&Pz_Es%*2LEDbbS6X0m_xAh};^P4p z-p1kg>(l(V%o$JxFr)rpf0u_nr0U7Ql~Sv^J75EPg$}m0iG6(=w2~utO--FXzC4Vc zNqu%IQfu=A3+Dxpwrp;0GFU9DyFd^9Opa%dCmh; z1@S4MVox*--ctwEG>9b$^O4dWniv?ltLhv=m08-Y0AE`55FF3 zPmwnv5{ZKi&v2sapUxioaz4{Y2Lp%$24|!XAdH9;75Fu#7;Qb2+)JPygYm8=Tw>Rpb<4Rf?;ixJ;m7M0!X9G`1n)s)rLKK03PtKg5&0n-@n3MZ+n{?!9h2mAY=iA0c!Kk9%_We4W-S3 zA072c%K*W!;80%K>%;V0JtRcJN*R9*8QSHj3U}b#xkO^l?HWf!_v|MWRzjmw%RQ8^7nw!G*Qh(Y7a|i9Y_JX>-HH@YG!16u=qa;q*qF;tr{u&L^nkxo63u+(<#r*Ao%5+SbsMa8 zOD7NrRc@my0Jf_<%0Su=nr80PQRxLG=zEY{Ga_uD`9Ti{;5yOorl%i)wnO$67z6o8 z8w=)SD6ykb@6`ZXjz7I86tJBMtikr`gn;=#rseN1VqBqzARB`JYhTC29xy2|S^7OW S3ps#*AGoH$tupodFaHN?4ueDh literal 6271 zcmc&&c{G&m-yf7Lj}Q_?L}hQW6d6VdL-s*qZ4(i)jeRIdL^N5lj_gLr80%Ong-kT| zb;x7O*p~@od$0MO-+BLk-t)e{*TFe6=f1D|zOL{0``MyQjC8p;ggGD(2p3#W+YAC> ziU)ru*jT|gUba~Q5XcD~xV9F;KYfuB^aMfMJ6IifSdkVVAN1*~HgiPoOT;s=>jGW+ zD=Gr)5(!6NzLer`6cJK*Ez)#b`$-S-C-MAZQ7;Xk#r3#y;*B9s0)5yA)gl{$5CJ3oFV zlNqwo41+-+I&5r^Pi#y~kQ3r!5QxN~Ly$Yq!yu3t9v(;-FEcab;&s^nBC1~6 zXV0ER#W6uT6ndAKhARYQEuDMv4LJ@mw|92-x4n^A6lI5`axpy;clw#xN2kqKJ|4Q< z*Wd5*XJM$lz1_^mhd{|;f>nr#$xr=AQRLv{H23nt*V~tkx>w_HIDQe45K){79h=mgi(lGA|mz;Za^*UJIf*b`oOpl5%pl6rDPI z=gXQD3VMp1G6NV3BvXDaZ<6L|$9S?*`g(gmrqx97#ve~eNhul~wI#Mf!j69q5c_{9 z*gxzK77eViudi>iot3${cb6}^$-%y?T3MGR%<={-wJ?vMSEd`Yz=9NfUcH66zU z8);Uw;zK5#Z5l5d9<~lp7yZ`KA_Gc(usf@nn3{?Mr7yH9vyXoLy1z5yS|TX$WNVzP zghY;~kmmMxV}j3|8N8eDs7E2_hA3p1nYmjVbXn>ZkId*-uNd3iqYpIo_ZVxIq^F-c z%*elBwCY*u_2o$PHC+5Wa2u?vUR8aS#l3rf-z3#N;XDi(KEvF7$kf!7zBL(VVP#bS6U%z{?gYI1Lg=;u#j{le z(_53b`YW7UMp4n6(U`-P#dZ=buvg+@hCIT;^wamBOeo-3rKP3i)p;Rot_;9#YotR}6+|_m9a=5lXvUo5NMAcN~r#_MTIuT!n({JTIWkTEE)8D}!ytyVm zaj<> z75rKn&x5j=I1(3@{``jzRMaxwq+VRZ|q6Jz>0!h0Medxef|1XRuC7uqyQRLar{i#&%VlwT%}IJEDKbSBa;o?5@%L4i-SZ$C zuHJa@L`MxxW@EFy^nKo6umV;3RM+@5Ii40Rnoe6 zqBjn`Az_$))fDhBowAHBh|{3!VbSy=^!_?_zH-3c9PsV_YFwyuN2;>0MsUqoz^sVd zNL2>|QHKB^A5us**xT70__H`-fkYM&2ugq)AN3ZR)~$D5s|?z7cN=fC16r+axp7Cy zf8`DX`LQ8?Qdqe~gTFcA9htLA&H!Fp-$vZNU6`GHW^chsvuAsKRzO5V9u6qk($}{V z2ub&v30An7t!?_+`uYXyma&GQO2C%Lq`ckT;9AO(r2{u)t8p-*PkUlwf}vd)6v5bv z$Tbwg)3aQ14gkEqk&z{k3_eqByl^v9(>G@3<`=AW%Iq7I{FZDRR=#jjhbjuFRH}6d z6!L559%n9lXC|~55Yx?@H|Kyh?9b8)_ZhJBo6AeK?|#a1WMi><+=ad|2cWutVW>hG ztRiyt32c3)gXpa4UTp(JKy0!+34h-g@+*jekwQX6A3n$>CMCI$v$Uuq)n%uSM$UAk z6?imm>zL=?G6f6(WL2gA>b27*N0BViA9VX2?yd~gm;=w!R`h9E!R z<*~i&dBzS#d=Enw*_WUG=N!X7rv87sn7^iHXI=N`G>l|iYYxL=Ot&Yl`Kx0ju|ErZ z=lkb6u8bo9g~h&QhLOa?SoIAID(`$|mUn2h1)`PnxEv^9B*NDA!(q z{8^#^UcB6qqNw}%4tc2@uzbWY6lTN6c8H;-pc~{H!&Po+3<_mAa@3hd?Ze9%Ot!=_ zx|(q>C@zqRkAOZ?3*P!z=R1!YS_3+i%asW-ewyh~c3-ho@r}r%!WZv^skja2zCCX& zqpoiI{{4I4Q-EwGe}8*k;P~-;GMOHEMMg&7(a|xMX$UCh{trkAxQvukJZT#576SRi z57q*rvN$UXb`7;a&V&XfWM(Rm@Id=HB9nk9!eB692EfO&@Y$bOt9$qEO;euP_whi$M@?O#0K^#NJI&vpobK;+J1L+uqG{vf})&{&vk9|%u!EYgh=ZEtHc z!D@sM9(+Frc30#*+X>Fn)mG=$t(eP-if7^F<>mF7%vpwv!2^O)SQyvai!e;Nd=m^$ z;GZEU8juBWjLz#*Me*@GhFA@|&~1{#)T;l+S3YAY$*J~M+1p8dsgo?Q3URR)+1c4X zn-o6-43J97?xQuY-2I3YVQ3&h1USOtUl;BFBQExT+LQn7tZP}HKVNBuC|!wczPrh` zXb;TEE_pjx!vcZO!^n~F0jUR_(_Yd%Y@qdqq3sqxJ+9i@eD9lujeEj%>Xy~pdZLViF6^-X)XE)W- zdJ5)PfRE4Hu(cD+_{WbXU0q#uOLg<5bH9L^WY}{cbM1(zhM9w-2}wz~`g&Vv(4YEz zr^Hxcjh2SPuLgFSY-Dp<1VcPS3 z)!I9K+75N3d!JslF_`VB`WKdGxTQkxqzOQM(7h_43Sj{r<3}Y}*7CJgQleWc{CEZbc=am9CoB>=JCOOV! z_>GwYBzeJo+I^?ABlhGKMroS1zFqKHn}U~ESLy@$=^ZS;F947q?4;y&`E`sEYT@>` z*47cV3)X@*Vk&{tiB=3o@?9E5de8iLGcaEnBnhV(qY@Jn0}u8#&-Q6t zc<7F_E5+H_*TGC%{LF;X00`OvTmFcqYMiNF)YhiQ5dW&GssMY)jCTe0l;YE4NMC8@ zrh)S*1nvkt#dLFtQt3Tw)IjUEDba8R;ft9W29L)lBqta6jfYry)UUqa;NSqgmOq;r zWTdRDY)wR!R6QQb2FOLNZrUp`%2XesR;WnH$aLc!Nrb!2tlN8N=)vwfgR+sxl;aod z<$&K7bOfXb!g~SlIXXGHcIU$Bz<62jv6TR~<}zC2$;hB) zJ2Myp1e|!G-||@C)&2$PNnnXYjtTs#h-Hg?tLpubP_9)d`vcIC^S%tEl<) z>(4*};Jd#Yzz9b`UiL3mSspI~IfpZ~w1_2#2@WUo z?;V^ua|Tcb0*RC^+J7?k;(V>^(~(8@V62#`DiRDzqGX0fh&4lWfpl$hDbc*ZNc!?+ zyyvStWw*hPS^)t8)&%D_U%q@vNKgNO!5o9rBGXa7$y(pPe^(2k6C~%rutdkiB!D$( zNON;@Wsfm+=>FCuV}idlH=mpZ6WT``aJZ06%3E9Wf}4RH574A_NaqU&tMzY!4pQgO z>jH)~0iX(0qZ|n{FmGXK7z+Rv445i_YY_hc)Kh9Cf8u6|Tpj)$7rL9nPy)HRk^t(R zyRvUqsk1xCXlgoy(tEH3FeDxCF5O5;Nl8_7dQAsTBIBB$3!wKpAo7(R+xaQM>mBVs ze-3~bSAIPB(K5rElq8?39)L&FiXEiEsf4p~nccqqF5ehiir%Bo0j4HTeSgbHv>1#l zBqT%!sTPfVgIl>Viee2KiZ;-+Zvon2xIUml)c+R~5V=iziyqXjoXDf6H9k0!k{$tx zX@cU# zp9LgX5Ofxx0q?4g=;erY*l_Bdi-pFTdkCP@8KZNzB=|Hl7Xh`x5fG*Q=yb+7nn3;{pzn?~BD*Y7<0FQr;THUIzs diff --git a/_modules/torchrl/data/datasets/openx.html b/_modules/torchrl/data/datasets/openx.html index a0517c63947..da3433998db 100644 --- a/_modules/torchrl/data/datasets/openx.html +++ b/_modules/torchrl/data/datasets/openx.html @@ -943,10 +943,12 @@

Source code for torchrl.data.datasets.openx

             else:
                 yield data
 
-    def get(self, index: int) -> Any:
+    def get(self, index: range | torch.Tensor) -> Any:
         if not isinstance(index, range):
-            # we use a range to indicate how much data we want
-            raise RuntimeError("iterable datasets do not support indexing.")
+            if (index[1:] != index[:-1] + 1).any():
+                # we use a range to indicate how much data we want
+                raise RuntimeError("iterable datasets do not support indexing.")
+            index = range(index.shape[0])
         total = 0
         data_list = []
         episode = 0
diff --git a/_modules/torchrl/data/replay_buffers/samplers.html b/_modules/torchrl/data/replay_buffers/samplers.html
index 42bc419a27e..e73c1f3d0b9 100644
--- a/_modules/torchrl/data/replay_buffers/samplers.html
+++ b/_modules/torchrl/data/replay_buffers/samplers.html
@@ -1473,6 +1473,10 @@ 

Source code for torchrl.data.replay_buffers.samplers

for i in buffer_ids.tolist() ] ) + samples = [ + sample if isinstance(sample, torch.Tensor) else torch.tensor(sample) + for sample in samples + ] if all(samples[0].shape == sample.shape for sample in samples[1:]): samples_stack = torch.stack(samples) else: @@ -1487,7 +1491,9 @@

Source code for torchrl.data.replay_buffers.samplers

) infos = torch.stack( [ - TensorDict.from_dict(info) if info else TensorDict({}, []) + TensorDict.from_dict(info, batch_dims=samples.ndim - 1) + if info + else TensorDict({}, []) for info in infos ] ) diff --git a/_sources/sg_execution_times.rst.txt b/_sources/sg_execution_times.rst.txt index 1d4e149678c..541de9846fe 100644 --- a/_sources/sg_execution_times.rst.txt +++ b/_sources/sg_execution_times.rst.txt @@ -6,7 +6,7 @@ Computation times ================= -**27:22.388** total execution time for 11 files **from all galleries**: +**27:58.661** total execution time for 11 files **from all galleries**: .. container:: @@ -33,35 +33,35 @@ Computation times - Time - Mem (MB) * - :ref:`sphx_glr_tutorials_torchrl_demo.py` (``reference/generated/tutorials/torchrl_demo.py``) - - 03:58.037 + - 04:03.123 - 15.9 * - :ref:`sphx_glr_tutorials_torchrl_envs.py` (``reference/generated/tutorials/torchrl_envs.py``) - - 03:35.116 - - 32.5 + - 03:39.853 + - 31.8 * - :ref:`sphx_glr_tutorials_dqn_with_rnn.py` (``reference/generated/tutorials/dqn_with_rnn.py``) - - 03:19.282 - - 1705.6 + - 03:23.816 + - 1604.1 * - :ref:`sphx_glr_tutorials_multiagent_ppo.py` (``reference/generated/tutorials/multiagent_ppo.py``) - - 03:06.439 - - 13.5 + - 03:08.624 + - 14.2 * - :ref:`sphx_glr_tutorials_coding_dqn.py` (``reference/generated/tutorials/coding_dqn.py``) - - 02:45.922 - - 779.0 - * - :ref:`sphx_glr_tutorials_pendulum.py` (``reference/generated/tutorials/pendulum.py``) - - 02:41.068 - - 8.0 + - 02:58.372 + - 690.8 * - :ref:`sphx_glr_tutorials_rb_tutorial.py` (``reference/generated/tutorials/rb_tutorial.py``) - - 02:39.058 - - 402.6 + - 02:42.792 + - 395.7 + * - :ref:`sphx_glr_tutorials_pendulum.py` (``reference/generated/tutorials/pendulum.py``) + - 02:38.119 + - 7.8 * - :ref:`sphx_glr_tutorials_coding_ddpg.py` (``reference/generated/tutorials/coding_ddpg.py``) - - 01:58.049 - - 11.8 + - 02:00.576 + - 11.7 * - :ref:`sphx_glr_tutorials_coding_ppo.py` (``reference/generated/tutorials/coding_ppo.py``) - - 01:36.986 - - 8.6 + - 01:37.867 + - 8.5 * - :ref:`sphx_glr_tutorials_pretrained_models.py` (``reference/generated/tutorials/pretrained_models.py``) - - 00:52.959 - - 3544.2 + - 00:55.258 + - 3672.9 * - :ref:`sphx_glr_tutorials_multi_task.py` (``reference/generated/tutorials/multi_task.py``) - - 00:49.471 - - 25.4 + - 00:50.262 + - 26.2 diff --git a/_sources/tutorials/coding_ddpg.rst.txt b/_sources/tutorials/coding_ddpg.rst.txt index 4ef4b688162..3c07f6b3a4d 100644 --- a/_sources/tutorials/coding_ddpg.rst.txt +++ b/_sources/tutorials/coding_ddpg.rst.txt @@ -1636,7 +1636,7 @@ modules we need. .. code-block:: none - 0%| | 0/10000 [00:00/a.memmap - the ('b', 'c') tensor is stored in /b/c.memmap + the 'a' tensor is stored in /a.memmap + the ('b', 'c') tensor is stored in /b/c.memmap @@ -490,7 +490,7 @@ Let us have a look at these indices: .. code-block:: none - tensor([0, 0, 2, 2, 2, 0, 1, 2, 1, 0, 1, 0]) + tensor([0, 2, 0, 0, 2, 1, 1, 2, 2, 0, 0, 2]) @@ -1052,8 +1052,8 @@ higher indices should occur more frequently: .. code-block:: none - (array([ 24., 41., 75., 78., 83., 109., 123., 139., 189., 163.]), array([ 2. , 14.5, 27. , 39.5, 52. , 64.5, 77. , 89.5, 102. , - 114.5, 127. ]), ) + (array([ 23., 55., 61., 83., 101., 126., 128., 130., 157., 160.]), array([ 5. , 17.2, 29.4, 41.6, 53.8, 66. , 78.2, 90.4, 102.6, + 114.8, 127. ]), ) @@ -1109,8 +1109,8 @@ Now, higher indices should occur less frequently: .. code-block:: none - (array([174., 156., 159., 122., 108., 95., 77., 62., 45., 26.]), array([ 2. , 14.5, 27. , 39.5, 52. , 64.5, 77. , 89.5, 102. , - 114.5, 127. ]), ) + (array([110., 161., 146., 143., 110., 110., 105., 73., 39., 27.]), array([ 1. , 13.1, 25.2, 37.3, 49.4, 61.5, 73.6, 85.7, 97.8, + 109.9, 122. ]), ) @@ -1608,9 +1608,9 @@ You should now be able to: .. rst-class:: sphx-glr-timing - **Total running time of the script:** (2 minutes 39.058 seconds) + **Total running time of the script:** (2 minutes 42.792 seconds) -**Estimated memory usage:** 403 MB +**Estimated memory usage:** 396 MB .. _sphx_glr_download_tutorials_rb_tutorial.py: diff --git a/_sources/tutorials/sg_execution_times.rst.txt b/_sources/tutorials/sg_execution_times.rst.txt index 7d2c2ad0d5c..9bea8c9bac7 100644 --- a/_sources/tutorials/sg_execution_times.rst.txt +++ b/_sources/tutorials/sg_execution_times.rst.txt @@ -6,7 +6,7 @@ Computation times ================= -**27:22.388** total execution time for 11 files **from tutorials**: +**27:58.661** total execution time for 11 files **from tutorials**: .. container:: @@ -33,35 +33,35 @@ Computation times - Time - Mem (MB) * - :ref:`sphx_glr_tutorials_torchrl_demo.py` (``torchrl_demo.py``) - - 03:58.037 + - 04:03.123 - 15.9 * - :ref:`sphx_glr_tutorials_torchrl_envs.py` (``torchrl_envs.py``) - - 03:35.116 - - 32.5 + - 03:39.853 + - 31.8 * - :ref:`sphx_glr_tutorials_dqn_with_rnn.py` (``dqn_with_rnn.py``) - - 03:19.282 - - 1705.6 + - 03:23.816 + - 1604.1 * - :ref:`sphx_glr_tutorials_multiagent_ppo.py` (``multiagent_ppo.py``) - - 03:06.439 - - 13.5 + - 03:08.624 + - 14.2 * - :ref:`sphx_glr_tutorials_coding_dqn.py` (``coding_dqn.py``) - - 02:45.922 - - 779.0 - * - :ref:`sphx_glr_tutorials_pendulum.py` (``pendulum.py``) - - 02:41.068 - - 8.0 + - 02:58.372 + - 690.8 * - :ref:`sphx_glr_tutorials_rb_tutorial.py` (``rb_tutorial.py``) - - 02:39.058 - - 402.6 + - 02:42.792 + - 395.7 + * - :ref:`sphx_glr_tutorials_pendulum.py` (``pendulum.py``) + - 02:38.119 + - 7.8 * - :ref:`sphx_glr_tutorials_coding_ddpg.py` (``coding_ddpg.py``) - - 01:58.049 - - 11.8 + - 02:00.576 + - 11.7 * - :ref:`sphx_glr_tutorials_coding_ppo.py` (``coding_ppo.py``) - - 01:36.986 - - 8.6 + - 01:37.867 + - 8.5 * - :ref:`sphx_glr_tutorials_pretrained_models.py` (``pretrained_models.py``) - - 00:52.959 - - 3544.2 + - 00:55.258 + - 3672.9 * - :ref:`sphx_glr_tutorials_multi_task.py` (``multi_task.py``) - - 00:49.471 - - 25.4 + - 00:50.262 + - 26.2 diff --git a/_sources/tutorials/torchrl_demo.rst.txt b/_sources/tutorials/torchrl_demo.rst.txt index 8c530e8e8dd..08fbac75d42 100644 --- a/_sources/tutorials/torchrl_demo.rst.txt +++ b/_sources/tutorials/torchrl_demo.rst.txt @@ -2027,7 +2027,7 @@ The library is on PyPI: *pip install torchrl* .. rst-class:: sphx-glr-timing - **Total running time of the script:** (3 minutes 58.037 seconds) + **Total running time of the script:** (4 minutes 3.123 seconds) **Estimated memory usage:** 16 MB diff --git a/_sources/tutorials/torchrl_envs.rst.txt b/_sources/tutorials/torchrl_envs.rst.txt index a38a24eb4be..e409e3eb05f 100644 --- a/_sources/tutorials/torchrl_envs.rst.txt +++ b/_sources/tutorials/torchrl_envs.rst.txt @@ -209,7 +209,7 @@ uniformly distributed) numbers in that space: .. code-block:: none random action: - tensor([-1.5034]) + tensor([-1.2821]) @@ -703,7 +703,7 @@ argument that allows the user to quickly ask for image-based environments: .. code-block:: none - + @@ -844,7 +844,7 @@ The ``available_envs`` now returns a dict of envs and possible tasks: .. code-block:: none - + @@ -1502,7 +1502,7 @@ to access this attribute. Here's an example: .. code-block:: none - 'bar_7ae3f1ee-b084-11ee-bf2c-0242ac110002' + 'bar_fd05f084-b0b9-11ee-93fc-0242ac110002' @@ -1551,7 +1551,7 @@ to access this attribute. Here's an example: .. code-block:: none - + @@ -1571,7 +1571,7 @@ to access this attribute. Here's an example: .. code-block:: none - ['bar_82511a06-b084-11ee-a93d-0242ac110002', 'bar_82497f44-b084-11ee-a442-0242ac110002', 'bar_8251c190-b084-11ee-b540-0242ac110002'] + ['bar_049b803e-b0ba-11ee-b9c4-0242ac110002', 'bar_04947b04-b0ba-11ee-b819-0242ac110002', 'bar_049ac6f8-b0ba-11ee-b83e-0242ac110002'] @@ -1788,8 +1788,8 @@ In regular setting, using VecNorm is quite easy: .. code-block:: none - mean: : tensor([ 0.8002, -0.2003, 0.3470]) - std: : tensor([1.6280, 1.5549, 1.3532]) + mean: : tensor([-0.4376, -0.2574, -0.1634]) + std: : tensor([0.8724, 0.9739, 0.9880]) @@ -1852,8 +1852,8 @@ once created: batch_size=torch.Size([3, 5]), device=cpu, is_shared=False) - mean: : tensor([-0.1221, 0.1043, -0.0470]) - std: : tensor([1.2128, 1.2270, 1.2553]) + mean: : tensor([-0.2300, 0.0828, 0.1549]) + std: : tensor([1.1793, 1.0830, 1.2611]) @@ -1894,7 +1894,7 @@ This small difference will usually be absored throughout training. .. rst-class:: sphx-glr-timing - **Total running time of the script:** (3 minutes 35.116 seconds) + **Total running time of the script:** (3 minutes 39.853 seconds) **Estimated memory usage:** 32 MB diff --git a/searchindex.js b/searchindex.js index 0e81b7a6eaf..61474b7a453 100644 --- a/searchindex.js +++ b/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["index", "reference/collectors", "reference/data", "reference/envs", "reference/generated/knowledge_base/DEBUGGING_RL", "reference/generated/knowledge_base/GYM", "reference/generated/knowledge_base/HABITAT", "reference/generated/knowledge_base/MUJOCO_INSTALLATION", "reference/generated/knowledge_base/PRO-TIPS", "reference/generated/knowledge_base/RESOURCES", "reference/generated/knowledge_base/VERSIONING_ISSUES", "reference/generated/torchrl._utils.implement_for", "reference/generated/torchrl.collectors.collectors.DataCollectorBase", "reference/generated/torchrl.collectors.collectors.MultiSyncDataCollector", "reference/generated/torchrl.collectors.collectors.MultiaSyncDataCollector", "reference/generated/torchrl.collectors.collectors.RandomPolicy", "reference/generated/torchrl.collectors.collectors.SyncDataCollector", "reference/generated/torchrl.collectors.collectors.aSyncDataCollector", "reference/generated/torchrl.collectors.distributed.DistributedDataCollector", "reference/generated/torchrl.collectors.distributed.DistributedSyncDataCollector", "reference/generated/torchrl.collectors.distributed.RPCDataCollector", "reference/generated/torchrl.collectors.distributed.RayCollector", "reference/generated/torchrl.collectors.distributed.submitit_delayed_launcher", "reference/generated/torchrl.collectors.utils.split_trajectories", "reference/generated/torchrl.data.BinaryDiscreteTensorSpec", "reference/generated/torchrl.data.BoundedTensorSpec", "reference/generated/torchrl.data.CompositeSpec", "reference/generated/torchrl.data.DiscreteTensorSpec", "reference/generated/torchrl.data.LazyStackedCompositeSpec", "reference/generated/torchrl.data.LazyStackedTensorSpec", "reference/generated/torchrl.data.MultiDiscreteTensorSpec", "reference/generated/torchrl.data.MultiOneHotDiscreteTensorSpec", "reference/generated/torchrl.data.MultiStep", "reference/generated/torchrl.data.OneHotDiscreteTensorSpec", "reference/generated/torchrl.data.PairwiseDataset", "reference/generated/torchrl.data.PrioritizedReplayBuffer", "reference/generated/torchrl.data.PromptData", "reference/generated/torchrl.data.PromptTensorDictTokenizer", "reference/generated/torchrl.data.ReplayBuffer", "reference/generated/torchrl.data.RewardData", "reference/generated/torchrl.data.RolloutFromModel", "reference/generated/torchrl.data.TensorDictPrioritizedReplayBuffer", "reference/generated/torchrl.data.TensorDictReplayBuffer", "reference/generated/torchrl.data.TensorDictTokenizer", "reference/generated/torchrl.data.TensorSpec", "reference/generated/torchrl.data.TokenizedDatasetLoader", "reference/generated/torchrl.data.UnboundedContinuousTensorSpec", "reference/generated/torchrl.data.UnboundedDiscreteTensorSpec", "reference/generated/torchrl.data.check_no_exclusive_keys", "reference/generated/torchrl.data.consolidate_spec", "reference/generated/torchrl.data.contains_lazy_spec", "reference/generated/torchrl.data.create_infinite_iterator", "reference/generated/torchrl.data.datasets.D4RLExperienceReplay", "reference/generated/torchrl.data.datasets.MinariExperienceReplay", "reference/generated/torchrl.data.datasets.OpenMLExperienceReplay", "reference/generated/torchrl.data.datasets.OpenXExperienceReplay", "reference/generated/torchrl.data.datasets.RobosetExperienceReplay", "reference/generated/torchrl.data.datasets.VD4RLExperienceReplay", "reference/generated/torchrl.data.get_dataloader", "reference/generated/torchrl.data.replay_buffers.ImmutableDatasetWriter", "reference/generated/torchrl.data.replay_buffers.LazyMemmapStorage", "reference/generated/torchrl.data.replay_buffers.LazyTensorStorage", "reference/generated/torchrl.data.replay_buffers.ListStorage", "reference/generated/torchrl.data.replay_buffers.PrioritizedSampler", "reference/generated/torchrl.data.replay_buffers.RandomSampler", "reference/generated/torchrl.data.replay_buffers.ReplayBufferEnsemble", "reference/generated/torchrl.data.replay_buffers.RoundRobinWriter", "reference/generated/torchrl.data.replay_buffers.Sampler", "reference/generated/torchrl.data.replay_buffers.SamplerEnsemble", "reference/generated/torchrl.data.replay_buffers.SamplerWithoutReplacement", "reference/generated/torchrl.data.replay_buffers.SliceSampler", "reference/generated/torchrl.data.replay_buffers.SliceSamplerWithoutReplacement", "reference/generated/torchrl.data.replay_buffers.Storage", "reference/generated/torchrl.data.replay_buffers.StorageEnsemble", "reference/generated/torchrl.data.replay_buffers.TensorDictMaxValueWriter", "reference/generated/torchrl.data.replay_buffers.TensorDictRoundRobinWriter", "reference/generated/torchrl.data.replay_buffers.TensorStorage", "reference/generated/torchrl.data.replay_buffers.Writer", "reference/generated/torchrl.data.replay_buffers.WriterEnsemble", "reference/generated/torchrl.envs.BraxEnv", "reference/generated/torchrl.envs.BraxWrapper", "reference/generated/torchrl.envs.DMControlEnv", "reference/generated/torchrl.envs.DMControlWrapper", "reference/generated/torchrl.envs.EnvBase", "reference/generated/torchrl.envs.EnvCreator", "reference/generated/torchrl.envs.EnvMetaData", "reference/generated/torchrl.envs.GymEnv", "reference/generated/torchrl.envs.GymLikeEnv", "reference/generated/torchrl.envs.GymWrapper", "reference/generated/torchrl.envs.HabitatEnv", "reference/generated/torchrl.envs.IsaacGymEnv", "reference/generated/torchrl.envs.IsaacGymWrapper", "reference/generated/torchrl.envs.JumanjiEnv", "reference/generated/torchrl.envs.JumanjiWrapper", "reference/generated/torchrl.envs.MOGymEnv", "reference/generated/torchrl.envs.MOGymWrapper", "reference/generated/torchrl.envs.MarlGroupMapType", "reference/generated/torchrl.envs.ModelBasedEnvBase", "reference/generated/torchrl.envs.MultiThreadedEnv", "reference/generated/torchrl.envs.MultiThreadedEnvWrapper", "reference/generated/torchrl.envs.OpenMLEnv", "reference/generated/torchrl.envs.ParallelEnv", "reference/generated/torchrl.envs.PettingZooEnv", "reference/generated/torchrl.envs.PettingZooWrapper", "reference/generated/torchrl.envs.RoboHiveEnv", "reference/generated/torchrl.envs.SMACv2Env", "reference/generated/torchrl.envs.SMACv2Wrapper", "reference/generated/torchrl.envs.SerialEnv", "reference/generated/torchrl.envs.VmasEnv", "reference/generated/torchrl.envs.VmasWrapper", "reference/generated/torchrl.envs.check_marl_grouping", "reference/generated/torchrl.envs.gym_backend", "reference/generated/torchrl.envs.model_based.dreamer.DreamerEnv", "reference/generated/torchrl.envs.set_gym_backend", "reference/generated/torchrl.envs.transforms.ActionMask", "reference/generated/torchrl.envs.transforms.BinarizeReward", "reference/generated/torchrl.envs.transforms.BurnInTransform", "reference/generated/torchrl.envs.transforms.CatFrames", "reference/generated/torchrl.envs.transforms.CatTensors", "reference/generated/torchrl.envs.transforms.CenterCrop", "reference/generated/torchrl.envs.transforms.ClipTransform", "reference/generated/torchrl.envs.transforms.Compose", "reference/generated/torchrl.envs.transforms.DTypeCastTransform", "reference/generated/torchrl.envs.transforms.DeviceCastTransform", "reference/generated/torchrl.envs.transforms.DiscreteActionProjection", "reference/generated/torchrl.envs.transforms.DoubleToFloat", "reference/generated/torchrl.envs.transforms.EndOfLifeTransform", "reference/generated/torchrl.envs.transforms.ExcludeTransform", "reference/generated/torchrl.envs.transforms.FiniteTensorDictCheck", "reference/generated/torchrl.envs.transforms.FlattenObservation", "reference/generated/torchrl.envs.transforms.FrameSkipTransform", "reference/generated/torchrl.envs.transforms.GrayScale", "reference/generated/torchrl.envs.transforms.InitTracker", "reference/generated/torchrl.envs.transforms.KLRewardTransform", "reference/generated/torchrl.envs.transforms.NoopResetEnv", "reference/generated/torchrl.envs.transforms.ObservationNorm", "reference/generated/torchrl.envs.transforms.ObservationTransform", "reference/generated/torchrl.envs.transforms.PermuteTransform", "reference/generated/torchrl.envs.transforms.PinMemoryTransform", "reference/generated/torchrl.envs.transforms.R3MTransform", "reference/generated/torchrl.envs.transforms.RandomCropTensorDict", "reference/generated/torchrl.envs.transforms.RenameTransform", "reference/generated/torchrl.envs.transforms.Resize", "reference/generated/torchrl.envs.transforms.Reward2GoTransform", "reference/generated/torchrl.envs.transforms.RewardClipping", "reference/generated/torchrl.envs.transforms.RewardScaling", "reference/generated/torchrl.envs.transforms.RewardSum", "reference/generated/torchrl.envs.transforms.SelectTransform", "reference/generated/torchrl.envs.transforms.SqueezeTransform", "reference/generated/torchrl.envs.transforms.StepCounter", "reference/generated/torchrl.envs.transforms.TargetReturn", "reference/generated/torchrl.envs.transforms.TensorDictPrimer", "reference/generated/torchrl.envs.transforms.TimeMaxPool", "reference/generated/torchrl.envs.transforms.ToTensorImage", "reference/generated/torchrl.envs.transforms.Transform", "reference/generated/torchrl.envs.transforms.TransformedEnv", "reference/generated/torchrl.envs.transforms.UnsqueezeTransform", "reference/generated/torchrl.envs.transforms.VC1Transform", "reference/generated/torchrl.envs.transforms.VIPRewardTransform", "reference/generated/torchrl.envs.transforms.VIPTransform", "reference/generated/torchrl.envs.transforms.VecGymEnvTransform", "reference/generated/torchrl.envs.transforms.VecNorm", "reference/generated/torchrl.envs.transforms.gSDENoise", "reference/generated/torchrl.envs.utils.check_env_specs", "reference/generated/torchrl.envs.utils.exploration_mode", "reference/generated/torchrl.envs.utils.exploration_type", "reference/generated/torchrl.envs.utils.get_available_libraries", "reference/generated/torchrl.envs.utils.make_composite_from_td", "reference/generated/torchrl.envs.utils.set_exploration_mode", "reference/generated/torchrl.envs.utils.set_exploration_type", "reference/generated/torchrl.envs.utils.step_mdp", "reference/generated/torchrl.envs.utils.terminated_or_truncated", "reference/generated/torchrl.modules.CEMPlanner", "reference/generated/torchrl.modules.Conv3dNet", "reference/generated/torchrl.modules.ConvNet", "reference/generated/torchrl.modules.DTActor", "reference/generated/torchrl.modules.DdpgCnnActor", "reference/generated/torchrl.modules.DdpgCnnQNet", "reference/generated/torchrl.modules.DdpgMlpActor", "reference/generated/torchrl.modules.DdpgMlpQNet", "reference/generated/torchrl.modules.DecisionTransformer", "reference/generated/torchrl.modules.Delta", "reference/generated/torchrl.modules.DistributionalDQNnet", "reference/generated/torchrl.modules.DistributionalQValueHook", "reference/generated/torchrl.modules.DreamerActor", "reference/generated/torchrl.modules.DuelingCnnDQNet", "reference/generated/torchrl.modules.GRU", "reference/generated/torchrl.modules.GRUCell", "reference/generated/torchrl.modules.GRUModule", "reference/generated/torchrl.modules.IndependentNormal", "reference/generated/torchrl.modules.LSTM", "reference/generated/torchrl.modules.LSTMCell", "reference/generated/torchrl.modules.LSTMModule", "reference/generated/torchrl.modules.LSTMNet", "reference/generated/torchrl.modules.MLP", "reference/generated/torchrl.modules.MPCPlannerBase", "reference/generated/torchrl.modules.MPPIPlanner", "reference/generated/torchrl.modules.MaskedCategorical", "reference/generated/torchrl.modules.MaskedOneHotCategorical", "reference/generated/torchrl.modules.MultiAgentConvNet", "reference/generated/torchrl.modules.MultiAgentMLP", "reference/generated/torchrl.modules.NoisyLazyLinear", "reference/generated/torchrl.modules.NoisyLinear", "reference/generated/torchrl.modules.NormalParamWrapper", "reference/generated/torchrl.modules.ObsDecoder", "reference/generated/torchrl.modules.ObsEncoder", "reference/generated/torchrl.modules.OneHotCategorical", "reference/generated/torchrl.modules.OnlineDTActor", "reference/generated/torchrl.modules.QMixer", "reference/generated/torchrl.modules.QValueHook", "reference/generated/torchrl.modules.RSSMPosterior", "reference/generated/torchrl.modules.RSSMPrior", "reference/generated/torchrl.modules.Squeeze2dLayer", "reference/generated/torchrl.modules.SqueezeLayer", "reference/generated/torchrl.modules.TanhDelta", "reference/generated/torchrl.modules.TanhNormal", "reference/generated/torchrl.modules.TruncatedNormal", "reference/generated/torchrl.modules.VDNMixer", "reference/generated/torchrl.modules.VmapModule", "reference/generated/torchrl.modules.reset_noise", "reference/generated/torchrl.modules.tensordict_module.Actor", "reference/generated/torchrl.modules.tensordict_module.ActorCriticOperator", "reference/generated/torchrl.modules.tensordict_module.ActorCriticWrapper", "reference/generated/torchrl.modules.tensordict_module.ActorValueOperator", "reference/generated/torchrl.modules.tensordict_module.AdditiveGaussianWrapper", "reference/generated/torchrl.modules.tensordict_module.DecisionTransformerInferenceWrapper", "reference/generated/torchrl.modules.tensordict_module.DistributionalQValueActor", "reference/generated/torchrl.modules.tensordict_module.DistributionalQValueModule", "reference/generated/torchrl.modules.tensordict_module.EGreedyModule", "reference/generated/torchrl.modules.tensordict_module.EGreedyWrapper", "reference/generated/torchrl.modules.tensordict_module.LMHeadActorValueOperator", "reference/generated/torchrl.modules.tensordict_module.OrnsteinUhlenbeckProcessWrapper", "reference/generated/torchrl.modules.tensordict_module.ProbabilisticActor", "reference/generated/torchrl.modules.tensordict_module.QValueActor", "reference/generated/torchrl.modules.tensordict_module.QValueModule", "reference/generated/torchrl.modules.tensordict_module.SafeModule", "reference/generated/torchrl.modules.tensordict_module.SafeProbabilisticModule", "reference/generated/torchrl.modules.tensordict_module.SafeProbabilisticTensorDictSequential", "reference/generated/torchrl.modules.tensordict_module.SafeSequential", "reference/generated/torchrl.modules.tensordict_module.TanhModule", "reference/generated/torchrl.modules.tensordict_module.ValueOperator", "reference/generated/torchrl.modules.tensordict_module.WorldModelWrapper", "reference/generated/torchrl.modules.utils.biased_softplus", "reference/generated/torchrl.modules.utils.inv_softplus", "reference/generated/torchrl.modules.utils.mappings", "reference/generated/torchrl.objectives.A2CLoss", "reference/generated/torchrl.objectives.CQLLoss", "reference/generated/torchrl.objectives.ClipPPOLoss", "reference/generated/torchrl.objectives.DDPGLoss", "reference/generated/torchrl.objectives.DQNLoss", "reference/generated/torchrl.objectives.DTLoss", "reference/generated/torchrl.objectives.DiscreteCQLLoss", "reference/generated/torchrl.objectives.DiscreteSACLoss", "reference/generated/torchrl.objectives.DistributionalDQNLoss", "reference/generated/torchrl.objectives.DreamerActorLoss", "reference/generated/torchrl.objectives.DreamerModelLoss", "reference/generated/torchrl.objectives.DreamerValueLoss", "reference/generated/torchrl.objectives.HardUpdate", "reference/generated/torchrl.objectives.IQLLoss", "reference/generated/torchrl.objectives.KLPENPPOLoss", "reference/generated/torchrl.objectives.LossModule", "reference/generated/torchrl.objectives.OnlineDTLoss", "reference/generated/torchrl.objectives.PPOLoss", "reference/generated/torchrl.objectives.REDQLoss", "reference/generated/torchrl.objectives.ReinforceLoss", "reference/generated/torchrl.objectives.SACLoss", "reference/generated/torchrl.objectives.SoftUpdate", "reference/generated/torchrl.objectives.TD3Loss", "reference/generated/torchrl.objectives.ValueEstimators", "reference/generated/torchrl.objectives.default_value_kwargs", "reference/generated/torchrl.objectives.distance_loss", "reference/generated/torchrl.objectives.hold_out_net", "reference/generated/torchrl.objectives.hold_out_params", "reference/generated/torchrl.objectives.multiagent.QMixerLoss", "reference/generated/torchrl.objectives.next_state_value", "reference/generated/torchrl.objectives.value.GAE", "reference/generated/torchrl.objectives.value.TD0Estimator", "reference/generated/torchrl.objectives.value.TD1Estimator", "reference/generated/torchrl.objectives.value.TDLambdaEstimator", "reference/generated/torchrl.objectives.value.ValueEstimatorBase", "reference/generated/torchrl.objectives.value.functional.generalized_advantage_estimate", "reference/generated/torchrl.objectives.value.functional.reward2go", "reference/generated/torchrl.objectives.value.functional.td0_advantage_estimate", "reference/generated/torchrl.objectives.value.functional.td0_return_estimate", "reference/generated/torchrl.objectives.value.functional.td1_advantage_estimate", "reference/generated/torchrl.objectives.value.functional.td1_return_estimate", "reference/generated/torchrl.objectives.value.functional.td_lambda_advantage_estimate", "reference/generated/torchrl.objectives.value.functional.td_lambda_return_estimate", "reference/generated/torchrl.objectives.value.functional.vec_generalized_advantage_estimate", "reference/generated/torchrl.objectives.value.functional.vec_td1_advantage_estimate", "reference/generated/torchrl.objectives.value.functional.vec_td1_return_estimate", "reference/generated/torchrl.objectives.value.functional.vec_td_lambda_advantage_estimate", "reference/generated/torchrl.objectives.value.functional.vec_td_lambda_return_estimate", "reference/generated/torchrl.record.TensorDictRecorder", "reference/generated/torchrl.record.VideoRecorder", "reference/generated/torchrl.record.loggers.Logger", "reference/generated/torchrl.record.loggers.csv.CSVLogger", "reference/generated/torchrl.record.loggers.generate_exp_name", "reference/generated/torchrl.record.loggers.get_logger", "reference/generated/torchrl.record.loggers.mlflow.MLFlowLogger", "reference/generated/torchrl.record.loggers.tensorboard.TensorboardLogger", "reference/generated/torchrl.record.loggers.wandb.WandbLogger", "reference/generated/torchrl.trainers.BatchSubSampler", "reference/generated/torchrl.trainers.ClearCudaCache", "reference/generated/torchrl.trainers.CountFramesLog", "reference/generated/torchrl.trainers.LogReward", "reference/generated/torchrl.trainers.OptimizerHook", "reference/generated/torchrl.trainers.Recorder", "reference/generated/torchrl.trainers.ReplayBufferTrainer", "reference/generated/torchrl.trainers.RewardNormalizer", "reference/generated/torchrl.trainers.SelectKeys", "reference/generated/torchrl.trainers.Trainer", "reference/generated/torchrl.trainers.TrainerHookBase", "reference/generated/torchrl.trainers.UpdateWeights", "reference/generated/torchrl.trainers.helpers.correct_for_frame_skip", "reference/generated/torchrl.trainers.helpers.get_stats_random_rollout", "reference/generated/torchrl.trainers.helpers.make_collector_offpolicy", "reference/generated/torchrl.trainers.helpers.make_collector_onpolicy", "reference/generated/torchrl.trainers.helpers.make_dqn_loss", "reference/generated/torchrl.trainers.helpers.make_redq_loss", "reference/generated/torchrl.trainers.helpers.make_redq_model", "reference/generated/torchrl.trainers.helpers.make_replay_buffer", "reference/generated/torchrl.trainers.helpers.make_target_updater", "reference/generated/torchrl.trainers.helpers.make_trainer", "reference/generated/torchrl.trainers.helpers.parallel_env_constructor", "reference/generated/torchrl.trainers.helpers.sync_async_collector", "reference/generated/torchrl.trainers.helpers.sync_sync_collector", "reference/generated/torchrl.trainers.helpers.transformed_env_constructor", "reference/generated/tutorials/README", "reference/index", "reference/knowledge_base", "reference/modules", "reference/objectives", "reference/trainers", "reference/utils", "sg_execution_times", "tutorials/coding_ddpg", "tutorials/coding_dqn", "tutorials/coding_ppo", "tutorials/dqn_with_rnn", "tutorials/index", "tutorials/multi_task", "tutorials/multiagent_ppo", "tutorials/pendulum", "tutorials/pretrained_models", "tutorials/rb_tutorial", "tutorials/sg_execution_times", "tutorials/torchrl_demo", "tutorials/torchrl_envs"], "filenames": ["index.rst", "reference/collectors.rst", "reference/data.rst", "reference/envs.rst", "reference/generated/knowledge_base/DEBUGGING_RL.rst", "reference/generated/knowledge_base/GYM.rst", "reference/generated/knowledge_base/HABITAT.rst", "reference/generated/knowledge_base/MUJOCO_INSTALLATION.rst", "reference/generated/knowledge_base/PRO-TIPS.rst", "reference/generated/knowledge_base/RESOURCES.rst", "reference/generated/knowledge_base/VERSIONING_ISSUES.rst", "reference/generated/torchrl._utils.implement_for.rst", "reference/generated/torchrl.collectors.collectors.DataCollectorBase.rst", "reference/generated/torchrl.collectors.collectors.MultiSyncDataCollector.rst", "reference/generated/torchrl.collectors.collectors.MultiaSyncDataCollector.rst", "reference/generated/torchrl.collectors.collectors.RandomPolicy.rst", "reference/generated/torchrl.collectors.collectors.SyncDataCollector.rst", "reference/generated/torchrl.collectors.collectors.aSyncDataCollector.rst", "reference/generated/torchrl.collectors.distributed.DistributedDataCollector.rst", "reference/generated/torchrl.collectors.distributed.DistributedSyncDataCollector.rst", "reference/generated/torchrl.collectors.distributed.RPCDataCollector.rst", "reference/generated/torchrl.collectors.distributed.RayCollector.rst", "reference/generated/torchrl.collectors.distributed.submitit_delayed_launcher.rst", "reference/generated/torchrl.collectors.utils.split_trajectories.rst", "reference/generated/torchrl.data.BinaryDiscreteTensorSpec.rst", "reference/generated/torchrl.data.BoundedTensorSpec.rst", "reference/generated/torchrl.data.CompositeSpec.rst", "reference/generated/torchrl.data.DiscreteTensorSpec.rst", "reference/generated/torchrl.data.LazyStackedCompositeSpec.rst", "reference/generated/torchrl.data.LazyStackedTensorSpec.rst", "reference/generated/torchrl.data.MultiDiscreteTensorSpec.rst", "reference/generated/torchrl.data.MultiOneHotDiscreteTensorSpec.rst", "reference/generated/torchrl.data.MultiStep.rst", "reference/generated/torchrl.data.OneHotDiscreteTensorSpec.rst", "reference/generated/torchrl.data.PairwiseDataset.rst", "reference/generated/torchrl.data.PrioritizedReplayBuffer.rst", "reference/generated/torchrl.data.PromptData.rst", "reference/generated/torchrl.data.PromptTensorDictTokenizer.rst", "reference/generated/torchrl.data.ReplayBuffer.rst", "reference/generated/torchrl.data.RewardData.rst", "reference/generated/torchrl.data.RolloutFromModel.rst", "reference/generated/torchrl.data.TensorDictPrioritizedReplayBuffer.rst", "reference/generated/torchrl.data.TensorDictReplayBuffer.rst", "reference/generated/torchrl.data.TensorDictTokenizer.rst", "reference/generated/torchrl.data.TensorSpec.rst", "reference/generated/torchrl.data.TokenizedDatasetLoader.rst", "reference/generated/torchrl.data.UnboundedContinuousTensorSpec.rst", "reference/generated/torchrl.data.UnboundedDiscreteTensorSpec.rst", "reference/generated/torchrl.data.check_no_exclusive_keys.rst", "reference/generated/torchrl.data.consolidate_spec.rst", "reference/generated/torchrl.data.contains_lazy_spec.rst", "reference/generated/torchrl.data.create_infinite_iterator.rst", "reference/generated/torchrl.data.datasets.D4RLExperienceReplay.rst", "reference/generated/torchrl.data.datasets.MinariExperienceReplay.rst", "reference/generated/torchrl.data.datasets.OpenMLExperienceReplay.rst", "reference/generated/torchrl.data.datasets.OpenXExperienceReplay.rst", "reference/generated/torchrl.data.datasets.RobosetExperienceReplay.rst", "reference/generated/torchrl.data.datasets.VD4RLExperienceReplay.rst", "reference/generated/torchrl.data.get_dataloader.rst", "reference/generated/torchrl.data.replay_buffers.ImmutableDatasetWriter.rst", "reference/generated/torchrl.data.replay_buffers.LazyMemmapStorage.rst", "reference/generated/torchrl.data.replay_buffers.LazyTensorStorage.rst", "reference/generated/torchrl.data.replay_buffers.ListStorage.rst", "reference/generated/torchrl.data.replay_buffers.PrioritizedSampler.rst", "reference/generated/torchrl.data.replay_buffers.RandomSampler.rst", "reference/generated/torchrl.data.replay_buffers.ReplayBufferEnsemble.rst", "reference/generated/torchrl.data.replay_buffers.RoundRobinWriter.rst", "reference/generated/torchrl.data.replay_buffers.Sampler.rst", "reference/generated/torchrl.data.replay_buffers.SamplerEnsemble.rst", "reference/generated/torchrl.data.replay_buffers.SamplerWithoutReplacement.rst", "reference/generated/torchrl.data.replay_buffers.SliceSampler.rst", "reference/generated/torchrl.data.replay_buffers.SliceSamplerWithoutReplacement.rst", "reference/generated/torchrl.data.replay_buffers.Storage.rst", "reference/generated/torchrl.data.replay_buffers.StorageEnsemble.rst", "reference/generated/torchrl.data.replay_buffers.TensorDictMaxValueWriter.rst", "reference/generated/torchrl.data.replay_buffers.TensorDictRoundRobinWriter.rst", "reference/generated/torchrl.data.replay_buffers.TensorStorage.rst", "reference/generated/torchrl.data.replay_buffers.Writer.rst", "reference/generated/torchrl.data.replay_buffers.WriterEnsemble.rst", "reference/generated/torchrl.envs.BraxEnv.rst", "reference/generated/torchrl.envs.BraxWrapper.rst", "reference/generated/torchrl.envs.DMControlEnv.rst", "reference/generated/torchrl.envs.DMControlWrapper.rst", "reference/generated/torchrl.envs.EnvBase.rst", "reference/generated/torchrl.envs.EnvCreator.rst", "reference/generated/torchrl.envs.EnvMetaData.rst", "reference/generated/torchrl.envs.GymEnv.rst", "reference/generated/torchrl.envs.GymLikeEnv.rst", "reference/generated/torchrl.envs.GymWrapper.rst", "reference/generated/torchrl.envs.HabitatEnv.rst", "reference/generated/torchrl.envs.IsaacGymEnv.rst", "reference/generated/torchrl.envs.IsaacGymWrapper.rst", "reference/generated/torchrl.envs.JumanjiEnv.rst", "reference/generated/torchrl.envs.JumanjiWrapper.rst", "reference/generated/torchrl.envs.MOGymEnv.rst", "reference/generated/torchrl.envs.MOGymWrapper.rst", "reference/generated/torchrl.envs.MarlGroupMapType.rst", "reference/generated/torchrl.envs.ModelBasedEnvBase.rst", "reference/generated/torchrl.envs.MultiThreadedEnv.rst", "reference/generated/torchrl.envs.MultiThreadedEnvWrapper.rst", "reference/generated/torchrl.envs.OpenMLEnv.rst", "reference/generated/torchrl.envs.ParallelEnv.rst", "reference/generated/torchrl.envs.PettingZooEnv.rst", "reference/generated/torchrl.envs.PettingZooWrapper.rst", "reference/generated/torchrl.envs.RoboHiveEnv.rst", "reference/generated/torchrl.envs.SMACv2Env.rst", "reference/generated/torchrl.envs.SMACv2Wrapper.rst", "reference/generated/torchrl.envs.SerialEnv.rst", "reference/generated/torchrl.envs.VmasEnv.rst", "reference/generated/torchrl.envs.VmasWrapper.rst", "reference/generated/torchrl.envs.check_marl_grouping.rst", "reference/generated/torchrl.envs.gym_backend.rst", "reference/generated/torchrl.envs.model_based.dreamer.DreamerEnv.rst", "reference/generated/torchrl.envs.set_gym_backend.rst", "reference/generated/torchrl.envs.transforms.ActionMask.rst", "reference/generated/torchrl.envs.transforms.BinarizeReward.rst", "reference/generated/torchrl.envs.transforms.BurnInTransform.rst", "reference/generated/torchrl.envs.transforms.CatFrames.rst", "reference/generated/torchrl.envs.transforms.CatTensors.rst", "reference/generated/torchrl.envs.transforms.CenterCrop.rst", "reference/generated/torchrl.envs.transforms.ClipTransform.rst", "reference/generated/torchrl.envs.transforms.Compose.rst", "reference/generated/torchrl.envs.transforms.DTypeCastTransform.rst", "reference/generated/torchrl.envs.transforms.DeviceCastTransform.rst", "reference/generated/torchrl.envs.transforms.DiscreteActionProjection.rst", "reference/generated/torchrl.envs.transforms.DoubleToFloat.rst", "reference/generated/torchrl.envs.transforms.EndOfLifeTransform.rst", "reference/generated/torchrl.envs.transforms.ExcludeTransform.rst", "reference/generated/torchrl.envs.transforms.FiniteTensorDictCheck.rst", "reference/generated/torchrl.envs.transforms.FlattenObservation.rst", "reference/generated/torchrl.envs.transforms.FrameSkipTransform.rst", "reference/generated/torchrl.envs.transforms.GrayScale.rst", "reference/generated/torchrl.envs.transforms.InitTracker.rst", "reference/generated/torchrl.envs.transforms.KLRewardTransform.rst", "reference/generated/torchrl.envs.transforms.NoopResetEnv.rst", "reference/generated/torchrl.envs.transforms.ObservationNorm.rst", "reference/generated/torchrl.envs.transforms.ObservationTransform.rst", "reference/generated/torchrl.envs.transforms.PermuteTransform.rst", "reference/generated/torchrl.envs.transforms.PinMemoryTransform.rst", "reference/generated/torchrl.envs.transforms.R3MTransform.rst", "reference/generated/torchrl.envs.transforms.RandomCropTensorDict.rst", "reference/generated/torchrl.envs.transforms.RenameTransform.rst", "reference/generated/torchrl.envs.transforms.Resize.rst", "reference/generated/torchrl.envs.transforms.Reward2GoTransform.rst", "reference/generated/torchrl.envs.transforms.RewardClipping.rst", "reference/generated/torchrl.envs.transforms.RewardScaling.rst", "reference/generated/torchrl.envs.transforms.RewardSum.rst", "reference/generated/torchrl.envs.transforms.SelectTransform.rst", "reference/generated/torchrl.envs.transforms.SqueezeTransform.rst", "reference/generated/torchrl.envs.transforms.StepCounter.rst", "reference/generated/torchrl.envs.transforms.TargetReturn.rst", "reference/generated/torchrl.envs.transforms.TensorDictPrimer.rst", "reference/generated/torchrl.envs.transforms.TimeMaxPool.rst", "reference/generated/torchrl.envs.transforms.ToTensorImage.rst", "reference/generated/torchrl.envs.transforms.Transform.rst", "reference/generated/torchrl.envs.transforms.TransformedEnv.rst", "reference/generated/torchrl.envs.transforms.UnsqueezeTransform.rst", "reference/generated/torchrl.envs.transforms.VC1Transform.rst", "reference/generated/torchrl.envs.transforms.VIPRewardTransform.rst", "reference/generated/torchrl.envs.transforms.VIPTransform.rst", "reference/generated/torchrl.envs.transforms.VecGymEnvTransform.rst", "reference/generated/torchrl.envs.transforms.VecNorm.rst", "reference/generated/torchrl.envs.transforms.gSDENoise.rst", "reference/generated/torchrl.envs.utils.check_env_specs.rst", "reference/generated/torchrl.envs.utils.exploration_mode.rst", "reference/generated/torchrl.envs.utils.exploration_type.rst", "reference/generated/torchrl.envs.utils.get_available_libraries.rst", "reference/generated/torchrl.envs.utils.make_composite_from_td.rst", "reference/generated/torchrl.envs.utils.set_exploration_mode.rst", "reference/generated/torchrl.envs.utils.set_exploration_type.rst", "reference/generated/torchrl.envs.utils.step_mdp.rst", "reference/generated/torchrl.envs.utils.terminated_or_truncated.rst", "reference/generated/torchrl.modules.CEMPlanner.rst", "reference/generated/torchrl.modules.Conv3dNet.rst", "reference/generated/torchrl.modules.ConvNet.rst", "reference/generated/torchrl.modules.DTActor.rst", "reference/generated/torchrl.modules.DdpgCnnActor.rst", "reference/generated/torchrl.modules.DdpgCnnQNet.rst", "reference/generated/torchrl.modules.DdpgMlpActor.rst", "reference/generated/torchrl.modules.DdpgMlpQNet.rst", "reference/generated/torchrl.modules.DecisionTransformer.rst", "reference/generated/torchrl.modules.Delta.rst", "reference/generated/torchrl.modules.DistributionalDQNnet.rst", "reference/generated/torchrl.modules.DistributionalQValueHook.rst", "reference/generated/torchrl.modules.DreamerActor.rst", "reference/generated/torchrl.modules.DuelingCnnDQNet.rst", "reference/generated/torchrl.modules.GRU.rst", "reference/generated/torchrl.modules.GRUCell.rst", "reference/generated/torchrl.modules.GRUModule.rst", "reference/generated/torchrl.modules.IndependentNormal.rst", "reference/generated/torchrl.modules.LSTM.rst", "reference/generated/torchrl.modules.LSTMCell.rst", "reference/generated/torchrl.modules.LSTMModule.rst", "reference/generated/torchrl.modules.LSTMNet.rst", "reference/generated/torchrl.modules.MLP.rst", "reference/generated/torchrl.modules.MPCPlannerBase.rst", "reference/generated/torchrl.modules.MPPIPlanner.rst", "reference/generated/torchrl.modules.MaskedCategorical.rst", "reference/generated/torchrl.modules.MaskedOneHotCategorical.rst", "reference/generated/torchrl.modules.MultiAgentConvNet.rst", "reference/generated/torchrl.modules.MultiAgentMLP.rst", "reference/generated/torchrl.modules.NoisyLazyLinear.rst", "reference/generated/torchrl.modules.NoisyLinear.rst", "reference/generated/torchrl.modules.NormalParamWrapper.rst", "reference/generated/torchrl.modules.ObsDecoder.rst", "reference/generated/torchrl.modules.ObsEncoder.rst", "reference/generated/torchrl.modules.OneHotCategorical.rst", "reference/generated/torchrl.modules.OnlineDTActor.rst", "reference/generated/torchrl.modules.QMixer.rst", "reference/generated/torchrl.modules.QValueHook.rst", "reference/generated/torchrl.modules.RSSMPosterior.rst", "reference/generated/torchrl.modules.RSSMPrior.rst", "reference/generated/torchrl.modules.Squeeze2dLayer.rst", "reference/generated/torchrl.modules.SqueezeLayer.rst", "reference/generated/torchrl.modules.TanhDelta.rst", "reference/generated/torchrl.modules.TanhNormal.rst", "reference/generated/torchrl.modules.TruncatedNormal.rst", "reference/generated/torchrl.modules.VDNMixer.rst", "reference/generated/torchrl.modules.VmapModule.rst", "reference/generated/torchrl.modules.reset_noise.rst", "reference/generated/torchrl.modules.tensordict_module.Actor.rst", "reference/generated/torchrl.modules.tensordict_module.ActorCriticOperator.rst", "reference/generated/torchrl.modules.tensordict_module.ActorCriticWrapper.rst", "reference/generated/torchrl.modules.tensordict_module.ActorValueOperator.rst", "reference/generated/torchrl.modules.tensordict_module.AdditiveGaussianWrapper.rst", "reference/generated/torchrl.modules.tensordict_module.DecisionTransformerInferenceWrapper.rst", "reference/generated/torchrl.modules.tensordict_module.DistributionalQValueActor.rst", "reference/generated/torchrl.modules.tensordict_module.DistributionalQValueModule.rst", "reference/generated/torchrl.modules.tensordict_module.EGreedyModule.rst", "reference/generated/torchrl.modules.tensordict_module.EGreedyWrapper.rst", "reference/generated/torchrl.modules.tensordict_module.LMHeadActorValueOperator.rst", "reference/generated/torchrl.modules.tensordict_module.OrnsteinUhlenbeckProcessWrapper.rst", "reference/generated/torchrl.modules.tensordict_module.ProbabilisticActor.rst", "reference/generated/torchrl.modules.tensordict_module.QValueActor.rst", "reference/generated/torchrl.modules.tensordict_module.QValueModule.rst", "reference/generated/torchrl.modules.tensordict_module.SafeModule.rst", "reference/generated/torchrl.modules.tensordict_module.SafeProbabilisticModule.rst", "reference/generated/torchrl.modules.tensordict_module.SafeProbabilisticTensorDictSequential.rst", "reference/generated/torchrl.modules.tensordict_module.SafeSequential.rst", "reference/generated/torchrl.modules.tensordict_module.TanhModule.rst", "reference/generated/torchrl.modules.tensordict_module.ValueOperator.rst", "reference/generated/torchrl.modules.tensordict_module.WorldModelWrapper.rst", "reference/generated/torchrl.modules.utils.biased_softplus.rst", "reference/generated/torchrl.modules.utils.inv_softplus.rst", "reference/generated/torchrl.modules.utils.mappings.rst", "reference/generated/torchrl.objectives.A2CLoss.rst", "reference/generated/torchrl.objectives.CQLLoss.rst", "reference/generated/torchrl.objectives.ClipPPOLoss.rst", "reference/generated/torchrl.objectives.DDPGLoss.rst", "reference/generated/torchrl.objectives.DQNLoss.rst", "reference/generated/torchrl.objectives.DTLoss.rst", "reference/generated/torchrl.objectives.DiscreteCQLLoss.rst", "reference/generated/torchrl.objectives.DiscreteSACLoss.rst", "reference/generated/torchrl.objectives.DistributionalDQNLoss.rst", "reference/generated/torchrl.objectives.DreamerActorLoss.rst", "reference/generated/torchrl.objectives.DreamerModelLoss.rst", "reference/generated/torchrl.objectives.DreamerValueLoss.rst", "reference/generated/torchrl.objectives.HardUpdate.rst", "reference/generated/torchrl.objectives.IQLLoss.rst", "reference/generated/torchrl.objectives.KLPENPPOLoss.rst", "reference/generated/torchrl.objectives.LossModule.rst", "reference/generated/torchrl.objectives.OnlineDTLoss.rst", "reference/generated/torchrl.objectives.PPOLoss.rst", "reference/generated/torchrl.objectives.REDQLoss.rst", "reference/generated/torchrl.objectives.ReinforceLoss.rst", "reference/generated/torchrl.objectives.SACLoss.rst", "reference/generated/torchrl.objectives.SoftUpdate.rst", "reference/generated/torchrl.objectives.TD3Loss.rst", "reference/generated/torchrl.objectives.ValueEstimators.rst", "reference/generated/torchrl.objectives.default_value_kwargs.rst", "reference/generated/torchrl.objectives.distance_loss.rst", "reference/generated/torchrl.objectives.hold_out_net.rst", "reference/generated/torchrl.objectives.hold_out_params.rst", "reference/generated/torchrl.objectives.multiagent.QMixerLoss.rst", "reference/generated/torchrl.objectives.next_state_value.rst", "reference/generated/torchrl.objectives.value.GAE.rst", "reference/generated/torchrl.objectives.value.TD0Estimator.rst", "reference/generated/torchrl.objectives.value.TD1Estimator.rst", "reference/generated/torchrl.objectives.value.TDLambdaEstimator.rst", "reference/generated/torchrl.objectives.value.ValueEstimatorBase.rst", "reference/generated/torchrl.objectives.value.functional.generalized_advantage_estimate.rst", "reference/generated/torchrl.objectives.value.functional.reward2go.rst", "reference/generated/torchrl.objectives.value.functional.td0_advantage_estimate.rst", "reference/generated/torchrl.objectives.value.functional.td0_return_estimate.rst", "reference/generated/torchrl.objectives.value.functional.td1_advantage_estimate.rst", "reference/generated/torchrl.objectives.value.functional.td1_return_estimate.rst", "reference/generated/torchrl.objectives.value.functional.td_lambda_advantage_estimate.rst", "reference/generated/torchrl.objectives.value.functional.td_lambda_return_estimate.rst", "reference/generated/torchrl.objectives.value.functional.vec_generalized_advantage_estimate.rst", "reference/generated/torchrl.objectives.value.functional.vec_td1_advantage_estimate.rst", "reference/generated/torchrl.objectives.value.functional.vec_td1_return_estimate.rst", "reference/generated/torchrl.objectives.value.functional.vec_td_lambda_advantage_estimate.rst", "reference/generated/torchrl.objectives.value.functional.vec_td_lambda_return_estimate.rst", "reference/generated/torchrl.record.TensorDictRecorder.rst", "reference/generated/torchrl.record.VideoRecorder.rst", "reference/generated/torchrl.record.loggers.Logger.rst", "reference/generated/torchrl.record.loggers.csv.CSVLogger.rst", "reference/generated/torchrl.record.loggers.generate_exp_name.rst", "reference/generated/torchrl.record.loggers.get_logger.rst", "reference/generated/torchrl.record.loggers.mlflow.MLFlowLogger.rst", "reference/generated/torchrl.record.loggers.tensorboard.TensorboardLogger.rst", "reference/generated/torchrl.record.loggers.wandb.WandbLogger.rst", "reference/generated/torchrl.trainers.BatchSubSampler.rst", "reference/generated/torchrl.trainers.ClearCudaCache.rst", "reference/generated/torchrl.trainers.CountFramesLog.rst", "reference/generated/torchrl.trainers.LogReward.rst", "reference/generated/torchrl.trainers.OptimizerHook.rst", "reference/generated/torchrl.trainers.Recorder.rst", "reference/generated/torchrl.trainers.ReplayBufferTrainer.rst", "reference/generated/torchrl.trainers.RewardNormalizer.rst", "reference/generated/torchrl.trainers.SelectKeys.rst", "reference/generated/torchrl.trainers.Trainer.rst", "reference/generated/torchrl.trainers.TrainerHookBase.rst", "reference/generated/torchrl.trainers.UpdateWeights.rst", "reference/generated/torchrl.trainers.helpers.correct_for_frame_skip.rst", "reference/generated/torchrl.trainers.helpers.get_stats_random_rollout.rst", "reference/generated/torchrl.trainers.helpers.make_collector_offpolicy.rst", "reference/generated/torchrl.trainers.helpers.make_collector_onpolicy.rst", "reference/generated/torchrl.trainers.helpers.make_dqn_loss.rst", "reference/generated/torchrl.trainers.helpers.make_redq_loss.rst", "reference/generated/torchrl.trainers.helpers.make_redq_model.rst", "reference/generated/torchrl.trainers.helpers.make_replay_buffer.rst", "reference/generated/torchrl.trainers.helpers.make_target_updater.rst", "reference/generated/torchrl.trainers.helpers.make_trainer.rst", "reference/generated/torchrl.trainers.helpers.parallel_env_constructor.rst", "reference/generated/torchrl.trainers.helpers.sync_async_collector.rst", "reference/generated/torchrl.trainers.helpers.sync_sync_collector.rst", "reference/generated/torchrl.trainers.helpers.transformed_env_constructor.rst", "reference/generated/tutorials/README.rst", "reference/index.rst", "reference/knowledge_base.rst", "reference/modules.rst", "reference/objectives.rst", "reference/trainers.rst", "reference/utils.rst", "sg_execution_times.rst", "tutorials/coding_ddpg.rst", "tutorials/coding_dqn.rst", "tutorials/coding_ppo.rst", "tutorials/dqn_with_rnn.rst", "tutorials/index.rst", "tutorials/multi_task.rst", "tutorials/multiagent_ppo.rst", "tutorials/pendulum.rst", "tutorials/pretrained_models.rst", "tutorials/rb_tutorial.rst", "tutorials/sg_execution_times.rst", "tutorials/torchrl_demo.rst", "tutorials/torchrl_envs.rst"], "titles": ["TorchRL", "torchrl.collectors package", "torchrl.data package", "torchrl.envs package", "Things to consider when debugging RL", "Working with gym", "Working with habitat-lab", "Working with MuJoCo-based environments", "Common PyTorch errors and solutions", "Useful resources", "Versioning Issues", "implement_for", "DataCollectorBase", "MultiSyncDataCollector", "MultiaSyncDataCollector", "RandomPolicy", "SyncDataCollector", "aSyncDataCollector", "DistributedDataCollector", "DistributedSyncDataCollector", "RPCDataCollector", "RayCollector", "submitit_delayed_launcher", "split_trajectories", "BinaryDiscreteTensorSpec", "BoundedTensorSpec", "CompositeSpec", "DiscreteTensorSpec", "LazyStackedCompositeSpec", "LazyStackedTensorSpec", "MultiDiscreteTensorSpec", "MultiOneHotDiscreteTensorSpec", "MultiStep", "OneHotDiscreteTensorSpec", "PairwiseDataset", "PrioritizedReplayBuffer", "PromptData", "PromptTensorDictTokenizer", "ReplayBuffer", "RewardData", "RolloutFromModel", "TensorDictPrioritizedReplayBuffer", "TensorDictReplayBuffer", "TensorDictTokenizer", "TensorSpec", "TokenizedDatasetLoader", "UnboundedContinuousTensorSpec", "UnboundedDiscreteTensorSpec", "check_no_exclusive_keys", "consolidate_spec", "contains_lazy_spec", "create_infinite_iterator", "D4RLExperienceReplay", "MinariExperienceReplay", "OpenMLExperienceReplay", "OpenXExperienceReplay", "RobosetExperienceReplay", "VD4RLExperienceReplay", "get_dataloader", "ImmutableDatasetWriter", "LazyMemmapStorage", "LazyTensorStorage", "ListStorage", "PrioritizedSampler", "RandomSampler", "ReplayBufferEnsemble", "RoundRobinWriter", "Sampler", "SamplerEnsemble", "SamplerWithoutReplacement", "SliceSampler", "SliceSamplerWithoutReplacement", "Storage", "StorageEnsemble", "TensorDictMaxValueWriter", "TensorDictRoundRobinWriter", "TensorStorage", "Writer", "WriterEnsemble", "BraxEnv", "BraxWrapper", "DMControlEnv", "DMControlWrapper", "EnvBase", "EnvCreator", "EnvMetaData", "GymEnv", "GymLikeEnv", "GymWrapper", "HabitatEnv", "IsaacGymEnv", "IsaacGymWrapper", "JumanjiEnv", "JumanjiWrapper", "MOGymEnv", "MOGymWrapper", "MarlGroupMapType", "ModelBasedEnvBase", "MultiThreadedEnv", "MultiThreadedEnvWrapper", "OpenMLEnv", "ParallelEnv", "PettingZooEnv", "PettingZooWrapper", "RoboHiveEnv", "SMACv2Env", "SMACv2Wrapper", "SerialEnv", "VmasEnv", "VmasWrapper", "check_marl_grouping", "gym_backend", "DreamerEnv", "set_gym_backend", "ActionMask", "BinarizeReward", "BurnInTransform", "CatFrames", "CatTensors", "CenterCrop", "ClipTransform", "Compose", "DTypeCastTransform", "DeviceCastTransform", "DiscreteActionProjection", "DoubleToFloat", "EndOfLifeTransform", "ExcludeTransform", "FiniteTensorDictCheck", "FlattenObservation", "FrameSkipTransform", "GrayScale", "InitTracker", "KLRewardTransform", "NoopResetEnv", "ObservationNorm", "ObservationTransform", "PermuteTransform", "PinMemoryTransform", "R3MTransform", "RandomCropTensorDict", "RenameTransform", "Resize", "Reward2GoTransform", "RewardClipping", "RewardScaling", "RewardSum", "SelectTransform", "SqueezeTransform", "StepCounter", "TargetReturn", "TensorDictPrimer", "TimeMaxPool", "ToTensorImage", "Transform", "TransformedEnv", "UnsqueezeTransform", "VC1Transform", "VIPRewardTransform", "VIPTransform", "VecGymEnvTransform", "VecNorm", "gSDENoise", "check_env_specs", "exploration_mode", "exploration_type", "get_available_libraries", "make_composite_from_td", "set_exploration_mode", "set_exploration_type", "step_mdp", "terminated_or_truncated", "CEMPlanner", "Conv3dNet", "ConvNet", "DTActor", "DdpgCnnActor", "DdpgCnnQNet", "DdpgMlpActor", "DdpgMlpQNet", "DecisionTransformer", "Delta", "DistributionalDQNnet", "DistributionalQValueHook", "DreamerActor", "DuelingCnnDQNet", "GRU", "GRUCell", "GRUModule", "IndependentNormal", "LSTM", "LSTMCell", "LSTMModule", "LSTMNet", "MLP", "MPCPlannerBase", "MPPIPlanner", "MaskedCategorical", "MaskedOneHotCategorical", "MultiAgentConvNet", "MultiAgentMLP", "NoisyLazyLinear", "NoisyLinear", "NormalParamWrapper", "ObsDecoder", "ObsEncoder", "OneHotCategorical", "OnlineDTActor", "QMixer", "QValueHook", "RSSMPosterior", "RSSMPrior", "Squeeze2dLayer", "SqueezeLayer", "TanhDelta", "TanhNormal", "TruncatedNormal", "VDNMixer", "VmapModule", "reset_noise", "Actor", "ActorCriticOperator", "ActorCriticWrapper", "ActorValueOperator", "AdditiveGaussianWrapper", "DecisionTransformerInferenceWrapper", "DistributionalQValueActor", "DistributionalQValueModule", "EGreedyModule", "EGreedyWrapper", "LMHeadActorValueOperator", "OrnsteinUhlenbeckProcessWrapper", "ProbabilisticActor", "QValueActor", "QValueModule", "SafeModule", "SafeProbabilisticModule", "SafeProbabilisticTensorDictSequential", "SafeSequential", "TanhModule", "ValueOperator", "WorldModelWrapper", "biased_softplus", "inv_softplus", "mappings", "A2CLoss", "CQLLoss", "ClipPPOLoss", "DDPGLoss", "DQNLoss", "DTLoss", "DiscreteCQLLoss", "DiscreteSACLoss", "DistributionalDQNLoss", "DreamerActorLoss", "DreamerModelLoss", "DreamerValueLoss", "HardUpdate", "IQLLoss", "KLPENPPOLoss", "LossModule", "OnlineDTLoss", "PPOLoss", "REDQLoss", "ReinforceLoss", "SACLoss", "SoftUpdate", "TD3Loss", "ValueEstimators", "default_value_kwargs", "distance_loss", "hold_out_net", "hold_out_params", "QMixerLoss", "next_state_value", "GAE", "TD0Estimator", "TD1Estimator", "TDLambdaEstimator", "ValueEstimatorBase", "generalized_advantage_estimate", "reward2go", "td0_advantage_estimate", "td0_return_estimate", "td1_advantage_estimate", "td1_return_estimate", "td_lambda_advantage_estimate", "td_lambda_return_estimate", "vec_generalized_advantage_estimate", "vec_td1_advantage_estimate", "vec_td1_return_estimate", "vec_td_lambda_advantage_estimate", "vec_td_lambda_return_estimate", "TensorDictRecorder", "VideoRecorder", "Logger", "CSVLogger", "generate_exp_name", "get_logger", "MLFlowLogger", "TensorboardLogger", "WandbLogger", "BatchSubSampler", "ClearCudaCache", "CountFramesLog", "LogReward", "OptimizerHook", "Recorder", "ReplayBufferTrainer", "RewardNormalizer", "SelectKeys", "Trainer", "TrainerHookBase", "UpdateWeights", "correct_for_frame_skip", "get_stats_random_rollout", "make_collector_offpolicy", "make_collector_onpolicy", "make_dqn_loss", "make_redq_loss", "make_redq_model", "make_replay_buffer", "make_target_updater", "make_trainer", "parallel_env_constructor", "sync_async_collector", "sync_sync_collector", "transformed_env_constructor", "README Tutos", "API Reference", "Knowledge Base", "torchrl.modules package", "torchrl.objectives package", "torchrl.trainers package", "torchrl._utils package", "Computation times", "TorchRL objectives: Coding a DDPG loss", "TorchRL trainer: A DQN example", "Reinforcement Learning (PPO) with TorchRL Tutorial", "Recurrent DQN: Training recurrent policies", "README Tutos", "Task-specific policy in multi-task environments", "Multi-Agent Reinforcement Learning (PPO) with TorchRL Tutorial", "Pendulum: Writing your environment and transforms with TorchRL", "Using pretrained models", "Using Replay Buffers", "Computation times", "Introduction to TorchRL", "TorchRL envs"], "terms": {"an": [0, 1, 2, 3, 5, 8, 9, 10, 13, 14, 16, 17, 18, 19, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 44, 46, 47, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 65, 66, 68, 72, 73, 74, 75, 76, 77, 78, 81, 83, 84, 87, 97, 98, 100, 101, 102, 103, 107, 110, 114, 116, 117, 119, 122, 124, 125, 128, 134, 135, 139, 140, 141, 143, 150, 151, 152, 153, 154, 155, 157, 160, 161, 163, 173, 174, 176, 177, 178, 179, 186, 188, 190, 192, 193, 194, 195, 199, 200, 201, 205, 212, 213, 221, 222, 223, 224, 225, 226, 227, 228, 230, 231, 232, 233, 236, 237, 241, 244, 245, 246, 247, 249, 252, 253, 254, 255, 256, 258, 259, 260, 262, 263, 264, 265, 267, 273, 275, 276, 277, 278, 279, 294, 297, 306, 307, 311, 312, 315, 324, 325, 326, 327, 330, 331, 332, 336, 337, 341, 342, 344, 345, 347, 348], "open": [0, 5, 7, 11, 55, 337, 342, 347], "sourc": [0, 1, 4, 7, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 166, 167, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 347, 348], "reinforc": [0, 3, 9, 117, 176, 177, 178, 179, 183, 227, 231, 245, 246, 250, 251, 253, 257, 258, 264, 265, 266, 329, 335, 337, 340, 343, 346, 347], "learn": [0, 3, 7, 8, 9, 18, 32, 54, 56, 57, 117, 176, 177, 178, 179, 183, 196, 202, 227, 231, 245, 246, 250, 251, 253, 257, 258, 263, 264, 265, 266, 329, 331, 332, 335, 336, 337, 339, 340, 341, 343, 345, 346, 347, 348], "rl": [0, 1, 2, 3, 5, 8, 10, 13, 14, 16, 17, 97, 150, 202, 220, 232, 240, 245, 260, 262, 302, 330, 331, 332, 333, 336, 337, 338, 342, 344, 345, 348], "librari": [0, 1, 2, 5, 6, 7, 8, 9, 10, 18, 19, 20, 37, 43, 91, 98, 166, 329, 330, 331, 334, 336, 337, 338, 342, 343, 348], "pytorch": [0, 1, 2, 3, 53, 153, 186, 190, 201, 202, 311, 330, 333, 336, 338, 339, 342, 343, 344, 347, 348], "It": [0, 2, 3, 4, 7, 32, 37, 40, 41, 43, 45, 52, 53, 55, 56, 57, 65, 68, 78, 83, 87, 89, 97, 98, 101, 102, 103, 107, 116, 126, 133, 135, 140, 150, 155, 160, 163, 176, 178, 184, 199, 200, 208, 210, 211, 217, 218, 227, 228, 231, 234, 236, 245, 246, 247, 252, 253, 254, 255, 256, 258, 259, 260, 262, 263, 264, 265, 266, 267, 273, 274, 275, 307, 320, 330, 331, 332, 336, 337, 339, 342, 343, 344, 345, 347, 348], "provid": [0, 1, 2, 3, 5, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 24, 30, 31, 32, 33, 35, 38, 41, 42, 45, 49, 52, 53, 54, 55, 56, 57, 58, 60, 64, 65, 68, 70, 71, 74, 83, 87, 97, 101, 102, 103, 107, 116, 117, 118, 119, 120, 122, 125, 129, 134, 135, 137, 139, 140, 142, 143, 146, 147, 150, 151, 152, 155, 157, 159, 160, 161, 171, 173, 174, 180, 183, 186, 187, 188, 190, 191, 192, 193, 194, 195, 197, 198, 199, 200, 218, 220, 224, 227, 228, 229, 231, 232, 233, 234, 239, 245, 246, 248, 249, 251, 252, 253, 254, 258, 260, 262, 263, 264, 265, 267, 273, 274, 275, 276, 277, 278, 279, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 294, 298, 302, 308, 315, 320, 323, 330, 331, 332, 333, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "python": [0, 3, 5, 6, 7, 10, 21, 113, 186, 187, 188, 190, 191, 192, 197, 198, 333, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 347, 348], "first": [0, 1, 3, 4, 5, 7, 8, 18, 20, 21, 26, 28, 52, 53, 55, 56, 57, 60, 61, 70, 71, 76, 87, 117, 118, 129, 135, 139, 140, 153, 155, 157, 186, 188, 190, 192, 194, 199, 200, 201, 205, 220, 225, 226, 227, 232, 233, 235, 236, 247, 255, 259, 260, 262, 293, 310, 331, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "low": [0, 25, 83, 87, 101, 107, 120, 124, 167, 227, 232, 239, 336, 337, 338, 342, 343, 347, 348], "high": [0, 9, 25, 41, 83, 87, 101, 107, 120, 124, 134, 167, 227, 232, 239, 275, 280, 288, 336, 337, 338, 342, 343, 345, 347, 348], "level": [0, 3, 4, 22, 26, 28, 117, 149, 259, 336, 337, 347], "abstract": [0, 3, 8, 24, 25, 26, 27, 28, 29, 30, 44, 46, 47, 77, 83, 136, 195, 279, 303, 312, 333, 338, 343, 347], "ar": [0, 1, 2, 3, 7, 8, 9, 10, 13, 14, 16, 17, 18, 19, 20, 21, 23, 28, 29, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 45, 48, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 65, 68, 69, 71, 72, 73, 76, 83, 84, 87, 96, 97, 100, 101, 102, 103, 104, 107, 109, 116, 117, 120, 121, 122, 124, 125, 126, 128, 129, 133, 134, 137, 139, 143, 146, 151, 152, 153, 154, 155, 156, 157, 159, 160, 161, 167, 171, 172, 179, 181, 186, 187, 188, 190, 191, 192, 193, 195, 197, 198, 199, 202, 206, 208, 211, 225, 226, 228, 231, 232, 233, 235, 236, 237, 238, 239, 244, 245, 246, 247, 248, 249, 251, 252, 253, 254, 255, 256, 258, 259, 260, 262, 263, 264, 265, 267, 270, 273, 274, 275, 276, 277, 278, 279, 308, 323, 327, 331, 332, 333, 334, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "intend": [0, 7, 13, 14, 16, 17, 18, 19, 20, 21, 45, 116, 124, 218, 260, 331, 347], "effici": [0, 1, 2, 4, 8, 186, 202, 331, 336, 337, 338, 339, 341, 342, 344, 345, 347], "modular": [0, 238, 345, 347], "document": [0, 5, 7, 18, 19, 21, 32, 55, 83, 87, 101, 107, 155, 337, 339, 347], "properli": [0, 83, 87, 101, 107, 338, 342, 343, 347], "test": [0, 3, 5, 157, 163, 188, 192, 193, 307, 323, 338, 339, 347], "The": [0, 1, 2, 3, 4, 5, 7, 8, 13, 14, 16, 17, 18, 19, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 44, 45, 46, 47, 52, 53, 54, 55, 56, 57, 58, 65, 68, 70, 71, 72, 74, 83, 87, 91, 101, 102, 103, 107, 116, 117, 121, 122, 125, 126, 127, 135, 137, 139, 143, 145, 146, 147, 149, 150, 151, 154, 155, 157, 159, 160, 170, 171, 172, 176, 177, 178, 179, 180, 183, 186, 187, 188, 190, 191, 192, 193, 195, 196, 197, 198, 199, 202, 203, 209, 210, 211, 220, 221, 225, 226, 227, 231, 232, 233, 234, 235, 236, 238, 240, 241, 242, 245, 246, 247, 248, 249, 251, 252, 253, 254, 255, 256, 258, 259, 260, 262, 263, 264, 265, 267, 273, 274, 275, 276, 277, 278, 279, 281, 296, 299, 300, 301, 302, 306, 323, 325, 326, 331, 332, 333, 337, 338, 339, 342, 343, 344, 345, 347, 348], "code": [0, 3, 5, 7, 8, 55, 83, 87, 101, 107, 139, 155, 157, 186, 187, 188, 190, 191, 192, 238, 335, 337, 338, 339, 340, 341, 342, 344, 345, 346, 347, 348], "aim": [0, 3, 7, 28, 29, 139, 157, 159, 194, 314, 330, 331, 332, 336, 337, 347], "support": [0, 1, 3, 18, 20, 26, 54, 57, 58, 60, 61, 72, 73, 76, 78, 98, 100, 102, 117, 126, 135, 151, 152, 154, 166, 183, 218, 226, 227, 232, 235, 238, 253, 275, 276, 277, 278, 299, 331, 333, 338, 339, 342, 343, 345, 347], "research": [0, 7, 9, 347], "most": [0, 3, 7, 8, 32, 70, 71, 124, 160, 336, 338, 343, 347, 348], "written": [0, 3, 34, 36, 39, 45, 52, 55, 60, 65, 70, 71, 83, 87, 101, 107, 117, 126, 133, 146, 149, 152, 160, 170, 171, 220, 231, 232, 235, 236, 240, 245, 247, 259, 262, 264, 274, 293, 294, 331, 332, 333, 336, 339, 341, 343, 347], "highli": [0, 2, 347, 348], "wai": [0, 2, 3, 4, 53, 65, 91, 139, 141, 159, 160, 190, 262, 275, 276, 277, 278, 331, 336, 337, 338, 341, 342, 343, 344, 345, 347, 348], "can": [0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 13, 14, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 44, 45, 46, 47, 52, 53, 55, 56, 57, 63, 65, 69, 70, 71, 83, 84, 87, 91, 96, 101, 102, 103, 105, 106, 107, 109, 113, 114, 116, 117, 120, 121, 122, 124, 125, 126, 134, 135, 139, 140, 143, 146, 149, 150, 151, 154, 155, 157, 159, 161, 171, 172, 186, 188, 189, 190, 192, 195, 196, 199, 200, 202, 203, 216, 218, 220, 224, 226, 227, 228, 229, 232, 233, 234, 235, 236, 237, 238, 239, 244, 245, 246, 247, 248, 249, 251, 252, 253, 254, 255, 256, 258, 259, 260, 262, 263, 264, 265, 267, 273, 274, 275, 276, 277, 278, 279, 307, 320, 325, 326, 327, 330, 331, 332, 333, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "easili": [0, 3, 7, 83, 87, 101, 107, 320, 332, 336, 337, 338, 342, 347, 348], "swap": [0, 3, 160, 338, 344, 347], "compon": [0, 2, 3, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 60, 61, 62, 65, 72, 73, 76, 183, 209, 226, 227, 234, 245, 246, 247, 252, 253, 254, 255, 256, 258, 259, 260, 262, 263, 264, 265, 267, 273, 306, 311, 336, 337, 338, 339, 341, 342, 343, 344, 347], "transform": [0, 1, 2, 4, 8, 13, 14, 16, 18, 19, 20, 21, 32, 35, 37, 38, 40, 41, 42, 43, 52, 53, 54, 55, 56, 57, 65, 73, 83, 84, 87, 101, 102, 103, 107, 109, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 155, 156, 157, 158, 159, 160, 161, 162, 175, 176, 180, 183, 184, 207, 208, 209, 217, 225, 230, 239, 242, 244, 250, 261, 294, 308, 320, 327, 329, 335, 337, 339, 340, 344, 346], "them": [0, 2, 3, 7, 9, 21, 32, 35, 37, 38, 41, 42, 52, 53, 54, 55, 56, 57, 65, 78, 83, 84, 87, 91, 96, 101, 102, 103, 107, 109, 122, 125, 155, 173, 174, 175, 176, 177, 178, 179, 180, 182, 184, 185, 186, 187, 188, 190, 191, 192, 193, 194, 199, 200, 203, 204, 205, 207, 210, 211, 213, 217, 218, 224, 225, 227, 228, 229, 231, 234, 239, 242, 259, 265, 294, 336, 337, 339, 341, 342, 343, 344, 345, 347, 348], "write": [0, 3, 8, 23, 32, 34, 36, 37, 39, 45, 65, 73, 78, 87, 120, 137, 138, 146, 149, 153, 171, 220, 235, 236, 238, 240, 248, 249, 251, 252, 258, 263, 265, 267, 274, 279, 294, 331, 333, 335, 336, 337, 338, 339, 340, 341, 342, 344, 345, 346, 347, 348], "new": [0, 2, 3, 4, 8, 13, 14, 16, 17, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 39, 41, 44, 46, 47, 63, 69, 83, 87, 98, 101, 105, 106, 107, 146, 154, 161, 170, 171, 186, 188, 192, 231, 235, 236, 241, 245, 246, 247, 249, 252, 253, 254, 255, 256, 258, 259, 260, 262, 263, 264, 265, 267, 273, 336, 338, 339, 342, 343, 347, 348], "ones": [0, 2, 15, 26, 32, 35, 41, 42, 83, 87, 101, 107, 118, 121, 122, 123, 125, 135, 139, 143, 151, 154, 155, 157, 159, 197, 198, 218, 235, 245, 246, 248, 258, 262, 263, 265, 267, 281, 336, 338, 342, 343, 345, 347, 348], "littl": [0, 3, 43, 338, 339, 345, 347, 348], "effort": [0, 3, 343, 345, 347], "thi": [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 52, 53, 54, 55, 56, 57, 60, 61, 62, 65, 68, 69, 70, 71, 72, 73, 74, 76, 78, 83, 87, 89, 96, 97, 101, 102, 103, 107, 109, 113, 114, 116, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 130, 132, 133, 135, 139, 140, 141, 143, 146, 147, 149, 151, 152, 154, 155, 157, 158, 159, 160, 161, 163, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 199, 200, 201, 202, 203, 204, 205, 206, 207, 209, 210, 211, 213, 216, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 238, 239, 241, 242, 245, 246, 247, 248, 249, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 273, 275, 276, 277, 278, 279, 293, 302, 304, 307, 308, 311, 313, 314, 315, 320, 323, 327, 330, 331, 332, 333, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "repo": [0, 6, 52, 117, 152, 157, 330, 342, 347], "attempt": [0, 70, 71, 224, 229, 231, 249, 258, 273, 347], "align": [0, 186, 190, 347], "exist": [0, 3, 4, 11, 18, 21, 32, 34, 36, 39, 45, 83, 87, 101, 107, 118, 123, 155, 265, 315, 327, 342, 347, 348], "ecosystem": [0, 347], "ha": [0, 2, 3, 4, 5, 7, 8, 10, 16, 17, 18, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 37, 40, 44, 46, 47, 55, 65, 68, 70, 83, 84, 87, 91, 101, 107, 109, 117, 149, 150, 151, 152, 155, 186, 188, 190, 192, 199, 224, 227, 229, 231, 236, 259, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "dataset": [0, 34, 35, 36, 37, 38, 39, 40, 41, 42, 45, 52, 53, 54, 55, 56, 57, 58, 59, 65, 68, 70, 71, 100, 161, 329, 336, 337, 344, 345, 347, 348], "pillar": [0, 347], "environ": [0, 1, 2, 5, 8, 11, 13, 14, 16, 17, 18, 19, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 44, 46, 47, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 112, 114, 116, 117, 118, 122, 123, 124, 125, 130, 134, 135, 139, 140, 146, 149, 150, 151, 152, 154, 155, 157, 160, 161, 163, 172, 188, 192, 193, 195, 196, 224, 231, 251, 254, 275, 276, 277, 278, 279, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 294, 302, 304, 307, 314, 315, 316, 317, 320, 323, 324, 325, 326, 327, 329, 330, 331, 335, 340, 344, 345, 346], "model": [0, 1, 3, 8, 9, 13, 14, 16, 17, 18, 19, 20, 21, 32, 40, 45, 83, 87, 97, 101, 107, 122, 139, 151, 157, 159, 162, 173, 174, 175, 180, 188, 192, 194, 195, 196, 200, 207, 208, 217, 221, 222, 223, 230, 235, 241, 245, 246, 247, 249, 250, 251, 254, 255, 256, 258, 259, 260, 262, 263, 265, 273, 311, 316, 317, 318, 319, 320, 329, 330, 333, 335, 338, 340, 342, 343, 345, 346, 348], "data": [0, 3, 8, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 83, 85, 87, 97, 100, 101, 102, 103, 107, 114, 116, 117, 122, 123, 125, 127, 133, 135, 143, 149, 160, 163, 167, 171, 172, 183, 188, 192, 193, 196, 199, 200, 209, 218, 220, 226, 228, 229, 231, 232, 233, 235, 238, 239, 240, 245, 246, 248, 249, 251, 252, 258, 262, 263, 264, 265, 267, 273, 275, 276, 277, 278, 279, 302, 308, 311, 313, 316, 323, 325, 326, 327, 329, 331, 332, 333, 339, 343, 344, 345, 348], "util": [0, 3, 17, 23, 32, 40, 83, 87, 101, 102, 103, 107, 110, 139, 159, 163, 164, 165, 166, 167, 168, 169, 170, 171, 173, 174, 180, 186, 190, 242, 243, 244, 260, 323, 329, 334, 336, 338, 342, 343, 347, 348], "e": [0, 1, 3, 7, 8, 10, 11, 13, 14, 16, 17, 18, 19, 20, 21, 26, 28, 32, 33, 60, 61, 76, 83, 84, 87, 101, 107, 116, 118, 121, 129, 135, 139, 146, 151, 154, 155, 157, 159, 163, 186, 188, 189, 190, 192, 196, 200, 203, 209, 215, 216, 225, 227, 232, 234, 235, 236, 265, 274, 275, 276, 277, 278, 302, 314, 326, 331, 336, 337, 338, 342, 344, 347, 348], "g": [0, 1, 3, 7, 8, 10, 11, 32, 33, 83, 84, 87, 101, 107, 116, 118, 121, 129, 135, 139, 146, 151, 154, 155, 157, 159, 163, 186, 188, 189, 190, 191, 192, 196, 200, 215, 216, 225, 232, 235, 236, 265, 274, 284, 285, 286, 287, 289, 290, 291, 292, 326, 331, 336, 337, 338, 342, 343, 344, 347, 348], "collector": [0, 3, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 40, 55, 70, 71, 117, 143, 149, 231, 308, 311, 313, 316, 317, 323, 325, 326, 329, 333, 345, 348], "contain": [0, 3, 7, 12, 13, 14, 16, 17, 19, 20, 26, 28, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 44, 45, 50, 52, 53, 54, 55, 56, 57, 59, 63, 65, 66, 68, 72, 75, 77, 78, 83, 87, 97, 101, 107, 121, 122, 125, 139, 151, 154, 155, 157, 159, 160, 161, 170, 171, 172, 173, 174, 186, 187, 190, 191, 194, 196, 200, 220, 226, 227, 232, 234, 235, 240, 245, 246, 247, 248, 249, 251, 252, 253, 254, 255, 256, 258, 259, 260, 262, 263, 264, 265, 267, 273, 274, 275, 276, 277, 278, 279, 281, 298, 302, 314, 320, 323, 324, 325, 326, 327, 331, 332, 333, 336, 337, 338, 339, 342, 343, 344, 345, 347, 348], "etc": [0, 3, 7, 8, 11, 32, 46, 47, 55, 83, 87, 101, 107, 133, 155, 194, 200, 336, 337, 338, 345, 347, 348], "have": [0, 1, 2, 3, 5, 6, 7, 8, 9, 13, 14, 17, 18, 20, 21, 26, 30, 32, 34, 35, 36, 38, 39, 40, 41, 42, 45, 52, 53, 54, 55, 56, 57, 65, 69, 72, 83, 87, 101, 102, 103, 107, 117, 122, 125, 126, 133, 134, 135, 149, 154, 155, 161, 163, 171, 173, 174, 193, 194, 199, 200, 218, 237, 238, 245, 247, 259, 262, 270, 273, 275, 276, 277, 278, 279, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 302, 311, 331, 332, 333, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "few": [0, 2, 8, 302, 338, 339, 342, 345, 347, 348], "depend": [0, 1, 2, 3, 4, 7, 8, 34, 36, 122, 125, 240, 262, 331, 336, 338, 339, 342, 343, 347, 348], "possibl": [0, 2, 3, 4, 27, 29, 32, 33, 34, 36, 39, 55, 57, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 173, 174, 186, 187, 190, 191, 235, 307, 311, 331, 336, 338, 339, 342, 343, 345, 347, 348], "standard": [0, 3, 135, 145, 161, 172, 184, 196, 201, 202, 224, 225, 267, 275, 276, 277, 278, 336, 337, 342, 345, 347], "numpi": [0, 11, 24, 25, 26, 27, 28, 29, 30, 31, 33, 44, 46, 47, 101, 107, 153, 311, 343, 345, 347, 348], "common": [0, 2, 3, 4, 21, 87, 114, 221, 222, 223, 230, 245, 246, 247, 252, 258, 259, 262, 263, 264, 265, 267, 323, 330, 331, 333, 336, 338, 341, 342, 343, 344, 347, 348], "openai": [0, 7, 86, 88, 104, 338, 343, 347, 348], "gym": [0, 1, 3, 4, 8, 11, 13, 14, 16, 17, 21, 22, 83, 84, 86, 87, 88, 91, 101, 104, 107, 111, 113, 117, 120, 126, 132, 133, 135, 137, 141, 143, 146, 151, 154, 160, 161, 320, 323, 330, 336, 337, 338, 339, 343, 344, 345, 347], "onli": [0, 1, 3, 4, 7, 13, 14, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 38, 41, 44, 46, 47, 52, 60, 61, 70, 71, 76, 83, 87, 91, 98, 101, 102, 103, 107, 117, 118, 120, 121, 122, 124, 125, 129, 135, 139, 140, 143, 149, 150, 151, 152, 154, 155, 157, 159, 161, 190, 192, 193, 199, 200, 220, 225, 226, 232, 233, 235, 236, 237, 238, 245, 247, 248, 252, 258, 259, 260, 262, 263, 264, 265, 266, 267, 275, 276, 277, 278, 279, 315, 333, 336, 337, 338, 339, 341, 342, 343, 345, 347, 348], "option": [0, 1, 3, 4, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 52, 53, 54, 55, 56, 57, 58, 60, 61, 63, 64, 65, 68, 69, 70, 71, 73, 76, 81, 83, 84, 87, 97, 100, 101, 102, 103, 104, 107, 109, 114, 116, 117, 118, 119, 120, 122, 124, 125, 126, 129, 130, 132, 133, 134, 135, 139, 140, 141, 142, 143, 145, 146, 147, 149, 150, 151, 152, 153, 154, 155, 156, 157, 159, 160, 161, 163, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 183, 184, 185, 187, 188, 189, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 209, 210, 211, 214, 215, 216, 218, 220, 224, 225, 226, 227, 228, 229, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 245, 246, 247, 248, 249, 251, 252, 253, 254, 255, 256, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 273, 274, 275, 276, 277, 278, 279, 281, 284, 285, 286, 287, 289, 290, 291, 292, 293, 294, 296, 299, 302, 304, 305, 306, 307, 308, 309, 311, 315, 316, 317, 318, 319, 320, 322, 323, 325, 326, 327, 331, 339, 342, 343, 345, 347], "On": [0, 3, 7, 18, 19, 20, 21, 187, 191, 331, 337, 342], "end": [0, 3, 13, 14, 32, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 65, 69, 70, 71, 83, 87, 101, 107, 126, 137, 149, 150, 155, 173, 174, 186, 187, 190, 191, 195, 265, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "come": [0, 1, 3, 8, 87, 96, 101, 107, 122, 125, 220, 221, 222, 223, 232, 240, 336, 337, 338, 339, 342, 345, 347, 348], "set": [0, 1, 2, 3, 7, 9, 11, 13, 14, 16, 17, 18, 19, 20, 21, 28, 29, 32, 33, 34, 35, 36, 38, 39, 41, 42, 52, 53, 54, 55, 56, 57, 60, 61, 65, 69, 72, 76, 83, 85, 87, 97, 101, 102, 103, 107, 113, 114, 117, 118, 121, 122, 125, 132, 133, 139, 143, 149, 150, 151, 152, 154, 155, 157, 159, 161, 163, 168, 169, 171, 186, 188, 190, 192, 195, 199, 200, 224, 225, 235, 252, 260, 262, 265, 279, 302, 307, 308, 317, 327, 330, 331, 332, 334, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "re": [0, 3, 8, 32, 69, 83, 87, 101, 107, 192, 197, 198, 232, 236, 333, 336, 338, 339, 341, 343, 347, 348], "usabl": [0, 333, 339, 347], "function": [0, 3, 8, 11, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 39, 40, 43, 44, 45, 46, 47, 49, 60, 61, 62, 65, 72, 73, 76, 83, 84, 87, 101, 107, 113, 122, 125, 155, 161, 163, 171, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 184, 185, 186, 187, 188, 190, 191, 192, 193, 194, 197, 198, 199, 200, 203, 204, 205, 206, 207, 210, 211, 213, 216, 218, 221, 222, 223, 224, 225, 227, 228, 229, 231, 232, 234, 235, 236, 238, 239, 240, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 258, 259, 260, 262, 263, 264, 265, 267, 268, 269, 270, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 320, 323, 329, 331, 336, 339, 341, 343, 345, 348], "cost": [0, 2, 27, 55, 336, 337, 342, 343, 345], "return": [0, 2, 3, 7, 8, 11, 13, 14, 16, 17, 18, 19, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 52, 53, 54, 55, 56, 57, 58, 59, 65, 66, 68, 70, 71, 73, 74, 75, 77, 78, 81, 83, 84, 87, 97, 100, 101, 102, 103, 107, 111, 113, 114, 115, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 129, 131, 132, 133, 135, 137, 139, 140, 141, 142, 144, 145, 146, 147, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 164, 165, 166, 170, 171, 172, 175, 176, 177, 178, 179, 181, 183, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 200, 203, 206, 207, 208, 210, 211, 214, 215, 216, 217, 220, 221, 222, 223, 225, 232, 234, 235, 236, 240, 241, 242, 244, 245, 246, 247, 248, 249, 251, 252, 253, 254, 255, 256, 258, 259, 260, 262, 263, 264, 265, 267, 270, 273, 274, 275, 276, 277, 278, 279, 281, 282, 283, 284, 285, 286, 287, 289, 290, 291, 292, 298, 311, 314, 316, 320, 323, 324, 325, 326, 327, 329, 331, 333, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "process": [0, 1, 3, 4, 5, 8, 13, 14, 16, 17, 18, 19, 20, 21, 32, 34, 35, 36, 39, 43, 45, 56, 57, 83, 84, 87, 91, 96, 98, 101, 102, 103, 107, 116, 122, 125, 153, 161, 199, 200, 227, 231, 234, 329, 333, 336, 337, 339, 342, 343, 344, 345, 347, 348], "good": [0, 1, 4, 9, 336, 338, 339, 342, 347, 348], "runtim": [0, 3, 32, 83, 87, 101, 107, 343], "perform": [0, 3, 4, 8, 13, 14, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 40, 44, 45, 46, 47, 83, 87, 101, 107, 110, 122, 125, 134, 155, 172, 173, 174, 175, 176, 177, 178, 179, 180, 182, 184, 185, 186, 187, 188, 190, 191, 192, 193, 194, 195, 196, 199, 200, 203, 204, 205, 207, 210, 211, 213, 218, 224, 225, 227, 228, 229, 231, 234, 239, 242, 255, 262, 265, 307, 311, 332, 336, 337, 338, 339, 341, 342, 343, 348], "To": [0, 2, 3, 4, 6, 7, 8, 9, 18, 19, 20, 32, 35, 38, 40, 41, 42, 52, 53, 54, 55, 56, 57, 70, 71, 73, 78, 83, 87, 96, 101, 102, 103, 105, 106, 107, 149, 161, 221, 222, 223, 231, 252, 260, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 331, 332, 336, 337, 338, 339, 342, 343, 344, 345, 347, 348], "read": [0, 2, 3, 7, 17, 23, 37, 40, 55, 60, 61, 62, 65, 72, 73, 76, 83, 87, 101, 107, 114, 116, 117, 118, 120, 121, 122, 123, 124, 126, 127, 128, 129, 130, 132, 133, 137, 138, 140, 141, 143, 146, 147, 149, 150, 151, 152, 154, 157, 158, 160, 161, 171, 206, 220, 221, 222, 223, 226, 232, 235, 236, 238, 240, 241, 245, 246, 247, 252, 253, 254, 255, 256, 258, 259, 260, 262, 263, 264, 265, 267, 273, 275, 276, 277, 278, 279, 294, 307, 311, 320, 331, 336, 337, 338, 341, 342, 343, 344, 348], "more": [0, 2, 3, 4, 6, 8, 9, 11, 13, 14, 16, 17, 18, 19, 20, 21, 32, 35, 38, 41, 42, 43, 52, 53, 54, 55, 56, 57, 65, 83, 87, 90, 91, 101, 102, 103, 107, 109, 153, 157, 162, 183, 190, 194, 201, 203, 220, 224, 226, 227, 235, 240, 245, 253, 260, 262, 275, 280, 288, 306, 330, 332, 333, 336, 337, 338, 339, 341, 342, 343, 344, 348], "about": [0, 2, 3, 5, 7, 9, 18, 19, 20, 43, 56, 57, 332, 336, 337, 338, 342, 343, 347, 348], "philosophi": [0, 9], "capabl": [0, 1, 7, 9, 333, 336, 341, 344, 348], "beyond": 0, "api": [0, 2, 3, 5, 102, 103, 104, 139, 159, 332, 333, 342, 343, 347, 348], "check": [0, 2, 3, 4, 5, 6, 7, 9, 11, 18, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 44, 46, 47, 48, 50, 70, 83, 84, 87, 97, 101, 107, 110, 117, 118, 128, 133, 140, 153, 163, 188, 192, 220, 226, 227, 232, 233, 234, 235, 236, 331, 332, 337, 338, 339, 341, 342, 343, 344, 345, 348], "paper": [0, 55, 139, 157, 159, 186, 208, 217, 251, 257, 320, 336, 338, 342], "ppo": [0, 4, 8, 232, 236, 247, 259, 262, 329, 331, 335, 336, 337, 340, 346], "pendulum": [0, 3, 13, 14, 16, 17, 21, 22, 83, 84, 86, 87, 88, 98, 101, 107, 117, 120, 121, 127, 132, 133, 135, 141, 143, 149, 151, 152, 154, 155, 161, 188, 192, 323, 331, 335, 337, 338, 340, 346, 347, 348], "your": [0, 2, 3, 7, 8, 10, 18, 32, 83, 87, 91, 96, 101, 102, 103, 107, 161, 327, 330, 331, 332, 335, 337, 338, 339, 340, 342, 345, 346, 347], "introduct": [0, 332, 335, 340, 342, 346, 348], "multi": [0, 7, 9, 28, 29, 32, 83, 87, 101, 105, 106, 107, 186, 188, 190, 192, 193, 194, 199, 200, 273, 275, 276, 277, 278, 329, 335, 336, 337, 338, 339, 340, 343, 346, 347], "agent": [0, 9, 28, 29, 96, 102, 103, 105, 106, 108, 109, 110, 149, 150, 197, 198, 199, 200, 202, 208, 217, 273, 329, 335, 340, 343, 346], "env": [0, 1, 2, 5, 6, 7, 8, 13, 14, 16, 17, 18, 19, 20, 21, 22, 32, 40, 52, 53, 55, 56, 57, 65, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 188, 192, 195, 196, 235, 260, 293, 315, 316, 317, 320, 323, 325, 326, 327, 329, 331, 335, 336, 337, 338, 339, 340, 341, 342, 344, 345, 346], "us": [0, 1, 2, 3, 5, 7, 8, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 52, 53, 54, 55, 56, 57, 58, 63, 64, 65, 70, 71, 76, 81, 83, 84, 87, 97, 100, 101, 102, 103, 104, 105, 106, 107, 113, 114, 116, 117, 118, 119, 121, 122, 123, 124, 125, 126, 127, 132, 133, 135, 139, 140, 141, 143, 146, 147, 149, 150, 151, 152, 153, 154, 155, 157, 159, 161, 163, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 180, 183, 184, 186, 187, 188, 189, 190, 191, 192, 194, 195, 196, 198, 199, 200, 202, 203, 206, 207, 208, 209, 215, 216, 217, 218, 220, 225, 226, 227, 228, 230, 231, 232, 233, 234, 235, 236, 239, 240, 241, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 258, 259, 260, 262, 263, 264, 265, 267, 270, 273, 274, 275, 276, 277, 278, 279, 280, 281, 283, 288, 297, 298, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 315, 316, 317, 321, 323, 327, 330, 331, 332, 333, 334, 335, 336, 337, 338, 340, 341, 342, 343, 346, 348], "pretrain": [0, 335, 340, 346], "recurr": [0, 116, 186, 187, 188, 190, 192, 211, 335, 337, 340, 345, 346], "dqn": [0, 126, 183, 226, 227, 245, 246, 248, 249, 251, 252, 253, 254, 257, 258, 260, 262, 263, 264, 265, 266, 267, 273, 318, 329, 331, 335, 340, 346], "train": [0, 1, 3, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 32, 34, 36, 39, 40, 45, 58, 83, 87, 101, 102, 103, 107, 122, 130, 139, 150, 155, 157, 159, 163, 176, 178, 188, 192, 224, 228, 229, 231, 245, 246, 247, 248, 252, 253, 254, 255, 256, 258, 259, 260, 262, 263, 264, 265, 267, 273, 275, 311, 313, 323, 329, 333, 335, 337, 340, 344, 345, 346, 348], "polici": [0, 1, 2, 3, 8, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 83, 87, 97, 101, 107, 124, 133, 150, 168, 169, 183, 188, 192, 199, 200, 202, 209, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 231, 232, 233, 234, 235, 236, 239, 245, 246, 247, 248, 252, 258, 259, 261, 262, 263, 264, 265, 267, 307, 313, 316, 317, 323, 325, 326, 331, 332, 333, 335, 337, 340, 344, 345, 346, 347, 348], "replai": [0, 8, 13, 14, 16, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 63, 64, 65, 66, 67, 69, 71, 72, 73, 74, 75, 78, 116, 117, 124, 140, 143, 151, 248, 249, 251, 252, 258, 263, 265, 267, 308, 311, 321, 323, 329, 333, 335, 340, 343, 344, 346], "buffer": [0, 1, 3, 4, 8, 13, 14, 16, 32, 34, 35, 36, 38, 39, 41, 42, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 83, 87, 97, 101, 107, 116, 117, 121, 124, 139, 140, 143, 151, 154, 155, 157, 159, 235, 238, 248, 249, 251, 252, 258, 263, 265, 267, 308, 311, 321, 323, 329, 333, 335, 340, 343, 344, 346, 348], "task": [0, 2, 3, 9, 28, 29, 40, 45, 55, 81, 87, 90, 101, 102, 103, 104, 107, 139, 149, 157, 159, 258, 335, 336, 337, 338, 339, 340, 342, 343, 346, 347, 348], "specif": [0, 2, 5, 8, 41, 42, 87, 180, 225, 311, 329, 332, 333, 335, 338, 339, 340, 342, 345, 346], "object": [0, 3, 4, 6, 13, 14, 15, 16, 17, 18, 19, 20, 21, 26, 32, 34, 36, 39, 45, 60, 61, 62, 65, 68, 72, 73, 76, 78, 83, 87, 101, 107, 122, 125, 126, 135, 139, 154, 155, 157, 161, 196, 208, 217, 220, 221, 232, 235, 236, 237, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 294, 315, 316, 317, 322, 323, 327, 329, 331, 333, 335, 337, 338, 339, 340, 342, 343, 345, 346, 348], "ddpg": [0, 176, 177, 178, 179, 248, 257, 266, 329, 331, 335, 337, 340, 346], "loss": [0, 3, 8, 36, 126, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 270, 273, 274, 275, 306, 311, 318, 319, 320, 323, 332, 333, 335, 340, 343, 345, 346, 347], "trainer": [0, 245, 246, 247, 252, 253, 254, 255, 256, 258, 259, 260, 262, 263, 264, 265, 267, 273, 302, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 329, 335, 336, 340, 346], "A": [0, 1, 2, 3, 8, 9, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 45, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 64, 65, 66, 67, 69, 72, 74, 75, 76, 77, 83, 85, 87, 89, 90, 101, 104, 107, 116, 120, 124, 130, 133, 139, 140, 141, 151, 154, 155, 157, 158, 160, 161, 162, 163, 170, 172, 173, 174, 183, 186, 187, 188, 190, 191, 192, 194, 196, 197, 198, 200, 202, 203, 218, 224, 225, 226, 227, 228, 229, 232, 233, 236, 238, 239, 242, 245, 246, 247, 248, 249, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 270, 273, 275, 276, 277, 278, 279, 281, 295, 296, 299, 304, 311, 313, 320, 323, 332, 335, 336, 338, 340, 342, 343, 346, 348], "exampl": [0, 1, 2, 3, 4, 9, 10, 11, 13, 14, 15, 16, 17, 18, 21, 22, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 52, 53, 54, 55, 56, 57, 58, 60, 61, 65, 70, 71, 74, 76, 79, 80, 81, 82, 83, 84, 86, 87, 88, 90, 92, 93, 94, 95, 97, 100, 101, 102, 103, 105, 106, 107, 108, 109, 110, 111, 113, 114, 116, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 132, 133, 135, 137, 139, 141, 142, 143, 146, 149, 150, 151, 152, 153, 154, 155, 157, 159, 161, 167, 170, 171, 172, 173, 174, 175, 180, 183, 186, 187, 188, 190, 191, 192, 193, 194, 196, 199, 200, 203, 206, 207, 208, 209, 217, 218, 220, 221, 222, 223, 225, 226, 227, 228, 229, 231, 232, 233, 234, 235, 238, 239, 240, 245, 246, 248, 249, 251, 252, 253, 254, 258, 260, 262, 263, 264, 265, 267, 268, 269, 273, 275, 276, 277, 278, 281, 302, 303, 304, 305, 306, 308, 309, 310, 313, 320, 323, 331, 332, 333, 335, 336, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348], "packag": [0, 6, 7, 10, 113, 329, 330, 348], "singl": [0, 3, 13, 14, 17, 18, 19, 20, 21, 32, 35, 38, 41, 42, 43, 52, 53, 54, 55, 56, 57, 65, 74, 83, 87, 101, 107, 117, 118, 139, 143, 159, 173, 174, 186, 187, 188, 190, 191, 192, 193, 194, 200, 234, 238, 247, 249, 251, 252, 253, 259, 262, 263, 267, 275, 276, 277, 278, 284, 285, 286, 287, 289, 290, 291, 292, 320, 327, 329, 336, 337, 338, 339, 341, 342, 343, 344, 345], "node": [0, 2, 18, 19, 20, 21, 22, 57, 320, 329], "distribut": [0, 2, 3, 4, 9, 10, 18, 19, 20, 21, 22, 102, 103, 133, 135, 172, 181, 182, 183, 184, 189, 196, 197, 198, 203, 206, 207, 210, 211, 214, 215, 216, 224, 225, 226, 227, 232, 236, 237, 245, 246, 247, 252, 253, 258, 259, 262, 263, 264, 265, 267, 329, 333, 337, 338, 342, 343, 347, 348], "helper": [0, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 329, 336, 337, 339, 343], "compos": [0, 3, 32, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 64, 65, 66, 67, 74, 75, 83, 87, 101, 107, 117, 142, 154, 155, 161, 230, 255, 265, 320, 329, 336, 337, 338, 339, 341, 342, 345, 347, 348], "tensorspec": [0, 3, 15, 24, 25, 26, 27, 28, 29, 30, 31, 33, 46, 47, 48, 49, 50, 83, 87, 97, 101, 107, 109, 115, 117, 118, 119, 120, 121, 122, 123, 124, 126, 127, 129, 131, 132, 133, 135, 137, 141, 142, 144, 145, 146, 147, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 160, 171, 211, 220, 224, 225, 226, 227, 228, 229, 231, 232, 233, 234, 235, 236, 237, 239, 246, 249, 252, 263, 265, 267, 273, 329, 343], "from": [0, 1, 3, 4, 5, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 65, 68, 69, 70, 71, 72, 73, 74, 76, 83, 84, 87, 96, 97, 101, 102, 103, 105, 106, 107, 109, 110, 113, 114, 116, 117, 118, 120, 122, 123, 124, 125, 126, 127, 132, 133, 135, 137, 139, 140, 141, 142, 143, 146, 147, 149, 150, 151, 152, 153, 154, 155, 156, 157, 159, 160, 161, 167, 170, 171, 172, 176, 177, 178, 179, 180, 183, 186, 187, 188, 189, 190, 191, 192, 194, 195, 196, 198, 199, 200, 201, 203, 206, 207, 208, 209, 215, 216, 217, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 245, 246, 247, 248, 249, 251, 252, 253, 254, 258, 259, 260, 262, 263, 264, 265, 267, 269, 273, 274, 275, 276, 277, 278, 281, 293, 294, 302, 308, 311, 314, 315, 320, 321, 323, 324, 327, 329, 330, 331, 332, 333, 335, 336, 337, 338, 339, 341, 342, 343, 344, 345, 346, 347, 348], "human": [0, 53, 329, 343], "feedback": [0, 329, 347], "rlhf": [0, 40, 45, 58, 133, 329, 331], "envbas": [0, 3, 13, 14, 16, 17, 18, 19, 20, 21, 84, 87, 101, 107, 114, 122, 125, 134, 141, 154, 155, 161, 163, 172, 195, 196, 307, 315, 316, 317, 320, 323, 325, 326, 327, 329], "gymlikeenv": [0, 329], "envmetadata": [0, 329], "vector": [0, 1, 8, 24, 27, 33, 96, 102, 103, 109, 124, 160, 176, 178, 186, 187, 190, 191, 194, 275, 278, 288, 289, 290, 291, 292, 329, 336, 337, 339, 341, 342, 343, 344, 348], "mask": [0, 1, 4, 23, 27, 30, 31, 33, 102, 103, 114, 140, 183, 197, 198, 209, 225, 226, 227, 228, 229, 233, 234, 308, 329, 337, 339, 348], "action": [0, 2, 8, 9, 13, 14, 15, 16, 17, 21, 27, 33, 40, 44, 53, 55, 56, 57, 80, 83, 87, 93, 96, 97, 101, 102, 103, 105, 106, 107, 108, 109, 114, 120, 122, 124, 125, 126, 127, 130, 133, 134, 137, 141, 143, 147, 149, 155, 160, 167, 170, 172, 175, 176, 177, 178, 179, 180, 182, 183, 184, 188, 192, 194, 195, 196, 197, 198, 199, 207, 208, 209, 211, 214, 215, 217, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 231, 232, 233, 234, 236, 239, 240, 245, 246, 248, 249, 251, 252, 258, 260, 262, 263, 264, 265, 267, 273, 275, 276, 277, 278, 279, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 320, 323, 327, 329, 331, 332, 333, 336, 337, 338, 341, 342, 344, 345, 347, 348], "record": [0, 32, 83, 87, 101, 107, 133, 262, 293, 294, 295, 296, 297, 298, 299, 300, 301, 323, 329, 337, 338], "domain": [0, 2, 8, 24, 25, 26, 27, 28, 29, 30, 31, 33, 44, 46, 47, 83, 87, 101, 107, 124, 151, 167, 220, 226, 227, 232, 233, 234, 235, 236, 237, 238, 329, 338, 339, 342, 343, 347, 348], "modul": [0, 2, 3, 4, 8, 11, 32, 40, 74, 83, 87, 96, 97, 101, 107, 113, 116, 121, 124, 126, 133, 139, 140, 150, 151, 154, 155, 157, 159, 161, 162, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 251, 252, 253, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 271, 273, 275, 276, 277, 278, 279, 311, 318, 319, 323, 329, 332, 333, 337, 338, 341, 342, 343, 344, 345], "tensordict": [0, 1, 2, 3, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 52, 53, 54, 55, 56, 57, 60, 61, 63, 65, 68, 70, 71, 74, 75, 76, 80, 83, 84, 85, 87, 93, 96, 97, 100, 101, 102, 103, 105, 106, 107, 108, 109, 114, 116, 117, 118, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 135, 137, 138, 139, 140, 141, 143, 146, 147, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 167, 170, 171, 172, 182, 183, 188, 192, 193, 195, 196, 208, 209, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 258, 259, 260, 261, 262, 263, 264, 265, 267, 273, 274, 275, 276, 277, 278, 279, 293, 302, 306, 307, 308, 310, 311, 320, 329, 332, 333, 336, 337, 338, 339, 341, 342, 343, 344, 348], "actor": [0, 3, 4, 15, 21, 133, 172, 175, 176, 178, 183, 184, 196, 207, 209, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 258, 259, 260, 261, 262, 263, 264, 265, 267, 268, 273, 320, 329, 332, 337, 338, 339, 342, 344, 347], "explor": [0, 1, 162, 202, 220, 224, 226, 227, 228, 229, 231, 232, 233, 234, 235, 236, 245, 307, 316, 317, 323, 329, 338, 339, 342, 343], "valu": [0, 1, 3, 8, 11, 13, 14, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 41, 42, 44, 45, 46, 47, 52, 55, 58, 70, 71, 83, 87, 96, 101, 107, 113, 115, 117, 118, 120, 122, 124, 125, 126, 134, 135, 139, 140, 142, 143, 144, 146, 151, 152, 154, 155, 159, 161, 167, 171, 176, 177, 178, 179, 181, 183, 184, 185, 188, 189, 192, 194, 196, 197, 198, 199, 200, 201, 202, 203, 206, 208, 209, 214, 215, 216, 217, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 239, 240, 242, 243, 244, 245, 246, 247, 248, 249, 251, 252, 253, 254, 255, 256, 258, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 294, 302, 304, 305, 306, 307, 308, 311, 320, 323, 329, 333, 337, 341, 342, 343, 345, 347, 348], "gener": [0, 1, 2, 3, 7, 8, 9, 16, 35, 38, 40, 67, 69, 83, 84, 87, 97, 101, 102, 103, 105, 106, 107, 121, 122, 123, 127, 133, 135, 141, 146, 147, 149, 154, 160, 171, 181, 197, 198, 206, 220, 232, 236, 240, 241, 263, 269, 275, 280, 288, 297, 311, 329, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 347, 348], "hook": [0, 32, 83, 87, 101, 107, 173, 174, 175, 176, 177, 178, 179, 180, 182, 183, 184, 185, 186, 187, 188, 190, 191, 192, 193, 194, 199, 200, 203, 204, 205, 207, 209, 210, 211, 213, 218, 224, 225, 227, 228, 229, 231, 234, 239, 242, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 329], "planner": [0, 172, 196, 329], "sac": [0, 252, 263, 265, 329], "redq": [0, 263, 319, 320, 329], "iql": [0, 258, 329, 342], "cql": [0, 246, 251, 329], "dt": [0, 231, 329, 343], "td3": [0, 267, 329], "a2c": [0, 245, 329], "dreamer": [0, 112, 184, 254, 255, 256, 329, 331], "checkpoint": [0, 329, 344], "builder": [0, 329, 337, 348], "logger": [0, 294, 296, 297, 298, 299, 300, 301, 305, 311, 323, 327, 329, 337], "_util": [0, 3, 11, 329], "implement_for": [0, 3, 329], "contribut": 0, "thing": [0, 3, 7, 8, 330, 338, 339, 342, 345, 348], "consid": [0, 1, 3, 8, 20, 32, 34, 36, 39, 60, 61, 76, 83, 87, 101, 107, 124, 161, 181, 199, 214, 330, 336, 343, 345], "when": [0, 1, 2, 3, 5, 8, 13, 14, 16, 17, 18, 19, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 38, 41, 42, 44, 45, 46, 47, 52, 53, 54, 55, 56, 57, 60, 61, 62, 64, 65, 69, 72, 73, 76, 83, 84, 87, 96, 98, 100, 101, 102, 103, 107, 114, 116, 117, 121, 122, 124, 125, 133, 134, 135, 139, 140, 146, 151, 154, 155, 157, 159, 160, 161, 168, 169, 172, 183, 186, 187, 190, 191, 194, 195, 196, 197, 198, 201, 209, 215, 232, 235, 236, 238, 242, 247, 249, 253, 259, 262, 265, 268, 273, 274, 275, 276, 277, 278, 293, 294, 308, 327, 330, 331, 333, 336, 337, 338, 339, 342, 343, 344, 345, 348], "debug": [0, 6, 8, 40, 330, 348], "work": [0, 2, 3, 4, 8, 11, 32, 34, 36, 38, 39, 68, 70, 71, 73, 78, 83, 87, 91, 101, 107, 118, 133, 139, 157, 160, 161, 173, 174, 194, 227, 234, 239, 247, 259, 262, 311, 330, 331, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "habitat": [0, 3, 89, 330, 344], "lab": [0, 3, 81, 82, 330], "mujoco": [0, 6, 8, 104, 330, 338, 339], "error": [0, 1, 3, 7, 10, 11, 29, 32, 83, 87, 101, 107, 110, 140, 163, 330, 336, 338, 342, 348], "solut": [0, 3, 6, 7, 9, 21, 330, 331, 333, 347], "resourc": [0, 1, 21, 330, 336, 338, 342], "version": [0, 1, 3, 6, 11, 32, 34, 36, 40, 57, 70, 83, 87, 101, 102, 107, 109, 160, 223, 260, 265, 275, 278, 330, 331, 336, 338, 339, 342, 343, 344, 348], "issu": [0, 4, 5, 8, 53, 60, 61, 76, 91, 117, 140, 152, 220, 226, 227, 232, 233, 234, 235, 236, 330, 347], "index": [0, 3, 7, 8, 10, 16, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 44, 45, 46, 47, 52, 53, 54, 55, 56, 57, 59, 60, 61, 63, 65, 66, 68, 73, 74, 75, 76, 77, 78, 83, 87, 101, 107, 109, 117, 124, 170, 197, 198, 341, 342, 345, 347], "search": [0, 171, 337], "page": [0, 7], "somewhat": [1, 332, 348], "equival": [1, 3, 17, 24, 27, 30, 31, 32, 33, 34, 36, 39, 45, 52, 53, 55, 56, 57, 58, 83, 87, 101, 107, 123, 126, 155, 183, 190, 209, 226, 227, 233, 234, 262, 308, 347, 348], "dataload": [1, 58, 69, 71, 337, 338, 345], "except": [1, 2, 3, 13, 14, 16, 18, 19, 20, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 39, 44, 46, 47, 55, 83, 87, 101, 107, 117, 128, 143, 150, 151, 152, 186, 188, 190, 192, 206, 224, 228, 229, 231, 331, 337, 345, 347, 348], "1": [1, 2, 3, 4, 8, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 44, 45, 46, 47, 52, 53, 54, 55, 56, 57, 58, 65, 70, 71, 74, 80, 83, 84, 87, 93, 96, 97, 100, 101, 102, 103, 105, 106, 107, 108, 109, 114, 115, 116, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 130, 133, 135, 137, 139, 140, 141, 143, 146, 147, 149, 150, 151, 152, 153, 154, 155, 157, 159, 161, 167, 170, 172, 173, 174, 175, 176, 177, 179, 180, 183, 185, 186, 187, 188, 189, 190, 191, 192, 194, 196, 197, 198, 199, 200, 201, 202, 203, 206, 207, 208, 210, 211, 213, 214, 215, 216, 217, 220, 221, 222, 223, 224, 225, 227, 228, 229, 231, 232, 233, 234, 235, 238, 239, 240, 242, 245, 246, 247, 248, 249, 251, 252, 255, 258, 259, 261, 262, 263, 264, 265, 266, 267, 273, 274, 275, 276, 277, 278, 281, 283, 284, 285, 289, 290, 292, 302, 307, 308, 309, 320, 323, 327, 330, 331, 332, 333, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "thei": [1, 2, 3, 4, 8, 9, 18, 19, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 44, 46, 47, 55, 83, 87, 96, 101, 102, 103, 107, 109, 116, 128, 133, 139, 147, 154, 155, 159, 192, 193, 245, 246, 247, 252, 253, 254, 255, 256, 258, 259, 260, 262, 263, 264, 265, 267, 273, 308, 311, 331, 332, 333, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "collect": [1, 2, 3, 4, 8, 13, 14, 16, 17, 18, 19, 20, 21, 22, 32, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 65, 69, 101, 104, 107, 117, 135, 139, 159, 163, 231, 246, 248, 251, 252, 263, 265, 267, 302, 308, 311, 313, 314, 315, 323, 333, 336, 339, 342, 343, 344, 345, 347, 348], "over": [1, 2, 3, 4, 8, 13, 14, 16, 17, 18, 19, 20, 21, 32, 38, 42, 43, 45, 51, 55, 69, 74, 83, 87, 101, 107, 124, 135, 146, 152, 170, 218, 238, 253, 255, 260, 281, 314, 333, 336, 337, 338, 342, 343, 348], "non": [1, 3, 8, 21, 32, 34, 35, 36, 38, 39, 41, 42, 55, 83, 87, 101, 102, 103, 107, 115, 121, 129, 139, 151, 154, 155, 156, 157, 159, 170, 186, 188, 190, 192, 199, 235, 236, 245, 246, 248, 249, 251, 252, 253, 254, 255, 258, 260, 262, 263, 264, 265, 267, 273, 275, 276, 277, 278, 331, 336, 339, 342, 343, 345, 348], "static": [1, 11, 40, 45, 70, 71, 161, 258, 343, 345], "2": [1, 2, 3, 8, 9, 10, 11, 13, 14, 16, 21, 22, 26, 28, 30, 31, 32, 35, 36, 37, 38, 41, 42, 43, 45, 55, 56, 58, 65, 70, 71, 83, 84, 87, 96, 100, 101, 102, 103, 105, 106, 107, 108, 109, 116, 118, 121, 122, 123, 124, 125, 133, 135, 137, 139, 143, 146, 149, 150, 151, 154, 155, 157, 159, 161, 167, 171, 173, 174, 175, 176, 177, 178, 180, 183, 185, 186, 187, 188, 190, 191, 192, 193, 194, 197, 198, 199, 200, 203, 207, 218, 225, 226, 227, 228, 229, 231, 235, 239, 240, 245, 246, 247, 248, 252, 258, 259, 262, 263, 264, 265, 267, 274, 275, 276, 277, 278, 280, 281, 284, 285, 286, 287, 288, 289, 290, 291, 292, 294, 302, 331, 332, 335, 336, 337, 338, 339, 341, 342, 343, 345, 346, 347, 348], "like": [1, 2, 3, 4, 7, 21, 26, 28, 32, 35, 38, 41, 42, 45, 65, 71, 83, 87, 89, 96, 101, 102, 103, 107, 126, 153, 163, 186, 190, 200, 230, 263, 332, 336, 338, 339, 342, 343, 344, 345, 348], "being": [1, 2, 3, 7, 8, 17, 18, 20, 21, 32, 58, 83, 87, 101, 107, 116, 122, 124, 125, 134, 141, 155, 168, 169, 188, 192, 228, 231, 247, 259, 262, 265, 294, 308, 313, 325, 326, 327, 331, 336, 337, 338, 339, 342, 343, 345], "s": [1, 2, 3, 6, 7, 8, 32, 34, 35, 36, 38, 39, 41, 42, 52, 53, 54, 55, 56, 57, 65, 70, 71, 83, 87, 91, 98, 101, 102, 103, 107, 117, 121, 139, 149, 151, 153, 154, 155, 157, 159, 161, 163, 173, 174, 188, 192, 198, 199, 200, 202, 208, 217, 221, 223, 224, 227, 228, 232, 235, 236, 239, 246, 258, 260, 265, 275, 276, 277, 278, 279, 320, 331, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "accept": [1, 13, 14, 16, 17, 18, 19, 20, 21, 32, 38, 53, 56, 57, 58, 83, 87, 97, 101, 107, 117, 121, 129, 139, 146, 151, 154, 155, 156, 157, 159, 218, 235, 236, 237, 265, 333, 338, 348], "two": [1, 2, 3, 4, 8, 10, 32, 40, 55, 65, 69, 71, 83, 87, 101, 107, 135, 139, 159, 179, 186, 188, 190, 192, 212, 236, 259, 270, 307, 311, 320, 332, 336, 337, 338, 339, 341, 342, 343, 345, 347, 348], "main": [1, 2, 3, 5, 20, 22, 57, 84, 236, 311, 331, 332, 336, 337, 341, 348], "argument": [1, 3, 13, 14, 16, 17, 18, 19, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 41, 42, 44, 46, 47, 53, 55, 56, 57, 58, 65, 68, 69, 70, 71, 73, 83, 87, 98, 101, 102, 107, 120, 121, 139, 147, 149, 151, 153, 154, 155, 157, 159, 170, 173, 174, 186, 188, 190, 192, 194, 197, 198, 199, 200, 201, 218, 220, 224, 225, 226, 227, 228, 229, 231, 232, 233, 234, 235, 236, 237, 239, 240, 245, 246, 247, 248, 249, 250, 251, 252, 257, 258, 259, 261, 262, 263, 264, 265, 267, 269, 273, 275, 276, 277, 278, 279, 283, 293, 304, 314, 320, 323, 324, 327, 336, 337, 338, 339, 342, 343, 345, 348], "list": [1, 6, 7, 8, 9, 13, 14, 18, 19, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 38, 41, 42, 44, 45, 46, 47, 49, 52, 53, 54, 55, 56, 57, 62, 65, 68, 69, 70, 71, 72, 73, 83, 87, 97, 101, 102, 103, 107, 109, 110, 116, 120, 122, 125, 133, 135, 137, 139, 146, 153, 155, 157, 159, 161, 170, 182, 188, 192, 194, 197, 198, 204, 209, 227, 233, 234, 236, 238, 239, 240, 260, 265, 272, 275, 278, 293, 307, 308, 325, 326, 331, 336, 338, 341, 343, 344, 345, 347, 348], "constructor": [1, 16, 18, 19, 20, 21, 38, 45, 55, 154, 245, 246, 248, 249, 251, 252, 253, 254, 258, 260, 262, 263, 264, 265, 267, 273, 275, 276, 277, 278, 279, 320, 324, 327, 331, 336, 337, 338, 342, 345], "iter": [1, 11, 13, 14, 16, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 41, 42, 44, 46, 47, 51, 52, 53, 54, 55, 56, 57, 58, 65, 69, 83, 87, 101, 107, 127, 135, 147, 173, 174, 194, 199, 200, 213, 220, 226, 232, 233, 235, 237, 238, 240, 260, 272, 307, 310, 311, 320, 332, 333, 336, 338, 339, 342, 343], "execut": [1, 3, 6, 7, 8, 13, 14, 16, 18, 19, 20, 21, 32, 35, 37, 38, 41, 42, 52, 53, 54, 55, 56, 57, 65, 83, 84, 87, 91, 97, 98, 101, 107, 114, 155, 186, 188, 190, 192, 228, 237, 238, 315, 327, 331, 333, 335, 337, 338, 339, 342, 345, 346, 348], "step": [1, 2, 3, 4, 8, 13, 14, 16, 17, 18, 19, 20, 21, 32, 40, 80, 83, 84, 87, 93, 97, 101, 102, 103, 107, 114, 116, 129, 132, 135, 149, 150, 151, 152, 155, 160, 170, 171, 172, 184, 186, 188, 190, 192, 193, 195, 196, 224, 228, 229, 231, 232, 236, 245, 254, 262, 274, 275, 276, 277, 278, 281, 282, 283, 293, 302, 307, 311, 333, 336, 337, 339, 341, 343, 344, 345, 347], "queri": [1, 3, 13, 14, 16, 17, 32, 34, 36, 39, 83, 87, 101, 107, 139, 154, 157, 161, 238, 336, 343, 347], "defin": [1, 2, 11, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 44, 46, 47, 55, 83, 87, 101, 107, 140, 150, 173, 174, 175, 176, 177, 178, 179, 180, 182, 184, 185, 186, 187, 188, 190, 191, 192, 193, 194, 199, 200, 203, 204, 205, 207, 210, 211, 213, 218, 224, 225, 227, 228, 229, 231, 234, 239, 242, 249, 251, 260, 275, 276, 277, 278, 279, 293, 324, 336, 337, 339, 343, 345, 348], "number": [1, 2, 3, 8, 13, 14, 16, 17, 18, 19, 20, 21, 22, 25, 27, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 45, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 68, 70, 71, 76, 83, 87, 97, 98, 100, 101, 102, 103, 107, 116, 117, 124, 130, 134, 135, 145, 149, 152, 161, 172, 173, 174, 181, 182, 184, 185, 186, 187, 188, 189, 190, 191, 192, 194, 196, 199, 200, 203, 204, 205, 208, 210, 211, 214, 215, 216, 217, 220, 224, 225, 228, 229, 231, 232, 235, 236, 240, 244, 246, 252, 254, 258, 259, 261, 263, 265, 267, 302, 304, 307, 311, 313, 314, 315, 325, 326, 327, 331, 336, 337, 338, 339, 342, 343, 344, 348], "befor": [1, 2, 3, 4, 6, 7, 10, 13, 14, 16, 17, 18, 19, 20, 21, 32, 40, 45, 54, 69, 83, 87, 101, 107, 115, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 129, 131, 132, 133, 134, 135, 137, 141, 142, 144, 145, 146, 147, 149, 150, 151, 152, 153, 154, 156, 157, 158, 160, 186, 188, 192, 194, 201, 202, 245, 246, 247, 252, 253, 254, 255, 256, 258, 259, 260, 262, 263, 264, 265, 267, 273, 276, 277, 278, 308, 336, 338, 339, 342, 343, 345, 348], "deliv": [1, 16, 18, 19, 20, 55, 336, 337, 347], "stack": [1, 2, 3, 7, 8, 18, 20, 21, 28, 29, 50, 65, 83, 87, 96, 101, 102, 103, 107, 161, 186, 188, 190, 191, 192, 237, 238, 293, 302, 331, 337, 341, 343, 347], "user": [1, 2, 3, 5, 8, 21, 32, 52, 53, 55, 56, 57, 71, 83, 87, 101, 107, 150, 155, 180, 193, 262, 265, 324, 332, 333, 336, 337, 343, 347, 348], "reset": [1, 3, 8, 11, 13, 14, 16, 17, 18, 19, 20, 21, 32, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 65, 71, 80, 83, 84, 87, 93, 96, 97, 98, 100, 101, 102, 103, 107, 117, 126, 129, 132, 134, 139, 146, 149, 150, 151, 152, 154, 157, 160, 161, 163, 171, 186, 188, 192, 219, 231, 293, 320, 336, 337, 338, 339, 341, 342, 347], "whenev": [1, 2, 3, 32, 35, 38, 41, 42, 55, 113, 132, 155, 160, 260, 275, 276, 277, 278, 313, 331], "reach": [1, 13, 14, 16, 17, 18, 19, 20, 21, 22, 40, 69, 83, 87, 101, 107, 149, 224, 228, 229, 231, 336, 338, 342, 347, 348], "done": [1, 2, 3, 4, 7, 8, 13, 14, 16, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 40, 44, 46, 47, 52, 53, 55, 56, 57, 65, 70, 71, 80, 83, 84, 87, 93, 96, 97, 100, 101, 102, 103, 105, 106, 107, 108, 109, 114, 117, 122, 123, 125, 126, 127, 134, 135, 137, 141, 143, 145, 147, 149, 151, 152, 154, 155, 161, 170, 171, 172, 186, 188, 192, 196, 245, 246, 248, 249, 251, 252, 258, 262, 263, 264, 265, 267, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 320, 332, 336, 338, 339, 341, 342, 343, 344, 345, 347, 348], "state": [1, 2, 3, 4, 13, 14, 16, 17, 32, 35, 38, 40, 41, 42, 52, 53, 54, 55, 56, 57, 65, 80, 83, 87, 93, 97, 101, 102, 103, 105, 106, 107, 116, 117, 118, 120, 126, 135, 141, 149, 150, 154, 155, 161, 170, 171, 172, 175, 180, 184, 186, 187, 188, 190, 191, 192, 193, 194, 196, 204, 207, 208, 210, 211, 217, 221, 235, 241, 245, 247, 251, 259, 260, 262, 263, 264, 265, 273, 274, 275, 276, 277, 278, 279, 327, 331, 332, 336, 337, 338, 339, 342, 343, 348], "after": [1, 2, 3, 8, 13, 14, 18, 20, 21, 26, 32, 40, 65, 83, 87, 91, 101, 107, 114, 115, 117, 118, 119, 120, 121, 122, 123, 124, 126, 127, 129, 131, 132, 133, 134, 135, 137, 141, 142, 144, 145, 146, 147, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 160, 170, 186, 188, 192, 201, 224, 226, 228, 229, 233, 255, 265, 337, 338, 339, 342, 343, 344, 345, 348], "predefin": [1, 337, 338, 339, 345], "becaus": [1, 3, 4, 7, 34, 36, 39, 40, 83, 87, 101, 107, 126, 133, 149, 154, 160, 179, 193, 200, 220, 226, 227, 232, 233, 234, 235, 236, 336, 337, 339, 341, 342, 343, 345, 348], "potenti": [1, 2, 343, 345], "comput": [1, 3, 4, 8, 13, 16, 21, 27, 32, 40, 83, 87, 101, 107, 135, 155, 158, 171, 173, 174, 175, 176, 177, 178, 179, 180, 182, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 198, 199, 200, 203, 204, 205, 206, 207, 210, 211, 213, 215, 216, 218, 221, 224, 225, 227, 228, 229, 231, 232, 234, 236, 239, 242, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 258, 259, 260, 261, 262, 263, 264, 265, 267, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 281, 315, 332, 336, 338, 339, 341, 342, 344, 345], "heavi": [1, 8, 345], "crucial": [1, 224, 228, 229, 231, 258, 260, 336, 337, 338, 339, 342, 343, 348], "configur": [1, 8, 13, 14, 16, 17, 21, 22, 40, 133, 175, 180, 207, 260, 262, 320, 331, 336, 337, 338, 342, 343], "hyperparamet": [1, 68, 245, 246, 248, 249, 251, 252, 253, 254, 258, 260, 262, 263, 264, 265, 267, 273, 336, 343, 345], "appropri": [1, 3, 4, 7, 13, 14, 16, 17, 59, 66, 74, 75, 77, 78, 101, 107, 126, 324, 327, 336, 345], "paramet": [1, 8, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 68, 69, 72, 73, 76, 78, 81, 82, 83, 84, 87, 97, 98, 100, 101, 102, 103, 104, 107, 109, 110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 129, 130, 131, 132, 133, 134, 135, 137, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 163, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 213, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 269, 270, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 296, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 320, 323, 324, 325, 326, 327, 331, 332, 336, 339, 342, 343, 344, 347], "take": [1, 3, 8, 23, 40, 83, 87, 101, 107, 120, 149, 152, 154, 173, 174, 175, 176, 177, 178, 179, 180, 182, 184, 185, 186, 187, 188, 190, 191, 192, 193, 194, 199, 200, 203, 204, 205, 207, 210, 211, 213, 218, 224, 225, 227, 228, 229, 230, 231, 232, 234, 239, 242, 244, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 302, 313, 331, 333, 336, 337, 338, 342, 343, 345, 348], "consider": [1, 3, 8, 337, 342, 345], "whether": [1, 2, 3, 13, 14, 16, 17, 18, 19, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 37, 38, 40, 41, 42, 43, 44, 46, 47, 52, 53, 54, 55, 56, 57, 65, 83, 87, 97, 101, 102, 103, 104, 107, 109, 122, 125, 150, 155, 171, 173, 174, 188, 192, 194, 240, 246, 247, 248, 249, 251, 252, 253, 259, 260, 262, 263, 265, 267, 273, 275, 278, 336, 337, 338, 342, 343, 348], "should": [1, 3, 4, 5, 7, 8, 11, 13, 14, 16, 17, 18, 19, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 52, 53, 54, 55, 56, 57, 58, 65, 70, 71, 72, 74, 83, 87, 96, 97, 101, 102, 103, 104, 107, 117, 120, 121, 122, 123, 126, 127, 129, 133, 135, 140, 141, 143, 146, 147, 149, 150, 152, 154, 155, 160, 161, 163, 170, 171, 173, 174, 175, 176, 177, 178, 179, 180, 182, 184, 185, 186, 187, 188, 190, 191, 192, 193, 194, 199, 200, 203, 204, 205, 207, 210, 211, 213, 218, 224, 225, 227, 228, 229, 231, 232, 234, 235, 236, 239, 242, 252, 257, 259, 260, 262, 263, 266, 274, 275, 276, 277, 278, 279, 294, 306, 307, 308, 311, 323, 325, 326, 327, 331, 333, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "occur": [1, 8, 14, 28, 29, 118, 135, 140, 160, 171, 220, 226, 227, 232, 233, 234, 235, 236, 255, 345, 348], "serial": [1, 2, 3, 32, 83, 87, 101, 107, 161], "optim": [1, 2, 8, 32, 40, 83, 87, 101, 107, 155, 172, 196, 201, 202, 246, 260, 261, 262, 265, 306, 311, 323, 332, 333, 338, 339, 342, 343], "parallel": [1, 3, 8, 17, 102, 103, 160, 163, 245, 324, 325, 326, 327, 337, 338, 342], "syncdatacollector": [1, 13, 14, 17, 18, 19, 20, 21, 117, 143, 323, 326, 329, 338, 339, 342, 345], "class": [1, 2, 3, 5, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 83, 84, 85, 87, 89, 96, 97, 101, 102, 103, 107, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 325, 326, 327, 331, 332, 333, 336, 337, 338, 339, 342, 345, 348], "worker": [1, 2, 13, 14, 16, 17, 18, 19, 20, 21, 22, 36, 45, 58, 84, 98, 101, 107, 161, 325, 326, 327, 336, 338, 347, 348], "multisyncdatacollector": [1, 18, 19, 20, 21, 326, 329, 338, 347], "split": [1, 13, 14, 16, 17, 18, 19, 20, 21, 34, 36, 45, 52, 53, 55, 56, 57, 58, 70, 71, 96, 102, 103, 186, 190, 245, 246, 247, 252, 253, 254, 255, 256, 258, 259, 260, 262, 263, 264, 265, 267, 273, 331, 333, 338, 345, 347], "workload": 1, "across": [1, 3, 8, 18, 19, 20, 21, 35, 38, 41, 42, 70, 71, 91, 161, 199, 231, 313, 329, 331, 336, 342, 343], "aggreg": [1, 3, 171, 173, 174, 176, 177, 238], "result": [1, 3, 7, 13, 14, 16, 17, 18, 19, 20, 21, 32, 34, 35, 36, 37, 38, 39, 41, 42, 52, 53, 54, 55, 56, 57, 65, 69, 70, 71, 83, 84, 87, 101, 107, 115, 117, 118, 119, 120, 121, 122, 123, 124, 126, 127, 129, 131, 132, 133, 134, 135, 137, 141, 142, 144, 145, 146, 147, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 160, 161, 163, 170, 171, 186, 188, 190, 192, 194, 199, 209, 225, 227, 228, 234, 245, 246, 248, 249, 251, 252, 253, 254, 258, 260, 262, 263, 264, 265, 267, 273, 275, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 313, 331, 337, 339, 343, 344, 347, 348], "final": [1, 3, 4, 21, 34, 36, 39, 40, 160, 186, 188, 190, 192, 199, 224, 228, 229, 230, 231, 237, 275, 307, 331, 336, 337, 338, 342, 343, 348], "multiasyncdatacollector": [1, 17, 18, 19, 20, 21, 325, 329, 336, 337, 338, 347], "sever": [1, 8, 30, 32, 45, 83, 87, 101, 107, 118, 120, 155, 262, 336, 338, 345, 348], "batch": [1, 3, 13, 14, 16, 17, 18, 19, 20, 21, 23, 27, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 52, 53, 54, 55, 56, 57, 58, 60, 61, 64, 65, 69, 70, 71, 74, 76, 83, 87, 97, 98, 100, 101, 107, 117, 129, 135, 137, 140, 143, 151, 155, 156, 160, 161, 171, 181, 182, 186, 187, 188, 190, 191, 192, 193, 197, 198, 199, 200, 201, 206, 208, 214, 218, 231, 235, 245, 246, 247, 248, 249, 251, 252, 253, 254, 255, 256, 258, 259, 260, 262, 263, 264, 265, 267, 273, 275, 276, 277, 278, 279, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 294, 302, 305, 308, 309, 310, 311, 313, 325, 326, 327, 333, 337, 338, 339, 341, 342, 344, 347, 348], "gather": [1, 3, 18, 20, 21, 45, 58, 60, 61, 76, 140, 198, 206, 274, 315, 330, 336, 337, 338, 339, 342, 343, 345, 348], "continu": [1, 9, 25, 46, 71, 83, 87, 101, 102, 103, 107, 167, 176, 177, 178, 179, 231, 238, 245, 246, 252, 258, 262, 263, 264, 265, 266, 267, 275, 280, 288, 331, 336, 338, 339, 342, 343, 345, 347, 348], "concomitantli": 1, "network": [1, 4, 8, 32, 83, 87, 96, 101, 102, 103, 107, 173, 174, 176, 177, 178, 179, 182, 184, 185, 190, 194, 199, 200, 202, 204, 205, 208, 210, 211, 212, 217, 221, 222, 223, 225, 235, 239, 246, 247, 248, 249, 251, 252, 253, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 271, 273, 275, 276, 277, 278, 279, 322, 323, 331, 332, 333, 341, 343, 348], "impli": [1, 348], "weight": [1, 4, 9, 12, 13, 14, 16, 17, 18, 19, 20, 21, 32, 35, 40, 65, 68, 83, 87, 101, 105, 106, 107, 121, 139, 151, 154, 155, 157, 159, 186, 187, 188, 190, 191, 192, 199, 202, 235, 245, 246, 247, 252, 255, 265, 313, 322, 331, 333, 336, 337, 338, 339, 341, 343, 345, 347], "mai": [1, 2, 3, 4, 5, 7, 8, 13, 14, 16, 17, 18, 20, 21, 28, 29, 32, 52, 53, 55, 56, 57, 83, 87, 101, 107, 133, 135, 147, 155, 156, 161, 163, 194, 199, 332, 333, 336, 337, 338, 339, 342, 343, 344, 345, 347, 348], "slightli": [1, 331, 332, 339, 343, 344, 345, 348], "lag": [1, 13, 14, 16, 17, 336, 337, 338], "therefor": [1, 3, 7, 56, 57, 83, 87, 101, 107, 143, 262, 273, 348], "although": [1, 8, 83, 87, 101, 107, 173, 174, 175, 176, 177, 178, 179, 180, 182, 184, 185, 186, 187, 188, 190, 191, 192, 193, 194, 199, 200, 203, 204, 205, 207, 210, 211, 213, 218, 224, 225, 227, 228, 229, 231, 234, 239, 242, 333, 336, 337, 345], "fastest": 1, "price": 1, "suitabl": [1, 2], "where": [1, 2, 3, 4, 7, 8, 13, 14, 16, 17, 18, 19, 20, 21, 28, 29, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 52, 53, 54, 55, 56, 57, 58, 60, 61, 65, 70, 71, 74, 76, 83, 87, 96, 97, 100, 101, 102, 103, 107, 114, 117, 126, 133, 139, 143, 146, 149, 150, 152, 154, 156, 159, 160, 170, 171, 186, 187, 190, 191, 197, 198, 199, 224, 228, 229, 231, 232, 235, 236, 244, 245, 246, 247, 252, 253, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 274, 275, 276, 277, 278, 279, 280, 281, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 332, 333, 336, 337, 338, 341, 342, 343, 345, 348], "asynchron": [1, 9, 14, 21, 32, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 235, 245, 325, 337, 338], "off": [1, 2, 4, 189, 216, 226, 265, 307, 316, 331, 333, 336, 337, 338, 342, 344, 348], "curriculum": [1, 4], "For": [1, 2, 3, 4, 7, 8, 9, 10, 13, 14, 16, 17, 18, 20, 21, 32, 52, 53, 55, 56, 57, 70, 83, 87, 101, 102, 103, 107, 122, 125, 129, 135, 150, 155, 160, 183, 186, 188, 190, 192, 200, 201, 221, 223, 225, 227, 233, 245, 253, 258, 262, 307, 331, 333, 336, 337, 338, 339, 342, 343, 344, 345, 348], "remot": [1, 2, 18, 19, 20, 21, 101, 107, 348], "rollout": [1, 2, 3, 13, 14, 16, 21, 23, 40, 83, 87, 90, 97, 98, 101, 102, 103, 105, 106, 107, 108, 109, 114, 117, 120, 122, 125, 126, 127, 133, 137, 141, 146, 147, 149, 150, 152, 163, 172, 188, 192, 196, 231, 245, 315, 331, 336, 338, 339, 344, 345, 347], "necessari": [1, 4, 6, 8, 13, 14, 16, 17, 53, 55, 56, 57, 147, 263, 275, 276, 277, 278, 279, 332, 336, 338], "synchronis": [1, 84, 342], "either": [1, 5, 22, 32, 40, 58, 65, 83, 87, 101, 107, 149, 150, 241, 267, 298, 333, 336, 337, 339, 344, 345, 347, 348], "update_policy_weights_": [1, 12, 13, 14, 16, 17, 18, 19, 20, 21, 336, 342, 347], "update_at_each_batch": [1, 13, 14, 17, 336], "true": [1, 3, 4, 8, 13, 14, 16, 17, 18, 19, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 65, 68, 69, 70, 71, 81, 82, 83, 84, 85, 87, 97, 101, 102, 103, 104, 105, 106, 107, 108, 109, 114, 116, 117, 118, 121, 124, 129, 132, 133, 134, 135, 139, 140, 141, 142, 145, 147, 149, 151, 153, 154, 155, 156, 157, 159, 161, 163, 167, 170, 171, 172, 173, 174, 176, 177, 178, 179, 185, 186, 187, 188, 190, 191, 192, 194, 196, 197, 198, 199, 200, 201, 202, 215, 216, 220, 221, 222, 223, 224, 226, 227, 231, 232, 233, 234, 235, 236, 237, 238, 239, 245, 246, 247, 248, 251, 252, 254, 255, 256, 258, 259, 260, 261, 262, 263, 264, 265, 267, 270, 275, 276, 277, 278, 281, 284, 285, 286, 287, 289, 290, 291, 292, 293, 294, 304, 305, 307, 308, 311, 327, 331, 332, 333, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "second": [1, 3, 8, 186, 188, 190, 192, 227, 247, 259, 262, 265, 310, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "devic": [1, 2, 3, 7, 8, 12, 13, 14, 16, 17, 18, 19, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 53, 55, 56, 57, 58, 60, 61, 76, 80, 83, 85, 87, 90, 91, 93, 96, 97, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 121, 122, 123, 125, 126, 127, 133, 137, 138, 139, 141, 143, 147, 149, 151, 153, 154, 155, 157, 159, 167, 170, 172, 173, 174, 175, 176, 177, 178, 179, 183, 185, 186, 187, 188, 190, 191, 192, 193, 194, 196, 199, 200, 201, 202, 207, 208, 209, 217, 220, 221, 222, 223, 225, 226, 227, 231, 232, 233, 234, 235, 238, 240, 245, 246, 248, 249, 251, 252, 258, 262, 263, 264, 265, 267, 273, 275, 276, 277, 278, 308, 313, 320, 321, 331, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347], "oper": [1, 3, 4, 7, 8, 13, 14, 17, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 39, 44, 45, 46, 47, 83, 87, 101, 107, 129, 133, 154, 182, 183, 187, 191, 203, 221, 222, 223, 226, 227, 230, 235, 241, 245, 247, 248, 249, 253, 259, 262, 264, 273, 274, 275, 276, 277, 278, 311, 320, 329, 333, 336, 337, 338, 339, 341, 342, 343, 348], "instanc": [1, 2, 3, 4, 7, 8, 13, 14, 16, 17, 18, 19, 20, 21, 32, 34, 36, 37, 39, 43, 44, 45, 52, 55, 65, 70, 71, 82, 83, 84, 87, 97, 101, 107, 117, 135, 151, 154, 161, 167, 171, 173, 174, 175, 176, 177, 178, 179, 180, 182, 184, 185, 186, 187, 188, 190, 191, 192, 193, 194, 195, 199, 200, 203, 204, 205, 207, 210, 211, 213, 218, 224, 225, 226, 227, 228, 229, 231, 232, 233, 234, 236, 237, 238, 239, 242, 249, 252, 260, 273, 275, 276, 277, 278, 294, 298, 307, 315, 316, 317, 320, 323, 325, 326, 331, 332, 333, 336, 338, 339, 343, 345, 348], "cpu": [1, 3, 8, 10, 13, 14, 16, 18, 19, 20, 21, 24, 26, 28, 32, 34, 36, 37, 39, 40, 41, 42, 43, 44, 45, 53, 55, 56, 57, 58, 60, 61, 76, 80, 83, 87, 93, 96, 97, 100, 101, 102, 103, 105, 106, 107, 108, 109, 121, 122, 123, 125, 126, 127, 137, 139, 141, 143, 147, 149, 151, 154, 155, 157, 159, 167, 170, 172, 186, 187, 188, 190, 191, 192, 196, 201, 202, 208, 209, 217, 220, 221, 222, 223, 225, 226, 227, 232, 233, 234, 235, 238, 240, 245, 246, 248, 249, 251, 252, 258, 262, 263, 264, 265, 267, 273, 308, 320, 331, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "slower": 1, "than": [1, 2, 3, 4, 8, 13, 14, 16, 17, 52, 55, 68, 70, 71, 73, 83, 87, 91, 101, 107, 141, 179, 188, 190, 192, 194, 203, 218, 220, 224, 226, 235, 240, 260, 302, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 330, 332, 336, 337, 338, 342, 343, 345, 347, 348], "one": [1, 2, 3, 4, 5, 7, 8, 11, 13, 14, 16, 17, 18, 19, 20, 21, 22, 24, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 52, 53, 54, 55, 56, 57, 59, 63, 65, 66, 70, 71, 72, 73, 75, 77, 78, 83, 84, 87, 91, 96, 100, 101, 102, 103, 107, 109, 114, 117, 120, 122, 123, 124, 125, 134, 135, 139, 143, 146, 148, 150, 151, 152, 154, 155, 156, 159, 161, 173, 174, 175, 176, 177, 178, 179, 180, 182, 183, 184, 185, 186, 187, 188, 190, 191, 192, 193, 194, 199, 200, 203, 204, 205, 206, 207, 209, 210, 211, 213, 218, 220, 224, 225, 226, 227, 228, 229, 231, 232, 233, 234, 235, 236, 239, 240, 242, 244, 245, 246, 247, 248, 249, 251, 252, 253, 254, 258, 259, 260, 262, 263, 264, 265, 266, 267, 273, 275, 276, 277, 278, 282, 283, 304, 306, 307, 311, 315, 320, 327, 330, 331, 332, 333, 336, 337, 338, 339, 341, 342, 343, 344, 345, 348], "cuda": [1, 3, 7, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 44, 46, 47, 83, 87, 90, 91, 101, 107, 121, 133, 138, 139, 151, 154, 155, 157, 159, 186, 187, 190, 191, 235, 251, 303, 336, 337, 338, 339, 342, 344, 348], "multipl": [1, 2, 3, 5, 8, 13, 14, 16, 17, 18, 19, 20, 21, 27, 43, 65, 101, 107, 118, 120, 124, 134, 143, 146, 149, 154, 161, 186, 190, 192, 193, 199, 201, 202, 220, 226, 232, 233, 235, 236, 239, 247, 252, 259, 262, 263, 267, 281, 320, 327, 331, 333, 336, 337, 338, 342, 343, 345, 347], "infer": [1, 101, 107, 117, 161, 188, 192, 201, 225, 251, 336, 338, 345], "run": [1, 3, 4, 5, 6, 7, 8, 10, 13, 14, 17, 21, 32, 81, 82, 83, 87, 97, 101, 107, 134, 135, 155, 161, 173, 174, 175, 176, 177, 178, 179, 180, 182, 184, 185, 186, 187, 188, 190, 191, 192, 193, 194, 199, 200, 203, 204, 205, 207, 210, 211, 213, 218, 224, 225, 227, 228, 229, 231, 234, 237, 238, 239, 242, 265, 307, 325, 326, 327, 330, 333, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347], "dispatch": [1, 18, 19, 20, 21, 218], "avail": [1, 3, 4, 6, 21, 57, 69, 91, 101, 102, 103, 116, 133, 183, 209, 232, 236, 260, 325, 326, 331, 336, 337, 338, 339, 342, 343, 345, 348], "speed": [1, 2, 4, 8, 27, 101, 107, 332, 336, 337, 338, 339, 342, 343, 345], "up": [1, 2, 3, 8, 9, 13, 14, 16, 27, 40, 52, 53, 55, 56, 57, 101, 107, 116, 152, 154, 262, 330, 331, 332, 336, 337, 338, 339, 342, 343, 345, 348], "avoid": [1, 32, 60, 61, 76, 83, 87, 101, 107, 113, 155, 161, 220, 235, 240, 247, 259, 262, 265, 314, 338, 342], "oom": [1, 60, 61, 76], "choic": [1, 2, 52, 53, 55, 56, 57, 101, 203, 331, 332, 336, 337, 342], "size": [1, 2, 3, 13, 14, 16, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 52, 53, 54, 55, 56, 57, 58, 60, 61, 64, 65, 69, 70, 71, 72, 74, 76, 80, 83, 85, 87, 93, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107, 108, 109, 116, 118, 122, 125, 126, 127, 129, 137, 139, 141, 143, 147, 148, 149, 151, 153, 154, 155, 156, 159, 161, 167, 170, 172, 173, 174, 175, 180, 181, 183, 186, 187, 188, 190, 191, 192, 193, 194, 196, 197, 198, 199, 200, 203, 206, 207, 208, 209, 210, 211, 214, 217, 218, 220, 221, 222, 223, 225, 226, 227, 228, 229, 231, 232, 233, 234, 235, 238, 240, 245, 246, 248, 249, 251, 252, 258, 260, 262, 263, 264, 265, 267, 273, 274, 275, 276, 277, 278, 279, 294, 302, 308, 320, 331, 337, 338, 339, 341, 342, 343, 344, 347, 348], "pass": [1, 3, 4, 13, 14, 16, 18, 19, 20, 21, 22, 26, 32, 35, 38, 40, 41, 42, 45, 53, 55, 56, 57, 60, 61, 65, 74, 76, 83, 84, 85, 87, 96, 98, 101, 102, 103, 107, 122, 125, 141, 154, 156, 161, 173, 174, 175, 176, 177, 178, 179, 180, 182, 184, 185, 186, 187, 188, 190, 191, 192, 193, 194, 199, 200, 201, 203, 204, 205, 207, 208, 210, 211, 213, 217, 218, 220, 224, 225, 226, 227, 228, 229, 231, 232, 233, 234, 235, 236, 238, 239, 240, 242, 247, 259, 260, 262, 275, 276, 277, 278, 279, 308, 325, 326, 327, 331, 336, 337, 338, 339, 341, 342, 343, 345, 348], "ie": [1, 3, 18, 20, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 39, 41, 44, 45, 46, 47, 55, 63, 71, 83, 87, 91, 100, 101, 107, 117, 129, 156, 161, 171, 188, 192, 225, 245, 247, 248, 252, 258, 259, 262, 263, 264, 265, 267, 275, 276, 277, 278, 331, 332, 337, 338, 342, 345], "store": [1, 3, 8, 13, 14, 16, 17, 20, 26, 32, 34, 36, 37, 39, 41, 42, 43, 45, 55, 56, 58, 60, 61, 62, 63, 76, 83, 87, 101, 107, 160, 161, 172, 193, 196, 245, 246, 248, 249, 251, 252, 253, 254, 258, 260, 262, 263, 264, 265, 267, 273, 320, 329, 333, 336, 338, 339, 342, 344, 345, 348], "while": [1, 3, 7, 8, 32, 83, 87, 101, 107, 143, 155, 173, 174, 175, 176, 177, 178, 179, 180, 182, 184, 185, 186, 187, 188, 190, 191, 192, 193, 194, 199, 200, 203, 204, 205, 207, 210, 211, 213, 218, 224, 225, 227, 228, 229, 231, 234, 239, 242, 258, 259, 262, 265, 331, 336, 338, 339, 342, 343, 344, 345, 347], "wait": [1, 20, 21, 22, 339, 343], "also": [1, 2, 3, 8, 9, 11, 32, 34, 36, 39, 41, 53, 55, 56, 57, 58, 60, 61, 65, 76, 83, 87, 101, 102, 103, 107, 113, 116, 117, 124, 135, 141, 143, 146, 147, 149, 151, 155, 186, 190, 211, 232, 237, 238, 239, 245, 246, 248, 249, 251, 252, 258, 262, 265, 275, 282, 283, 331, 333, 336, 337, 338, 339, 341, 342, 343, 345, 348], "impact": [1, 55, 122, 125, 337, 339, 342], "memori": [1, 2, 3, 8, 21, 27, 32, 34, 36, 39, 45, 52, 53, 55, 56, 57, 60, 83, 84, 87, 91, 101, 107, 117, 121, 139, 151, 154, 155, 157, 159, 161, 190, 191, 235, 327, 333, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "manag": [1, 8, 271, 272, 275, 276, 277, 278, 307], "kei": [1, 2, 3, 7, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 52, 65, 68, 70, 71, 74, 83, 87, 101, 107, 114, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 135, 138, 139, 140, 141, 143, 146, 147, 149, 150, 151, 152, 153, 154, 155, 157, 158, 159, 160, 161, 170, 171, 172, 182, 183, 188, 192, 195, 196, 209, 220, 224, 225, 226, 227, 228, 229, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 244, 245, 246, 247, 248, 249, 251, 252, 253, 254, 255, 256, 258, 259, 260, 262, 263, 264, 265, 267, 273, 274, 275, 276, 277, 278, 279, 294, 305, 306, 307, 309, 310, 311, 315, 320, 332, 333, 336, 338, 339, 341, 342, 343, 345, 347, 348], "control": [1, 3, 5, 8, 16, 81, 82, 96, 102, 103, 124, 170, 176, 177, 178, 179, 188, 192, 195, 196, 211, 218, 231, 235, 236, 237, 245, 247, 259, 262, 266, 275, 280, 288, 331, 333, 336, 337, 338, 342, 343, 345], "which": [1, 2, 3, 4, 7, 8, 11, 13, 14, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 39, 40, 41, 42, 44, 45, 46, 47, 52, 53, 55, 56, 57, 58, 68, 69, 83, 87, 91, 98, 101, 104, 107, 117, 118, 122, 125, 130, 133, 134, 135, 139, 140, 149, 151, 152, 154, 155, 157, 163, 186, 187, 189, 190, 191, 192, 197, 198, 199, 216, 221, 222, 223, 225, 232, 235, 236, 238, 245, 246, 247, 249, 252, 253, 254, 255, 256, 258, 259, 260, 262, 263, 264, 265, 267, 270, 273, 275, 276, 277, 278, 302, 306, 320, 331, 332, 333, 336, 337, 338, 339, 341, 342, 343, 344, 345, 348], "storing_devic": [1, 13, 14, 16, 17, 18, 19, 20, 21, 336, 337, 342, 347], "dure": [1, 2, 3, 13, 14, 16, 17, 18, 19, 20, 36, 40, 45, 52, 53, 54, 55, 56, 57, 58, 65, 68, 83, 87, 101, 102, 103, 107, 117, 120, 122, 125, 130, 137, 155, 188, 192, 307, 311, 332, 336, 337, 338, 339, 342, 343, 345, 348], "heurist": [1, 4, 24, 25, 26, 27, 28, 29, 30, 31, 33, 44, 46, 47, 231, 336, 348], "usual": [1, 2, 3, 4, 6, 7, 8, 52, 68, 83, 87, 101, 107, 202, 262, 275, 276, 277, 278, 279, 293, 320, 330, 331, 333, 336, 337, 338, 339, 342, 345, 348], "same": [1, 2, 3, 4, 11, 13, 14, 16, 18, 19, 20, 21, 28, 29, 32, 34, 36, 39, 43, 45, 52, 55, 69, 73, 83, 84, 87, 96, 101, 102, 103, 107, 117, 122, 124, 125, 130, 134, 135, 154, 155, 161, 173, 174, 187, 188, 191, 192, 194, 197, 198, 199, 200, 225, 231, 239, 265, 336, 337, 338, 341, 342, 344, 345, 348], "storag": [1, 2, 8, 32, 34, 35, 36, 38, 39, 41, 42, 52, 53, 54, 55, 56, 57, 60, 61, 62, 65, 69, 70, 71, 73, 74, 76, 83, 85, 87, 101, 107, 116, 117, 122, 125, 143, 329, 333, 337, 338, 339, 342, 344], "default": [1, 2, 3, 10, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 60, 61, 63, 65, 68, 69, 70, 71, 76, 81, 83, 87, 100, 101, 102, 103, 104, 107, 109, 114, 116, 117, 118, 122, 124, 125, 126, 129, 133, 134, 135, 137, 139, 140, 143, 145, 147, 149, 150, 151, 152, 153, 155, 156, 157, 159, 160, 161, 163, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 194, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 207, 209, 210, 211, 213, 214, 215, 216, 220, 224, 225, 226, 227, 228, 229, 231, 232, 233, 234, 235, 236, 239, 240, 242, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 267, 269, 270, 273, 274, 275, 276, 277, 278, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 320, 323, 327, 333, 336, 337, 338, 339, 344, 345, 347, 348], "behaviour": [1, 3, 21, 55, 87, 118, 122, 125, 135, 140, 150, 170, 188, 189, 192, 216, 307, 331, 337, 345], "besid": 1, "those": [1, 2, 3, 5, 7, 26, 28, 101, 107, 117, 122, 125, 135, 151, 152, 192, 232, 236, 237, 238, 313, 325, 326, 331, 336, 337, 342, 343, 348], "choos": [1, 96, 188, 192, 262, 331, 332, 336, 337, 338, 342, 345], "follow": [1, 2, 3, 6, 7, 8, 32, 34, 36, 37, 39, 40, 52, 54, 83, 87, 97, 100, 101, 102, 103, 105, 106, 107, 109, 133, 139, 157, 173, 174, 186, 188, 190, 192, 194, 227, 233, 234, 244, 245, 246, 247, 248, 252, 258, 259, 262, 263, 264, 265, 267, 311, 320, 331, 332, 333, 336, 337, 338, 339, 341, 342, 343, 345, 347, 348], "max_frames_per_traj": [1, 13, 14, 16, 17, 18, 19, 20, 21, 314, 336, 338, 347], "frame": [1, 2, 13, 14, 16, 17, 18, 19, 20, 21, 32, 117, 130, 224, 228, 229, 231, 293, 294, 304, 307, 311, 314, 315, 336, 337, 338, 339, 342, 345, 347, 348], "call": [1, 2, 3, 7, 8, 11, 13, 14, 16, 17, 18, 19, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 44, 45, 46, 47, 49, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 64, 65, 69, 72, 73, 76, 83, 87, 100, 101, 107, 117, 120, 121, 124, 129, 132, 133, 135, 137, 138, 139, 146, 151, 154, 155, 157, 159, 160, 161, 163, 168, 169, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 182, 184, 185, 186, 187, 188, 190, 191, 192, 193, 194, 196, 199, 200, 201, 203, 204, 205, 207, 210, 211, 213, 218, 224, 225, 227, 228, 229, 231, 234, 235, 236, 238, 239, 242, 247, 259, 262, 265, 274, 275, 276, 277, 278, 293, 307, 333, 337, 338, 339, 342, 343, 345, 348], "frames_per_batch": [1, 13, 14, 16, 17, 18, 19, 20, 21, 117, 143, 314, 336, 337, 338, 339, 342, 345, 347], "each": [1, 2, 3, 4, 7, 8, 11, 13, 14, 16, 17, 18, 19, 20, 21, 23, 30, 31, 32, 40, 41, 52, 55, 65, 68, 70, 71, 83, 84, 87, 101, 102, 103, 107, 109, 139, 143, 146, 149, 150, 151, 152, 159, 161, 183, 186, 187, 188, 190, 192, 199, 200, 204, 208, 209, 217, 224, 226, 227, 228, 234, 238, 281, 284, 285, 286, 287, 289, 290, 291, 292, 307, 308, 325, 326, 331, 336, 337, 338, 339, 342, 343, 344, 345, 347, 348], "init_random_fram": [1, 13, 14, 16, 17, 18, 19, 20, 21, 314, 336, 337], "random": [1, 3, 13, 14, 15, 16, 17, 18, 19, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 33, 40, 44, 46, 47, 55, 57, 64, 83, 87, 97, 101, 107, 124, 134, 135, 151, 163, 186, 188, 190, 192, 228, 232, 235, 236, 246, 263, 307, 315, 331, 336, 337, 338, 339, 343, 344, 345, 347, 348], "rand_step": [1, 3, 79, 81, 82, 83, 84, 86, 87, 88, 92, 94, 95, 97, 98, 101, 107, 132, 151, 161, 343, 347, 348], "reset_at_each_it": [1, 13, 14, 16, 17, 18, 19, 20, 21, 336], "split_traj": [1, 13, 14, 16, 17, 18, 19, 20, 21, 52, 53, 55, 56, 57, 336, 337, 338], "trajectori": [1, 3, 13, 14, 16, 17, 18, 19, 20, 21, 23, 32, 41, 52, 53, 55, 56, 57, 63, 70, 71, 74, 83, 87, 101, 107, 140, 149, 154, 172, 192, 196, 231, 262, 275, 278, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 302, 329, 332, 336, 337, 338, 339, 343, 345, 347, 348], "pad": [1, 2, 3, 23, 37, 43, 52, 53, 55, 56, 57, 117, 173, 174, 176, 177, 192, 193, 197, 198, 199, 308], "along": [1, 2, 3, 23, 28, 29, 34, 36, 39, 40, 45, 52, 53, 55, 56, 57, 61, 65, 70, 71, 76, 116, 117, 118, 135, 137, 140, 146, 153, 192, 194, 197, 198, 202, 226, 232, 235, 236, 260, 331, 336, 337, 339, 342, 343, 345], "point": [1, 2, 3, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 44, 46, 47, 54, 59, 63, 66, 74, 75, 77, 78, 83, 87, 101, 107, 116, 117, 121, 139, 150, 151, 153, 154, 155, 157, 159, 195, 235, 244, 253, 311, 330, 337, 338, 341, 342, 343, 345, 348], "boolean": [1, 13, 14, 16, 17, 18, 19, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 40, 44, 46, 47, 87, 140, 149, 171, 197, 198, 224, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 333, 339], "repres": [1, 2, 3, 13, 14, 16, 17, 18, 19, 20, 21, 26, 28, 41, 53, 83, 87, 101, 107, 109, 130, 140, 161, 183, 197, 198, 209, 226, 227, 233, 234, 236, 270, 275, 308, 336, 338, 339, 342], "valid": [1, 3, 23, 34, 36, 37, 45, 58, 110, 140, 155, 173, 174, 194, 197, 198, 224, 231, 259, 275, 276, 277, 278, 308, 333, 348], "exploration_typ": [1, 13, 14, 16, 18, 19, 20, 21, 307, 329, 336, 337], "strategi": [1, 2, 16, 55, 68, 96, 198, 206, 228, 331, 333, 336, 337, 342, 345], "reset_when_don": [1, 13, 14, 16, 18, 19, 20, 21], "These": [1, 2, 7, 32, 40, 57, 83, 87, 101, 107, 139, 159, 331, 332, 336, 338, 342, 343, 345, 348], "tool": [1, 2, 3, 5, 339, 343, 345, 348], "backend": [1, 3, 7, 11, 18, 19, 21, 22, 101, 111, 113, 333, 336, 338, 339, 343], "gloo": [1, 18, 19, 22], "nccl": [1, 18, 19], "mpi": [1, 18, 19], "distributeddatacollector": [1, 22, 329], "rpc": [1, 20, 22], "rpcdatacollector": [1, 22, 329], "launcher": [1, 18, 19, 20, 22], "rai": [1, 21], "submitit": [1, 18, 19, 20, 22], "torch": [1, 2, 3, 8, 9, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 52, 53, 54, 55, 56, 57, 58, 60, 61, 63, 65, 69, 70, 71, 74, 76, 80, 83, 84, 87, 93, 96, 97, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 114, 116, 118, 121, 122, 123, 124, 125, 126, 127, 133, 135, 137, 139, 141, 143, 145, 146, 147, 149, 150, 151, 152, 153, 154, 155, 157, 159, 161, 167, 170, 171, 172, 173, 174, 175, 180, 181, 183, 184, 186, 187, 188, 189, 190, 191, 192, 193, 194, 196, 197, 198, 199, 200, 201, 202, 203, 206, 207, 208, 209, 214, 215, 216, 217, 218, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 238, 239, 240, 243, 245, 246, 248, 249, 251, 252, 253, 254, 258, 260, 262, 263, 264, 265, 267, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 302, 309, 310, 320, 323, 331, 332, 333, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "multiprocess": [1, 2, 3, 18, 19, 20, 84, 85, 161, 337, 338, 343, 348], "synchron": [1, 13, 19, 21, 98, 325, 326, 337, 338], "mode": [1, 6, 13, 14, 16, 18, 19, 20, 21, 32, 83, 87, 98, 101, 107, 122, 125, 150, 155, 161, 164, 168, 169, 181, 188, 189, 192, 206, 214, 215, 216, 232, 236, 260, 307, 336, 337, 339, 342, 347, 348], "find": [1, 4, 6, 7, 18, 19, 20, 35, 37, 43, 70, 71, 190, 224, 231, 305, 309, 336, 337, 342], "dedic": [1, 2, 3, 18, 19, 20, 21, 221, 222, 223, 331, 336, 341, 342], "folder": [1, 2, 337], "sub": [1, 2, 3, 13, 14, 18, 19, 20, 21, 55, 70, 83, 87, 101, 107, 140, 237, 238, 302, 311, 331, 336, 337, 338, 341, 347, 348], "all": [1, 2, 3, 4, 8, 13, 14, 16, 17, 18, 19, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 44, 46, 47, 49, 57, 83, 84, 87, 97, 101, 102, 103, 107, 109, 110, 116, 117, 120, 121, 122, 123, 125, 128, 133, 134, 135, 139, 146, 151, 152, 154, 155, 157, 159, 161, 166, 167, 168, 169, 170, 173, 174, 175, 176, 177, 178, 179, 180, 182, 184, 185, 186, 187, 188, 190, 191, 192, 193, 194, 199, 200, 203, 204, 205, 207, 210, 211, 213, 218, 224, 225, 227, 228, 229, 231, 234, 235, 236, 238, 239, 242, 255, 260, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 306, 311, 314, 325, 326, 327, 330, 331, 332, 333, 335, 336, 337, 338, 339, 340, 341, 342, 343, 345, 347, 348], "variou": [1, 3, 13, 14, 16, 17, 188, 192, 245, 246, 247, 252, 253, 254, 255, 256, 258, 259, 260, 262, 263, 264, 265, 267, 268, 273, 325, 326, 336, 337, 338, 342, 348], "machin": [1, 7, 18, 19, 20, 32, 54, 91, 342], "One": [1, 2, 4, 8, 31, 33, 45, 117, 143, 157, 206, 224, 235, 239, 266, 270, 298, 336, 337, 345, 348], "wonder": 1, "why": [1, 3, 343, 348], "parallelenv": [1, 2, 3, 13, 14, 16, 17, 20, 83, 87, 98, 102, 103, 107, 324, 329, 336, 337, 338, 341, 347, 348], "instead": [1, 4, 7, 8, 11, 27, 32, 55, 83, 87, 101, 107, 129, 151, 155, 173, 174, 175, 176, 177, 178, 179, 180, 182, 184, 185, 186, 187, 188, 190, 191, 192, 193, 194, 199, 200, 203, 204, 205, 207, 210, 211, 213, 218, 224, 225, 227, 228, 229, 231, 234, 239, 242, 245, 247, 249, 252, 253, 258, 259, 262, 263, 264, 265, 273, 275, 279, 283, 327, 331, 343, 345, 348], "In": [1, 2, 3, 4, 5, 7, 8, 10, 11, 17, 21, 22, 32, 52, 53, 55, 56, 57, 83, 87, 101, 102, 103, 107, 121, 122, 123, 125, 139, 143, 147, 150, 151, 153, 154, 155, 157, 159, 160, 186, 189, 190, 194, 199, 211, 215, 216, 235, 238, 244, 245, 246, 248, 249, 251, 252, 258, 260, 262, 263, 264, 265, 267, 313, 325, 326, 327, 331, 332, 336, 337, 338, 339, 341, 342, 343, 344, 345, 348], "lower": [1, 2, 3, 17, 21, 25, 120, 161, 210, 211, 239, 338, 343], "io": [1, 55, 98, 190, 191], "footprint": [1, 2, 345], "need": [1, 2, 3, 4, 7, 8, 10, 11, 18, 19, 20, 21, 32, 34, 36, 72, 83, 87, 91, 96, 101, 102, 103, 107, 117, 120, 129, 139, 141, 152, 155, 159, 161, 173, 174, 175, 176, 177, 178, 179, 180, 182, 184, 185, 186, 187, 188, 190, 191, 192, 193, 194, 199, 200, 201, 203, 204, 205, 207, 210, 211, 213, 218, 224, 225, 227, 228, 229, 231, 233, 234, 235, 239, 242, 244, 252, 263, 264, 265, 267, 274, 279, 294, 311, 327, 331, 332, 336, 337, 338, 339, 342, 343, 345, 347, 348], "commun": [1, 2, 3, 330, 338, 348], "yet": [1, 344], "spec": [1, 2, 3, 15, 21, 24, 25, 26, 27, 28, 29, 30, 31, 33, 44, 46, 47, 48, 49, 50, 52, 83, 85, 87, 97, 101, 107, 109, 114, 115, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 129, 131, 132, 133, 135, 137, 139, 141, 142, 144, 145, 146, 147, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 160, 163, 167, 171, 183, 209, 211, 220, 224, 225, 226, 227, 228, 229, 231, 232, 233, 234, 235, 236, 238, 239, 245, 246, 248, 249, 251, 252, 258, 262, 263, 264, 265, 267, 273, 320, 331, 336, 337, 338, 339, 341, 342, 347], "plai": [1, 3, 102, 103, 117, 337, 338, 345, 348], "role": [1, 3, 337, 348], "opposit": 1, "direct": [1, 32, 83, 87, 101, 107, 186, 190, 260, 337], "sinc": [1, 2, 3, 4, 5, 7, 32, 35, 38, 41, 42, 57, 71, 83, 87, 101, 102, 103, 107, 170, 173, 174, 175, 176, 177, 178, 179, 180, 182, 184, 185, 186, 187, 188, 190, 191, 192, 193, 194, 199, 200, 203, 204, 205, 207, 210, 211, 213, 218, 224, 225, 226, 227, 228, 229, 231, 233, 234, 239, 242, 336, 337, 338, 339, 343, 344, 345, 347, 348], "faster": [1, 4, 24, 25, 26, 27, 28, 29, 30, 31, 33, 44, 46, 47, 56, 57, 98, 275, 276, 277, 278, 339, 342], "share": [1, 3, 6, 8, 34, 36, 39, 60, 61, 62, 72, 73, 76, 84, 101, 107, 161, 188, 192, 199, 200, 221, 222, 223, 245, 247, 248, 252, 258, 259, 262, 263, 264, 265, 267, 327, 329, 331, 338, 339, 341, 342, 347, 348], "among": [1, 3, 102, 103, 342], "achiev": [1, 3, 4, 32, 83, 87, 91, 101, 107, 150, 171, 308, 333, 336, 337, 338, 339, 342, 343, 348], "via": [1, 4, 7, 8, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 101, 139, 154, 159, 250, 260, 332, 333, 336, 337, 338, 339, 345, 348], "prohibit": [1, 3], "slow": [1, 3, 4, 34, 36, 39], "compar": [1, 3, 55, 307, 332, 336, 338, 342, 345, 348], "gpu": [1, 7, 8, 32, 60, 61, 76, 83, 87, 91, 101, 107, 336, 338, 339, 342, 348], "nativ": [1, 7, 9, 53, 83, 87, 101, 107, 117, 339, 345], "driver": [1, 7], "practic": [1, 3, 4, 5, 8, 189, 215, 216, 244, 330, 336, 337, 338, 339, 342, 344, 348], "mean": [1, 2, 3, 4, 7, 13, 14, 16, 18, 19, 20, 21, 34, 36, 39, 41, 63, 87, 135, 161, 172, 181, 184, 186, 188, 190, 192, 193, 196, 214, 224, 232, 236, 275, 276, 277, 278, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 331, 332, 336, 337, 338, 342, 343, 345, 347, 348], "keyword": [1, 3, 13, 14, 16, 18, 19, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 41, 42, 44, 46, 47, 53, 55, 56, 57, 58, 68, 70, 71, 73, 83, 87, 101, 107, 120, 121, 139, 147, 151, 153, 154, 155, 157, 159, 188, 192, 197, 198, 220, 224, 225, 226, 228, 229, 231, 232, 233, 235, 236, 239, 245, 246, 247, 248, 249, 250, 251, 252, 257, 258, 259, 261, 262, 263, 264, 265, 267, 269, 273, 275, 276, 277, 278, 279, 283, 324, 336, 337, 338, 342, 345, 348], "build": [1, 3, 7, 23, 26, 32, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 65, 83, 87, 101, 104, 107, 143, 161, 172, 188, 192, 196, 230, 232, 236, 311, 318, 319, 321, 322, 331, 333, 338, 339, 342, 343, 344, 347, 348], "given": [1, 2, 3, 13, 14, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 38, 40, 41, 42, 44, 46, 47, 48, 49, 52, 53, 54, 55, 56, 57, 65, 70, 71, 83, 87, 97, 101, 107, 121, 124, 135, 139, 151, 154, 155, 157, 159, 170, 172, 183, 184, 186, 190, 196, 209, 213, 220, 226, 227, 228, 231, 234, 235, 236, 237, 238, 240, 244, 248, 249, 251, 274, 275, 276, 277, 278, 279, 281, 303, 307, 323, 331, 333, 336, 337, 338, 342, 343, 348], "mani": [1, 3, 4, 38, 83, 245, 247, 252, 259, 262, 263, 267, 331, 336, 337, 338, 342, 343, 345, 348], "eg": [1, 2, 3, 11, 34, 36, 39, 60, 61, 62, 72, 73, 76, 83, 87, 91, 101, 107, 124, 149, 155, 199, 225], "gymnasium": [1, 3, 5, 11, 83, 87, 94, 95, 101, 107, 111, 113, 127, 147, 149, 160, 337, 338, 343, 347], "other": [1, 2, 3, 4, 7, 8, 21, 22, 32, 35, 38, 41, 42, 45, 52, 53, 55, 56, 57, 60, 61, 62, 65, 68, 69, 70, 71, 72, 73, 76, 83, 87, 97, 101, 107, 120, 123, 124, 147, 153, 157, 161, 186, 188, 192, 202, 203, 225, 227, 228, 234, 236, 245, 246, 247, 252, 253, 254, 255, 256, 258, 259, 260, 262, 263, 264, 265, 267, 273, 275, 308, 320, 325, 326, 331, 333, 336, 337, 338, 339, 342, 343, 344, 345, 347, 348], "warn": [1, 3, 224, 228, 229, 231, 337], "quickli": [1, 3, 337, 342, 348], "becom": [1, 3, 4, 21, 186, 190, 342, 348], "quit": [1, 3, 331, 336, 337, 338, 342, 348], "annoi": [1, 3], "By": [1, 2, 3, 33, 83, 87, 101, 102, 103, 107, 109, 218, 236, 260, 307, 327, 336, 344, 345, 348], "filter": [1, 3, 4, 45, 245, 246, 248, 252, 258, 262, 263, 265], "out": [1, 3, 4, 5, 9, 21, 32, 34, 36, 39, 45, 52, 55, 83, 87, 101, 102, 103, 107, 151, 163, 186, 187, 190, 197, 198, 201, 202, 220, 225, 226, 227, 231, 232, 233, 234, 235, 236, 271, 272, 333, 336, 337, 338, 339, 342, 343, 345, 347, 348], "If": [1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 16, 17, 18, 19, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 41, 42, 44, 45, 46, 47, 52, 53, 54, 55, 56, 57, 58, 60, 61, 65, 68, 69, 70, 71, 74, 76, 83, 84, 87, 91, 97, 101, 102, 103, 107, 109, 111, 117, 118, 119, 120, 122, 123, 124, 125, 127, 129, 133, 134, 135, 139, 140, 142, 143, 146, 147, 150, 151, 152, 153, 154, 155, 157, 159, 161, 170, 171, 173, 174, 186, 187, 188, 190, 191, 192, 193, 194, 197, 198, 199, 200, 218, 220, 224, 225, 226, 227, 228, 229, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 242, 244, 245, 246, 247, 248, 249, 251, 252, 253, 254, 255, 258, 259, 260, 262, 263, 264, 265, 267, 273, 274, 275, 276, 277, 278, 279, 289, 290, 291, 292, 298, 306, 308, 311, 313, 315, 320, 323, 327, 330, 336, 337, 338, 339, 341, 342, 343, 345, 347, 348], "still": [1, 2, 3, 9, 55, 224, 259, 260, 336, 337, 339, 341, 343, 345, 348], "wish": [1, 3, 55, 113, 345], "see": [1, 3, 6, 7, 8, 9, 13, 14, 16, 17, 18, 19, 20, 21, 32, 35, 38, 41, 42, 43, 52, 53, 54, 55, 56, 57, 58, 65, 70, 83, 87, 90, 98, 101, 102, 103, 107, 109, 121, 139, 151, 153, 154, 155, 157, 159, 162, 173, 174, 186, 189, 190, 194, 200, 201, 208, 216, 217, 221, 223, 235, 236, 308, 336, 337, 338, 339, 342, 343, 345, 348], "displai": [1, 3, 7, 311, 333, 336, 337, 342, 343], "filter_warnings_subprocess": [1, 3], "fals": [1, 3, 13, 14, 16, 17, 18, 19, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 52, 53, 54, 55, 56, 57, 58, 60, 61, 65, 68, 69, 70, 71, 76, 80, 81, 83, 84, 87, 93, 96, 97, 100, 101, 102, 103, 105, 106, 107, 108, 109, 114, 117, 118, 121, 122, 125, 126, 127, 129, 132, 133, 134, 135, 137, 139, 140, 141, 143, 145, 147, 149, 151, 153, 154, 155, 156, 157, 159, 161, 163, 170, 171, 172, 173, 174, 176, 183, 186, 187, 188, 189, 190, 191, 192, 194, 196, 197, 198, 199, 200, 208, 209, 215, 216, 217, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 231, 232, 233, 234, 235, 236, 238, 239, 240, 245, 246, 247, 248, 249, 251, 252, 254, 255, 256, 258, 259, 260, 261, 262, 263, 264, 265, 267, 270, 273, 275, 276, 277, 278, 284, 285, 286, 287, 289, 290, 291, 292, 304, 305, 307, 308, 309, 311, 320, 327, 331, 333, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "central": [2, 199, 336, 337, 342, 345], "part": [2, 4, 8, 32, 40, 53, 55, 56, 57, 83, 87, 101, 107, 116, 135, 143, 146, 188, 192, 240, 302, 327, 336, 338, 339, 343, 348], "algorithm": [2, 3, 8, 9, 13, 14, 97, 130, 245, 262, 263, 264, 265, 302, 316, 329, 332, 333, 336, 337, 338, 339, 342, 344, 345, 347], "implement": [2, 3, 9, 11, 16, 32, 72, 83, 87, 98, 101, 107, 121, 122, 123, 127, 133, 141, 147, 149, 154, 161, 173, 186, 187, 188, 189, 190, 191, 192, 214, 215, 216, 245, 246, 250, 251, 258, 260, 261, 262, 265, 320, 331, 333, 336, 337, 338, 339, 343, 347], "wide": [2, 3, 5], "we": [2, 3, 5, 7, 9, 11, 26, 32, 34, 36, 39, 40, 42, 52, 55, 57, 69, 71, 83, 84, 87, 91, 101, 107, 117, 133, 139, 141, 157, 160, 161, 172, 192, 193, 199, 200, 245, 246, 248, 249, 251, 252, 253, 254, 258, 260, 262, 263, 264, 265, 267, 273, 330, 331, 332, 333, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "give": [2, 3, 7, 41, 83, 87, 97, 101, 107, 117, 330, 332, 336, 337, 342, 343, 344, 347], "abil": [2, 260, 343, 345], "veri": [2, 3, 337, 343, 345, 347, 348], "influenti": 2, "sampl": [2, 4, 8, 9, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 38, 40, 41, 42, 44, 46, 47, 52, 53, 54, 55, 56, 57, 58, 60, 61, 63, 64, 65, 68, 69, 70, 71, 73, 74, 76, 83, 87, 97, 100, 101, 107, 116, 117, 140, 143, 164, 165, 168, 169, 172, 181, 189, 196, 197, 198, 206, 207, 210, 215, 216, 220, 224, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 245, 246, 247, 248, 249, 251, 259, 261, 262, 267, 302, 308, 311, 314, 331, 336, 337, 338, 339, 342, 344, 347, 348], "latenc": 2, "especi": [2, 3, 7, 8, 118], "larger": [2, 4, 258], "volum": 2, "lazymemmapstorag": [2, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 65, 70, 71, 116, 117, 329, 336, 337, 339, 344, 345], "advis": [2, 348], "due": [2, 3, 5, 344, 345, 348], "serialis": [2, 34, 36, 39], "memmaptensor": 2, "well": [2, 3, 8, 17, 21, 32, 35, 37, 38, 41, 42, 68, 72, 83, 87, 101, 107, 190, 210, 211, 260, 279, 336, 337, 339, 344, 345, 347, 348], "specifi": [2, 11, 13, 14, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 41, 42, 44, 46, 47, 52, 53, 54, 55, 56, 57, 65, 83, 87, 101, 102, 103, 107, 109, 122, 123, 125, 146, 148, 150, 156, 172, 190, 235, 236, 260, 266, 331, 336, 338, 339], "file": [2, 6, 7, 8, 34, 36, 39, 52, 53, 55, 56, 57, 293, 333, 335, 337, 345, 346], "locat": [2, 7, 34, 36, 39, 45, 57, 83, 87, 101, 107, 126, 135, 145, 189, 203, 215, 216, 302, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 336, 337, 338, 342, 345], "improv": [2, 4, 130, 245, 332, 342, 345], "failur": [2, 4], "recoveri": 2, "liststorag": [2, 35, 38, 41, 42, 329, 345], "were": [2, 7, 101, 107, 338, 345], "found": [2, 3, 6, 7, 10, 21, 26, 32, 34, 36, 39, 45, 52, 53, 55, 56, 57, 70, 71, 83, 87, 91, 101, 107, 114, 117, 143, 146, 152, 161, 171, 228, 229, 232, 236, 259, 260, 262, 336, 337, 339], "rough": 2, "benchmark": [2, 3, 9, 342], "http": [2, 5, 6, 7, 10, 18, 19, 20, 35, 43, 54, 55, 56, 57, 63, 91, 98, 102, 103, 104, 117, 139, 157, 175, 176, 177, 178, 179, 180, 183, 184, 185, 190, 196, 197, 198, 202, 204, 205, 207, 208, 210, 211, 217, 227, 231, 245, 246, 249, 250, 251, 253, 254, 255, 256, 257, 258, 261, 262, 263, 264, 265, 266, 275, 280, 288, 320, 344, 347], "github": [2, 5, 6, 7, 10, 18, 19, 20, 53, 55, 102, 103, 104, 157, 347], "com": [2, 5, 6, 7, 10, 18, 19, 20, 55, 56, 91, 102, 103, 104, 344, 347], "tree": [2, 34, 36, 39, 83, 87, 101, 107], "type": [2, 3, 14, 18, 19, 20, 21, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 57, 58, 65, 83, 87, 96, 97, 101, 102, 103, 107, 121, 122, 123, 126, 127, 133, 139, 141, 147, 149, 151, 154, 155, 157, 159, 161, 165, 169, 173, 174, 194, 199, 200, 202, 208, 217, 224, 226, 232, 235, 236, 245, 246, 248, 249, 251, 252, 253, 254, 258, 260, 262, 263, 264, 265, 267, 269, 273, 281, 320, 325, 331, 336, 337, 338, 342, 343, 345, 348], "1x": 2, "lazytensorstorag": [2, 41, 42, 74, 143, 329, 338, 342, 345], "83x": 2, "3": [2, 3, 6, 7, 10, 11, 13, 14, 15, 16, 17, 21, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 38, 39, 41, 42, 52, 53, 54, 55, 56, 57, 65, 70, 71, 83, 87, 90, 96, 98, 100, 101, 102, 103, 105, 106, 107, 114, 117, 121, 124, 126, 127, 133, 135, 137, 139, 141, 143, 146, 147, 149, 150, 151, 153, 154, 155, 157, 159, 167, 172, 173, 174, 176, 177, 180, 183, 185, 186, 187, 188, 190, 191, 192, 193, 194, 196, 199, 200, 203, 206, 208, 218, 220, 221, 222, 223, 226, 227, 232, 234, 235, 238, 239, 240, 245, 246, 248, 249, 251, 252, 253, 254, 255, 258, 260, 262, 263, 264, 265, 267, 273, 275, 276, 277, 278, 281, 284, 285, 286, 287, 289, 290, 291, 292, 294, 310, 331, 333, 336, 337, 338, 339, 342, 343, 344, 345, 347, 348], "44x": 2, "between": [2, 3, 4, 5, 13, 14, 16, 17, 21, 32, 40, 55, 69, 71, 83, 87, 101, 107, 124, 134, 144, 155, 163, 173, 174, 186, 188, 192, 194, 199, 200, 227, 232, 236, 245, 247, 248, 251, 252, 255, 256, 258, 259, 260, 262, 263, 264, 265, 267, 270, 275, 307, 311, 332, 336, 337, 339, 342, 343, 348], "long": [2, 3, 13, 14, 16, 17, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 36, 37, 39, 44, 46, 47, 124, 190, 191, 339, 345], "sharabl": 2, "featur": [2, 3, 4, 13, 14, 16, 17, 18, 19, 20, 21, 33, 45, 53, 70, 71, 83, 87, 96, 101, 102, 103, 105, 106, 107, 117, 129, 133, 137, 151, 152, 156, 161, 173, 174, 184, 185, 186, 187, 188, 190, 191, 192, 194, 201, 202, 236, 275, 276, 277, 278, 279, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 327, 331, 336, 337, 338, 339, 343, 345, 348], "allow": [2, 3, 13, 14, 16, 17, 18, 19, 20, 21, 26, 28, 29, 32, 33, 55, 65, 68, 70, 71, 83, 87, 101, 107, 141, 170, 194, 245, 246, 248, 249, 251, 252, 253, 254, 258, 260, 262, 263, 264, 265, 267, 268, 270, 273, 331, 333, 336, 338, 339, 342, 343, 345, 348], "popul": [2, 3, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 65, 132, 151, 336, 338, 339, 343, 345], "collabor": [2, 55], "rather": [2, 4, 73, 141, 336, 337, 338, 342], "incur": 2, "some": [2, 3, 4, 7, 8, 9, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 38, 44, 45, 46, 47, 52, 53, 55, 56, 57, 60, 61, 65, 74, 76, 83, 87, 101, 102, 103, 107, 109, 139, 155, 157, 163, 176, 188, 192, 213, 236, 237, 238, 302, 314, 331, 333, 336, 337, 338, 339, 342, 343, 345, 347, 348], "transmiss": 2, "overhead": [2, 101, 107], "includ": [2, 3, 4, 7, 9, 21, 32, 57, 60, 61, 62, 72, 73, 76, 83, 87, 97, 101, 107, 150, 155, 161, 260, 265, 314, 331, 333, 336, 337, 338, 339, 342, 343, 345, 348], "ani": [2, 3, 5, 8, 26, 28, 32, 34, 35, 36, 38, 39, 41, 42, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 65, 66, 69, 71, 72, 73, 74, 75, 76, 77, 78, 83, 84, 87, 101, 102, 103, 107, 109, 114, 129, 139, 140, 143, 155, 157, 161, 163, 171, 173, 174, 180, 194, 202, 225, 235, 236, 237, 238, 245, 246, 248, 249, 251, 252, 258, 260, 262, 263, 264, 265, 267, 275, 299, 311, 330, 336, 337, 338, 342, 343, 345, 347, 348], "subclass": [2, 3, 65, 83, 87, 101, 107, 154, 160, 163, 173, 174, 175, 176, 177, 178, 179, 180, 182, 184, 185, 186, 187, 188, 190, 191, 192, 193, 194, 199, 200, 203, 204, 205, 207, 210, 211, 213, 218, 224, 225, 227, 228, 229, 231, 234, 235, 236, 237, 239, 242, 260, 262, 337, 339, 343, 345], "tensorstorag": [2, 329], "instanti": [2, 3, 21, 34, 36, 39, 91, 154, 200, 336, 337, 342, 343, 345, 348], "content": [2, 8, 13, 14, 16, 26, 28, 34, 35, 36, 38, 39, 41, 42, 69, 98, 173, 174, 194, 199, 200, 232, 260, 338, 343, 347], "map": [2, 3, 8, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 41, 42, 44, 45, 46, 47, 52, 53, 54, 55, 56, 57, 58, 60, 83, 87, 96, 101, 102, 103, 105, 106, 107, 109, 110, 115, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 129, 131, 132, 133, 135, 137, 141, 142, 144, 145, 146, 147, 149, 150, 151, 152, 153, 154, 156, 157, 158, 160, 161, 167, 183, 203, 220, 221, 222, 223, 226, 232, 233, 235, 236, 238, 239, 240, 241, 265, 273, 307, 329, 331, 332, 336, 337, 338, 339, 344], "tensor": [2, 3, 8, 13, 14, 16, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 63, 65, 66, 68, 70, 71, 74, 75, 76, 77, 78, 80, 83, 84, 87, 93, 96, 97, 100, 101, 102, 103, 105, 106, 107, 108, 109, 114, 116, 117, 118, 121, 122, 124, 125, 126, 127, 129, 132, 135, 137, 139, 140, 141, 143, 145, 146, 147, 149, 150, 151, 152, 153, 154, 155, 156, 157, 159, 161, 167, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 183, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 203, 206, 207, 208, 209, 212, 213, 214, 215, 216, 217, 220, 221, 222, 223, 225, 226, 227, 228, 229, 231, 232, 233, 234, 235, 236, 238, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 255, 256, 258, 260, 262, 263, 264, 265, 267, 270, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 294, 320, 331, 333, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "writer": [2, 38, 42, 52, 53, 54, 55, 56, 57, 59, 65, 66, 74, 75, 78, 329, 338], "tensordictroundrobinwrit": [2, 65, 329], "current": [2, 3, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 40, 44, 46, 47, 71, 83, 87, 89, 98, 101, 107, 117, 140, 150, 151, 152, 154, 155, 164, 165, 170, 184, 193, 211, 231, 253, 265, 297, 333, 336, 337, 338, 339, 342, 343, 347, 348], "goe": [2, 4, 102, 103, 336, 338, 342, 348], "sampler": [2, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 64, 65, 68, 69, 70, 71, 72, 73, 74, 76, 140, 249, 253, 273, 329, 336, 338, 342, 345], "prioritizedsampl": [2, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 65, 249, 253, 273, 329, 336, 345], "extend": [2, 8, 24, 25, 26, 27, 28, 29, 30, 31, 33, 35, 38, 41, 42, 44, 46, 47, 52, 53, 54, 55, 56, 57, 59, 65, 66, 70, 71, 73, 74, 75, 77, 78, 116, 143, 308, 333, 336, 337, 338, 339, 342, 344, 345, 347], "access": [2, 3, 7, 8, 32, 35, 54, 83, 87, 101, 107, 139, 157, 327, 330, 336, 342, 343, 345], "show": [2, 32, 83, 87, 101, 107, 200, 331, 336, 338, 339, 342, 343, 345, 347], "import": [2, 3, 4, 6, 10, 11, 13, 14, 15, 16, 17, 21, 22, 35, 37, 38, 40, 41, 42, 43, 45, 52, 53, 54, 55, 56, 57, 58, 60, 61, 63, 65, 70, 71, 74, 76, 83, 84, 87, 95, 97, 101, 102, 103, 105, 106, 107, 110, 111, 113, 114, 116, 117, 120, 126, 127, 132, 133, 135, 137, 139, 141, 142, 143, 146, 147, 149, 150, 151, 152, 154, 159, 161, 167, 170, 171, 172, 183, 186, 187, 188, 190, 191, 192, 194, 196, 199, 200, 203, 208, 209, 217, 220, 221, 222, 223, 225, 226, 227, 228, 229, 231, 232, 233, 234, 235, 238, 239, 240, 245, 246, 247, 248, 249, 251, 252, 253, 254, 258, 260, 262, 263, 264, 265, 267, 273, 275, 276, 277, 278, 304, 307, 320, 323, 331, 332, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "tensordictreplaybuff": [2, 35, 38, 41, 52, 53, 54, 55, 56, 57, 65, 70, 71, 74, 116, 117, 308, 323, 329, 336, 337, 339, 345], "mp": [2, 18, 19, 20, 84, 161], "def": [2, 3, 11, 22, 32, 83, 84, 87, 97, 101, 107, 113, 114, 122, 125, 172, 183, 186, 187, 190, 191, 196, 232, 240, 246, 248, 252, 258, 260, 263, 265, 267, 333, 336, 337, 341, 342, 343, 347, 348], "rb": [2, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 65, 70, 71, 74, 117, 143, 337, 339, 342, 344, 345, 347], "updat": [2, 3, 4, 8, 12, 13, 14, 16, 17, 18, 19, 20, 21, 32, 34, 35, 36, 39, 40, 41, 63, 83, 87, 97, 101, 102, 103, 107, 114, 122, 124, 125, 149, 150, 155, 158, 161, 171, 172, 186, 188, 192, 196, 224, 228, 229, 231, 232, 233, 234, 235, 236, 245, 246, 248, 249, 251, 252, 253, 254, 257, 258, 260, 262, 263, 264, 265, 266, 267, 273, 275, 276, 277, 278, 279, 307, 311, 313, 316, 317, 322, 323, 333, 337, 338, 339, 342, 343, 345, 347, 348], "td": [2, 3, 15, 26, 34, 35, 36, 38, 39, 41, 42, 52, 53, 54, 55, 56, 57, 65, 74, 79, 80, 81, 82, 86, 88, 92, 93, 94, 95, 114, 116, 118, 122, 123, 124, 125, 132, 133, 135, 143, 146, 151, 153, 155, 161, 170, 172, 183, 188, 192, 195, 196, 208, 209, 217, 220, 221, 222, 223, 225, 226, 228, 229, 231, 232, 233, 235, 238, 240, 273, 276, 277, 278, 282, 283, 284, 285, 286, 287, 289, 290, 291, 292, 293, 302, 310, 320, 331, 332, 336, 339, 342, 343, 347, 348], "10": [2, 7, 22, 26, 35, 38, 40, 41, 42, 43, 45, 60, 61, 65, 70, 71, 74, 76, 84, 97, 102, 103, 105, 106, 108, 109, 114, 116, 117, 150, 152, 153, 172, 175, 180, 186, 187, 190, 191, 193, 196, 207, 218, 228, 229, 231, 232, 239, 246, 249, 251, 252, 262, 263, 264, 267, 273, 275, 276, 277, 278, 281, 302, 333, 336, 337, 338, 339, 342, 343, 345, 347, 348], "__name__": [2, 22, 84, 337], "__main__": [2, 22, 84], "21": [2, 55, 56, 71, 102, 103, 336, 337, 338, 341, 343, 344], "zero": [2, 3, 4, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 39, 41, 42, 44, 45, 46, 47, 52, 61, 70, 71, 76, 83, 87, 101, 107, 116, 118, 122, 124, 125, 135, 143, 167, 170, 172, 186, 187, 188, 190, 191, 192, 193, 197, 198, 200, 208, 217, 228, 229, 231, 234, 242, 245, 246, 248, 249, 251, 252, 258, 262, 263, 264, 265, 267, 273, 275, 276, 277, 278, 281, 339, 347], "proc": 2, "target": [2, 4, 8, 21, 32, 83, 84, 87, 101, 107, 150, 154, 235, 236, 245, 246, 247, 248, 249, 251, 252, 253, 256, 257, 259, 260, 261, 262, 263, 264, 265, 266, 267, 273, 274, 275, 276, 277, 278, 279, 314, 322, 323, 332, 333, 339, 343], "arg": [2, 12, 14, 26, 28, 32, 60, 61, 76, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 112, 114, 121, 139, 148, 151, 154, 155, 156, 158, 159, 172, 173, 174, 182, 188, 192, 194, 195, 196, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 258, 259, 260, 261, 262, 263, 264, 265, 267, 273, 275, 276, 277, 278, 279, 301, 304, 308, 311, 327, 337], "start": [2, 3, 4, 5, 13, 21, 45, 57, 70, 71, 84, 96, 170, 306, 336, 337, 342, 343, 345, 348], "join": [2, 84, 329, 337, 338], "now": [2, 3, 7, 35, 117, 200, 336, 337, 338, 339, 341, 342, 344, 345, 348], "length": [2, 17, 20, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 36, 37, 40, 43, 44, 45, 46, 47, 55, 58, 70, 71, 73, 83, 87, 101, 107, 140, 161, 172, 173, 174, 176, 178, 180, 182, 186, 190, 194, 196, 199, 200, 220, 235, 240, 302, 308, 336, 338, 339, 343, 345, 348], "20": [2, 45, 56, 70, 71, 74, 83, 87, 91, 101, 107, 150, 186, 187, 190, 191, 225, 302, 336, 337, 338, 339, 342, 343, 347, 348], "assert": [2, 3, 6, 16, 24, 25, 26, 27, 28, 29, 30, 31, 33, 35, 38, 41, 42, 44, 46, 47, 52, 53, 54, 55, 56, 57, 65, 87, 90, 113, 117, 120, 122, 125, 133, 141, 161, 163, 167, 200, 203, 218, 275, 276, 277, 278, 302, 310, 341, 345, 348], "len": [2, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 60, 61, 65, 76, 137, 173, 174, 194, 200, 336, 343, 344, 345, 347], "_data": [2, 343], "0": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 21, 22, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 49, 52, 53, 54, 55, 56, 57, 58, 60, 61, 63, 65, 70, 71, 76, 80, 83, 87, 90, 93, 97, 101, 104, 105, 106, 107, 114, 115, 117, 118, 120, 121, 123, 124, 133, 134, 135, 139, 143, 146, 150, 151, 152, 153, 154, 155, 157, 159, 160, 161, 163, 172, 173, 174, 176, 177, 179, 180, 184, 186, 188, 189, 190, 191, 192, 194, 196, 198, 199, 200, 201, 202, 203, 206, 210, 211, 214, 215, 216, 218, 220, 224, 225, 227, 228, 229, 231, 234, 235, 238, 239, 242, 245, 246, 247, 248, 249, 251, 252, 253, 254, 255, 256, 258, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 273, 274, 275, 276, 277, 278, 281, 282, 283, 302, 309, 323, 327, 332, 333, 335, 336, 337, 338, 339, 341, 342, 343, 344, 345, 346, 347, 348], "too": [2, 7, 13, 14, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 36, 37, 39, 40, 44, 46, 47, 101, 107, 134, 151, 189, 215, 216, 245, 246, 247, 248, 249, 251, 252, 253, 254, 255, 256, 258, 259, 260, 262, 263, 264, 265, 267, 273, 275, 276, 277, 278, 337, 338, 343, 345, 348], "difficult": [2, 4], "element": [2, 13, 14, 16, 18, 19, 20, 21, 30, 31, 33, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 65, 71, 74, 76, 100, 117, 140, 150, 173, 174, 186, 187, 190, 220, 224, 226, 235, 236, 240, 302, 336, 338, 345, 348], "pai": [2, 8, 336, 339], "attent": [2, 8, 336, 339, 348], "alwai": [2, 3, 20, 26, 28, 32, 58, 83, 87, 101, 107, 133, 134, 253, 260, 331, 332, 337, 338, 339, 342, 343, 345], "lead": [2, 3, 4, 8, 10, 11, 26, 28, 32, 34, 35, 36, 38, 39, 41, 42, 52, 69, 151, 189, 208, 215, 216, 336, 339, 342, 343, 345, 347], "dimens": [2, 3, 16, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 39, 40, 44, 45, 46, 47, 52, 53, 55, 56, 57, 60, 61, 70, 71, 74, 76, 83, 87, 101, 107, 109, 116, 117, 118, 129, 135, 137, 140, 146, 148, 153, 156, 161, 173, 174, 175, 180, 188, 190, 192, 194, 197, 198, 199, 201, 202, 207, 208, 212, 213, 214, 215, 218, 226, 245, 246, 247, 252, 253, 254, 255, 256, 258, 259, 260, 262, 263, 264, 265, 267, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 327, 331, 336, 337, 338, 339, 342, 343, 345], "word": [2, 3, 40, 52, 53, 55, 56, 57, 260, 336, 343, 348], "creat": [2, 3, 4, 5, 6, 7, 10, 13, 14, 16, 17, 18, 19, 20, 21, 26, 28, 32, 34, 35, 36, 38, 39, 41, 42, 45, 55, 57, 58, 83, 84, 87, 91, 98, 101, 102, 107, 117, 139, 154, 155, 157, 160, 161, 167, 170, 173, 174, 176, 177, 178, 179, 180, 185, 188, 192, 194, 195, 199, 200, 225, 236, 249, 253, 263, 265, 273, 294, 308, 315, 316, 317, 323, 325, 326, 331, 336, 337, 338, 339, 342, 343, 344, 345, 347, 348], "1m": [2, 55, 314, 336, 338, 339], "multidimension": [2, 41, 63, 345], "doe": [2, 3, 18, 34, 35, 36, 39, 41, 45, 52, 55, 63, 72, 73, 78, 180, 186, 187, 188, 190, 191, 192, 201, 218, 225, 237, 238, 245, 247, 253, 259, 262, 274, 311, 331, 333, 336, 337, 338, 339, 343, 345, 348], "howev": [2, 3, 5, 7, 32, 83, 87, 101, 107, 117, 146, 150, 155, 265, 331, 336, 337, 338, 339, 343, 345, 348], "episod": [2, 52, 55, 56, 57, 70, 71, 87, 143, 146, 150, 172, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 337, 342], "flatten": [2, 34, 36, 39, 129, 308, 339, 342], "capac": [2, 338], "desir": [2, 3, 32, 83, 87, 101, 107, 121, 135, 137, 139, 140, 151, 154, 155, 157, 159, 168, 169, 173, 174, 194, 200, 220, 226, 227, 232, 233, 234, 235, 236, 331, 336, 342, 343], "diversifi": 2, "make": [2, 3, 4, 7, 32, 34, 36, 39, 40, 52, 53, 54, 55, 56, 57, 68, 72, 73, 78, 83, 87, 88, 91, 93, 95, 98, 101, 107, 127, 135, 139, 140, 143, 149, 157, 163, 186, 187, 190, 191, 199, 200, 201, 226, 236, 262, 275, 276, 277, 278, 308, 317, 327, 331, 332, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "offer": [2, 3, 7, 331, 337, 343, 348], "distinct": [2, 3, 65, 341], "accomplish": 2, "slicesampl": [2, 329], "slice": [2, 3, 24, 25, 26, 27, 28, 29, 30, 31, 33, 44, 46, 47, 52, 55, 70, 71, 116], "anoth": [2, 3, 8, 34, 36, 39, 55, 83, 87, 91, 101, 107, 122, 123, 125, 151, 154, 194, 245, 246, 247, 252, 253, 254, 255, 256, 258, 259, 260, 262, 263, 264, 265, 267, 273, 302, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 331, 332, 336, 338, 339, 341, 342, 343, 348], "recommend": [2, 4, 7, 34, 36, 39, 91, 342], "__especially__": 2, "offlin": [2, 8, 13, 14, 16, 17, 18, 19, 20, 21, 117, 163, 246, 251, 258, 333, 344, 345, 347], "convent": [2, 3, 109, 332, 336, 339, 342, 343], "requir": [2, 3, 4, 7, 8, 16, 18, 19, 20, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 41, 42, 44, 45, 46, 47, 52, 53, 55, 83, 87, 91, 98, 101, 104, 107, 121, 139, 151, 154, 155, 157, 159, 194, 218, 235, 237, 238, 245, 246, 247, 252, 253, 254, 255, 256, 258, 259, 260, 262, 263, 264, 265, 267, 273, 331, 333, 336, 337, 338, 339, 342, 343, 345, 348], "reshap": [2, 32, 55, 70, 188, 192, 194, 338, 342], "extens": [2, 71, 333, 345], "detail": [2, 3, 5, 6, 7, 32, 83, 87, 101, 102, 103, 107, 153, 155, 183, 186, 190, 227, 245, 253, 262, 330, 337, 341, 345], "independ": [2, 13, 14, 16, 17, 18, 19, 20, 21, 154, 156, 200, 332, 333, 336, 337, 342, 345, 347], "differ": [2, 3, 4, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 39, 40, 44, 45, 46, 47, 52, 55, 68, 83, 87, 96, 101, 102, 103, 107, 117, 124, 135, 141, 155, 156, 183, 186, 187, 188, 190, 191, 192, 194, 196, 199, 200, 209, 258, 262, 270, 275, 276, 277, 281, 282, 283, 307, 311, 313, 325, 326, 331, 332, 333, 336, 337, 338, 341, 342, 343, 344, 345, 348], "congruent": 2, "shape": [2, 3, 13, 14, 16, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 52, 53, 55, 56, 57, 58, 60, 61, 65, 76, 83, 87, 96, 100, 101, 102, 103, 105, 106, 107, 108, 109, 116, 118, 122, 125, 126, 127, 133, 135, 137, 141, 143, 147, 149, 151, 153, 161, 162, 163, 167, 170, 172, 175, 180, 181, 182, 186, 187, 188, 190, 191, 192, 194, 196, 197, 198, 199, 200, 201, 203, 206, 207, 208, 209, 214, 217, 220, 221, 222, 223, 225, 226, 227, 232, 233, 234, 235, 238, 239, 240, 245, 246, 248, 249, 251, 252, 258, 262, 263, 264, 265, 267, 270, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 294, 302, 308, 311, 323, 331, 336, 337, 338, 339, 341, 342, 344, 345, 347, 348], "custom": [2, 3, 5, 32, 83, 87, 101, 107, 157, 199, 200, 239, 253, 262, 268, 327, 331, 336, 337, 338, 339, 342], "name": [2, 3, 6, 7, 11, 16, 32, 34, 36, 39, 45, 54, 57, 58, 81, 83, 87, 96, 98, 101, 102, 103, 104, 107, 109, 110, 124, 127, 141, 146, 147, 149, 155, 157, 160, 171, 188, 192, 226, 233, 245, 246, 247, 252, 253, 254, 255, 256, 258, 259, 260, 262, 263, 264, 265, 267, 273, 279, 296, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 320, 333, 336, 337, 338, 339, 342, 343, 348], "randomcroptensordict": [2, 336], "note": [2, 3, 4, 13, 14, 16, 17, 18, 19, 20, 21, 32, 34, 35, 36, 38, 39, 41, 42, 83, 87, 101, 107, 122, 125, 161, 171, 186, 188, 190, 192, 231, 232, 236, 253, 336, 337, 341, 342, 348], "unlik": [2, 69, 253, 262, 337, 347], "base": [2, 3, 4, 8, 9, 12, 13, 14, 16, 17, 18, 19, 20, 21, 35, 38, 41, 42, 45, 55, 67, 74, 75, 77, 91, 97, 98, 99, 101, 107, 143, 151, 157, 158, 199, 221, 230, 245, 246, 248, 249, 251, 252, 254, 258, 262, 263, 264, 265, 267, 311, 320, 331, 332, 333, 336, 337, 339, 342, 343, 345, 348], "here": [2, 3, 4, 7, 8, 9, 10, 56, 57, 83, 87, 91, 101, 102, 103, 107, 117, 331, 332, 336, 337, 338, 339, 342, 343, 345, 347, 348], "stop": [2, 3, 16, 21, 40, 57, 70, 71, 83, 87, 101, 107, 338, 342, 347, 348], "signal": [2, 3, 17, 52, 53, 55, 56, 57, 70, 71, 87, 117, 126, 149, 152, 171, 332, 336, 338, 342, 345, 348], "isn": [2, 3, 8, 34, 36, 39, 55, 126, 226, 235, 342], "t": [2, 3, 4, 6, 7, 8, 11, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 39, 44, 46, 47, 55, 63, 69, 74, 83, 84, 87, 98, 101, 107, 117, 122, 125, 126, 139, 142, 143, 150, 152, 159, 161, 170, 186, 190, 226, 231, 235, 266, 275, 276, 277, 278, 279, 281, 311, 313, 327, 330, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "how": [2, 3, 18, 19, 20, 32, 35, 41, 55, 63, 83, 87, 101, 102, 103, 107, 109, 245, 247, 257, 259, 262, 311, 330, 331, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "our": [2, 3, 7, 8, 18, 117, 331, 336, 337, 338, 339, 341, 342, 344, 345, 347], "enjoi": [2, 3, 55], "separ": [2, 4, 8, 13, 14, 17, 18, 20, 21, 23, 139, 159, 246, 248, 251, 252, 263, 265, 267, 336, 337, 342, 345, 348], "save": [2, 8, 32, 34, 35, 36, 38, 39, 41, 42, 52, 53, 54, 55, 56, 57, 65, 83, 87, 101, 107, 160, 293, 311, 333, 342], "disk": [2, 34, 35, 36, 38, 39, 41, 42, 52, 53, 54, 55, 56, 57, 65, 311, 333, 336, 337, 339, 345], "dump": [2, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 65, 293], "load": [2, 6, 7, 13, 14, 16, 17, 32, 34, 35, 36, 38, 39, 40, 41, 42, 45, 52, 53, 54, 55, 56, 57, 65, 82, 83, 87, 101, 107, 113, 161, 327, 333, 336, 345], "json": 2, "metadata": [2, 52, 338, 342, 348], "cannot": [2, 3, 4, 7, 22, 26, 27, 28, 31, 33, 70, 71, 83, 87, 91, 101, 107, 122, 125, 140, 146, 233, 337, 338, 339, 342, 343], "anticip": [2, 122, 125], "compli": [2, 24, 25, 26, 27, 28, 29, 30, 31, 33, 44, 46, 47, 55], "structur": [2, 3, 7, 34, 35, 36, 38, 39, 40, 41, 42, 45, 74, 83, 87, 101, 107, 122, 125, 171, 199, 231, 275, 276, 277, 278, 279, 332, 336, 338, 339, 342, 343, 344, 345], "guarante": [2, 32, 34, 36, 39, 60, 61, 62, 72, 73, 76, 83, 87, 101, 107, 161, 347], "back": [2, 24, 25, 26, 27, 28, 29, 30, 31, 33, 35, 44, 46, 47, 52, 160, 220, 226, 227, 232, 233, 234, 235, 236, 338, 342, 343, 345], "exact": [2, 3, 101, 190], "look": [2, 3, 5, 7, 8, 32, 83, 87, 96, 101, 102, 103, 107, 139, 140, 157, 232, 236, 237, 238, 332, 338, 339, 342, 343, 344, 345, 347, 348], "statu": [2, 3], "its": [2, 3, 4, 5, 7, 9, 11, 13, 14, 16, 17, 18, 19, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 39, 41, 44, 46, 47, 49, 65, 83, 87, 97, 101, 102, 103, 107, 110, 116, 117, 126, 133, 149, 150, 154, 155, 160, 161, 173, 174, 197, 198, 199, 200, 224, 226, 232, 233, 236, 239, 245, 246, 247, 252, 253, 254, 255, 256, 258, 259, 260, 261, 262, 263, 264, 265, 267, 273, 311, 323, 333, 336, 337, 338, 339, 342, 343, 344, 345, 348], "prioriti": [2, 4, 35, 41, 42, 60, 61, 62, 63, 72, 73, 76, 248, 249, 251, 252, 253, 258, 263, 265, 267, 273, 333, 336, 337, 345], "max": [2, 23, 33, 36, 41, 45, 58, 63, 124, 152, 214, 215, 216, 225, 231, 246, 247, 252, 261, 263, 265, 336, 338, 339, 342], "heap": 2, "under": [2, 3, 4, 21, 32, 40, 52, 53, 55, 56, 57, 83, 87, 101, 107, 220, 226, 227, 232, 233, 234, 235, 236, 260, 275, 276, 277, 278, 279, 332, 336, 337, 343, 348], "hood": [2, 21, 343], "just": [2, 3, 4, 11, 73, 83, 87, 96, 101, 102, 103, 107, 120, 171, 200, 302, 331, 333, 336, 337, 338, 339, 342, 343, 345, 347, 348], "public": [2, 54, 139, 159], "method": [2, 3, 4, 11, 13, 14, 15, 16, 17, 21, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 45, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 70, 71, 72, 73, 76, 83, 87, 101, 107, 117, 121, 122, 123, 126, 127, 129, 133, 135, 139, 141, 142, 143, 147, 149, 151, 154, 155, 157, 159, 172, 193, 220, 221, 222, 223, 225, 226, 227, 228, 230, 232, 233, 234, 235, 236, 237, 245, 246, 248, 249, 251, 252, 253, 254, 258, 260, 262, 263, 264, 265, 267, 273, 279, 293, 324, 332, 333, 334, 337, 338, 339, 343, 345, 348], "don": [2, 3, 4, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31, 33, 44, 46, 47, 117, 337, 338, 345, 347, 348], "assum": [2, 3, 6, 26, 33, 40, 41, 42, 52, 53, 55, 56, 57, 87, 101, 107, 116, 119, 129, 139, 140, 146, 151, 157, 159, 167, 188, 192, 193, 218, 239, 249, 253, 265, 273, 284, 285, 286, 287, 289, 290, 291, 292, 294, 336, 338, 339, 341, 343], "serializ": 2, "altern": [2, 4, 27, 98, 180, 197, 198, 199, 244, 336, 338, 342], "state_dict": [2, 13, 14, 16, 17, 21, 32, 34, 36, 39, 83, 87, 101, 107, 155, 161, 265, 327, 333, 336, 337, 348], "load_state_dict": [2, 13, 14, 16, 17, 21, 32, 34, 36, 39, 83, 87, 101, 107, 155, 161, 265, 333, 336], "drawback": 2, "struggl": 2, "big": [2, 338, 345, 348], "wrapper": [2, 3, 11, 15, 17, 34, 36, 39, 40, 41, 42, 79, 80, 81, 82, 86, 88, 89, 91, 92, 93, 94, 95, 97, 99, 102, 103, 104, 105, 106, 108, 109, 111, 160, 203, 218, 224, 225, 229, 231, 236, 241, 275, 299, 300, 301, 327, 329, 338, 339, 342, 344, 348], "around": [2, 5, 7, 15, 17, 41, 42, 97, 236, 275, 336, 337, 342, 348], "present": [2, 3, 32, 34, 35, 36, 38, 39, 41, 42, 52, 53, 54, 55, 56, 57, 63, 65, 69, 83, 87, 101, 107, 127, 143, 147, 170, 171, 175, 176, 177, 178, 179, 185, 190, 202, 207, 231, 235, 236, 237, 238, 245, 246, 247, 250, 251, 252, 253, 254, 255, 256, 258, 259, 260, 261, 262, 263, 264, 265, 267, 273, 275, 276, 277, 278, 279, 327, 333, 336, 341, 342, 345, 347], "replaybuff": [2, 41, 42, 65, 77, 117, 140, 143, 249, 253, 273, 321, 323, 329, 338, 342, 344, 345, 347], "promptli": 2, "virtual": [2, 3], "instal": [2, 3, 5, 10, 18, 19, 20, 52, 54, 102, 103, 105, 106, 311, 330, 338, 339, 342, 348], "respons": [2, 3, 8, 311, 348], "d4rl": [2, 52, 53, 55, 56, 57], "clone": [2, 4, 8, 26, 28, 133, 221, 222, 223, 235, 258, 320, 329, 336, 343, 347], "repositori": [2, 7, 53, 54, 57], "latest": [2, 3, 10, 98, 102, 103, 308, 338, 342, 343, 347], "wheel": [2, 338], "publish": 2, "pypi": [2, 347], "openml": [2, 54, 100], "scikit": [2, 54], "panda": [2, 54], "customari": [2, 331], "time": [2, 3, 4, 7, 8, 13, 14, 16, 17, 18, 20, 21, 32, 35, 38, 40, 41, 42, 55, 56, 74, 83, 84, 87, 96, 100, 101, 102, 103, 107, 113, 116, 118, 140, 146, 151, 152, 161, 170, 184, 186, 190, 192, 193, 231, 247, 252, 255, 259, 260, 262, 263, 267, 275, 276, 277, 278, 279, 280, 281, 284, 285, 286, 287, 288, 289, 290, 291, 292, 311, 331, 332, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "moreov": [2, 3], "fine": [2, 133, 344], "grain": 2, "nomenclatur": 2, "compact": 2, "togeth": [2, 3, 13, 14, 16, 17, 18, 19, 20, 21, 28, 29, 40, 83, 87, 96, 101, 102, 103, 107, 117, 140, 186, 188, 190, 192, 217, 221, 222, 223, 241, 331, 337, 338, 339], "propos": [2, 117, 126, 195, 257, 266, 320, 331, 339, 345], "replaybufferensembl": [2, 68, 73, 78], "primit": [2, 3, 4, 55, 245, 246, 248, 249, 251, 252, 258, 262, 263, 264, 265, 267], "onc": [2, 3, 7, 13, 14, 16, 17, 18, 19, 20, 21, 32, 34, 36, 39, 55, 65, 83, 87, 101, 107, 143, 155, 224, 229, 231, 309, 333, 337, 338, 339, 343, 345, 348], "individu": [2, 4, 18, 19, 20, 21, 32, 45, 65, 83, 87, 101, 107, 336, 342], "format": [2, 17, 31, 32, 33, 55, 56, 57, 68, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 235, 336, 337, 348], "dummi": [2, 320, 336, 348], "semant": [2, 28, 29, 331], "ident": [2, 3, 13, 14, 16, 32, 34, 36, 39, 101, 107, 126, 199, 200, 275, 276, 277, 278, 325, 326, 337, 342], "entri": [2, 3, 13, 14, 18, 19, 20, 21, 23, 26, 28, 32, 34, 36, 37, 39, 45, 49, 52, 53, 54, 56, 57, 70, 71, 83, 87, 101, 107, 117, 119, 120, 122, 125, 126, 129, 132, 135, 137, 139, 141, 143, 146, 149, 150, 151, 159, 161, 170, 171, 188, 197, 198, 225, 226, 233, 234, 246, 265, 275, 276, 277, 278, 331, 336, 338, 339, 342, 343, 344, 345, 348], "another_kei": [2, 65], "renam": [2, 34, 36, 39, 65, 141, 143, 170, 336], "match": [2, 3, 6, 8, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 44, 46, 47, 52, 53, 54, 55, 56, 57, 65, 73, 83, 84, 87, 101, 107, 115, 117, 118, 119, 120, 121, 122, 123, 124, 126, 127, 129, 131, 132, 133, 135, 137, 141, 142, 144, 145, 146, 147, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 160, 161, 173, 174, 181, 188, 192, 194, 199, 200, 214, 220, 225, 226, 232, 233, 235, 236, 239, 240, 246, 252, 259, 261, 263, 265, 308, 313, 331, 336, 338, 341, 342, 343, 345, 347, 348], "resiz": [2, 3, 57, 65, 117, 337, 339, 345, 348], "imag": [2, 4, 7, 55, 81, 119, 139, 153, 159, 194, 336, 337, 342, 344, 348], "comops": 2, "totensorimag": [2, 3, 57, 65, 117, 142, 337, 339, 345, 347, 348], "renametransform": [2, 65, 83, 87, 101, 107], "rb0": [2, 65], "in_kei": [2, 3, 13, 14, 16, 17, 21, 52, 65, 97, 115, 116, 117, 118, 119, 120, 122, 124, 125, 129, 131, 133, 135, 136, 137, 139, 141, 142, 143, 144, 145, 146, 150, 152, 153, 154, 155, 157, 159, 161, 172, 182, 188, 192, 196, 208, 217, 218, 220, 221, 222, 223, 225, 226, 232, 233, 235, 236, 238, 239, 240, 245, 246, 247, 248, 249, 251, 252, 258, 259, 262, 263, 264, 265, 267, 273, 275, 276, 277, 278, 293, 294, 320, 323, 331, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "pixel": [2, 3, 7, 26, 57, 65, 117, 119, 126, 129, 131, 135, 137, 139, 142, 153, 157, 159, 176, 204, 205, 294, 320, 331, 336, 337, 339, 344, 345, 347, 348], "next": [2, 3, 4, 8, 13, 14, 16, 26, 28, 32, 35, 38, 40, 41, 42, 52, 53, 54, 55, 56, 57, 58, 65, 70, 71, 74, 80, 83, 84, 87, 93, 97, 101, 105, 106, 107, 108, 109, 116, 117, 122, 125, 126, 127, 132, 133, 137, 141, 143, 146, 147, 149, 151, 160, 161, 167, 170, 172, 187, 188, 191, 192, 196, 211, 241, 245, 246, 248, 249, 251, 252, 253, 258, 262, 263, 264, 265, 267, 273, 274, 275, 276, 277, 278, 279, 305, 307, 309, 336, 337, 339, 341, 343, 344, 345, 347, 348], "32": [2, 22, 26, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 65, 71, 105, 106, 108, 109, 173, 174, 175, 176, 177, 180, 185, 194, 199, 200, 204, 205, 207, 208, 217, 273, 335, 336, 337, 339, 343, 344, 345, 346, 347, 348], "rb1": [2, 65], "p": [2, 4, 65, 68, 84, 105, 106], "5": [2, 3, 24, 26, 28, 35, 38, 41, 42, 65, 70, 71, 84, 93, 98, 105, 106, 108, 109, 116, 143, 149, 150, 172, 173, 174, 183, 184, 186, 189, 190, 193, 194, 196, 199, 200, 204, 209, 215, 216, 225, 226, 233, 239, 259, 262, 264, 267, 331, 335, 336, 337, 342, 343, 345, 346, 347, 348], "33": [2, 26, 32, 65, 83, 87, 101, 107, 173, 174, 194, 336, 337, 338, 343], "out_kei": [2, 3, 13, 14, 16, 17, 21, 65, 97, 115, 116, 117, 118, 119, 120, 122, 125, 129, 131, 133, 135, 136, 137, 139, 141, 142, 143, 144, 145, 146, 150, 152, 153, 154, 157, 159, 161, 172, 182, 183, 188, 192, 196, 208, 209, 217, 218, 220, 221, 222, 223, 225, 227, 232, 233, 234, 235, 236, 238, 239, 240, 245, 246, 247, 252, 258, 259, 262, 263, 264, 265, 273, 275, 276, 277, 278, 294, 307, 323, 331, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "pixels33": [2, 65], "data0": [2, 65], "randint": [2, 45, 65, 153, 345], "255": [2, 65, 153, 343, 345], "244": [2, 65, 139, 159, 343], "randn": [2, 26, 34, 35, 36, 38, 39, 41, 42, 52, 53, 54, 55, 56, 57, 60, 61, 65, 70, 71, 76, 116, 135, 167, 175, 180, 183, 186, 187, 190, 191, 193, 197, 198, 199, 203, 206, 207, 209, 220, 221, 222, 223, 225, 226, 232, 233, 235, 238, 239, 240, 245, 246, 248, 249, 251, 252, 258, 262, 263, 264, 265, 267, 275, 276, 277, 278, 310, 331, 347, 348], "batch_siz": [2, 3, 8, 13, 14, 15, 16, 26, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 52, 53, 54, 55, 56, 57, 58, 60, 61, 64, 65, 70, 71, 74, 76, 80, 83, 85, 87, 90, 93, 96, 97, 100, 101, 102, 103, 105, 106, 107, 108, 109, 116, 117, 122, 125, 126, 127, 137, 141, 143, 147, 149, 151, 154, 170, 171, 172, 180, 183, 188, 192, 196, 208, 209, 217, 218, 220, 221, 222, 223, 225, 226, 227, 228, 229, 231, 232, 233, 234, 235, 238, 239, 240, 245, 246, 248, 249, 251, 252, 258, 262, 263, 264, 265, 267, 273, 302, 308, 320, 331, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "data1": [2, 65], "64": [2, 3, 34, 36, 39, 55, 65, 117, 142, 176, 177, 185, 188, 192, 200, 208, 273, 336, 337, 338, 339, 341, 343, 344, 345, 347, 348], "_": [2, 8, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 65, 84, 91, 109, 118, 122, 124, 125, 133, 135, 141, 153, 161, 220, 235, 240, 244, 245, 246, 248, 252, 258, 262, 263, 265, 267, 275, 276, 277, 278, 336, 337, 338, 339, 342, 343, 345, 347], "rang": [2, 3, 4, 8, 11, 27, 35, 38, 40, 41, 42, 52, 53, 54, 55, 56, 57, 60, 61, 65, 74, 83, 84, 87, 101, 107, 143, 153, 161, 187, 191, 259, 267, 332, 333, 336, 338, 339, 342, 343, 345, 347], "parent": [2, 3, 21, 26, 28, 44, 65, 73, 78, 83, 117, 118, 121, 123, 126, 129, 130, 135, 139, 146, 149, 150, 151, 152, 154, 156, 157, 221, 260, 262, 279, 336, 343, 347, 348], "basic": [2, 97, 331, 338, 348], "properti": [2, 3, 32, 34, 36, 39, 83, 87, 97, 101, 107, 154, 155, 181, 189, 201, 206, 214, 215, 216, 260, 265, 343, 345], "observ": [2, 3, 8, 13, 14, 16, 17, 21, 32, 44, 52, 53, 55, 56, 57, 80, 81, 82, 83, 84, 87, 93, 96, 97, 100, 101, 102, 103, 105, 106, 107, 108, 109, 116, 117, 118, 119, 120, 121, 122, 123, 126, 127, 129, 131, 132, 133, 135, 136, 137, 141, 142, 143, 146, 147, 149, 150, 151, 152, 153, 154, 155, 156, 157, 160, 161, 170, 175, 176, 177, 178, 179, 180, 183, 188, 192, 193, 199, 204, 205, 207, 209, 210, 220, 221, 222, 223, 225, 226, 228, 229, 231, 232, 233, 240, 241, 245, 246, 247, 248, 249, 251, 252, 255, 258, 259, 262, 263, 264, 265, 267, 273, 275, 276, 277, 278, 279, 294, 320, 323, 331, 333, 337, 338, 339, 341, 342, 343, 345, 347, 348], "dtype": [2, 3, 13, 14, 16, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 53, 55, 56, 57, 58, 60, 61, 63, 70, 71, 76, 80, 83, 87, 93, 96, 97, 100, 101, 102, 103, 105, 106, 107, 108, 109, 114, 121, 122, 123, 124, 125, 126, 127, 133, 135, 137, 139, 141, 143, 147, 149, 151, 153, 154, 155, 157, 159, 163, 167, 170, 171, 172, 183, 186, 187, 188, 190, 191, 192, 196, 201, 202, 208, 209, 217, 220, 221, 222, 223, 225, 226, 227, 231, 232, 233, 234, 235, 238, 240, 245, 246, 248, 249, 251, 252, 258, 262, 263, 264, 265, 267, 273, 275, 276, 277, 278, 281, 320, 331, 338, 339, 341, 342, 343, 344, 345, 347, 348], "input": [2, 3, 4, 13, 14, 16, 17, 18, 19, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 39, 40, 43, 44, 46, 47, 83, 87, 97, 100, 101, 102, 103, 104, 107, 109, 114, 116, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 135, 137, 138, 139, 140, 141, 143, 146, 147, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 163, 170, 171, 173, 174, 176, 177, 178, 179, 182, 183, 186, 187, 188, 190, 191, 192, 193, 194, 199, 200, 201, 202, 209, 210, 211, 212, 213, 218, 220, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 244, 245, 246, 247, 252, 253, 254, 255, 256, 258, 259, 260, 262, 263, 264, 265, 267, 273, 274, 275, 276, 277, 278, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 305, 309, 314, 323, 331, 332, 333, 336, 337, 338, 339, 342, 343, 347, 348], "output": [2, 3, 4, 13, 14, 16, 17, 32, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 70, 71, 83, 87, 97, 100, 101, 102, 103, 104, 107, 109, 117, 120, 121, 122, 123, 125, 127, 133, 135, 139, 141, 146, 147, 149, 152, 154, 157, 159, 160, 163, 171, 173, 174, 175, 176, 177, 180, 182, 183, 184, 186, 187, 188, 190, 191, 192, 193, 194, 199, 200, 203, 209, 218, 220, 221, 224, 225, 226, 227, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 245, 246, 247, 248, 252, 253, 254, 255, 256, 258, 259, 260, 262, 263, 264, 265, 267, 273, 275, 276, 277, 278, 279, 294, 302, 331, 332, 336, 337, 338, 339, 341, 342, 343, 344, 347, 348], "send": [2, 3, 8, 347], "receiv": [2, 3, 32, 40, 83, 87, 101, 107, 154, 194, 281, 332, 336, 338, 341, 343], "spawn": [2, 3, 4, 18, 22, 91, 98, 342], "check_env_spec": [2, 3, 329, 338, 342, 343], "saniti": [2, 3, 7, 163, 338], "utmost": 2, "techniqu": [2, 8, 337, 345], "commonli": [2, 70, 71, 348], "emploi": [2, 202], "realm": 2, "languag": [2, 40], "scarc": 2, "address": [2, 345], "subdomain": 2, "within": [2, 13, 14, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 41, 42, 44, 46, 47, 55, 83, 87, 101, 107, 117, 122, 125, 126, 149, 160, 161, 171, 173, 174, 175, 176, 177, 178, 179, 180, 182, 184, 185, 186, 187, 188, 190, 191, 192, 193, 194, 199, 200, 203, 204, 205, 207, 210, 211, 213, 218, 224, 225, 227, 228, 229, 231, 234, 239, 242, 249, 253, 273, 331, 343, 347], "facilit": [2, 3, 7, 138, 139, 157, 159, 221, 222, 223, 331, 336, 339, 343], "interact": [2, 4, 5, 7, 8, 13, 14, 16, 18, 19, 20, 21, 55, 232, 236, 336, 338, 342, 343, 348], "extern": [2, 3, 122, 125, 348], "consist": [2, 3, 32, 35, 38, 41, 42, 55, 83, 87, 101, 107, 133, 160, 174, 194, 336, 337, 338, 343, 344, 348], "token": [2, 36, 37, 40, 43, 45, 58], "manner": [2, 87, 139, 157, 331, 336, 337, 338, 341, 343, 345], "handl": [3, 21, 32, 83, 87, 101, 107, 160, 161, 192, 194, 311, 325, 326, 336, 337, 338, 342, 345], "dm": [3, 336, 348], "goal": [3, 4, 150, 336, 337, 338, 339, 342, 343], "abl": [3, 96, 102, 103, 336, 338, 339, 341, 342, 343, 345, 347], "experi": [3, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 63, 163, 296, 297, 298, 299, 300, 301, 330, 337, 338, 342, 345], "even": [3, 4, 8, 14, 18, 20, 21, 60, 61, 62, 72, 73, 76, 83, 84, 87, 91, 101, 107, 171, 336, 338, 342, 343, 348], "simul": [3, 5, 7, 8, 104, 109, 112, 172, 196, 331, 336, 338, 342], "box": [3, 24, 25, 26, 27, 28, 29, 30, 31, 33, 44, 46, 47], "lib": [3, 5, 6, 7, 9, 10, 13, 14, 16, 17, 21, 22, 83, 84, 87, 101, 102, 103, 105, 106, 107, 117, 120, 126, 132, 133, 135, 137, 141, 143, 146, 151, 154, 160, 161, 320, 323, 336, 337, 338, 339, 341, 342, 344, 345, 347, 348], "hope": 3, "imit": 3, "nn": [3, 13, 14, 16, 17, 21, 32, 40, 83, 87, 97, 101, 107, 121, 124, 126, 133, 139, 151, 154, 155, 157, 159, 172, 173, 174, 176, 177, 178, 179, 182, 183, 184, 185, 186, 187, 188, 190, 191, 192, 194, 196, 198, 199, 200, 203, 208, 209, 217, 220, 221, 222, 223, 225, 226, 228, 229, 231, 232, 233, 235, 236, 237, 238, 240, 245, 246, 248, 249, 251, 252, 253, 254, 258, 260, 262, 263, 264, 265, 267, 273, 275, 276, 277, 278, 320, 323, 331, 332, 336, 337, 338, 339, 341, 342, 343, 344, 347], "typic": [3, 4, 8, 32, 83, 87, 101, 107, 126, 150, 232, 246, 260, 262, 265, 331, 332, 333, 338, 342, 343], "organis": [3, 56, 337], "arbitrari": [3, 33, 101, 107, 331, 336, 337, 343], "nest": [3, 26, 28, 32, 34, 36, 39, 48, 60, 61, 65, 76, 83, 87, 101, 107, 117, 149, 152, 171, 275, 276, 277, 278, 279, 333, 337, 338, 342, 343, 345, 347], "attribut": [3, 4, 32, 34, 36, 39, 45, 55, 83, 87, 101, 107, 126, 139, 157, 188, 192, 236, 245, 246, 248, 249, 251, 252, 253, 254, 258, 260, 262, 263, 264, 265, 267, 273, 336, 339, 343], "expect": [3, 4, 7, 26, 32, 38, 44, 45, 69, 83, 87, 97, 100, 101, 104, 107, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 126, 127, 129, 131, 132, 133, 135, 137, 139, 141, 142, 144, 145, 146, 147, 149, 150, 151, 152, 153, 154, 156, 157, 158, 160, 163, 186, 187, 188, 190, 191, 192, 199, 200, 227, 231, 235, 238, 245, 246, 247, 248, 249, 251, 252, 258, 259, 260, 262, 263, 264, 265, 267, 273, 315, 330, 331, 332, 333, 336, 338, 339, 342, 343, 345, 348], "live": [3, 12, 13, 14, 16, 17, 19, 20, 32, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 65, 83, 87, 97, 101, 107, 126], "actual": [3, 4, 7, 17, 52, 53, 55, 56, 57, 83, 87, 101, 107, 160, 314, 332, 336, 338, 342, 343], "do": [3, 4, 7, 57, 87, 109, 140, 160, 161, 170, 200, 201, 222, 275, 333, 336, 337, 338, 339, 341, 342, 343, 345, 347, 348], "retriev": [3, 34, 35, 36, 38, 39, 41, 42, 52, 53, 54, 55, 56, 57, 65, 68, 83, 87, 101, 107, 118, 123, 126, 135, 170, 172, 173, 196, 232, 236, 239, 245, 246, 247, 249, 259, 262, 263, 265, 267, 273, 275, 276, 277, 278, 320, 327, 333, 337, 338, 343, 348], "care": [3, 8, 83, 87, 101, 107, 154, 173, 174, 175, 176, 177, 178, 179, 180, 182, 184, 185, 186, 187, 188, 190, 191, 192, 193, 194, 199, 200, 203, 204, 205, 207, 210, 211, 213, 218, 224, 225, 227, 228, 229, 231, 234, 239, 242, 336, 338, 342, 343, 345], "below": [3, 7, 13, 14, 16, 17, 18, 19, 20, 21, 32, 58, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 173, 174, 186, 189, 190, 194, 200, 216, 235, 308, 336, 337, 338, 339, 343], "parametr": [3, 202, 236, 246, 258, 265, 336, 338], "hardwar": 3, "observation_spec": [3, 83, 87, 97, 101, 107, 114, 117, 118, 119, 120, 121, 122, 123, 125, 126, 129, 131, 132, 133, 135, 137, 139, 142, 146, 149, 150, 151, 152, 153, 154, 156, 157, 160, 172, 188, 192, 196, 315, 323, 336, 338, 341, 342, 343, 348], "compositespec": [3, 28, 49, 83, 85, 87, 97, 101, 107, 114, 122, 123, 124, 125, 127, 133, 141, 147, 149, 151, 154, 167, 171, 172, 196, 220, 224, 232, 238, 239, 329, 336, 338, 339, 342, 343, 348], "pair": [3, 32, 34, 36, 39, 52, 83, 87, 101, 107, 143, 151, 188, 221, 232, 236, 260, 275, 276, 277, 278, 279, 331, 332, 336, 337, 338, 341, 343, 348], "state_spec": [3, 83, 87, 97, 101, 107, 114, 172, 196, 338, 343, 348], "empti": [3, 26, 28, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 65, 83, 87, 100, 101, 107, 139, 152, 155, 157, 159, 298, 336, 343], "action_spec": [3, 13, 14, 15, 16, 18, 19, 20, 80, 83, 87, 93, 97, 101, 102, 103, 107, 114, 117, 122, 125, 133, 143, 172, 183, 196, 209, 211, 220, 226, 232, 233, 246, 249, 251, 263, 265, 267, 323, 331, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "reward_spec": [3, 83, 87, 97, 101, 107, 114, 115, 120, 121, 122, 123, 125, 144, 145, 146, 154, 156, 172, 196, 338, 342, 343, 348], "reward": [3, 13, 14, 16, 32, 34, 39, 40, 44, 45, 53, 55, 56, 57, 58, 74, 80, 83, 87, 93, 97, 100, 101, 105, 106, 107, 108, 109, 114, 115, 120, 121, 122, 123, 125, 126, 127, 133, 137, 141, 143, 144, 145, 146, 147, 149, 150, 154, 155, 156, 158, 159, 161, 167, 170, 172, 188, 196, 225, 241, 245, 246, 248, 249, 251, 252, 255, 258, 260, 262, 263, 264, 265, 267, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 304, 305, 307, 309, 327, 332, 333, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "done_spec": [3, 83, 87, 101, 107, 122, 123, 125, 126, 154, 171, 338, 342, 343, 348], "flag": [3, 8, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 65, 109, 231, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 331, 342, 343, 344], "section": [3, 4, 186, 190, 337, 342], "termin": [3, 7, 32, 40, 52, 53, 55, 56, 57, 83, 87, 101, 102, 103, 105, 106, 107, 108, 109, 126, 171, 172, 188, 192, 196, 237, 245, 246, 248, 249, 251, 252, 258, 262, 263, 264, 265, 267, 273, 275, 276, 277, 278, 279, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "input_spec": [3, 83, 87, 97, 101, 107, 121, 122, 123, 124, 135, 137, 141, 146, 147, 149, 150, 151, 154, 155, 156, 158, 343], "full_action_spec": [3, 83, 87, 101, 107, 172, 196, 342], "full_state_spec": [3, 83, 87, 101, 107, 172, 196], "lock": [3, 26, 28, 34, 36, 39, 83, 87, 101, 107, 151, 161, 343], "modifi": [3, 7, 8, 26, 28, 32, 45, 83, 87, 101, 107, 121, 129, 133, 139, 151, 154, 155, 157, 159, 225, 231, 235, 314, 320, 336, 337, 338, 342, 343], "directli": [3, 4, 8, 65, 83, 87, 97, 101, 107, 143, 160, 260, 327, 331, 338, 342, 343, 345], "output_spec": [3, 83, 87, 101, 107, 121, 122, 123, 127, 133, 141, 147, 149, 154, 155, 343], "full_observation_spec": [3, 83, 87, 101, 107, 172, 196], "full_reward_spec": [3, 83, 87, 101, 107, 342], "full_done_spec": [3, 83, 87, 101, 107, 171, 342], "importantli": [3, 232, 236], "4": [3, 7, 24, 26, 27, 28, 33, 34, 35, 36, 38, 39, 40, 41, 42, 52, 53, 54, 55, 56, 57, 65, 70, 71, 81, 82, 83, 86, 87, 92, 94, 95, 96, 97, 101, 105, 106, 107, 114, 117, 126, 143, 149, 150, 161, 172, 173, 174, 175, 176, 177, 180, 183, 184, 185, 186, 187, 190, 191, 193, 194, 196, 199, 200, 203, 204, 205, 206, 207, 208, 209, 217, 220, 221, 222, 223, 225, 226, 227, 228, 229, 231, 232, 233, 234, 235, 238, 240, 245, 246, 248, 249, 251, 252, 253, 254, 258, 260, 262, 263, 264, 265, 267, 273, 293, 331, 335, 336, 337, 338, 339, 342, 343, 344, 345, 346, 347, 348], "action_s": 3, "help": [3, 4, 32, 83, 87, 101, 107, 126, 330, 332, 336, 337, 338, 339, 342], "prealloc": [3, 343], "With": [3, 96, 150, 333, 336, 337, 342, 345, 348], "necessarili": [3, 348], "0s": [3, 55, 151, 339], "stateless": [3, 154, 260, 336, 343, 348], "step_and_maybe_reset": [3, 83, 87, 101, 107], "partial": [3, 83, 87, 101, 107, 116, 117, 150, 151, 152, 311, 339], "step_mdp": [3, 188, 192, 329, 339, 343, 347, 348], "done_kei": [3, 83, 87, 101, 107, 126, 143, 149, 170, 342], "assign": [3, 4, 13, 14, 32, 34, 36, 39, 83, 87, 101, 107, 155, 248, 249, 251, 265, 338, 342, 345], "_reset": [3, 83, 87, 97, 101, 107, 114, 117, 122, 125, 171, 172, 196], "data_": [3, 83, 87, 101, 107], "i": [3, 13, 14, 16, 17, 18, 19, 20, 21, 26, 28, 32, 35, 38, 42, 43, 60, 61, 63, 71, 76, 83, 87, 101, 107, 139, 143, 146, 155, 159, 187, 191, 203, 209, 227, 232, 234, 235, 236, 275, 276, 277, 278, 302, 314, 336, 337, 338, 339, 342, 343, 345, 347, 348], "n": [3, 6, 7, 24, 27, 32, 33, 40, 83, 87, 101, 107, 117, 124, 129, 156, 186, 187, 190, 196, 231, 236, 245, 252, 260, 274, 308, 331, 333, 337, 338, 339, 342, 345, 348], "append": [3, 8, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 65, 83, 84, 87, 101, 107, 120, 143, 151, 160, 187, 188, 191, 192, 226, 233, 336, 337, 338, 339, 342, 343, 344, 345, 347], "set_se": [3, 13, 14, 16, 17, 21, 80, 83, 87, 93, 97, 101, 107, 135, 141, 146, 150, 152, 155, 343, 347, 348], "seed": [3, 13, 14, 16, 17, 21, 56, 81, 83, 87, 97, 101, 102, 103, 107, 108, 109, 114, 122, 125, 155, 163, 311], "determinist": [3, 32, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 175, 184, 204, 211, 220, 229, 235, 236, 239, 246, 331, 336, 337, 339, 343, 348], "preced": [3, 193, 339], "without": [3, 7, 9, 32, 40, 52, 55, 70, 71, 83, 87, 101, 107, 109, 114, 122, 125, 153, 186, 187, 190, 191, 222, 223, 245, 246, 248, 249, 251, 252, 258, 262, 263, 264, 265, 267, 274, 275, 276, 277, 278, 279, 323, 330, 331, 336, 337, 338, 342, 343, 345, 348], "risk": [3, 140], "overlap": [3, 41], "consecut": [3, 69, 91, 192, 231, 339, 342, 348], "reproduc": [3, 117, 163, 336, 338, 342], "maximum": [3, 4, 13, 14, 16, 17, 18, 19, 20, 21, 32, 34, 36, 37, 39, 40, 43, 45, 58, 60, 61, 62, 76, 83, 87, 101, 107, 124, 144, 149, 150, 152, 214, 215, 216, 239, 246, 252, 258, 260, 261, 265, 308, 336, 337, 338, 339, 342, 345], "max_step": [3, 13, 83, 87, 97, 101, 107, 108, 109, 149, 342, 347, 348], "tensordictmodul": [3, 13, 14, 16, 17, 20, 21, 40, 97, 116, 133, 183, 188, 192, 196, 208, 209, 217, 218, 221, 222, 223, 224, 225, 226, 229, 231, 232, 233, 234, 235, 237, 238, 239, 241, 246, 248, 252, 254, 255, 256, 258, 260, 263, 265, 267, 273, 274, 275, 276, 277, 278, 307, 323, 331, 336, 338, 339, 341, 342, 343, 344], "compat": [3, 7, 11, 18, 19, 32, 34, 36, 39, 52, 65, 68, 70, 71, 72, 83, 87, 89, 100, 101, 107, 117, 149, 157, 161, 186, 187, 188, 190, 191, 192, 233, 245, 246, 248, 249, 251, 252, 258, 260, 262, 263, 264, 265, 267, 270, 336, 339, 345, 347], "mark": [3, 16, 57, 83, 87, 101, 107, 188, 192], "trail": [3, 161], "treat": 3, "figur": [3, 336, 338, 339, 342, 343, 348], "summar": [3, 343], "brief": [3, 338], "deliveri": 3, "design": [3, 13, 14, 32, 33, 68, 73, 78, 83, 87, 101, 107, 117, 140, 155, 225, 245, 246, 247, 252, 253, 254, 255, 256, 258, 259, 260, 262, 263, 264, 265, 267, 273, 336, 337, 338, 339, 341, 342, 343, 345, 348], "metaclass": 3, "ensur": [3, 32, 35, 41, 63, 69, 83, 87, 101, 107, 117, 139, 149, 157, 161, 226, 331, 337, 338, 343, 345], "everi": [3, 8, 17, 26, 28, 32, 33, 72, 83, 87, 101, 107, 149, 150, 161, 173, 174, 175, 176, 177, 178, 179, 180, 182, 184, 185, 186, 187, 188, 190, 191, 192, 193, 194, 199, 200, 203, 204, 205, 207, 210, 211, 213, 218, 224, 225, 227, 228, 229, 231, 234, 239, 242, 311, 333, 336, 337, 338, 339, 342, 343], "flank": [3, 339], "dual": 3, "strictli": [3, 8, 32, 83, 87, 101, 107, 155, 265, 336, 338], "refer": [3, 7, 8, 9, 21, 32, 40, 83, 87, 101, 107, 155, 161, 172, 183, 184, 196, 197, 198, 199, 204, 205, 210, 211, 227, 245, 253, 254, 255, 256, 262, 265, 275, 280, 288, 335, 336, 338, 342], "union": [3, 11, 13, 15, 16, 17, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 39, 44, 46, 47, 63, 83, 87, 101, 107, 114, 124, 126, 132, 135, 139, 140, 143, 145, 157, 159, 161, 170, 173, 174, 176, 177, 178, 179, 181, 183, 185, 193, 194, 197, 198, 199, 200, 201, 202, 206, 208, 209, 214, 215, 216, 217, 235, 251, 252, 257, 263, 266, 288, 294, 305, 307, 308, 316, 317, 320, 321, 323, 324, 325, 326, 327], "interpret": [3, 337], "last": [3, 4, 11, 13, 14, 16, 17, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 37, 44, 46, 47, 52, 69, 71, 83, 87, 101, 107, 116, 129, 135, 140, 150, 152, 153, 173, 174, 186, 188, 190, 192, 193, 194, 197, 198, 204, 212, 218, 224, 225, 228, 229, 236, 337, 338, 339, 342, 343, 344, 345, 347, 348], "indic": [3, 8, 11, 13, 14, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 44, 45, 46, 47, 52, 53, 54, 55, 56, 57, 58, 59, 65, 66, 68, 69, 70, 71, 74, 75, 77, 78, 83, 87, 101, 107, 117, 118, 149, 150, 151, 152, 155, 171, 173, 174, 194, 197, 198, 200, 231, 233, 234, 242, 245, 246, 248, 249, 251, 252, 253, 254, 258, 260, 262, 263, 264, 265, 267, 273, 315, 327, 330, 333, 338, 339, 343, 345, 348], "truncat": [3, 13, 14, 16, 18, 19, 20, 21, 37, 43, 45, 52, 53, 55, 56, 57, 70, 71, 83, 87, 101, 102, 103, 107, 126, 127, 134, 143, 149, 171, 188, 192, 216, 281, 336, 338, 339, 341, 344, 345, 347, 348], "carri": [3, 21, 45, 83, 87, 101, 107, 151, 260, 337, 339, 342, 343, 345], "assess": [3, 110, 336], "split_trajectori": [3, 13, 14, 16, 17, 18, 19, 20, 21, 55, 70, 71, 329], "adjac": [3, 23, 129], "reli": [3, 186, 187, 190, 191, 245, 332, 336, 338, 343, 348], "traj_id": [3, 13, 14, 16, 23, 143, 339, 345, 347], "junction": 3, "miss": [3, 4, 6, 7, 11, 26, 32, 83, 87, 101, 107, 155, 170, 237, 238, 265, 330, 336, 339], "context": [3, 5, 8, 32, 83, 84, 87, 100, 101, 107, 151, 156, 200, 201, 225, 271, 272, 275, 276, 277, 278, 280, 288, 307, 331, 332, 336, 337, 338, 342, 343, 344, 345], "through": [3, 4, 5, 8, 11, 16, 18, 20, 21, 26, 28, 55, 91, 96, 101, 102, 103, 107, 122, 125, 140, 194, 208, 232, 236, 237, 238, 242, 275, 276, 277, 278, 331, 336, 337, 338, 341, 342, 343, 344, 345, 348], "inittrack": [3, 188, 192, 336, 339], "tutori": [3, 335, 336, 337, 339, 340, 341, 343, 344, 345, 346, 348], "inform": [3, 4, 13, 14, 16, 17, 18, 19, 20, 21, 32, 34, 36, 39, 43, 55, 83, 84, 87, 90, 101, 107, 173, 174, 194, 200, 332, 333, 336, 337, 338, 339, 342, 343, 345], "scratch": [3, 8, 337, 343], "better": [3, 8, 9, 188, 192, 332, 338, 343], "intens": [3, 8], "gym3": 3, "envpool": [3, 98, 99], "interfac": [3, 90, 100, 194, 201, 331, 336, 338, 343, 345], "simultan": [3, 20, 101, 107, 343], "often": [3, 8, 257, 311, 336, 337, 343, 345, 348], "competit": [3, 342], "advantag": [3, 8, 185, 245, 247, 259, 262, 264, 275, 276, 277, 278, 279, 280, 282, 284, 286, 288, 289, 291, 332, 333, 336, 337, 338, 339, 342, 343, 348], "scale": [3, 4, 52, 117, 133, 135, 145, 150, 153, 184, 189, 203, 210, 211, 215, 216, 221, 222, 223, 232, 236, 238, 245, 246, 258, 262, 263, 264, 265, 309, 315, 320, 327, 331, 336, 337, 338, 339, 342, 347], "varieti": 3, "own": [3, 13, 14, 17, 22, 32, 83, 87, 101, 102, 103, 107, 337, 338, 342, 343], "As": [3, 4, 83, 87, 96, 101, 102, 103, 107, 143, 236, 275, 331, 336, 337, 338, 339, 342, 343, 344, 345, 347, 348], "inherit": [3, 195, 260, 333, 338, 342], "serialenv": [3, 83, 87, 101, 151, 329, 348], "Of": [3, 7, 330, 343, 348], "cours": [3, 4, 330, 338, 343, 348], "correspond": [3, 4, 13, 14, 18, 19, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 39, 41, 44, 46, 47, 55, 57, 63, 83, 87, 97, 98, 101, 107, 139, 151, 155, 159, 161, 188, 190, 192, 197, 198, 228, 229, 231, 232, 236, 249, 252, 265, 273, 275, 276, 277, 278, 279, 336, 337, 338, 342, 343, 344], "count": [3, 84, 149, 231, 307, 311, 314, 336, 337, 338, 339, 345, 348], "make_env": [3, 109, 161, 316, 317, 336, 337, 348], "gymenv": [3, 5, 13, 14, 16, 17, 21, 22, 83, 84, 87, 89, 101, 107, 117, 120, 121, 126, 132, 133, 135, 137, 141, 142, 143, 146, 150, 151, 152, 154, 155, 161, 188, 192, 320, 323, 329, 331, 336, 337, 338, 339, 344, 345, 347, 348], "v1": [3, 13, 14, 16, 17, 21, 22, 52, 53, 83, 84, 87, 98, 101, 107, 117, 120, 127, 132, 133, 135, 141, 143, 146, 149, 150, 151, 152, 154, 188, 192, 270, 284, 285, 286, 287, 289, 290, 291, 292, 331, 337, 339, 343, 345, 347, 348], "from_pixel": [3, 81, 82, 117, 142, 320, 336, 337, 339, 344, 345, 347, 348], "9": [3, 7, 32, 35, 38, 41, 56, 57, 71, 74, 96, 102, 103, 150, 161, 245, 246, 248, 249, 251, 252, 253, 254, 258, 260, 262, 263, 264, 265, 267, 268, 273, 332, 335, 336, 337, 338, 342, 343, 344, 345, 346], "81": [3, 337, 343], "must": [3, 7, 13, 14, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 40, 44, 45, 46, 47, 53, 55, 56, 57, 58, 60, 61, 62, 70, 71, 72, 73, 76, 83, 84, 87, 101, 102, 103, 107, 117, 120, 126, 130, 133, 135, 137, 147, 150, 151, 152, 155, 156, 161, 173, 174, 183, 188, 192, 194, 197, 198, 199, 200, 209, 220, 226, 227, 232, 233, 234, 235, 236, 239, 240, 245, 246, 248, 249, 251, 252, 253, 254, 258, 260, 262, 263, 264, 265, 266, 267, 273, 275, 276, 277, 278, 279, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 320, 336, 337, 338, 339, 341, 343, 345, 347], "print": [3, 6, 7, 13, 14, 16, 21, 22, 24, 26, 27, 28, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 45, 55, 57, 58, 65, 70, 71, 74, 79, 80, 81, 82, 83, 84, 86, 87, 88, 92, 93, 94, 95, 96, 97, 100, 101, 102, 103, 105, 106, 107, 108, 109, 111, 113, 117, 118, 122, 123, 124, 125, 132, 135, 141, 143, 146, 149, 151, 152, 153, 161, 167, 170, 171, 173, 174, 180, 183, 188, 194, 197, 198, 199, 200, 203, 206, 209, 220, 221, 222, 223, 225, 226, 228, 229, 231, 233, 235, 238, 240, 260, 320, 323, 331, 333, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "simpli": [3, 6, 34, 36, 39, 45, 73, 78, 127, 147, 160, 260, 331, 332, 336, 338, 342, 348], "b": [3, 7, 8, 23, 26, 28, 34, 36, 39, 40, 41, 42, 74, 186, 187, 190, 191, 199, 200, 201, 202, 208, 217, 239, 275, 276, 277, 278, 279, 281, 294, 331, 337, 344, 345], "c": [3, 6, 7, 26, 34, 36, 39, 41, 42, 54, 135, 153, 190, 191, 337, 345], "d": [3, 35, 54, 56, 57, 58, 63, 186, 190, 232, 236, 347], "get": [3, 4, 6, 7, 8, 9, 34, 35, 36, 38, 39, 52, 55, 60, 61, 70, 71, 72, 73, 74, 76, 84, 101, 107, 114, 116, 118, 122, 124, 125, 133, 135, 140, 150, 151, 153, 161, 220, 228, 229, 232, 233, 236, 275, 276, 277, 278, 279, 298, 331, 336, 337, 338, 339, 342, 343, 345, 347, 348], "forc": [3, 6, 7, 13, 14, 18, 20, 21, 53, 55, 56, 57, 337, 342, 343], "privat": [3, 83, 87, 101, 107, 160, 343, 348], "absenc": 3, "total": [3, 13, 14, 16, 17, 18, 19, 20, 21, 24, 30, 31, 33, 71, 247, 259, 262, 302, 304, 307, 311, 314, 315, 335, 336, 337, 338, 339, 341, 342, 343, 344, 345, 346, 347, 348], "unless": [3, 13, 14, 16, 17, 18, 19, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 44, 46, 47, 55, 69, 83, 87, 101, 107, 338], "wa": [3, 5, 7, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 65, 69, 83, 87, 101, 107, 155, 171, 190, 257, 266, 281, 332, 337, 338, 341, 345, 347], "abov": [3, 7, 32, 83, 87, 101, 107, 189, 215, 216, 244, 332, 333, 336, 338, 342, 343, 348], "deal": [3, 336, 338, 342, 345], "proper": [3, 4, 6, 7, 275, 276, 277, 278, 337, 338, 342, 345], "behav": [3, 89, 97, 186, 190, 206, 258, 344], "accord": [3, 13, 14, 16, 17, 18, 19, 20, 21, 34, 36, 39, 40, 65, 68, 135, 145, 189, 201, 210, 215, 216, 273, 331, 343, 345], "develop": [3, 4, 7, 91, 336, 347], "inner": [3, 83, 87, 101, 107, 124, 333, 337, 338, 342, 348], "logic": 3, "nevertheless": [3, 338, 345], "kept": [3, 13, 14, 16, 17, 69, 71, 124, 147, 154, 163, 170, 189, 215, 216], "mind": [3, 55, 70, 71, 342], "desig": 3, "previou": [3, 4, 10, 32, 40, 41, 151, 171, 186, 190, 211, 225, 338, 339, 343, 348], "wherev": 3, "expos": [3, 104, 122, 125, 237, 337], "modif": [3, 5, 26, 28, 32, 83, 87, 101, 107, 129, 171, 260, 338, 343], "lost": [3, 8, 160], "eras": [3, 83, 87, 101, 107, 155], "intern": [3, 334], "face": [3, 5, 8, 9, 348], "NOT": [3, 140], "outsid": [3, 16, 342, 343], "keep": [3, 4, 7, 8, 14, 42, 69, 74, 101, 107, 135, 139, 159, 161, 170, 231, 304, 311, 336, 337, 338, 339, 342, 343, 345, 347, 348], "right": [3, 6, 7, 40, 193, 337, 338, 342, 343, 348], "preliminari": 3, "warranti": 3, "affect": [3, 8, 32, 83, 87, 101, 107, 154, 155, 163, 275, 276, 277, 278], "assumpt": [3, 343, 345], "made": [3, 32, 60, 61, 62, 72, 73, 76, 83, 87, 101, 107, 231, 249, 273, 336, 337, 339, 342, 344], "preclud": 3, "presenc": 3, "annihil": 3, "effect": [3, 26, 32, 55, 65, 68, 70, 71, 83, 87, 101, 107, 117, 155, 311, 336, 345, 348], "reason": [3, 4, 8, 32, 55, 83, 87, 101, 102, 103, 107, 139, 157, 192, 332, 336, 337, 338, 343, 345], "root": [3, 26, 28, 52, 53, 54, 55, 56, 57, 117, 152, 170, 189, 215, 216, 339, 342, 343, 344, 345, 348], "known": [3, 5, 7, 8, 282, 283, 336, 337], "advanc": [3, 21, 35, 38, 41, 42, 345], "explicitli": [3, 4, 337, 339, 342, 345], "place": [3, 13, 14, 16, 17, 26, 28, 32, 34, 36, 39, 60, 61, 65, 68, 76, 83, 84, 87, 101, 107, 121, 126, 139, 151, 154, 155, 157, 159, 160, 161, 171, 225, 235, 308, 313, 314, 337, 338, 342, 343, 345], "superse": 3, "pettingzoowrapp": [3, 329], "group": [3, 24, 25, 26, 27, 28, 29, 30, 31, 33, 44, 46, 47, 83, 87, 96, 101, 102, 103, 107, 109, 110, 331, 337, 338, 342], "associ": [3, 32, 34, 36, 39, 83, 87, 101, 107, 210, 327, 336, 345], "environemtn": 3, "__not__": 3, "constrain": [3, 133, 188, 192, 262], "li": 3, "fact": [3, 7, 8, 336, 338, 342, 343, 344, 345, 348], "predict": [3, 32, 40, 184, 195, 196, 225, 241, 251, 253, 255, 256, 274, 331, 336, 337], "know": [3, 4, 9, 35, 38, 41, 42, 224, 263, 307, 336, 337, 338, 339, 342, 345], "meaning": 3, "could": [3, 4, 6, 337, 338, 342, 344, 348], "perfectli": [3, 333, 336, 343], "case": [3, 4, 5, 7, 8, 11, 13, 14, 16, 17, 18, 19, 20, 21, 22, 26, 32, 35, 41, 53, 55, 56, 57, 63, 83, 87, 101, 107, 122, 123, 125, 153, 155, 163, 192, 194, 200, 232, 235, 236, 238, 239, 244, 245, 246, 248, 249, 251, 252, 258, 262, 263, 264, 265, 267, 275, 276, 277, 278, 302, 313, 325, 326, 327, 331, 333, 336, 337, 338, 339, 342, 343, 345, 348], "meaningless": 3, "discard": [3, 45, 52, 53, 87, 157, 170, 293, 345, 348], "val": [3, 24, 25, 26, 27, 28, 29, 30, 31, 33, 44, 46, 47, 347], "agent0": 3, "agent1": 3, "overridden": [3, 53, 55, 56, 57, 83, 87, 101, 107, 173, 174, 175, 176, 177, 178, 179, 180, 182, 184, 185, 186, 187, 188, 190, 191, 192, 193, 194, 199, 200, 203, 204, 205, 207, 210, 211, 213, 218, 224, 225, 227, 228, 229, 231, 234, 239, 242, 339], "overrid": [3, 24, 25, 26, 27, 28, 29, 30, 31, 33, 38, 44, 46, 47, 83, 87, 101, 107, 327, 331], "elimin": 3, "field": [3, 13, 14, 16, 17, 26, 32, 34, 36, 37, 39, 40, 41, 42, 43, 45, 53, 55, 56, 57, 60, 61, 76, 80, 83, 87, 93, 96, 97, 100, 101, 102, 103, 105, 106, 107, 108, 109, 122, 125, 126, 127, 137, 141, 143, 147, 149, 151, 155, 170, 172, 183, 188, 192, 196, 208, 209, 217, 220, 221, 222, 223, 225, 226, 227, 231, 232, 233, 234, 235, 238, 240, 245, 246, 248, 249, 251, 252, 258, 262, 263, 264, 265, 267, 273, 315, 320, 330, 331, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "bool": [3, 13, 14, 16, 17, 18, 19, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 65, 68, 69, 70, 71, 80, 81, 82, 83, 84, 85, 87, 93, 96, 97, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 114, 117, 118, 122, 124, 125, 126, 127, 129, 133, 134, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 156, 157, 159, 161, 163, 170, 171, 172, 173, 174, 176, 177, 186, 187, 188, 189, 190, 191, 192, 194, 196, 199, 200, 201, 202, 215, 216, 220, 226, 227, 231, 232, 233, 234, 235, 236, 237, 238, 239, 245, 246, 247, 248, 249, 251, 252, 253, 254, 255, 256, 258, 259, 260, 261, 262, 263, 264, 265, 267, 270, 273, 275, 276, 277, 278, 281, 284, 285, 286, 287, 289, 290, 291, 292, 293, 294, 304, 305, 307, 308, 309, 311, 320, 327, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "500": [3, 336, 337, 343, 347, 348], "uint8": [3, 34, 36, 39, 47, 55, 126, 137, 153, 337, 344, 345, 347, 348], "none": [3, 8, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 68, 70, 71, 72, 73, 74, 76, 83, 84, 87, 96, 97, 101, 102, 103, 107, 108, 109, 111, 115, 116, 117, 118, 119, 120, 121, 122, 123, 125, 129, 131, 133, 135, 136, 137, 139, 140, 141, 142, 143, 144, 145, 146, 149, 150, 151, 152, 153, 154, 155, 157, 159, 161, 162, 164, 165, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 183, 185, 186, 187, 190, 191, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 204, 205, 206, 207, 208, 209, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 231, 232, 233, 234, 235, 236, 238, 239, 240, 245, 246, 248, 249, 251, 252, 253, 254, 258, 260, 261, 262, 263, 264, 265, 266, 267, 273, 274, 275, 276, 277, 278, 279, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 300, 305, 306, 307, 308, 309, 310, 311, 315, 316, 317, 320, 323, 325, 326, 327, 331, 333, 336, 337, 338, 339, 342, 343, 345, 347, 348], "is_shar": [3, 13, 14, 16, 26, 34, 36, 37, 39, 40, 41, 42, 43, 45, 53, 55, 56, 57, 58, 60, 61, 76, 80, 83, 87, 93, 96, 97, 100, 101, 102, 103, 105, 106, 107, 108, 109, 122, 125, 126, 127, 137, 141, 143, 147, 149, 151, 161, 170, 172, 183, 188, 192, 196, 208, 209, 217, 220, 221, 222, 223, 225, 226, 227, 231, 232, 233, 234, 235, 238, 240, 245, 246, 248, 249, 251, 252, 258, 262, 263, 264, 265, 267, 273, 320, 331, 338, 339, 341, 342, 343, 344, 345, 347, 348], "launch": [3, 13, 14, 18, 19, 20, 22, 101, 107], "bottleneck": [3, 8], "so": [3, 4, 6, 7, 10, 32, 34, 36, 39, 40, 83, 87, 101, 107, 151, 161, 237, 238, 338, 339, 342, 343, 348], "great": [3, 7, 8, 347], "speedup": [3, 8, 348], "precis": [3, 122, 125, 170, 187, 191, 336, 338], "misspecifi": 3, "caus": [3, 7, 8, 60, 61, 76, 83, 87, 91, 101, 107, 140, 348], "breakag": 3, "rais": [3, 13, 14, 16, 18, 19, 20, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 39, 44, 46, 47, 55, 83, 87, 101, 107, 110, 117, 128, 134, 143, 150, 151, 152, 155, 163, 224, 228, 229, 231, 265, 336, 338, 342, 345], "mismatch": [3, 337], "mostli": [3, 17, 332, 345, 348], "purpos": [3, 7, 117, 186, 323, 336, 338, 339, 342, 344, 348], "want": [3, 6, 7, 8, 71, 135, 245, 246, 248, 249, 251, 252, 253, 254, 258, 260, 262, 263, 264, 265, 267, 273, 331, 336, 337, 338, 339, 342, 343, 344, 345, 347, 348], "subprocess": [3, 13, 14, 84, 101, 107], "addit": [3, 4, 32, 52, 83, 87, 98, 101, 107, 121, 139, 151, 154, 155, 157, 159, 186, 224, 225, 235, 244, 260, 275, 332, 336, 337, 342, 345], "multithread": [3, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 58, 98, 99, 345], "multithreadedenv": [3, 329], "underneath": 3, "higher": [3, 4, 120, 239, 336, 337, 338, 345, 348], "restrict": [3, 337, 344, 345, 348], "flexibl": [3, 9, 98, 268, 332, 333, 345, 348], "cover": [3, 330, 338, 343, 347], "popular": [3, 331, 339, 342], "atari": [3, 4, 117, 348], "classic": [3, 97, 103, 337], "benchmark_batched_env": 3, "py": [3, 113, 208, 217, 333, 335, 336, 337, 338, 339, 341, 342, 343, 344, 345, 346, 347, 348], "pipelin": [3, 7, 331, 338], "seamlessli": [3, 343], "infrastructur": [3, 342], "view": [3, 8, 27, 32, 33, 55, 56, 83, 87, 101, 107, 114, 183, 186, 190, 194, 343, 345, 347, 348], "core": [3, 8, 320, 333, 339, 347], "decis": [3, 175, 207, 225, 250, 261, 339, 342, 345, 348], "act": [3, 4, 70, 71, 102, 103, 200, 246, 248, 258, 263, 265, 267, 339, 342], "world": [3, 5, 97, 241, 255, 342, 343, 348], "paradigm": [3, 17, 342], "decpodp": 3, "markov": [3, 348], "game": [3, 4, 5], "per": [3, 4, 13, 14, 16, 17, 18, 19, 20, 21, 91, 101, 102, 103, 120, 146, 184, 199, 200, 228, 311, 325, 326, 336, 337, 338, 339, 342, 345, 347], "accommod": [3, 13, 14, 16, 17], "thank": [3, 336], "carrier": [3, 338, 339, 345], "particular": [3, 32, 45, 52, 83, 87, 101, 107, 155, 332, 333, 337, 339, 341, 342, 345], "thu": [3, 259, 342], "hand": [3, 7, 21, 342, 343], "let": [3, 6, 7, 32, 43, 83, 87, 101, 102, 103, 107, 117, 188, 192, 199, 200, 226, 307, 332, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "understand": [3, 8, 336, 337, 342], "go": [3, 7, 96, 140, 143, 225, 281, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "vma": [3, 108, 109, 342], "robot": [3, 5, 7, 55, 139, 157, 159, 342], "what": [3, 8, 35, 44, 83, 87, 101, 107, 126, 151, 170, 233, 330, 331, 332, 337, 338, 339, 342, 343, 344, 345, 347, 348], "vmasenv": [3, 329, 342], "balanc": [3, 336, 337], "num_env": [3, 21, 90, 108, 109, 342], "n_agent": [3, 108, 109, 199, 200, 208, 217, 273, 342], "info": [3, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 65, 68, 70, 71, 83, 87, 101, 102, 103, 104, 105, 106, 107, 108, 109, 157, 160, 162, 342, 345], "ground_rew": 3, "pos_rew": [3, 342], "16": [3, 32, 56, 71, 83, 87, 101, 107, 117, 336, 337, 338, 339, 343, 345, 347], "style": [3, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57], "relat": [3, 4, 10, 35, 129, 245, 246, 248, 249, 251, 252, 258, 262, 263, 264, 265, 267, 337, 343], "vari": [3, 102, 103, 140, 342], "creation": [3, 101, 107, 336, 348], "info_spec": 3, "agent_i_action_spec": 3, "agent_i_reward_spec": 3, "agent_i_observation_spec": 3, "discretetensorspec": [3, 33, 83, 87, 101, 107, 114, 171, 249, 252, 273, 329, 338, 342, 348], "you": [3, 5, 6, 7, 8, 9, 10, 32, 43, 83, 87, 91, 96, 101, 102, 103, 105, 106, 107, 113, 161, 190, 330, 331, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "simpl": [3, 9, 32, 33, 83, 87, 101, 107, 176, 236, 249, 251, 260, 264, 275, 331, 332, 336, 337, 338, 342, 348], "composit": [3, 26, 28, 68, 73, 78, 83, 87, 101, 107, 338, 343], "prefix": [3, 23, 32, 34, 36, 39, 45, 83, 87, 101, 107, 155, 260, 265, 293, 339, 348], "exactli": [3, 32, 83, 87, 89, 101, 107, 155, 186, 190, 265, 336, 339, 342], "action_kei": [3, 15, 83, 87, 101, 107, 114, 124, 170, 172, 195, 196, 224, 228, 229, 231, 342], "reward_kei": [3, 83, 87, 101, 107, 170, 172, 196, 305, 309, 342], "automat": [3, 5, 57, 60, 61, 65, 76, 83, 87, 101, 102, 103, 107, 122, 125, 135, 160, 173, 220, 232, 331, 336, 338, 342, 343, 345, 347], "sure": [3, 4, 7, 54, 72, 91, 143, 226, 327, 331, 336, 338, 339, 342, 343, 345, 347, 348], "set_kei": [3, 126, 245, 247, 249, 252, 253, 258, 259, 260, 262, 263, 264, 265, 273, 279, 342], "awai": [3, 338, 342], "eas": [3, 342], "leaf": [3, 26, 28, 83, 87, 101, 107, 149, 236], "would": [3, 32, 40, 83, 87, 101, 107, 186, 188, 190, 192, 194, 199, 333, 337, 338, 339, 343, 345, 348], "full": [3, 83, 87, 101, 107, 188, 192, 227, 302, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "raw": [3, 4, 40, 189, 215, 216, 337, 343], "torchvis": [3, 139, 159, 347, 348], "transformedenv": [3, 13, 83, 84, 87, 101, 107, 114, 117, 120, 121, 122, 125, 126, 127, 129, 132, 133, 134, 135, 137, 141, 142, 143, 146, 147, 149, 150, 151, 152, 154, 161, 188, 192, 320, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "built": [3, 5, 7, 65, 245, 246, 248, 249, 251, 252, 253, 254, 258, 260, 262, 263, 264, 265, 267, 268, 273, 321, 323, 324, 327, 336, 337, 338, 339, 345, 348], "base_env": [3, 83, 87, 101, 107, 114, 120, 122, 124, 125, 133, 137, 142, 149, 151, 152, 336, 337, 338, 344, 347, 348], "appar": [3, 304], "bring": [3, 338, 348], "signific": [3, 5, 8, 338, 348], "kind": [3, 38, 44, 170, 345], "consult": 3, "interest": [3, 232, 236, 331, 337, 338, 342, 343, 348], "resize_par": 3, "easi": [3, 5, 54, 224, 228, 229, 231, 331, 332, 336, 337, 338, 342, 344, 345, 348], "graph": [3, 4, 8, 271, 272, 336, 343], "inv": [3, 120, 124, 137, 143, 343], "appli": [3, 4, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 38, 41, 42, 43, 44, 46, 47, 52, 53, 54, 55, 56, 57, 65, 83, 87, 101, 107, 114, 116, 117, 118, 121, 122, 123, 124, 126, 127, 128, 129, 130, 132, 133, 134, 138, 140, 141, 143, 146, 147, 149, 150, 151, 152, 154, 155, 157, 158, 160, 161, 186, 190, 215, 226, 275, 306, 333, 336, 337, 338, 343, 347, 348], "revers": [3, 190], "order": [3, 16, 32, 33, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 65, 69, 71, 83, 87, 101, 107, 122, 125, 137, 155, 220, 226, 235, 237, 238, 240, 245, 246, 248, 252, 258, 262, 263, 264, 265, 267, 337, 342], "chain": [3, 34, 35, 36, 38, 39, 41, 42, 52, 53, 54, 55, 56, 57, 121, 124, 173, 174, 238, 348], "taken": [3, 83, 87, 101, 107, 142, 197, 198, 229, 332, 336, 338, 339, 342, 343], "invers": [3, 4, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 65, 117, 122, 125, 135, 143, 243, 258, 343], "in_keys_inv": [3, 120, 122, 125, 135, 136, 137, 141, 143, 154, 336, 341, 343, 348], "append_transform": [3, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 65, 116, 139, 151, 157, 336, 339, 343, 347, 348], "doubletofloat": [3, 320, 336, 338, 341], "float32": [3, 13, 14, 16, 26, 34, 35, 36, 39, 40, 41, 42, 44, 45, 53, 55, 57, 60, 61, 63, 76, 80, 83, 87, 93, 97, 100, 101, 105, 106, 107, 108, 109, 122, 125, 126, 127, 135, 137, 141, 143, 147, 149, 151, 153, 167, 170, 172, 183, 188, 192, 196, 208, 209, 217, 220, 221, 222, 223, 225, 226, 231, 232, 233, 234, 235, 238, 240, 245, 246, 248, 249, 251, 252, 258, 262, 263, 264, 265, 267, 273, 320, 331, 338, 339, 341, 342, 343, 344, 345, 347, 348], "float64": [3, 32, 53, 55, 56, 83, 87, 101, 107, 121, 122, 125, 139, 151, 154, 155, 157, 159, 235, 341, 348], "regist": [3, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 44, 46, 47, 83, 87, 101, 107, 122, 125, 126, 155, 173, 174, 175, 176, 177, 178, 179, 180, 182, 184, 185, 186, 187, 188, 190, 191, 192, 193, 194, 199, 200, 203, 204, 205, 207, 210, 211, 213, 218, 224, 225, 227, 228, 229, 231, 234, 239, 242, 245, 246, 248, 249, 251, 252, 253, 254, 258, 260, 262, 263, 264, 265, 267, 273, 302, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 333, 336, 338, 345], "manipul": [3, 4, 8, 139, 157], "third_transform": 3, "replac": [3, 6, 7, 26, 28, 32, 55, 70, 71, 124, 126, 170, 228, 331, 345], "unexpect": [3, 32, 83, 87, 101, 107, 155, 265, 348], "behviour": 3, "fortun": [3, 339], "alreadi": [3, 8, 11, 32, 34, 36, 39, 45, 83, 87, 101, 107, 151, 171, 236, 275, 276, 277, 278, 336, 338, 342], "chang": [3, 5, 7, 32, 35, 38, 41, 42, 60, 61, 62, 69, 72, 73, 76, 83, 87, 101, 107, 121, 122, 123, 125, 127, 133, 141, 147, 149, 154, 155, 161, 190, 245, 246, 248, 249, 251, 252, 253, 254, 258, 260, 262, 263, 264, 265, 267, 273, 332, 336, 338, 339, 342, 343, 344, 345, 348], "happen": [3, 83, 87, 101, 107, 224, 337, 344, 348], "catfram": [3, 337], "hold": [3, 271, 272, 343, 345], "notic": [3, 117, 338, 343], "parenthood": 3, "henc": [3, 35, 140, 171, 199, 331, 336, 338, 342, 343], "transform1": 3, "transform2": 3, "transform3": 3, "last_two": 3, "isinst": [3, 343], "discret": [3, 24, 27, 30, 31, 33, 47, 83, 87, 101, 102, 103, 107, 109, 124, 206, 209, 251, 252, 253, 331, 337, 338, 342, 348], "might": [3, 34, 36, 37, 39, 298, 330, 336, 348], "throughout": [3, 245, 246, 247, 252, 253, 254, 255, 256, 258, 259, 260, 262, 263, 264, 265, 267, 273, 338, 348], "action_mask": [3, 102, 103, 105, 106, 114], "unavail": [3, 102, 103], "probabl": [3, 4, 8, 40, 65, 68, 181, 183, 186, 188, 190, 192, 194, 197, 198, 206, 216, 228, 232, 236, 331, 337, 347], "categor": [3, 27, 31, 33, 102, 103, 109, 114, 126, 183, 206, 209, 226, 227, 232, 233, 234, 249, 252, 273, 339], "probabilistictensordictmodul": [3, 133, 236, 237, 347], "tensordictsequenti": [3, 188, 192, 226, 228, 237, 331, 336, 339, 341, 344, 347], "maskedcategor": [3, 198, 329], "linear": [3, 13, 14, 16, 17, 21, 32, 83, 87, 97, 101, 107, 121, 133, 139, 151, 154, 155, 157, 159, 172, 173, 174, 183, 194, 196, 199, 200, 201, 202, 203, 209, 210, 211, 220, 221, 222, 223, 228, 229, 230, 231, 232, 233, 235, 238, 240, 245, 246, 248, 249, 251, 252, 253, 254, 258, 260, 262, 263, 264, 265, 267, 273, 275, 276, 277, 278, 323, 331, 337, 341, 344, 347], "in_feat": 3, "out_feat": 3, "logit": [3, 36, 40, 197, 198, 206, 227, 232, 252, 331], "dist": [3, 10, 197, 198, 206], "distribution_class": [3, 133, 221, 222, 223, 225, 232, 236, 238, 245, 246, 252, 258, 262, 263, 264, 265, 331, 336, 338, 342, 347], "wrap": [3, 5, 13, 14, 16, 17, 18, 19, 20, 21, 32, 40, 53, 83, 87, 101, 102, 103, 107, 109, 163, 188, 192, 218, 221, 222, 223, 224, 229, 231, 233, 241, 273, 331, 336, 337, 338, 339, 342, 348], "actionmask": 3, "your_base_env": 3, "mask_kei": [3, 114, 140], "add": [3, 4, 6, 21, 32, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 59, 65, 66, 74, 75, 77, 78, 83, 87, 101, 107, 117, 133, 188, 192, 201, 230, 245, 306, 338, 339, 342, 343, 345, 347], "enviorn": [3, 102, 103, 109, 342], "itself": [3, 32, 83, 87, 101, 107, 111, 260, 338], "log": [3, 4, 8, 40, 53, 56, 181, 182, 183, 197, 198, 206, 216, 226, 227, 232, 236, 245, 246, 247, 252, 253, 254, 255, 256, 258, 259, 260, 262, 263, 264, 265, 267, 273, 304, 305, 307, 311, 323, 331, 332, 333, 336, 337, 338, 342, 343, 347], "mission": 3, "irrespect": [3, 235, 236], "dmcontrol": [3, 336], "jumanji": [3, 92, 93], "natur": [3, 336, 339], "special": [3, 331, 336, 339, 348], "framework": [3, 4, 9, 22, 97, 186, 347, 348], "Its": [3, 32, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 161, 235, 279], "success": [3, 53, 117, 154, 228, 337, 343, 345, 347], "been": [3, 5, 7, 8, 17, 18, 20, 21, 40, 65, 69, 83, 87, 91, 101, 107, 133, 149, 150, 154, 186, 190, 224, 229, 231, 336, 337, 338, 339, 341, 342, 343, 345, 348], "foundat": [3, 5, 102, 103, 338, 342], "inspir": [3, 343], "gone": [3, 4, 5], "sometim": [3, 339, 348], "hard": [3, 7, 257, 337, 348], "adopt": [3, 5, 336, 348], "prefer": [3, 17, 20, 35, 38, 41, 42, 140, 147, 262, 308, 331, 338, 342, 345], "maintain": [3, 5, 9, 343], "both": [3, 7, 32, 55, 83, 84, 87, 101, 102, 103, 107, 117, 141, 155, 171, 173, 174, 188, 191, 192, 194, 199, 200, 221, 222, 223, 227, 234, 245, 247, 248, 252, 258, 259, 260, 262, 263, 264, 265, 267, 307, 331, 336, 338, 342, 343, 344, 345, 348], "concomittantli": 3, "problem": [3, 7, 8, 9, 16, 337, 338, 339, 342, 343, 345, 348], "decor": [3, 8, 11, 113, 260, 275, 276, 277, 278], "set_gym_backend": [3, 111, 329], "relev": [3, 40, 275, 276, 277, 278, 279, 343], "gym_backend": [3, 113, 329], "env1": [3, 341], "path": [3, 6, 7, 32, 34, 35, 36, 38, 39, 41, 42, 45, 52, 53, 54, 55, 56, 57, 58, 60, 65, 83, 87, 101, 107, 113, 139, 159, 196, 311, 333, 337], "venv": 3, "python3": [3, 6, 7, 10], "site": [3, 6, 7, 56, 113], "__init__": [3, 7, 97, 113, 114, 122, 125, 172, 183, 186, 190, 196, 240, 246, 248, 252, 258, 263, 265, 267, 333, 343, 348], "env2": [3, 341], "_env": [3, 6, 348], "classic_control": 3, "pendulumenv": [3, 343], "0x15147e190": 3, "0x1629916a0": 3, "further": [3, 5, 338], "tell": [3, 4, 7, 102, 103, 336, 339, 342], "mo_gymnasium": [3, 95, 111], "handi": 3, "side": [3, 4, 348], "v0": [3, 86, 87, 88, 92, 93, 94, 95, 121, 155, 161, 323], "26": [3, 336, 337, 339, 343, 344, 345], "fun": [3, 11, 113, 338, 342], "reveal": 4, "bug": [4, 347], "curv": 4, "won": [4, 32, 55, 83, 84, 87, 101, 107, 139, 159, 311, 327, 337, 338], "exploit": 4, "video": [4, 9, 294, 307, 327, 342], "cv": 4, "flip": 4, "correspondingli": 4, "prescript": 4, "tune": [4, 133, 342, 344], "coeffici": [4, 40, 133, 342], "bonu": [4, 245, 247, 259, 262], "beta": [4, 35, 41, 63, 258, 259, 336, 337, 345, 347], "reduc": [4, 6, 27, 150, 337, 338], "downstream": [4, 336], "formul": [4, 342], "ob": [4, 8, 26, 28, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 65, 70, 71, 74, 114, 122, 123, 125, 135, 153, 167, 170, 199, 200, 233, 240, 246, 248, 252, 258, 263, 265, 267, 275, 276, 277, 278, 337, 341, 343, 347, 348], "rate": [4, 161, 274, 337, 338, 342], "gradient": [4, 32, 83, 87, 101, 107, 155, 189, 198, 202, 206, 215, 216, 245, 247, 248, 252, 258, 259, 260, 262, 263, 264, 265, 267, 274, 275, 276, 277, 278, 311, 336, 338, 342, 343], "norm": [4, 8, 311, 336, 337, 338, 342, 343], "easier": [4, 331, 336], "behavior": [4, 32, 83, 87, 101, 107, 155, 258, 338, 339, 342, 343], "local": [4, 7, 10, 16, 21, 32, 83, 87, 101, 107, 155, 199, 200, 208, 217, 273, 299, 342], "optima": 4, "sens": [4, 343], "product": [4, 9, 186, 187, 190, 191, 325, 326], "sum": [4, 21, 31, 33, 74, 116, 146, 197, 198, 217, 255, 274, 281, 332, 336, 337, 338, 339, 342, 343, 348], "track": [4, 13, 14, 16, 17, 18, 19, 20, 21, 42, 69, 146, 161, 231, 299, 304, 337, 339, 342, 343, 345], "stat": [4, 135, 315, 327, 337, 338], "w": [4, 65, 117, 119, 142, 153, 186, 231, 294, 337, 339, 345], "r": [4, 32, 114, 120, 135, 187, 236, 244, 274, 331, 337, 343, 348], "yield": [4, 16, 21, 32, 83, 87, 101, 107, 260, 336], "insight": 4, "auxiliari": 4, "credit": 4, "futur": [4, 32, 34, 36, 39, 83, 87, 101, 107, 139, 155, 159, 194, 245, 246, 248, 249, 251, 252, 253, 254, 258, 260, 262, 263, 264, 265, 267, 273, 330, 347], "past": [4, 337, 345], "spars": [4, 339], "ineffici": 4, "ad": [4, 13, 14, 16, 32, 35, 38, 41, 42, 49, 52, 53, 54, 55, 56, 57, 63, 65, 83, 87, 101, 107, 146, 155, 201, 202, 231, 245, 247, 249, 253, 259, 262, 265, 273, 337, 339, 345, 348], "intermedi": [4, 116, 188, 192, 227, 336, 344], "instrument": 4, "greatli": 4, "soccer": 4, "kick": 4, "ball": 4, "likelihood": [4, 336], "discov": 4, "score": [4, 40], "undesir": 4, "though": [4, 83, 87, 101, 107, 194, 338, 342], "unintention": 4, "valuabl": 4, "idiosyncrat": 4, "subtask": 4, "hierarch": [4, 347], "select": [4, 15, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 65, 102, 103, 109, 114, 116, 117, 118, 121, 122, 123, 125, 126, 127, 128, 129, 130, 132, 133, 134, 138, 140, 141, 143, 146, 147, 149, 150, 151, 152, 154, 157, 158, 160, 161, 172, 188, 192, 226, 233, 310, 336, 345], "fall": [4, 52], "explicit": [4, 11, 45, 65, 193, 345], "mechan": [4, 32, 83, 87, 101, 107, 155, 337, 343], "curios": 4, "magnitudin": 4, "domin": 4, "smaller": [4, 34, 36, 39, 83, 87, 101, 107, 190, 258, 338, 342], "addition": 4, "timestep": [4, 40, 52, 143, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 342], "realli": 4, "larg": [4, 27, 34, 36, 39, 122, 125, 157, 337, 338, 342, 345], "huge": [4, 200, 339], "std": [4, 135, 161, 203, 207, 224, 336, 348], "torchrl": [4, 5, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 329, 335, 339, 340, 341, 344, 345, 346], "initi": [4, 7, 13, 14, 16, 17, 18, 19, 20, 21, 32, 34, 36, 39, 40, 83, 87, 101, 107, 116, 135, 139, 151, 154, 155, 157, 162, 172, 186, 187, 190, 191, 196, 201, 202, 224, 228, 229, 231, 245, 246, 248, 249, 251, 252, 253, 254, 258, 259, 260, 261, 262, 263, 264, 265, 267, 273, 320, 327, 337, 339, 343, 348], "estim": [4, 70, 71, 126, 133, 221, 222, 223, 245, 246, 247, 248, 249, 251, 252, 253, 254, 258, 259, 260, 261, 262, 263, 264, 265, 267, 268, 273, 275, 276, 277, 278, 279, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 332, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "encount": [4, 55, 330, 337, 343], "unseen": 4, "extrins": 4, "wrong": 4, "bonus": 4, "denser": 4, "prior": [4, 211, 255, 342], "freshli": 4, "doesn": [4, 11, 98, 122, 125], "drop": [4, 69, 71, 170], "meant": [4, 97], "encourag": [4, 336, 337, 345], "measur": [4, 338], "novelti": 4, "revisit": 4, "previous": [4, 338, 348], "diminish": 4, "decreas": 4, "ideal": [4, 135, 343], "down": [4, 13, 14, 16, 17, 339], "anyth": 4, "try": [4, 7, 8, 9, 26, 28, 34, 36, 39, 337, 338, 339, 342, 343, 347, 348], "distil": 4, "nois": [4, 162, 202, 219, 231, 263, 267, 307, 327, 336], "exploratori": [4, 245, 247, 259, 262], "misalign": 4, "trade": 4, "unavoid": 4, "schedul": [4, 7, 40, 307, 338, 343], "divers": [4, 101, 107], "bootstrap": [4, 253, 276, 282, 283, 336, 339], "noisi": [4, 201, 202, 219, 331], "unstabl": [4, 189, 215, 216], "inher": 4, "stochast": [4, 133, 184, 202, 204, 211, 246, 250, 252, 258, 261, 263, 265, 331, 338, 342], "enemi": 4, "variabl": [4, 7, 8, 24, 25, 26, 27, 28, 29, 30, 31, 33, 44, 46, 47, 53, 56, 57, 109, 186, 187, 188, 190, 191, 192, 196, 221, 222, 223, 260, 263, 333, 337], "pomdp": [4, 345], "loos": [4, 331, 337, 338], "nonexist": 4, "architectur": [4, 180, 342], "sequenc": [4, 13, 14, 16, 17, 26, 28, 30, 31, 35, 37, 38, 40, 43, 45, 55, 58, 59, 65, 66, 68, 73, 74, 75, 77, 78, 115, 116, 117, 118, 119, 122, 124, 125, 129, 131, 135, 136, 140, 141, 142, 143, 144, 145, 146, 150, 152, 153, 154, 161, 173, 174, 181, 183, 186, 190, 194, 197, 198, 199, 200, 206, 209, 213, 225, 237, 238, 250, 293, 294, 306, 307, 308, 310, 311, 320, 331, 336, 338, 339, 341, 342, 348], "lstm": [4, 191, 192, 193, 203], "rel": [4, 65, 151, 181, 214, 336, 337, 342, 345], "tend": 4, "stabl": [4, 9, 10], "compens": 4, "descent": [4, 202], "1000": [4, 38, 70, 71, 83, 87, 101, 107, 117, 161, 228, 231, 232, 236, 257, 336, 337, 338, 339, 344, 345], "minimum": [4, 101, 107, 144, 184, 203, 214, 215, 216, 239, 242, 244, 246, 252, 260, 261, 265, 302, 336, 338, 342], "manual": [4, 18, 20, 21, 336, 339, 345], "deviat": [4, 135, 161, 172, 184, 196, 201, 202, 224, 262, 267, 336, 342], "radic": 4, "begin": [4, 13, 14, 16, 18, 19, 20, 21, 186, 187, 190, 191], "stabil": [4, 130], "stage": [4, 336, 343], "never": 4, "prevent": [4, 26, 28, 189, 215, 216, 259, 262, 309, 345], "solv": [4, 9, 10, 330, 336, 337, 338, 342, 343, 345], "entir": [4, 55, 199, 338, 343, 345], "submit": [4, 330, 347], "suffici": [4, 336], "system": [4, 5, 338, 342, 343], "adequ": [4, 163, 338, 342], "infeas": 4, "allevi": [4, 331], "prune": 4, "fire": [4, 32, 83, 87, 101, 107], "certain": [4, 18, 20, 21, 32, 45, 83, 87, 101, 107, 113, 130, 149, 155, 187, 191, 228, 259, 331, 336, 337, 338, 342, 348], "illeg": 4, "move": [4, 21, 32, 57, 83, 87, 101, 107, 121, 123, 139, 151, 154, 155, 157, 159, 161, 170, 194, 235, 309, 336, 337, 339, 347, 348], "chess": 4, "combin": [4, 154, 337, 345], "grasp": 4, "releas": [4, 7, 10, 32, 83, 87, 101, 107, 155, 265, 347], "top": [4, 74, 172, 196], "wherein": 4, "cumul": [4, 146, 150, 172, 281, 338], "q": [4, 9, 83, 87, 101, 107, 176, 177, 178, 179, 182, 183, 185, 208, 209, 217, 223, 227, 233, 234, 246, 248, 249, 251, 252, 253, 257, 258, 263, 265, 267, 273, 320, 329, 336], "flow": [4, 336, 338, 342, 343, 345], "reparameter": [4, 181, 198, 206], "soft": [4, 257, 265, 266], "critic": [4, 8, 221, 230, 245, 247, 248, 252, 258, 259, 262, 263, 264, 265, 267, 336, 338], "clip": [4, 40, 120, 144, 247, 267, 311, 338, 342, 343], "oppos": [4, 45], "incorrect": 4, "thought": [4, 83, 87, 101, 107], "bound": [4, 17, 21, 25, 26, 32, 83, 87, 101, 107, 120, 134, 161, 210, 211, 220, 226, 227, 231, 232, 233, 234, 235, 236, 239, 267, 331, 336, 337, 338, 348], "region": 4, "squash": [4, 339, 347], "tanh": [4, 173, 174, 186, 187, 189, 190, 191, 194, 200, 214, 215, 216, 239, 338, 342, 343, 344, 347], "correct": [4, 34, 36, 39, 133, 314, 338, 339], "prob": [4, 197, 198, 206, 338, 342], "rememb": 4, "remap": 4, "origin": [4, 8, 13, 14, 16, 17, 34, 36, 39, 40, 91, 123, 124, 133, 139, 155, 159, 186, 232, 235, 236, 257, 260, 262, 320, 336, 341, 343, 348], "real": [5, 55, 236, 332, 339, 343], "histor": 5, "ceas": 5, "fork": 5, "farama": [5, 94, 95, 102, 103, 338, 343], "usag": [5, 7, 52, 53, 55, 56, 57, 117, 126, 188, 192, 258, 265, 268, 331, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "bc": [5, 347], "break": [5, 13, 14, 16, 21, 32, 38, 42, 53, 55, 56, 57, 58, 70, 71, 83, 87, 101, 107, 117, 143, 161, 337, 345, 347], "against": [5, 7, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 44, 46, 47, 83, 87, 101, 107, 163, 220, 226, 227, 232, 233, 234, 235, 236, 338, 342], "13": [5, 10, 11, 70, 71, 104, 160, 335, 336, 337, 342, 343, 344, 345, 346], "construct": [5, 32, 35, 38, 41, 42, 65, 83, 87, 101, 102, 107, 122, 125, 163, 188, 192, 211, 236, 311, 331, 337, 338, 339, 343, 345, 348], "best": [5, 9, 91, 188, 192, 342, 345, 347], "gymwrapp": [5, 83, 87, 101, 107, 127, 147, 149, 160, 329, 338, 347], "feel": [5, 330, 347], "free": [5, 7, 122, 125, 245, 255, 262, 333, 338, 342, 347], "gladli": 5, "instruct": [6, 7, 10, 22, 52, 124, 126, 336, 337, 338, 339, 342, 345], "prepar": [6, 338], "conda": [6, 7, 330], "7": [6, 10, 27, 33, 35, 38, 41, 71, 150, 172, 173, 174, 193, 194, 196, 199, 281, 336, 337, 342, 343, 345, 347], "cmake": 6, "14": [6, 11, 57, 70, 71, 135, 336, 337, 338, 342, 343, 345], "activ": [6, 7, 9, 173, 174, 180, 184, 194, 199, 200, 247, 259, 262, 331, 343, 347], "sim": 6, "bullet": 6, "physic": [6, 7, 101, 104, 333, 336, 342, 343], "headless": [6, 7], "cluster": [6, 7, 8, 18, 21, 330], "withbullet": 6, "forg": [6, 7], "aihabitat": 6, "nightli": 6, "y": [6, 7, 100, 193, 199, 218, 336, 338, 342], "git": [6, 7, 10], "facebookresearch": 6, "subdirectori": 6, "verbos": 6, "export": [6, 7], "magnum_log": 6, "quiet": 6, "habitat_sim_log": 6, "remov": [6, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 39, 44, 46, 47, 49, 83, 87, 101, 107, 148, 260, 342, 348], "command": [6, 7, 10, 338, 342, 343, 348], "readm": [6, 7], "md": [6, 7], "habitatenv": [6, 329], "_has_habitat": 6, "available_env": [6, 79, 80, 81, 82, 83, 86, 87, 88, 92, 93, 94, 95, 101, 105, 106, 107, 348], "startswith": [6, 332, 336], "oserror": 6, "libllvmlit": 6, "ionstal": 6, "pointer": [6, 84, 260, 336], "env_nam": [6, 79, 81, 86, 92, 94, 98, 104, 336, 338, 348], "llvmlite": 6, "config": [6, 7, 139, 159, 175, 180, 207, 315, 316, 317, 320, 321, 324], "var": [6, 7, 32, 83, 87, 101, 107, 155, 260, 265], "ld_preload": [6, 7], "8": [6, 7, 38, 55, 56, 63, 70, 71, 80, 83, 87, 101, 107, 150, 173, 174, 176, 177, 185, 194, 221, 222, 223, 232, 235, 238, 258, 335, 336, 337, 342, 343, 344, 345, 346, 347], "bind": 6, "deactiv": [6, 7, 226], "importerror": [6, 7, 10], "usr": [6, 7, 10], "x86_64": [6, 7], "linux": [6, 7], "gnu": [6, 7], "libopengl": [6, 7], "undefin": [6, 7, 10, 32, 83, 87, 101, 107, 155, 260, 265, 345], "symbol": [6, 7, 10], "_glapi_tls_curr": [6, 7], "link": [6, 7, 337], "mujoco_env": [6, 7], "libglvnd": [6, 7], "glx": [6, 7], "cos7": [6, 7], "reinstal": [6, 7], "xvfbwrapper": [6, 7], "sysroot": [6, 7], "lib64": [6, 7], "libgldispatch": [6, 7], "offici": [7, 52], "stand": [7, 341, 343], "joint": [7, 337], "dynam": [7, 55, 57, 258, 338, 343], "contact": [7, 37], "engin": [7, 104, 343], "biomechan": 7, "graphic": 7, "anim": [7, 342], "area": 7, "demand": [7, 348], "fast": [7, 9, 80, 141, 263, 336, 337, 338], "accur": [7, 52, 53, 55, 56, 57, 337, 343, 345], "articul": 7, "recent": [7, 11, 160, 348], "acquir": [7, 338], "deepmind": [7, 8, 9, 55, 81, 82, 126, 338], "whomev": 7, "licenc": 7, "incorpor": [7, 224, 228, 229, 231, 339, 343], "relianc": 7, "obsolet": 7, "seri": [7, 8, 33, 59, 66, 74, 75, 77, 78, 107, 134, 154, 294, 331, 332, 336, 337, 338, 342, 345, 348], "legaci": 7, "pro": [7, 330], "tip": [7, 330], "glfw": 7, "osmesa": 7, "egl": 7, "advic": [7, 55, 348], "sudo": [7, 330], "enabl": [7, 8, 52, 60, 61, 69, 76, 188, 192, 231, 307, 338, 342, 343, 345], "apt": [7, 342], "libglfw3": 7, "libglew2": 7, "libgl1": 7, "mesa": 7, "libosmesa6": 7, "awar": [7, 60, 61, 62, 72, 73, 76, 337, 339], "workflow": [7, 221, 222, 223], "glew": 7, "mesalib": 7, "anaconda": 7, "libgl": 7, "cos6": 7, "menpo": 7, "glfw3": 7, "mujoco_gl": 7, "pyopengl_platform": 7, "pre": [7, 22, 32, 45, 55, 61, 83, 87, 101, 107, 139, 157, 159, 348], "binari": [7, 24, 27, 33, 115, 183, 209, 226, 227, 233, 234, 249, 252, 273], "setup": [7, 91], "mkdir": 7, "cd": 7, "tag": [7, 294, 299, 327], "earlier": [7, 336, 338, 339, 342, 345], "roboti": 7, "download": [7, 10, 52, 53, 55, 56, 57, 91, 139, 159, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 347, 348], "html": [7, 98], "wget": 7, "mujoco210": 7, "tar": 7, "gz": 7, "xf": 7, "charg": [7, 13, 14, 101, 107], "obtain": [7, 40, 83, 87, 101, 107, 116, 139, 150, 159, 172, 208, 308, 336, 338, 342], "mjkei": 7, "txt": 7, "mjlib_path": 7, "home": [7, 34, 36, 45, 58], "bin": [7, 183, 227, 331], "libmujoco210": 7, "ld_library_path": 7, "mujoco_py_mujoco_path": 7, "mujoco_py_mjkey_path": 7, "reload": 7, "later": [7, 179, 232, 236, 336, 338, 345], "nvidia": [7, 91], "older": [7, 11], "hack": [7, 336], "line": [7, 32, 83, 87, 101, 107, 337, 342], "adatp": 7, "script": [7, 163, 320, 323, 327, 331, 332, 333, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "unnot": [7, 140], "until": [7, 21, 152, 154, 338, 339, 342], "complet": [7, 9, 69, 87, 117, 149, 330, 332, 336, 338, 341], "mujoco_pi": 7, "trigger": 7, "cymj": 7, "linuxgpuextensionbuild": 7, "filenam": [7, 337, 345], "troubleshoot": 7, "gl": 7, "h": [7, 65, 117, 119, 142, 153, 186, 187, 188, 190, 191, 192, 196, 294, 337, 339, 345], "eglshim": 7, "fatal": 7, "No": 7, "directori": [7, 34, 36, 39, 45, 52, 53, 55, 56, 57, 60, 299, 333], "devel": 7, "ubuntu": [7, 91], "libglew": 7, "dev": 7, "cento": 7, "yum": 7, "glu": 7, "38": [7, 336, 337, 343], "disappear": [7, 337, 339, 341], "libstdc": 7, "6": [7, 13, 14, 16, 17, 38, 56, 57, 71, 93, 105, 106, 135, 137, 150, 173, 174, 181, 187, 193, 194, 199, 200, 204, 214, 232, 240, 320, 335, 336, 337, 342, 343, 344, 345, 346, 347, 348], "glibcxx_3": 7, "29": [7, 337, 338, 343], "compil": [7, 32, 83, 87, 101, 107, 186, 187, 190, 191], "libosmesa": 7, "libgcc": 7, "Then": [7, 160, 338, 341], "filenotfounderror": 7, "errno": 7, "patchelf": 7, "fatalerror": 7, "gladloadgl": 7, "mj_env": 7, "912": 7, "glfwerror": 7, "65537": 7, "sovl": 7, "myscript": 7, "runtimeerror": [7, 8, 26, 28, 32, 83, 87, 101, 107, 134, 155, 265, 348], "job": [7, 18, 19, 20, 22], "slurm": 7, "mjrendercontext": 7, "pyx": 7, "46": [7, 337, 339, 343], "114": [7, 343, 345], "_setup_opengl_context": 7, "opengl_context": 7, "130": [7, 343], "offscreenopenglcontext": 7, "fail": [7, 22, 26, 28, 114, 163], "opengl": [7, 342], "global": [7, 32, 83, 87, 101, 102, 103, 107, 208, 217, 232, 236, 273, 333, 336, 342], "cuda_visible_devic": 7, "id": [7, 23, 40, 65, 231, 263, 297, 320], "slurm_step_gpu": 7, "enviro": [7, 10], "black": 7, "onscreen": 7, "101": [7, 343], "correctli": [7, 32, 83, 87, 101, 107], "lgl": 7, "libegl": 7, "x11": [7, 342], "xlib": 7, "libx11": 7, "xorg": 7, "loop": [8, 13, 14, 16, 17, 34, 36, 39, 87, 170, 224, 228, 229, 231, 262, 311, 333, 336, 337, 341, 345], "sketch": [8, 333], "n_training_step": 8, "datapoint": [8, 45, 345], "onlin": [8, 13, 17, 117, 180, 207, 245, 250, 261, 262, 302, 327, 338, 339, 342, 345], "n_data_per_train": 8, "no_grad": [8, 32, 83, 87, 101, 107, 133, 186, 187, 190, 191, 275, 276, 277, 278, 338, 339, 342], "replay_buff": [8, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 308, 323, 336, 337, 338, 342, 345], "loss_fn": [8, 339, 347], "backward": [8, 32, 83, 87, 101, 107, 161, 186, 187, 190, 191, 245, 246, 248, 252, 258, 262, 263, 264, 265, 267, 336, 338, 339, 342, 343], "zero_grad": [8, 32, 83, 87, 101, 107, 333, 336, 338, 339, 342, 343], "backpropag": [8, 245, 246, 247, 252, 253, 254, 255, 256, 258, 259, 260, 262, 263, 264, 265, 267, 273, 342, 343], "differenti": [8, 45, 133, 275, 276, 277, 278, 339, 342, 343], "denomin": 8, "artifact": 8, "numer": [8, 38, 161, 189, 215, 216, 220, 226, 227, 232, 233, 234, 235, 236, 309, 338, 345, 348], "misconcept": 8, "freed": 8, "appear": [8, 33, 55, 70, 71, 343, 345], "compuat": 8, "twice": 8, "fix": [8, 151, 246, 261, 265, 337, 343, 348], "retain_graph": 8, "discuss": [8, 9, 342], "inplac": [8, 32, 34, 36, 39, 83, 87, 101, 107, 155, 265, 336], "accumul": 8, "onto": [8, 33, 34, 36, 39, 167, 220, 224, 226, 227, 231, 232, 233, 234, 235, 236, 339, 343], "exclud": [8, 52, 56, 117, 127, 170, 208, 342, 345], "forward": [8, 32, 83, 87, 101, 107, 114, 116, 117, 118, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 135, 138, 139, 140, 141, 143, 146, 147, 149, 150, 151, 152, 154, 157, 158, 160, 161, 173, 174, 175, 176, 177, 178, 179, 180, 182, 183, 184, 185, 186, 187, 188, 190, 191, 192, 193, 194, 195, 199, 200, 201, 203, 204, 205, 207, 208, 210, 211, 213, 217, 218, 224, 225, 227, 228, 229, 231, 232, 234, 235, 236, 239, 240, 242, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 258, 259, 260, 261, 262, 263, 264, 265, 267, 273, 275, 276, 277, 278, 279, 332, 343, 347], "submodul": [8, 32, 83, 87, 101, 107, 111, 260], "param": [8, 32, 40, 83, 87, 97, 101, 107, 121, 122, 123, 127, 133, 141, 147, 149, 154, 181, 183, 214, 225, 232, 235, 238, 240, 260, 269, 272, 275, 276, 277, 278, 279, 336, 342, 343, 344, 347], "grad": [8, 32, 83, 87, 101, 107, 336, 338], "whose": [8, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 40, 44, 46, 47, 83, 87, 101, 102, 103, 107, 121, 139, 151, 154, 155, 157, 159, 203, 208, 235], "neg": [8, 13, 14, 16, 17, 18, 19, 20, 21, 35, 41, 63, 117, 129, 140, 156, 254, 332, 338, 342, 343], "ask": [8, 55, 70, 71, 336, 338, 339, 342, 344, 348], "much": [8, 13, 14, 35, 41, 55, 63, 101, 107, 259, 262, 338, 342, 343, 345, 348], "render": [8, 307, 336, 337, 338], "upon": [8, 343], "factor": [8, 32, 143, 189, 202, 215, 216, 224, 228, 229, 231, 246, 251, 253, 254, 256, 266, 281, 336, 337, 342, 345, 348], "fit": [8, 11, 135, 332, 333, 336], "bottlneck": 8, "brax": [8, 79, 80, 141, 348], "jax": [8, 11], "improperli": 8, "item": [8, 13, 26, 28, 32, 38, 45, 58, 69, 74, 83, 87, 101, 107, 128, 155, 197, 198, 248, 249, 251, 265, 302, 332, 333, 336, 338, 339, 342, 343, 345], "underli": [8, 83, 87, 101, 107, 260, 343], "tedeiou": 8, "priorit": [8, 35, 41, 63, 248, 249, 251, 252, 258, 263, 265, 267, 336, 337], "amount": [8, 231, 337, 345], "contigu": [8, 55, 56, 83, 87, 101, 107, 167, 338, 342, 343, 345, 347, 348], "costli": [8, 343], "concaten": [8, 21, 30, 31, 55, 117, 118, 135, 154, 190, 194, 238, 336, 337, 342, 343, 345, 348], "constitut": [8, 337, 342, 343], "plain": 8, "profil": 8, "fulli": [8, 32, 83, 87, 101, 107, 187, 191, 337, 343, 345], "frequent": [8, 345], "program": [8, 258, 348], "functorch": [8, 10], "incl": 8, "suit": [8, 82, 338, 348], "mujoco_instal": 8, "valueerror": 8, "bad": 8, "fds_to_keep": 8, "expand": [8, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 36, 39, 44, 46, 47, 70, 71, 235, 238, 260, 342, 343, 347], "new_shap": 8, "permut": [8, 69, 137, 347, 348], "idea": [9, 263, 333, 339, 342], "introductori": 9, "intro": [9, 338, 339], "dai": [9, 347], "2022": [9, 10, 343, 347], "spin": 9, "deep": [9, 117, 176, 177, 178, 179, 182, 231, 245, 257, 265, 266, 336], "hug": 9, "syllabu": 9, "lectur": 9, "awesom": 9, "curat": 9, "succinct": 9, "summari": [9, 135, 161, 336, 337, 338, 339], "reddit": 9, "reagent": 9, "orient": [9, 57, 348], "baselines3": 9, "tf": 9, "bandit": [9, 100], "tensorflow": [9, 197, 198], "kera": 9, "acm": 9, "dopamin": 9, "prototyp": 9, "salina": 9, "sequenti": [9, 32, 83, 87, 101, 107, 116, 133, 237, 238, 262, 331, 338, 339, 342, 343, 344, 348], "tianshou": 9, "eleg": 9, "rlpyt": 9, "rllib": 9, "industri": [9, 347], "grade": 9, "factori": [9, 43], "throughput": [9, 336], "cherri": 9, "jaxrl": 9, "space": [9, 33, 44, 83, 87, 101, 107, 120, 124, 167, 180, 183, 199, 205, 209, 220, 224, 226, 227, 229, 231, 232, 233, 234, 235, 236, 238, 239, 240, 249, 251, 252, 267, 273, 331, 337, 338, 339, 342, 343, 347, 348], "mbrl": [9, 97, 331], "rlmeta": 9, "light": 9, "elegantrl": 9, "cloud": 9, "mtrl": 9, "baselin": 9, "689": [10, 343], "_torchrl": 10, "_zn8pybind116detail11type_casterin2at6tensoreve4loadens_6handleeb": 10, "colab": [10, 338, 339, 342], "notebook": [10, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 347, 348], "24": [10, 56, 71, 337, 338, 339, 343, 344, 345], "11": [10, 27, 33, 45, 60, 61, 71, 76, 84, 153, 172, 196, 335, 336, 337, 338, 342, 343, 344, 345, 346], "12": [10, 56, 60, 61, 71, 76, 105, 106, 336, 337, 338, 339, 342, 343, 345], "pip": [10, 54, 342, 347, 348], "pip3": [10, 338, 339, 342], "extra": [10, 32, 83, 87, 101, 107, 117, 161, 170, 331, 338, 339, 345], "url": 10, "org": [10, 35, 55, 57, 63, 117, 139, 157, 175, 176, 177, 178, 179, 180, 183, 184, 185, 190, 196, 197, 198, 202, 204, 205, 207, 208, 210, 211, 217, 227, 231, 245, 246, 249, 250, 251, 253, 254, 255, 256, 257, 258, 261, 262, 264, 265, 266, 275, 280, 288, 344], "whl": 10, "u": [10, 54, 186, 187, 190, 191, 343], "There": [10, 65, 188, 192, 331, 333, 338, 339, 342, 343, 345, 348], "upgrad": 10, "relas": 10, "lib_version_her": 10, "module_nam": [11, 260], "str": [11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 52, 53, 54, 55, 56, 57, 58, 60, 63, 65, 81, 83, 85, 87, 100, 101, 102, 103, 104, 107, 109, 110, 111, 114, 117, 124, 126, 132, 133, 135, 139, 140, 142, 149, 150, 155, 157, 159, 160, 161, 164, 168, 170, 171, 172, 173, 174, 176, 177, 178, 179, 182, 183, 185, 188, 192, 193, 194, 195, 196, 199, 200, 201, 202, 203, 208, 209, 217, 220, 226, 227, 232, 233, 234, 235, 236, 239, 240, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 255, 256, 258, 259, 260, 261, 262, 263, 264, 265, 267, 270, 273, 274, 275, 276, 277, 278, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 315, 320, 321, 327, 337, 338], "callabl": [11, 13, 14, 16, 17, 18, 19, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 38, 41, 42, 44, 45, 46, 47, 52, 53, 54, 55, 56, 57, 65, 83, 84, 87, 97, 101, 107, 113, 126, 244, 316, 317, 325, 326, 327, 337], "from_vers": 11, "to_vers": 11, "intersect": [11, 149], "vs": [11, 188, 192, 193, 347], "longer": [11, 337, 342, 345], "self": [11, 26, 28, 32, 34, 36, 39, 83, 87, 97, 101, 107, 114, 121, 122, 125, 139, 151, 154, 155, 157, 159, 172, 183, 196, 208, 217, 224, 228, 229, 232, 235, 240, 245, 246, 248, 249, 251, 252, 253, 254, 258, 260, 262, 263, 264, 265, 267, 273, 275, 276, 277, 278, 279, 333, 336, 343, 347], "x": [11, 23, 26, 32, 38, 40, 55, 71, 133, 153, 174, 183, 185, 186, 187, 188, 190, 191, 192, 193, 194, 196, 199, 200, 218, 226, 232, 233, 242, 244, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 294, 311, 336, 338, 343, 345, 347], "23": [11, 56, 71, 336, 337, 343], "lambda": [11, 13, 14, 16, 17, 21, 22, 38, 83, 84, 87, 101, 107, 113, 133, 151, 218, 226, 233, 254, 256, 275, 278, 286, 287, 291, 292, 323, 332, 336, 337, 342, 345, 347, 348], "import_modul": 11, "27": [11, 335, 337, 338, 343, 345, 346], "get_class_that_defined_method": 11, "f": [11, 87, 191, 244, 275, 276, 277, 278, 279, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 336, 337, 338, 339, 342, 343, 345, 348], "otherwis": [11, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 39, 43, 44, 45, 46, 47, 52, 58, 70, 71, 83, 87, 96, 101, 102, 103, 107, 109, 117, 124, 135, 150, 151, 152, 155, 161, 186, 189, 190, 199, 200, 215, 216, 226, 233, 239, 246, 255, 260, 261, 265, 307, 308, 333, 336, 337, 338, 339, 343, 348], "classmethod": [11, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 36, 39, 44, 46, 47, 157, 175, 207], "module_set": 11, "setters_dict": 11, "dict": [11, 13, 14, 16, 17, 18, 19, 20, 21, 22, 24, 26, 27, 28, 29, 30, 32, 34, 36, 39, 56, 83, 84, 87, 101, 102, 103, 107, 109, 110, 133, 151, 155, 160, 161, 173, 174, 175, 176, 177, 178, 179, 180, 185, 193, 194, 207, 232, 236, 265, 298, 299, 307, 316, 317, 320, 325, 326, 327, 336, 337, 338, 348], "setter": 11, "setter_dict": 11, "copi": [11, 18, 19, 20, 21, 32, 34, 36, 39, 40, 45, 55, 83, 87, 101, 107, 141, 150, 155, 170, 188, 192, 225, 260, 265, 332, 336, 337, 339, 345], "kwd": 12, "policy_weight": [12, 13, 14, 16, 17, 19, 20], "tensordictbas": [12, 13, 14, 16, 17, 18, 19, 20, 21, 23, 26, 28, 29, 32, 41, 42, 52, 53, 54, 55, 56, 57, 83, 85, 87, 101, 107, 114, 116, 117, 118, 121, 122, 123, 126, 127, 128, 129, 132, 133, 138, 140, 141, 143, 146, 147, 149, 150, 151, 152, 154, 160, 161, 170, 171, 172, 188, 192, 195, 196, 224, 225, 227, 228, 229, 231, 234, 235, 236, 245, 246, 247, 248, 249, 250, 251, 252, 253, 258, 259, 260, 261, 262, 263, 264, 265, 267, 273, 274, 275, 276, 277, 278, 279, 311, 336, 343], "udpdat": [12, 13, 14, 16, 17, 19, 20], "create_env_fn": [13, 14, 16, 17, 18, 19, 20, 21, 84, 101, 107, 336, 347], "int": [13, 14, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 74, 75, 76, 77, 81, 83, 87, 97, 101, 102, 103, 107, 109, 116, 117, 118, 119, 124, 129, 130, 134, 135, 137, 139, 140, 142, 148, 149, 152, 155, 156, 157, 159, 163, 167, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 183, 184, 185, 186, 187, 189, 190, 191, 193, 194, 196, 197, 198, 199, 200, 201, 202, 204, 205, 207, 208, 209, 210, 211, 213, 214, 215, 217, 218, 224, 225, 226, 227, 228, 229, 231, 232, 234, 235, 236, 245, 246, 247, 252, 254, 255, 259, 260, 261, 262, 263, 267, 280, 281, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 302, 303, 304, 307, 308, 311, 313, 320, 321, 325, 326, 327, 343], "200": [13, 14, 16, 17, 21, 32, 83, 87, 101, 107, 108, 109, 143, 176, 177, 184, 210, 211, 336, 339, 343], "total_fram": [13, 14, 16, 17, 18, 19, 20, 21, 117, 143, 311, 314, 323, 333, 336, 337, 338, 339, 342, 345, 347], "device_typ": [13, 16, 27, 30, 33, 173, 174, 175, 176, 177, 178, 179, 185, 194, 201, 202, 207], "create_env_kwarg": [13, 14, 16, 17, 84, 98, 101, 107, 336], "postproc": [13, 14, 16, 17, 18, 19, 20, 21, 143, 337, 345], "explorationtyp": [13, 14, 16, 20, 21, 260, 307, 336, 337, 338, 339, 347], "interactiontyp": [13, 16, 18, 19, 20, 21, 165, 169, 232, 236, 307], "exploration_mod": [13, 16, 18, 19, 20, 329, 331], "preemptive_threshold": [13, 14], "float": [13, 14, 25, 27, 32, 33, 35, 40, 41, 46, 55, 63, 65, 83, 87, 101, 107, 117, 121, 122, 125, 133, 135, 139, 143, 144, 145, 150, 151, 153, 154, 155, 157, 159, 161, 181, 184, 186, 189, 190, 194, 197, 198, 201, 202, 210, 211, 214, 216, 224, 235, 239, 242, 243, 244, 245, 246, 251, 252, 255, 256, 257, 258, 261, 263, 265, 266, 267, 274, 280, 281, 282, 283, 284, 285, 286, 287, 288, 309, 336, 337, 345, 348], "num_thread": [13, 14, 34, 36, 39, 101, 107], "num_sub_thread": [13, 14, 101, 107], "datacollector": [13, 14, 16, 17, 232, 236, 262, 338], "recept": 13, "safe": [13, 14, 24, 25, 26, 27, 28, 29, 30, 31, 33, 44, 46, 47, 220, 224, 226, 227, 231, 232, 233, 234, 235, 236, 238, 331, 347], "stepcount": [13, 83, 87, 101, 107, 154, 336, 337, 338, 339, 342, 347], "env_mak": [13, 14, 16, 21, 323, 348], "50": [13, 14, 16, 21, 37, 40, 57, 70, 71, 337, 338, 339, 342, 343], "2000": [13, 14, 16, 45, 90, 338, 345], "enumer": [13, 14, 16, 21, 32, 38, 42, 71, 83, 87, 101, 107, 268, 332, 336, 337, 338, 339, 345, 347], "int64": [13, 14, 16, 24, 27, 30, 34, 36, 37, 39, 40, 41, 43, 45, 53, 55, 56, 57, 58, 83, 87, 96, 100, 101, 102, 103, 105, 106, 107, 126, 137, 143, 149, 183, 209, 226, 227, 231, 232, 233, 234, 331, 338, 339, 343, 345, 347, 348], "step_count": [13, 14, 16, 83, 87, 101, 107, 149, 338, 339, 347], "shutdown": [13, 14, 16, 17, 21, 336, 347], "del": [13, 14, 16, 336, 338, 341, 347, 348], "randompolici": [13, 14, 16, 18, 19, 20, 22, 117, 143, 329, 345], "lifespan": [13, 14, 16, 18, 19, 20, 337], "divis": [13, 14, 16, 18, 19, 20, 55, 70, 71, 342], "endless": [13, 14, 16, 18, 19, 20], "dictionari": [13, 14, 16, 17, 18, 19, 20, 21, 26, 32, 34, 36, 39, 45, 68, 70, 71, 83, 87, 101, 107, 109, 151, 155, 232, 236, 265, 307, 325, 326, 327, 333, 337, 338, 343, 348], "span": [13, 14, 16, 17, 18, 19, 20, 21, 55], "n_step": [13, 14, 16, 17, 18, 19, 20, 21, 32, 337, 338, 342], "ignor": [13, 14, 16, 17, 18, 19, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 37, 43, 44, 46, 47, 83, 87, 101, 107, 124, 127, 147, 153, 173, 174, 175, 176, 177, 178, 179, 180, 182, 184, 185, 186, 187, 188, 190, 191, 192, 193, 194, 197, 198, 199, 200, 203, 204, 205, 207, 210, 211, 213, 218, 224, 225, 227, 228, 229, 231, 234, 239, 242, 275, 345], "mainli": [13, 14, 16, 17, 18, 19, 20, 21, 40, 331, 342, 343], "round": [13, 14, 16], "closest": [13, 14, 16], "post": [13, 14, 16, 18, 19, 20, 21, 32, 53, 83, 87, 101, 107], "multistep": [13, 14, 16, 18, 19, 20, 21, 329, 337], "return_same_td": [13, 14, 16], "cautious": [13, 14, 16, 262], "whole": [13, 14, 16, 26, 28, 32, 45, 83, 87, 101, 107, 155, 232, 265, 302, 336, 338], "boolm": [13, 14], "update_policy_weight_": [13, 14], "sync": [13, 14, 18, 19, 20, 21, 313, 323, 333, 336, 347], "async": [13, 14, 18, 19, 20, 21, 160, 336, 347], "ratio": [13, 14, 40, 336, 338], "finish": [13, 14, 21, 87, 143, 348], "rest": [13, 14, 331, 338, 339, 343, 347], "earli": [13, 14, 87, 149, 347], "thread": [13, 14, 34, 36, 39, 98, 101, 107], "equal": [13, 14, 70, 71, 98, 101, 107, 134, 135, 173, 174, 182, 186, 188, 190, 192, 194, 200, 266, 270, 302, 325, 326, 336, 338, 344], "plu": [13, 14, 40, 101, 107, 343], "safeti": [13, 14, 97, 101, 107], "harm": [13, 14, 101, 107], "ordereddict": [13, 14, 16, 17, 21, 32, 83, 87, 101, 107, 155, 161, 265, 337], "form": [13, 14, 17, 32, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 83, 87, 101, 107, 161, 186, 188, 190, 192, 244, 245, 247, 259, 262, 311, 331, 342], "worker0": [13, 14, 17], "state_dict0": [13, 14, 17], "worker1": [13, 14, 17], "state_dict1": [13, 14, 17], "reset_idx": [13, 14, 17], "static_se": [13, 14, 16, 17, 21, 83, 87, 101, 107, 155], "integ": [13, 14, 16, 17, 23, 30, 31, 32, 33, 40, 47, 72, 83, 87, 101, 107, 126, 130, 135, 149, 173, 174, 194, 199, 200, 258, 265, 345], "increment": [13, 14, 16, 17, 83, 87, 101, 107, 259], "env_fn": [13, 14, 16, 17, 84, 325, 326], "env_fn_parallel": [13, 14, 16, 17], "100": [13, 14, 16, 17, 32, 35, 38, 41, 42, 43, 52, 53, 54, 55, 56, 57, 60, 61, 65, 83, 87, 101, 107, 120, 126, 135, 143, 149, 199, 227, 303, 323, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "300": [13, 14, 16, 17, 70, 71, 178, 179, 343], "out_se": [13, 14, 16, 17, 348], "shut": [13, 14, 16, 17], "irrevers": [13, 14, 17], "kwarg": [14, 16, 17, 21, 25, 26, 32, 52, 60, 61, 65, 74, 76, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 112, 114, 121, 139, 148, 151, 154, 155, 156, 158, 159, 162, 172, 173, 174, 176, 177, 178, 179, 182, 185, 188, 189, 192, 194, 195, 196, 199, 200, 206, 214, 216, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 258, 259, 260, 261, 262, 263, 264, 265, 267, 269, 273, 274, 275, 276, 277, 278, 279, 294, 298, 299, 301, 304, 311, 316, 317, 320, 324, 325, 326, 332, 338, 342], "tupl": [15, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 41, 42, 44, 46, 47, 52, 53, 54, 55, 56, 57, 65, 73, 83, 87, 101, 107, 114, 124, 126, 132, 133, 135, 140, 170, 176, 182, 183, 188, 191, 192, 193, 194, 200, 203, 207, 208, 209, 226, 227, 233, 234, 239, 245, 246, 248, 252, 254, 258, 260, 262, 263, 264, 265, 267, 275, 276, 277, 278, 294, 305, 307, 309, 318, 319, 336], "rand": [15, 24, 25, 26, 27, 28, 29, 30, 31, 33, 35, 38, 41, 42, 44, 46, 47, 52, 53, 54, 55, 56, 57, 65, 80, 93, 97, 114, 122, 125, 172, 196, 232, 245, 246, 248, 249, 251, 252, 258, 262, 263, 265, 267, 343, 347, 348], "describ": [15, 44, 118, 154, 214, 215, 249, 297, 332, 336, 338, 342, 343, 348], "tensor_spec": [15, 114, 171, 252, 262, 264], "boundedtensorspec": [15, 22, 26, 83, 87, 101, 107, 228, 229, 231, 232, 239, 245, 246, 248, 258, 262, 263, 265, 267, 329, 338, 342, 343, 347, 348], "cube": 15, "envcreat": [16, 22, 323, 324, 327, 329, 336, 337, 347, 348], "interruptor": 16, "_interruptor": 16, "start_collect": 16, "stop_collect": 16, "preeptiv": 16, "chunk": 16, "policy_state_dict": 16, "env_state_dict": 16, "close": [16, 17, 87, 98, 133, 245, 247, 259, 262, 336, 341, 343, 347], "pin_memori": [17, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 138, 336, 347], "regular": [17, 34, 36, 39, 68, 83, 87, 101, 107, 155, 209, 227, 233, 234, 235, 236, 253, 313, 329, 333, 336, 337, 345, 348], "mere": 17, "greater": [17, 70, 71, 188, 192, 336, 337, 347], "sent": [17, 60, 61, 76, 161], "server": 17, "postprocessor": 17, "collector_class": [18, 19, 20, 21], "collector_kwarg": [18, 19, 20, 21], "num_workers_per_collector": [18, 19, 20, 21], "slurm_kwarg": [18, 19, 20], "update_after_each_batch": [18, 20, 21], "max_weight_update_interv": [18, 19, 20, 21], "tcp_port": [18, 19, 20, 22], "deriv": [18, 19, 20, 21, 311], "string": [18, 19, 20, 32, 37, 45, 58, 83, 87, 101, 107, 113, 139, 149, 159, 188, 192, 226, 232, 233, 244, 293, 310, 320, 332, 336, 338, 339], "respect": [18, 19, 20, 32, 83, 87, 101, 107, 115, 121, 122, 125, 139, 140, 151, 154, 155, 157, 159, 186, 190, 199, 211, 235, 240, 306, 338, 339, 342], "subnod": [18, 19, 20, 21], "readi": [18, 20, 21, 330, 337, 338, 341, 345], "serv": [18, 20, 21, 89, 345, 348], "fashion": [18, 20, 21, 34, 36, 39, 71], "executor": [18, 19, 20], "distributed_back": [18, 19], "ucc": [18, 19], "overwritten": [18, 20, 21, 53, 55, 56, 57, 83, 87, 101, 107, 129], "seen": [18, 20, 21, 332, 336, 337, 339, 342, 345], "turn": [18, 20, 21, 34, 36, 39, 131, 156, 160, 226, 307, 332, 336, 337, 339, 343, 344], "submitit_delai": [18, 22], "former": [18, 19, 20, 35, 38, 41, 42, 52, 83, 87, 101, 107, 173, 174, 175, 176, 177, 178, 179, 180, 182, 184, 185, 186, 187, 188, 190, 191, 192, 193, 194, 199, 200, 203, 204, 205, 207, 210, 211, 213, 218, 224, 225, 227, 228, 229, 231, 234, 239, 242, 336], "whilst": [18, 19, 20], "latter": [18, 19, 20, 32, 52, 83, 87, 101, 107, 173, 174, 175, 176, 177, 178, 179, 180, 182, 184, 185, 186, 187, 188, 190, 191, 192, 193, 194, 199, 200, 203, 204, 205, 207, 210, 211, 213, 218, 224, 225, 227, 228, 229, 231, 234, 239, 242, 262, 325, 326], "homonym": [18, 19, 20, 343], "visit": [18, 19, 20], "facebookincub": [18, 19, 20], "tcp": [18, 19, 20, 22], "port": [18, 19, 20, 22], "10003": [18, 19, 20, 22], "worker_rank": [18, 19, 21], "update_interv": 19, "frequenc": [19, 336], "visible_devic": 20, "tensorpipe_opt": 20, "experiment": [20, 33, 232, 236], "tensorpiperpcbackendopt": 20, "_td": [21, 84], "ray_init_config": 21, "remote_config": 21, "num_collector": [21, 325, 326, 336, 337], "coordin": 21, "init": [21, 32, 83, 87, 101, 107, 336, 337, 338], "autodetect": 21, "similarli": [21, 32, 69, 73, 83, 87, 101, 107, 199, 237, 238, 258, 348], "num_cpu": 21, "num_gpu": 21, "1024": [21, 180, 337, 345], "equat": [21, 55, 87, 231, 244, 247, 266, 338, 343], "exce": [21, 338, 345], "indefinit": [21, 51], "raydistributedcollector": 21, "distributed_collector": 21, "10000": [21, 311, 336, 338, 339], "add_collector": 21, "local_polici": 21, "remote_collector": 21, "stop_remote_collector": 21, "num_job": 22, "tcpport": 22, "submitit_main_conf": 22, "slurm_cpus_per_task": 22, "slurm_gpus_per_nod": 22, "slurm_partit": 22, "timeout_min": 22, "submitit_collection_conf": 22, "delai": 22, "jump": 22, "host": [22, 32, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 235], "wherea": [22, 55, 124, 260, 333], "satellit": 22, "rendezv": 22, "hang": 22, "forev": 22, "default_config": [22, 175, 180, 207, 225], "default_slurm_conf_main": 22, "default_slurm_conf": 22, "rollout_tensordict": 23, "durat": [23, 342], "meta": [23, 44, 52, 85, 333, 338, 342, 345], "aren": [23, 150, 339], "assert_is_in": [24, 25, 26, 27, 28, 29, 30, 31, 33, 44, 46, 47], "belong": [24, 25, 26, 27, 28, 29, 30, 31, 33, 44, 46, 47, 55, 160, 161, 331, 336, 342], "encod": [24, 25, 26, 27, 28, 29, 30, 31, 33, 35, 38, 41, 42, 44, 46, 47, 124, 205, 206, 210, 244, 331, 337, 338, 339, 343, 345], "ndarrai": [24, 25, 26, 27, 28, 29, 30, 31, 33, 44, 46, 47, 87, 231, 239], "ignore_devic": [24, 25, 26, 27, 28, 29, 30, 31, 33, 44, 46, 47], "np": [24, 25, 26, 27, 28, 29, 30, 31, 33, 44, 46, 47, 87, 239, 343], "cast": [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 44, 46, 47, 58, 83, 87, 101, 107, 121, 122, 125, 133, 139, 151, 154, 155, 157, 159, 161, 235, 320, 348], "least": [24, 25, 26, 27, 28, 29, 30, 31, 33, 44, 46, 47, 120, 348], "complient": [24, 25, 26, 27, 28, 29, 30, 31, 33, 44, 46, 47], "singleton": [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 44, 46, 47, 173, 174, 194, 212, 213], "implements_for_spec": [24, 25, 26, 27, 28, 29, 30, 31, 33, 44, 46, 47], "torch_funct": [24, 25, 26, 27, 28, 29, 30, 31, 33, 44, 46, 47], "tensor_to_index": [24, 25, 26, 27, 28, 29, 30, 31, 33, 44, 46, 47], "is_in": [24, 25, 26, 27, 28, 29, 30, 31, 33, 44, 46, 47, 348], "project": [24, 25, 26, 27, 28, 29, 30, 31, 33, 44, 46, 47, 124, 188, 190, 220, 224, 226, 227, 231, 232, 233, 234, 235, 236, 331, 347, 348], "uniform": [24, 25, 26, 27, 28, 29, 30, 31, 33, 35, 41, 44, 46, 47, 63], "unbound": [24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 36, 39, 44, 46, 47, 151, 167, 343, 345], "squeez": [24, 25, 26, 27, 28, 29, 30, 31, 33, 44, 46, 47, 117, 148, 150, 173, 174, 212, 213, 336, 343, 345], "dim": [24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 36, 39, 44, 46, 47, 70, 117, 118, 137, 151, 156, 161, 191, 193, 213, 218, 327, 337, 338, 343, 345], "to_numpi": [24, 25, 26, 27, 28, 29, 30, 31, 33, 44, 46, 47], "transformed_in": [24, 25, 26, 27, 28, 29, 30, 31, 33, 44, 46, 47, 154, 155, 203, 214, 327], "check_spec_encod": [24, 25, 26, 27, 28, 29, 30, 31, 33, 44, 46, 47], "to_one_hot": [24, 27, 30], "hot": [24, 27, 30, 31, 33, 102, 103, 109, 114, 124, 183, 206, 209, 226, 227, 233, 234, 245, 246, 248, 249, 251, 252, 253, 254, 258, 260, 262, 263, 264, 265, 267, 273, 339], "to_one_hot_spec": [24, 27, 30], "onehotdiscretetensorspec": [24, 27, 183, 209, 226, 233, 249, 251, 252, 273, 329, 331], "convert": [24, 27, 30, 31, 32, 33, 34, 36, 39, 45, 83, 87, 101, 107, 121, 122, 125, 139, 151, 154, 155, 157, 159, 161, 235, 244, 260, 336, 337, 338, 343, 345], "type_check": [24, 25, 26, 27, 28, 29, 30, 31, 33, 44, 46, 47], "fill": [24, 25, 26, 27, 28, 29, 30, 31, 33, 44, 46, 47, 151, 160, 192, 339, 343, 344], "upper": [25, 68, 134], "unnam": 26, "pixels_spec": 26, "observation_vector_spec": 26, "composite_spec": 26, "observation_vector": [26, 118, 320, 336], "td_project": 26, "is_empti": [26, 28, 343], "include_nest": [26, 28], "leaves_onli": [26, 28], "itemsview": 26, "immedi": [26, 28, 32, 83, 87, 101, 107, 274, 342], "children": [26, 28, 32, 83, 87, 101, 107], "keysview": [26, 28], "reflect": [26, 28, 102, 103, 160, 170, 260, 314, 337, 338, 339, 342], "lock_": [26, 28], "recurs": [26, 28, 32, 48, 49, 83, 87, 101, 107, 260], "succeed": [26, 28], "selected_kei": [26, 28, 147, 336], "unlock_": [26, 28], "unlock": [26, 28, 34, 36, 39], "valuesview": 26, "onehottensorspec": 27, "action_valu": [27, 33, 182, 183, 209, 226, 227, 233, 234, 252, 260, 273, 331, 339], "arang": [27, 33, 183, 198, 226, 302, 331, 345], "argmax": [27, 183, 209, 227, 234], "chosen_action_valu": [27, 33, 208, 209, 217, 233, 234, 273, 331, 339], "outcom": [27, 33, 181, 214], "lazi": [28, 29, 49, 50, 83, 87, 101, 107, 109, 139, 157, 173, 201, 237, 238, 336, 337, 341, 345, 348], "represent": [28, 29, 32, 83, 87, 101, 107, 139, 157, 159, 336, 343, 344, 348], "drawn": [28, 29, 151, 228, 232, 236, 338, 342], "lazystackedtensordict": [28, 83, 87, 97, 101, 107, 341, 347], "heterogen": [28, 29, 96, 102, 103, 163, 199, 200, 336, 337], "thrown": [29, 32, 83, 87, 101, 107, 345], "nvec": [30, 31], "cardin": [30, 31, 183, 209, 226, 227, 234, 338], "ax": [30, 201, 202], "m": [30, 32, 83, 87, 101, 107, 124, 236, 331, 337, 343], "ts": [30, 31], "multionehotdiscretetensorspec": [30, 249, 252, 273, 329], "use_regist": [31, 33], "to_categor": [31, 33], "to_categorical_spec": [31, 33], "multidiscretetensorspec": [31, 329], "gamma": [32, 143, 196, 245, 246, 248, 249, 251, 252, 253, 254, 256, 258, 260, 262, 263, 264, 265, 267, 268, 269, 273, 274, 275, 276, 277, 278, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 323, 332, 336, 337, 338, 342, 347], "sutton": [32, 332, 342], "1988": 32, "tempor": [32, 188, 192, 196, 276, 277, 282, 283], "44": [32, 337, 343, 344], "discount": [32, 55, 84, 143, 246, 251, 253, 254, 256, 274, 275, 276, 277, 278, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 332, 337, 338, 342], "ahead": [32, 348], "add_modul": [32, 83, 87, 101, 107], "child": [32, 83, 87, 101, 107], "fn": [32, 37, 83, 87, 101, 107, 203, 325, 326], "init_weight": [32, 83, 87, 101, 107], "fill_": [32, 83, 87, 101, 107, 337, 339, 348], "net": [32, 83, 87, 101, 107, 193, 200, 245, 246, 252, 258, 262, 263, 264, 265, 320, 323, 337, 343, 344, 347], "in_featur": [32, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 173, 174, 176, 177, 178, 179, 193, 194, 200, 201, 202, 221, 235, 249, 251, 347], "out_featur": [32, 83, 87, 97, 101, 107, 121, 139, 151, 154, 155, 157, 159, 172, 173, 174, 176, 177, 178, 179, 184, 185, 188, 192, 193, 194, 196, 199, 200, 201, 202, 221, 226, 235, 249, 251, 331, 336, 339, 347], "bia": [32, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 173, 174, 184, 186, 187, 188, 190, 191, 192, 194, 200, 201, 202, 203, 228, 229, 231, 235, 242, 243, 244, 260, 265, 332, 336, 337, 338, 339, 342, 347], "requires_grad": [32, 83, 87, 101, 107, 133], "bfloat16": [32, 83, 87, 101, 107], "datatyp": [32, 83, 87, 101, 107, 345], "member": [32, 83, 87, 101, 107, 260], "xdoctest": [32, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 235, 260, 265], "skip": [32, 83, 87, 101, 107, 130, 155, 163, 232, 236, 260, 265, 275, 276, 277, 278, 293, 294, 304, 307, 336, 337, 338, 343], "buf": [32, 83, 87, 101, 107], "20l": [32, 83, 87, 101, 107, 260], "1l": [32, 83, 87, 101, 107, 260], "5l": [32, 83, 87, 101, 107, 260], "__call__": [32, 37, 83, 87, 101, 107, 236, 333], "doubl": [32, 46, 83, 87, 101, 107, 121, 122, 123, 125, 139, 151, 154, 155, 157, 159, 235, 249, 253, 257, 263, 266, 273, 336, 337, 338, 339, 348], "eval": [32, 83, 87, 101, 107, 155, 161, 336, 337, 338], "evalu": [32, 83, 87, 101, 107, 155, 181, 197, 198, 206, 216, 263, 316, 317, 337, 338], "dropout": [32, 83, 87, 101, 107, 155, 186, 188, 190, 192, 194, 339], "batchnorm": [32, 83, 87, 101, 107, 155], "disabl": [32, 83, 87, 101, 107, 155, 189, 216, 336], "comparison": [32, 83, 87, 101, 107, 155, 260, 336, 337], "similar": [32, 55, 83, 87, 101, 102, 103, 107, 121, 139, 151, 154, 155, 157, 158, 159, 161, 221, 223, 232, 235, 236, 332, 336, 337, 338, 339, 343, 348], "confus": [32, 83, 87, 101, 107, 155], "extra_repr": [32, 83, 87, 101, 107], "shift": [32, 242, 275, 276, 277, 278, 338], "nontermin": 32, "original_reward": 32, "newli": [32, 83, 87, 101, 107], "OR": 32, "get_buff": [32, 83, 87, 101, 107], "throw": [32, 34, 36, 39, 83, 87, 101, 107, 348], "docstr": [32, 83, 87, 101, 107], "get_submodul": [32, 83, 87, 101, 107], "explan": [32, 83, 87, 101, 107], "qualifi": [32, 83, 87, 101, 107], "referenc": [32, 83, 87, 101, 107], "attributeerror": [32, 83, 87, 101, 107], "invalid": [32, 83, 87, 101, 107, 110, 197, 198], "resolv": [32, 83, 87, 101, 107], "someth": [32, 83, 87, 96, 101, 107, 330, 337, 338, 343, 348], "get_extra_st": [32, 83, 87, 101, 107, 161], "set_extra_st": [32, 83, 87, 101, 107, 161], "picklabl": [32, 83, 87, 101, 107, 161], "pickl": [32, 83, 87, 101, 107, 161], "get_paramet": [32, 83, 87, 101, 107], "sai": [32, 83, 87, 101, 107, 199, 344, 348], "net_b": [32, 83, 87, 101, 107], "net_c": [32, 83, 87, 101, 107], "conv": [32, 83, 87, 101, 107, 173, 174, 337], "conv2d": [32, 83, 87, 101, 107, 174, 199, 347], "kernel_s": [32, 83, 87, 101, 107, 173, 174, 176, 177, 199, 204, 337, 347], "stride": [32, 83, 87, 101, 107, 173, 174, 176, 177, 185, 199, 337, 347], "diagram": [32, 83, 87, 101, 107], "degre": [32, 83, 87, 101, 107], "named_modul": [32, 83, 87, 101, 107], "o": [32, 83, 87, 101, 107, 191], "transit": [32, 52, 55, 71, 83, 87, 101, 107, 241, 336, 339, 343, 345], "half": [32, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 235, 336], "ipu": [32, 83, 87, 101, 107], "strict": [32, 34, 36, 39, 83, 87, 101, 107, 155, 265], "descend": [32, 83, 87, 101, 107, 155, 265], "persist": [32, 83, 87, 101, 107, 155, 170, 265], "enforc": [32, 69, 83, 87, 101, 107, 155, 237, 265, 343], "preserv": [32, 83, 87, 101, 107, 155, 265], "missing_kei": [32, 83, 87, 101, 107, 155, 265], "unexpected_kei": [32, 83, 87, 101, 107, 155, 265], "namedtupl": [32, 83, 87, 101, 107, 155, 265], "duplic": [32, 69, 83, 87, 101, 107, 249, 253, 260, 273], "l": [32, 83, 87, 101, 107, 186, 190, 274, 338, 343], "idx": [32, 83, 87, 101, 107], "named_buff": [32, 83, 87, 101, 107], "remove_dupl": [32, 83, 87, 101, 107, 260], "prepend": [32, 83, 87, 101, 107, 260], "running_var": [32, 83, 87, 101, 107], "named_children": [32, 83, 87, 101, 107], "conv4": [32, 83, 87, 101, 107], "conv5": [32, 83, 87, 101, 107], "memo": [32, 83, 87, 101, 107], "named_paramet": [32, 83, 87, 101, 107, 133, 260], "register_backward_hook": [32, 83, 87, 101, 107], "removablehandl": [32, 83, 87, 101, 107], "deprec": [32, 83, 87, 101, 107, 155, 164, 168, 182, 229, 245, 247, 249, 252, 253, 258, 259, 262, 263, 264, 265, 273, 275, 276, 277, 278, 283, 348], "favor": [32, 83, 87, 101, 107, 338], "register_full_backward_hook": [32, 83, 87, 101, 107], "register_buff": [32, 83, 87, 101, 107], "running_mean": [32, 83, 87, 101, 107], "alongsid": [32, 83, 87, 101, 107, 342], "num_featur": [32, 83, 87, 101, 107], "register_forward_hook": [32, 83, 87, 101, 107, 183, 209], "with_kwarg": [32, 83, 87, 101, 107], "always_cal": [32, 83, 87, 101, 107], "posit": [32, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 65, 83, 87, 101, 107, 129, 130, 148, 149, 152, 155, 156, 203, 265, 332, 338, 342, 343, 345], "signatur": [32, 73, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 235, 332, 336, 343], "register_module_forward_hook": [32, 83, 87, 101, 107], "regardless": [32, 83, 87, 101, 107, 247, 259, 262], "register_forward_pre_hook": [32, 83, 87, 101, 107], "invok": [32, 83, 87, 101, 107], "And": [32, 83, 87, 101, 107], "forward_pr": [32, 83, 87, 101, 107], "register_module_forward_pre_hook": [32, 83, 87, 101, 107], "grad_input": [32, 83, 87, 101, 107], "grad_output": [32, 83, 87, 101, 107], "subsequ": [32, 83, 87, 101, 107, 339], "technic": [32, 83, 87, 101, 107, 337, 339], "caller": [32, 83, 87, 101, 107], "register_module_full_backward_hook": [32, 83, 87, 101, 107], "register_full_backward_pre_hook": [32, 83, 87, 101, 107], "backward_pr": [32, 83, 87, 101, 107], "register_module_full_backward_pre_hook": [32, 83, 87, 101, 107], "register_load_state_dict_post_hook": [32, 83, 87, 101, 107], "incompatible_kei": [32, 83, 87, 101, 107], "clear": [32, 83, 87, 91, 101, 107, 303], "register_modul": [32, 83, 87, 101, 107, 333], "alia": [32, 83, 87, 101, 107], "register_paramet": [32, 83, 87, 101, 107], "register_state_dict_pre_hook": [32, 83, 87, 101, 107], "keep_var": [32, 34, 36, 39, 83, 87, 101, 107, 155, 265], "requires_grad_": [32, 83, 87, 101, 107], "autograd": [32, 83, 87, 101, 107, 155, 265], "freez": [32, 83, 87, 101, 107], "finetun": [32, 83, 87, 101, 107], "gan": [32, 83, 87, 101, 107], "share_memori": [32, 83, 84, 87, 101, 107, 336], "share_memory_": [32, 83, 87, 101, 107, 347], "destin": [32, 34, 36, 39, 83, 87, 101, 107, 116, 122, 123, 125, 155, 157, 161, 170, 265, 294], "averag": [32, 83, 87, 101, 107, 155, 161, 231, 254, 255, 265, 309, 336, 338], "shallow": [32, 83, 87, 101, 107, 155, 265, 339], "pleas": [32, 53, 83, 87, 101, 102, 103, 107, 117, 152, 155, 265, 330], "detach": [32, 83, 87, 101, 107, 155, 260, 265, 275, 276, 277, 278, 336], "non_block": [32, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 235, 339], "memory_format": [32, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 235], "channels_last": [32, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 235], "complex": [32, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 235, 336, 337], "integr": [32, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 179, 188, 192, 196, 235, 331, 342, 343, 344], "unchang": [32, 83, 87, 101, 107, 121, 124, 139, 151, 154, 155, 157, 159, 228, 235, 308, 336, 345], "tri": [32, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 235], "pin": [32, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 235], "4d": [32, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 235], "ignore_w": [32, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 235], "1913": [32, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 235], "3420": [32, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 235], "5113": [32, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 235], "2325": [32, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 235], "torch_doctest_cuda1": [32, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 235], "gpu1": [32, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 235], "1914": [32, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 235], "5112": [32, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 235, 343], "2324": [32, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 235], "float16": [32, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 187, 191, 235], "cdoubl": [32, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 235], "3741": [32, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 235], "j": [32, 35, 63, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 235, 333], "2382": [32, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 235], "5593": [32, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 235, 343], "4443": [32, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 235], "complex128": [32, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 235], "6122": [32, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 235], "1150": [32, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 235], "to_empti": [32, 83, 87, 101, 107], "dst_type": [32, 83, 87, 101, 107], "xpu": [32, 83, 87, 101, 107], "set_to_non": [32, 83, 87, 101, 107], "unidimension": 33, "keepdim": 33, "user_regist": 33, "priori": 33, "definit": [33, 72, 199], "uniqu": [33, 70, 71, 117, 126, 150, 151, 152, 345], "discretebox": [33, 83, 87, 101, 107, 338, 342, 348], "chosen_data": [34, 58], "rewarddata": [34, 58, 329], "rejected_data": [34, 58], "from_dataset": [34, 36, 58], "dataset_nam": [34, 36, 40, 45, 58, 100], "max_length": [34, 36, 37, 43, 45, 58], "550": [34, 36, 40, 45, 58, 70, 71, 343], "root_dir": [34, 36, 45, 58], "from_disk": [34, 36, 45, 58], "num_work": [34, 36, 45, 58, 98, 101, 107, 336, 337], "carperai": [34, 36, 40, 45], "openai_summarize_comparison": [34, 36, 45], "sequen": [34, 36], "cach": [34, 36, 45, 52, 53, 55, 56, 57, 58, 70, 83, 87, 101, 107, 122, 125, 139, 155, 159, 303, 344], "load_from_disk": [34, 36, 45, 58], "load_dataset": [34, 36, 45, 58], "attention_mask": [34, 36, 37, 39, 40, 43, 45, 58], "memorymappedtensor": [34, 36, 45, 60, 344], "92534": 34, "input_id": [34, 36, 37, 39, 40, 43, 45, 58], "end_scor": [34, 39, 40, 58], "sub_data": [34, 36], "from_dict": [34, 36, 39, 45], "batch_dim": [34, 36, 39, 45, 327], "determin": [34, 35, 36, 39, 41, 52, 63, 83, 87, 101, 107, 139, 159, 199, 231, 337, 342], "input_dict": [34, 36, 39], "exclusinv": [34, 36, 39], "__maximum__": [34, 36, 39], "toler": [34, 36, 39, 181, 214], "sie": [34, 36, 39], "input_td": [34, 36, 39], "from_tensordict": [34, 36, 39], "non_tensordict": [34, 36, 39], "_no_default_": [34, 36, 39], "getattr": [34, 36, 39], "tensorclass": [34, 36, 39, 58, 60, 61, 76], "from_flatten": [34, 36, 39], "attemptedli": [34, 36, 39], "memmap": [34, 36, 39, 60, 101, 107, 161, 308, 345], "copy_exist": [34, 36, 39], "return_earli": [34, 36, 39], "mimic": [34, 36, 39, 83, 87, 101, 107], "cross": [34, 36, 39, 172], "anymor": [34, 36, 39, 155, 235], "tensordictfutur": [34, 36, 39], "deepli": [34, 36, 39], "insid": [34, 36, 39, 348], "memmap_": [34, 36, 39, 161], "memmap_lik": [34, 36, 39], "contentless": [34, 36, 39], "1_000_000": [34, 35, 36, 38, 39, 41, 42, 52, 53, 54, 55, 56, 57, 65, 70, 336, 339], "alloc": [34, 36, 39, 61, 197, 198, 336], "setattr": [34, 36, 39], "tent": [34, 36, 39, 45], "to_tensordict": [34, 36, 39, 339], "unbind": [34, 36, 39, 188, 192], "alpha": [35, 41, 63, 173, 174, 199, 246, 252, 261, 263, 265, 336, 345, 347], "ep": [35, 41, 63, 161, 231, 247, 266, 309, 336, 337, 339], "1e": [35, 41, 63, 161, 181, 184, 203, 214, 336, 337, 338, 342], "08": [35, 41, 63, 336, 337, 339, 343], "collate_fn": [35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 65, 345, 347], "prefetch": [35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 58, 336, 337, 339, 345], "schaul": [35, 63], "quan": [35, 63], "antonogl": [35, 63], "silver": [35, 63], "2015": [35, 63], "arxiv": [35, 55, 57, 63, 117, 139, 157, 175, 176, 177, 178, 179, 180, 183, 184, 185, 190, 196, 202, 204, 205, 207, 208, 210, 211, 217, 227, 231, 245, 246, 249, 250, 251, 253, 254, 255, 256, 257, 258, 261, 262, 265, 266, 275, 280, 288, 344], "ab": [35, 55, 57, 63, 116, 139, 157, 161, 175, 180, 184, 185, 190, 196, 202, 204, 205, 207, 208, 210, 211, 217, 245, 246, 249, 250, 251, 254, 255, 256, 257, 258, 261, 262, 265, 344], "1511": [35, 63, 185], "05952": [35, 63], "expon": [35, 41, 63], "\u03b1": [35, 41, 63], "delta": [35, 41, 63, 186, 190, 214, 232, 236, 329, 332], "null": [35, 41, 63, 115], "max_siz": [35, 38, 41, 42, 60, 61, 62, 72, 76], "1_000": [35, 38, 41, 42, 345], "merg": [35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 343], "mini": [35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 342], "decid": [35, 38, 41, 42, 347], "meth": [35, 38, 41, 42, 260, 343], "incompat": [35, 38, 41, 42, 345], "drop_last": [35, 38, 41, 42, 69, 71], "return_info": [35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 65, 345], "tensordictprioritizedreplaybuff": [35, 329, 347], "simplifi": [35, 343, 345], "manual_se": [35, 38, 41, 42, 56, 57, 70, 71, 114, 124, 135, 143, 146, 150, 152, 197, 198, 206, 220, 227, 228, 229, 231, 239, 245, 246, 248, 258, 265, 342, 343, 347, 348], "_weight": [35, 41, 345, 347], "arrai": [35, 40, 126, 186, 187, 190, 191, 336, 345], "update_prior": [35, 63, 308, 333, 337, 345, 347], "36278465": 35, "tempfil": [35, 38, 41, 42, 45, 52, 53, 54, 55, 56, 57, 65, 323, 336, 337, 345], "tqdm": [35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 65, 311, 336, 338, 339, 342, 343], "randomsampl": [35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 65, 329, 336], "td_error": [35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 65, 248, 249, 251, 252, 253, 258, 260, 263, 265, 267, 273, 336, 345, 347], "update_tensordict_prior": [35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 65, 336, 345, 347], "temporarydirectori": [35, 38, 41, 42, 45, 52, 53, 54, 55, 56, 57, 65, 336, 337, 345], "tmpdir": [35, 38, 41, 42, 45, 52, 53, 54, 55, 56, 57, 65, 336, 337], "rb_load": [35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 65], "cursor": [35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 65], "insert_transform": [35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 65], "insert": [35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 59, 65, 66, 74, 75, 77, 78, 156], "prompt_rindex": [36, 37, 40], "label": [36, 37, 40, 45, 336, 345], "os": [36, 45, 58, 337], "cpu_count": [36, 45, 58], "promptdatatldr": 36, "116722": 36, "prompt": [37, 40], "return_tensordict": [37, 43], "recip": [37, 83, 87, 101, 107, 173, 174, 175, 176, 177, 178, 179, 180, 182, 184, 185, 186, 187, 188, 190, 191, 192, 193, 194, 199, 200, 203, 204, 205, 207, 210, 211, 213, 218, 224, 225, 227, 228, 229, 231, 234, 239, 242], "text": [37, 40, 43, 53, 186, 187, 190, 191, 231, 338], "tensodict": [37, 43], "orign": [37, 43], "valid_sampl": 37, "identifi": 37, "eough": 37, "toknen": 37, "meet": 37, "criterion": 37, "autotoken": [37, 43, 45], "from_pretrain": [37, 40, 43], "gpt2": [37, 40, 43, 45, 175, 180, 207], "pad_token": [37, 43], "eos_token": 37, "enough": [37, 345], "inde": [37, 124, 338, 343], "roundrobinwrit": [38, 42, 52, 53, 54, 55, 56, 57, 329], "Not": 38, "ref_model": 40, "reward_model": [40, 241], "kl_coef": 40, "max_new_token": 40, "score_clip": 40, "kl_schedul": 40, "klcontrollerbas": 40, "num_step": 40, "causal": 40, "sentenc": 40, "frozen": [40, 133], "kl": [40, 133, 255, 259], "penalti": [40, 259], "strai": 40, "far": [40, 189, 215, 216, 343, 348], "calcul": [40, 143, 186, 251], "gpt2rewardmodel": 40, "get_dataload": [40, 329], "promptdata": [40, 329], "gpt2lmheadmodel": 40, "dl": 40, "block_siz": [40, 58], "tensorclass_typ": [40, 58], "openai_summarize_tldr": 40, "config_class": 40, "model_path": 40, "rollout_from_model": 40, "rollout_from_data": 40, "600": [40, 343, 345], "reward_kl": [40, 133], "reward_raw": 40, "sample_log_prob": [40, 221, 222, 223, 232, 236, 238, 262, 320, 338, 342, 347], "create_rollout_td": 40, "log_prob": [40, 181, 197, 198, 206, 216, 236], "log_ratio": 40, "replic": 40, "rindex": 40, "multipli": [40, 186, 190, 246, 247, 252, 259, 261, 262, 263, 265, 309, 336], "term": [40, 133, 190, 191, 201, 202, 244, 245, 252, 313, 337, 338, 342], "subtract": [40, 150], "ve": [40, 336, 339], "eo": 40, "limit": [40, 97, 117, 133, 336, 337, 339, 342, 343], "generation_config": 40, "generationconfig": 40, "ti": [40, 284, 285, 286, 287, 289, 290, 291, 292, 337], "log_probs_gen": 40, "logprobs_of_label": 40, "priority_kei": [41, 42, 249, 252, 253, 258, 260, 263, 265, 267, 273, 345, 347], "reduct": [41, 63], "prioritizedreplaybuff": [41, 329, 347], "min": [41, 63, 214, 215, 216, 225, 231, 246, 247, 252, 261, 263, 265, 337, 338, 342], "median": [41, 63, 232, 236], "include_info": [41, 42, 52, 53, 54, 55, 56, 57], "kw": [42, 66, 75], "int32": [42, 55, 70, 93, 167], "huggingfac": [43, 57, 230], "co": [43, 126, 343], "doc": [43, 337, 342], "pad_trunc": 43, "am": 43, "worri": 43, "me": 43, "reassur": 43, "ok": 43, "tokenizer_fn": 45, "tensordicttoken": [45, 329], "pre_tokenization_hook": 45, "valid_s": 45, "tokenizer_class": 45, "tokenizer_model_nam": 45, "tokein": 45, "condit": [45, 150, 226, 227, 233, 234, 244, 336, 343, 345], "elementwis": 45, "vocabulari": 45, "loader": [45, 338], "185068": 45, "dataset_to_tensordict": 45, "data_dir": 45, "nestedkei": [45, 70, 71, 114, 115, 116, 117, 118, 119, 120, 122, 124, 125, 126, 127, 129, 131, 132, 135, 136, 137, 140, 141, 142, 143, 144, 145, 146, 147, 150, 151, 152, 153, 154, 157, 161, 170, 171, 224, 225, 228, 229, 231, 236, 249, 273, 294], "valid_mask_kei": 45, "conver": 45, "undergon": 45, "preprocess": [45, 337], "batch_dimens": 45, "filder": 45, "data_memmap": 45, "exclus": [48, 49, 55, 70, 71, 129, 186, 188, 190, 192, 197, 198, 226, 227, 233, 234, 266, 267, 275, 276, 277, 278, 279, 327, 331], "recurse_through_entri": 49, "recurse_through_stack": 49, "consolid": 49, "dataset_id": [52, 53, 55, 56, 57], "from_env": 52, "use_truncated_as_don": 52, "direct_download": 52, "terminate_on_end": 52, "env_kwarg": [52, 56, 57, 325, 326, 336], "reconstruct": [52, 70, 71, 255, 336, 348], "recov": [52, 53, 55, 56, 57, 70, 71, 224, 229, 231, 237, 258, 341], "regard": [52, 53, 55, 56, 57, 183, 227, 245, 253, 262, 336, 338, 343], "get_dataset": 52, "qlearning_dataset": 52, "fewer": 52, "left": [52, 55, 121, 122, 123, 127, 133, 139, 141, 147, 149, 152, 154, 157, 159, 228, 337, 338], "possess": 52, "unexpectedli": 52, "absent": [52, 83, 87, 101, 107], "traj_split": 52, "observationnorm": [52, 161, 327, 336, 337, 338, 339, 347], "maze2d": 52, "umaz": 52, "128": [52, 55, 71, 177, 180, 337, 339, 343, 344, 345], "loc": [52, 133, 135, 145, 189, 203, 215, 216, 221, 222, 223, 232, 236, 238, 245, 246, 258, 262, 263, 264, 265, 315, 320, 327, 331, 336, 337, 338, 339, 342, 347], "minari": [53, 55], "available_dataset": [53, 55, 56, 57, 70, 71], "currenrtli": 53, "minari_data": 53, "door": 53, "28": [53, 199, 336, 337, 342, 343, 344], "39": [53, 335, 336, 337, 343, 344, 345, 346], "door_body_po": 53, "qpo": 53, "30": [53, 134, 210, 211, 336, 337, 338, 342, 343], "qvel": 53, "dua": 54, "graff": 54, "2017": 54, "uci": 54, "archiv": 54, "ic": 54, "edu": 54, "ml": 54, "sklearn": 54, "adult_num": [54, 100], "adult_onehot": [54, 100], "mushroom_num": [54, 100], "mushroom_onehot": [54, 100], "covertyp": [54, 100], "shuttl": [54, 100], "magic": [54, 100], "shuffl": [55, 69, 71, 342], "num_slic": [55, 70, 71], "slice_len": [55, 70, 71], "stream": 55, "strict_length": [55, 70, 71], "embodi": [55, 344], "22": [55, 70, 71, 160, 335, 336, 337, 339, 343, 344, 346], "institut": 55, "demonstr": [55, 338, 342, 343, 348], "527": [55, 343], "skill": 55, "160266": 55, "websit": 55, "googl": [55, 56, 79, 80, 338, 339, 342], "open_x_embodi": 55, "2310": 55, "08864": 55, "nontensordata": 55, "language_instruct": 55, "get_non_tensor": 55, "refin": [55, 245, 246, 248, 249, 251, 252, 253, 254, 258, 260, 262, 263, 264, 265, 267, 273], "neither": [55, 343], "nor": 55, "shorter": [55, 70, 71], "insuffici": 55, "chosen": [55, 150, 151, 208, 209, 217, 234, 320, 331], "__will": 55, "change__": 55, "untouch": [55, 121, 122, 123, 127, 133, 141, 147, 149, 154], "randomli": [55, 69, 134, 135, 151, 228, 232, 236, 342, 343, 345], "crop": [55, 119, 140, 294], "modal": [55, 336], "Be": [55, 70, 71], "cmu_stretch": 55, "is_init": [55, 57, 116, 132, 188, 192, 231, 339], "language_embed": 55, "512": [55, 185, 337, 343, 345], "lift": 55, "green": 55, "garbag": 55, "lid": 55, "roboset": 56, "h5": [56, 57], "mmap": [56, 57], "roboh": [56, 104], "excludetransform": [56, 147, 345], "fk1": 56, "v4": [56, 142, 284, 285, 286, 287, 289, 290, 291, 292, 336, 338, 344], "expert": 56, "fk1_microopenrandom_v2d": 56, "concis": 56, "17": [56, 71, 320, 336, 337, 338, 339, 343], "18": [56, 71, 105, 106, 108, 109, 200, 336, 337, 338, 339, 342, 343, 344, 348], "15": [56, 71, 83, 87, 101, 107, 225, 231, 254, 335, 336, 337, 338, 342, 343, 345, 346], "19": [56, 70, 71, 74, 335, 337, 339, 343, 346], "75": [56, 337, 343, 344, 345], "totensor": 57, "image_s": 57, "v": [57, 161, 186, 187, 190, 191, 221, 258, 265, 331, 336, 337], "npz": 57, "2206": 57, "04779": [57, 246, 251], "vd4rl": 57, "detect": 57, "squar": [57, 119, 189, 215, 216, 294], "rectangular": [57, 173, 174], "internet": 57, "connect": 57, "walker_walk": 57, "64px": 57, "height": [57, 119, 142], "veloc": [57, 117, 342, 343, 348], "infinit": [58, 345], "three": [58, 331, 333, 338, 342, 343, 345, 348], "block": [58, 59, 78, 331, 339], "pairwisedataset": [58, 329], "256": [58, 180, 337, 338, 342, 343], "immut": [59, 83, 87, 101, 107, 141, 155], "piec": [59, 66, 75, 77, 78, 336, 337, 338, 342, 343, 345], "scratch_dir": [60, 336, 345], "mistak": [60, 61, 76], "myclass": [60, 61, 76], "foo": [60, 61, 76, 225, 345, 348], "bar": [60, 61, 76, 225, 304, 305, 307, 311, 333, 337], "attach": [60, 61, 62, 72, 73, 76, 337], "entiti": [60, 61, 62, 72, 73, 76], "auto": [61, 76, 160, 231, 246, 252, 261, 263, 265, 267, 332, 342], "zero_": [61, 76, 167], "max_capac": [63, 336, 345], "uniformli": [64, 260, 348], "storageensembl": [65, 68], "samplerensembl": 65, "writerensembl": [65, 73], "sample_from_al": [65, 68], "num_buffer_sampl": [65, 68], "ensembl": [65, 68, 73, 78, 235, 263], "forbidden": 65, "collat": 65, "0x13a2ef430": 65, "0x13a2f9310": 65, "interpol": [65, 142, 337, 339], "interpolationmod": [65, 339], "bilinear": [65, 142, 339], "0x13a2f9220": 65, "0x13a2f9f70": 65, "0x13a2d9b50": 65, "0x13a2f95b0": 65, "0x128648260": 65, "roundrobin": [66, 75], "buffer_id": [68, 73], "consum": [69, 71, 337, 338, 342, 345], "incomplet": [69, 71], "fresh": 69, "caution": [69, 163, 348], "haven": [69, 344], "remain": [69, 116, 123, 124, 133, 150, 202], "draw": [69, 228], "end_kei": [70, 71], "traj_kei": [70, 71], "cache_valu": 70, "truncated_kei": [70, 71, 143, 149], "slicesamplerwithoutreplac": [70, 329], "Will": [70, 294], "320": [70, 71, 337, 343, 348], "700": [70, 71], "robosetexperiencereplai": [70, 71, 329], "dataid": [70, 71], "__len__": 72, "rank_kei": 74, "rank": [74, 172], "samplerwithoutreplac": [74, 329, 338, 342, 345], "get_insert_index": 74, "ant": [79, 80, 90, 344], "get_environ": 80, "87": [80, 337, 343, 344], "acrobot": [80, 348], "fetch": [80, 133, 344, 345], "task_nam": 81, "cheetah": [81, 82, 336], "frame_skip": [81, 82, 86, 87, 92, 94, 95, 130, 304, 307, 314, 333, 336, 337, 338, 347], "dm_control": [82, 336, 341, 348], "continuousbox": [83, 87, 101, 107, 167, 338, 342, 343, 347, 348], "unboundedcontinuoustensorspec": [83, 87, 97, 101, 107, 114, 122, 125, 151, 167, 172, 196, 220, 235, 238, 240, 264, 329, 338, 339, 342, 343, 348], "sort": [83, 87, 101, 107, 231], "depth": [83, 87, 97, 101, 107, 172, 173, 174, 176, 177, 178, 179, 184, 185, 194, 196, 199, 200, 204, 205, 226, 331, 337, 341, 342], "another_act": [83, 87, 101, 107], "mutabl": [83, 87, 101, 107], "batch_lock": [83, 85, 87, 101, 107, 151, 155, 343], "done_keys_group": [83, 87, 101, 107], "outer": [83, 87, 101, 107, 333, 336, 337, 348], "another_don": [83, 87, 101, 107], "empty_cach": [83, 87, 101, 107, 155], "fake_tensordict": [83, 87, 101, 107, 337], "fake": [83, 87, 101, 107, 336, 337], "afterward": [83, 87, 101, 107, 173, 174, 175, 176, 177, 178, 179, 180, 182, 184, 185, 186, 187, 188, 190, 191, 192, 193, 194, 199, 200, 203, 204, 205, 207, 210, 211, 213, 218, 224, 225, 227, 228, 229, 231, 234, 239, 242, 348], "silent": [83, 87, 101, 107, 173, 174, 175, 176, 177, 178, 179, 180, 182, 184, 185, 186, 187, 188, 190, 191, 192, 193, 194, 199, 200, 203, 204, 205, 207, 210, 211, 213, 218, 224, 225, 227, 228, 229, 231, 234, 239, 242], "braxenv": [83, 87, 101, 107, 141, 329], "envnam": [83, 87, 101, 107], "pipeline_st": [83, 87, 101, 107], "attibut": [83, 87, 101, 107], "speak": [83, 87, 101, 107, 336], "rand_act": [83, 87, 96, 101, 102, 103, 107], "_step": [83, 87, 101, 107, 114, 122, 125, 129, 141], "reset_kei": [83, 87, 101, 107, 117, 146, 150, 151, 152], "multitask": [83, 87, 101, 107], "multiag": [83, 87, 96, 101, 102, 103, 107, 171, 200, 208, 217, 273], "another_reward": [83, 87, 101, 107], "callback": [83, 87, 101, 107, 342], "auto_reset": [83, 87, 101, 107, 343], "auto_cast_to_devic": [83, 87, 101, 107, 342], "break_when_any_don": [83, 87, 101, 107, 342], "return_contigu": [83, 87, 101, 107, 163, 341], "soon": [83, 87, 101, 102, 103, 107], "ndim": [83, 87, 101, 107], "concomitt": [83, 87, 101, 107], "workspac": [83, 87, 101, 107], "prevail": [83, 87, 101, 107, 146, 171], "cartpol": [83, 87, 101, 107, 117, 146, 150, 337, 339, 345, 348], "creator": [84, 316, 317, 325, 326, 327], "substitut": [84, 150, 161], "vecnorm": [84, 327], "env_creat": [84, 336], "test_env1": 84, "observation_count": [84, 348], "test_env2": 84, "sleep": [84, 348], "ps": 84, "p1": 84, "p2": 84, "9934": 84, "env_str": 85, "info_dict_read": 87, "set_info_dict_read": 87, "put": [87, 109, 161, 327, 331, 337, 338, 339, 343], "read_act": 87, "read_don": 87, "reader": [87, 337], "interrupt": [87, 281], "nonsens": 87, "fallback": 87, "broken": [87, 163], "read_ob": 87, "dictat": [87, 232, 236, 262, 336, 343], "read_reward": 87, "baseinfodictread": 87, "info_dict": 87, "hoc": 87, "dict_read": 87, "default_info_dict_read": 87, "my_info_kei": 87, "some_env": 87, "placehold": [89, 126, 155], "secur": 89, "isaacgym": [90, 91], "isaacgymwrapp": [90, 329], "isaacgymenv": [91, 329], "webpag": 91, "isaac": 91, "essenc": 91, "04": [91, 336, 337, 343, 344], "snake": [92, 93], "6x6": [92, 93], "td1": [93, 245, 246, 248, 249, 251, 252, 253, 254, 258, 260, 262, 263, 264, 265, 267, 273, 336], "12x12": 93, "tsp50": 93, "tsp100": 93, "mo": [94, 95], "minecart": [94, 95], "mo_gym": 95, "qualnam": 96, "marl": [96, 110, 117, 152, 199, 342], "leverag": [96, 102, 103, 336, 342, 348], "neural": [96, 102, 103, 173, 174, 212, 235, 331, 337, 338, 339, 342, 343, 348], "group_map": [96, 102, 103, 109, 110], "constructiuon": [96, 102, 103], "premad": [96, 102, 103, 109, 273], "all_in_one_group": [96, 110], "agent_0": [96, 102, 103, 110], "agent_1": [96, 102, 103, 110], "agent_2": [96, 102, 103, 110], "agent_3": 96, "int8": [96, 102, 103], "one_group_per_ag": [96, 102, 103], "environn": 97, "constraint": [97, 338, 342], "mymbenv": [97, 172, 196], "world_model": [97, 172, 196, 255], "super": [97, 114, 122, 125, 172, 183, 196, 240, 246, 248, 252, 258, 263, 265, 267, 336, 343, 347], "hidden_observ": [97, 172, 196], "mlp": [97, 172, 173, 174, 176, 177, 178, 179, 188, 192, 193, 196, 200, 221, 226, 249, 251, 320, 331, 337, 341, 344, 347], "worldmodelwrapp": [97, 172, 196], "activation_class": [97, 172, 173, 174, 176, 177, 178, 179, 184, 185, 194, 196, 199, 200, 337, 342, 347], "relu": [97, 172, 180, 196, 203, 244], "activate_last_lay": [97, 172, 179, 194, 196], "run_type_check": 97, "less": [98, 218, 325, 326, 332, 338, 339, 345, 347], "readthedoc": 98, "en": 98, "python_interfac": 98, "task_id": 98, "106": [100, 343], "my_env_fun": [101, 107], "custom_attribute_list": [101, 107], "custom_attribut": [101, 107], "custom_method_list": [101, 107], "custom_method": [101, 107], "deploi": [101, 107], "slight": [101, 107, 337], "share_individual_td": [101, 107], "shared_memori": [101, 107], "policy_proof": [101, 107], "ll": [101, 107, 186, 187, 190, 191, 336, 337, 338, 339, 342, 348], "hidden": [101, 107, 116, 184, 186, 187, 188, 190, 191, 192, 193, 204, 205, 210, 211, 221, 222, 223, 225, 235, 238, 247, 259, 262, 331, 339, 341, 347], "introduc": [101, 107, 186, 188, 190, 192, 231, 336], "drastic": [101, 345], "influenc": 101, "rule": [101, 122, 125, 236, 331, 338], "thumb": [101, 338], "suppos": [101, 307, 333, 348], "scenario": [101, 108, 109, 336, 342, 343], "myenv": [101, 122, 125], "update_kwarg": [101, 107], "pettingzoo": [102, 103], "pet": [102, 103], "zoo": [102, 103], "guid": [102, 103, 105, 106, 150, 330, 336, 342], "__": [102, 103], "aecenv": [102, 103], "use_mask": [102, 103], "dead": [102, 103], "compulsori": [102, 103], "adversary_0": [102, 103], "adversari": [102, 103], "marlgroupmaptyp": [102, 103, 109, 110, 329], "vectoris": [102, 103, 186, 187, 190, 191], "multiwalker_v9": 102, "return_st": [102, 103], "categorical_act": [102, 103, 105, 106, 109], "n_piston": [102, 103], "pistonball_v6": [102, 103], "piston": [102, 103], "piston_0": [102, 103], "piston_1": [102, 103], "piston_20": [102, 103], "aec": [102, 103], "tictactoe_v3": [102, 103], "player": [102, 103], "player_1": [102, 103], "player_2": [102, 103], "butterfli": 103, "parallel_env": [103, 336, 347, 348], "vikashplu": 104, "read_info": 104, "pars": [104, 345], "smacv2": [105, 106], "starcraft": [105, 106], "challeng": [105, 106, 343, 344], "v2": [105, 106, 270, 284, 285, 286, 287, 289, 290, 291, 292, 320, 339], "10gen_terran": [105, 106], "10gen_zerg": [105, 106], "10gen_protoss": [105, 106], "3m": [105, 106], "8m": [105, 106], "25m": [105, 106], "5m_vs_6m": [105, 106], "8m_vs_9m": [105, 106], "10m_vs_11m": [105, 106], "27m_vs_30m": [105, 106], "mmm": [105, 106], "mmm2": [105, 106], "2s3z": [105, 106], "3s5z": [105, 106], "3s5z_vs_3s6z": [105, 106], "3s_vs_3z": [105, 106], "3s_vs_4z": [105, 106], "3s_vs_5z": [105, 106], "1c3s5z": [105, 106], "2m_vs_1z": [105, 106], "corridor": [105, 106], "6h_vs_8z": [105, 106], "2s_vs_1sc": [105, 106], "so_many_banel": [105, 106], "bane_vs_ban": [105, 106], "2c_vs_64zg": [105, 106], "old": [105, 106, 259, 348], "smac": [105, 106], "map_nam": [105, 106], "176": [105, 106, 343], "battle_won": [105, 106], "dead_al": [105, 106], "dead_enemi": [105, 106], "episode_limit": [105, 106], "322": [105, 106, 343], "Or": [105, 106, 199], "procedur": [105, 106], "distribution_config": [105, 106], "n_unit": [105, 106], "n_enemi": [105, 106], "team_gen": [105, 106], "dist_typ": [105, 106], "weighted_team": [105, 106], "unit_typ": [105, 106], "marin": [105, 106], "maraud": [105, 106], "medivac": [105, 106], "exception_unit_typ": [105, 106], "start_posit": [105, 106], "surrounded_and_reflect": [105, 106], "map_x": [105, 106], "map_i": [105, 106], "capability_config": [105, 106], "88": [105, 106, 336, 337, 343], "131": [105, 106, 343], "starcraft2env": 106, "flock": [108, 109], "continuous_act": [108, 109, 342], "agent_collision_rew": [108, 109], "agent_distance_rew": [108, 109], "agent_nam": [109, 110], "agent_names_to_indices_map": 109, "unbatched_action_spec": [109, 342], "unbatched_observation_spec": 109, "unbatched_reward_spec": 109, "het_spec": 109, "het_specs_map": 109, "ca": 110, "environment4": 110, "get_group_map": 110, "sumbodul": 111, "model_bas": [112, 172, 196], "adapt": [114, 259, 336, 343], "masker": 114, "binarydiscretetensorspec": [114, 249, 252, 273, 329], "maskedenv": 114, "ones_lik": 114, "scatter": 114, "unsqueez": [114, 117, 118, 153, 156, 193, 336, 339, 342, 343], "_set_se": [114, 122, 125, 343], "transform_reward_spec": [115, 120, 121, 122, 123, 127, 133, 141, 144, 145, 147, 149, 154, 156], "tensordictmodulebas": [116, 218, 226, 233, 339], "burn_in": 116, "burn": 116, "date": [116, 297], "retur": 116, "burnt": 116, "grumodul": 116, "gru_modul": [116, 188], "input_s": [116, 186, 187, 188, 190, 191, 192, 193, 339], "hidden_s": [116, 186, 187, 188, 190, 191, 192, 193, 339], "set_recurrent_mod": [116, 188, 192, 339], "burn_in_transform": 116, "gru": [116, 187, 188], "num_lay": [116, 186, 188, 190, 192, 204, 205], "86": [116, 337, 343], "3008": [116, 337], "37": [116, 337, 338, 342, 343, 344], "0344": 116, "padding_valu": [117, 197, 198], "as_invers": 117, "account": [117, 197, 198, 331, 337, 339, 345, 348], "movement": 117, "pdf": [117, 175, 176, 177, 178, 179, 183, 207, 227, 231, 253, 263, 266, 275, 280, 288, 320], "1312": [117, 337], "5602": 117, "constant": [117, 135, 150, 333, 336, 338, 339, 348], "unsqueezetransform": [117, 343, 345], "consumpt": 117, "followin": 117, "pictur": 117, "pixels_trsf": [117, 345], "grayscal": [117, 337, 339, 345, 348], "data_exclud": [117, 345], "transform_observation_spec": [117, 118, 119, 120, 121, 122, 123, 126, 127, 129, 131, 132, 133, 135, 137, 141, 142, 146, 147, 149, 150, 151, 152, 153, 154, 156, 157, 160, 343], "del_kei": [118, 157, 341, 343], "unsqueeze_if_oor": 118, "observation_posit": 118, "observation_veloc": 118, "delet": 118, "key1": [118, 302, 310], "key2": [118, 302, 310], "center": [119, 294], "width": [119, 142], "out_keys_inv": [120, 122, 125, 135, 136, 137, 141, 154, 343], "scalar": [120, 144, 177, 179, 201, 202, 224, 228, 229, 231, 242, 245, 246, 247, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 273, 275, 276, 277, 278, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 331, 337, 343], "permit": [120, 129, 156], "rewardsc": [121, 155, 336, 337, 339], "rewardclip": 121, "transformed_env": [121, 154, 155], "transform_env_devic": [121, 123, 154], "transform_input_spec": [121, 122, 123, 124, 135, 137, 141, 146, 149, 150, 151, 154, 156, 158], "transform_output_spec": [121, 122, 123, 127, 133, 141, 147, 149, 154], "transformfull_done_spec": [121, 122, 123, 127, 133, 141, 147, 149, 154], "dtype_in": 122, "dtype_out": 122, "scan": [122, 125, 237, 238], "resp": [122, 125], "not_transform": [122, 125], "constructedw": [122, 125], "orig_devic": 123, "unspecifi": 123, "transform_done_spec": [123, 154], "num_actions_effect": 124, "max_act": 124, "include_forward": 124, "dimension": [124, 188, 192, 275, 280, 288, 342], "num_act": [124, 252], "action_out": 124, "_call": [124, 129, 343], "eol_kei": 126, "life": 126, "lives_kei": 126, "eol_attribut": 126, "unwrap": 126, "al": [126, 137, 172, 348], "breakout": 126, "v5": [126, 137, 348], "210": [126, 137, 343, 348], "160": [126, 137, 337, 343, 348], "eol_transform": 126, "eol": 126, "dqnloss": [126, 245, 246, 248, 251, 252, 253, 254, 257, 258, 260, 262, 263, 264, 265, 266, 267, 268, 273, 318, 329, 332, 337, 339], "action_spac": [126, 183, 209, 226, 227, 233, 234, 245, 246, 248, 249, 251, 252, 253, 254, 258, 260, 262, 263, 264, 265, 267, 273, 339], "register_kei": 126, "loss_or_advantag": 126, "lossmodul": [126, 311, 322, 323, 329], "valueestimatorbas": [126, 260, 329], "excluded_kei": 127, "finit": [128, 345], "first_dim": 129, "last_dim": 129, "allow_positive_dim": [129, 156], "th": [129, 156, 186, 190, 343], "frameskip": 129, "repeatedli": [130, 338, 342], "init_kei": 132, "tracker": 132, "coef": 133, "pi_curr": 133, "pi_0": 133, "overfit": 133, "probabilist": [133, 232, 329, 338, 347], "get_dist": [133, 236, 237], "mod": [133, 188, 192, 239, 339], "normalparamextractor": [133, 331, 338, 342], "probabilisticactor": [133, 221, 222, 223, 225, 245, 246, 250, 252, 258, 261, 262, 263, 264, 265, 267, 331, 336, 338, 342], "tanhnorm": [133, 221, 222, 223, 232, 238, 245, 246, 258, 262, 263, 264, 265, 267, 329, 338, 342, 347], "n_ob": [133, 245, 246, 248, 249, 251, 252, 258, 262, 263, 264, 265, 267], "n_act": [133, 245, 246, 248, 249, 251, 252, 258, 262, 263, 264, 265, 267], "return_log_prob": [133, 221, 222, 223, 232, 236, 238, 264, 331, 338, 342, 347], "apply_": 133, "copy_": [133, 336], "formulat": 133, "diverg": [133, 188, 192, 232, 236, 255, 259], "noop": [134, 347], "trial": 134, "op": [134, 160, 224, 228, 229, 313], "standard_norm": [135, 145, 336, 337, 339], "affin": [135, 145], "layer": [135, 161, 173, 174, 176, 177, 184, 186, 187, 188, 190, 191, 192, 194, 199, 200, 201, 202, 204, 205, 212, 213, 219, 230, 239, 331, 337, 338, 339, 344], "normal": [135, 161, 173, 174, 189, 194, 197, 198, 203, 215, 216, 224, 232, 236, 247, 259, 262, 307, 309, 327, 331, 333, 339, 342, 348], "set_default_tensor_typ": 135, "doubletensor": 135, "isclos": 135, "next_ob": [135, 275, 276, 277, 278, 347], "rubric": [135, 238], "init_stat": [135, 336, 337, 338, 339], "3752e": 135, "01": [135, 231, 242, 247, 259, 262, 335, 336, 337, 339, 342, 343, 344, 346], "5087e": 135, "03": [135, 335, 336, 337, 338, 343, 344, 346], "9294e": 135, "9636": 135, "5608": 135, "6408": 135, "num_it": [135, 337, 338], "reduce_dim": [135, 336, 337, 338, 339], "cat_dim": [135, 336, 337, 338, 339], "keep_dim": [135, 337, 339], "statist": [135, 161, 264, 327, 336, 337, 338, 348], "approach": [135, 336, 338, 348], "gaussian": [135, 151, 172, 196, 201, 202, 207, 224, 338], "empir": [135, 172, 196, 232, 236, 336, 338, 342], "3d": [135, 173], "third": [135, 227, 342], "reorder": 137, "in_keys_in": 137, "pong": [137, 348], "channel": [137, 153, 199, 204, 205, 337], "r3m": [139, 344], "resnet": [139, 157, 159], "visual": [139, 157, 159, 338, 343], "embed": [139, 157, 158, 159, 208, 220, 221, 222, 223, 235, 240, 344], "ego4d": [139, 157, 159], "univers": [139, 157, 159], "suraj": [139, 157], "nair": [139, 157], "aravind": [139, 157], "rajeswaran": [139, 157], "vikash": [139, 157, 159], "kumar": [139, 157, 159], "chelsea": [139, 157], "finn": [139, 157], "abhinav": [139, 157], "gupta": [139, 157], "2203": [139, 157, 196, 344], "12601": [139, 157, 344], "_init": [139, 157, 336], "snippet": [139, 157, 336], "resnet50": [139, 159, 344], "model_nam": [139, 157, 159, 297], "resnet34": 139, "resnet18": 139, "r3m_vec": [139, 344], "feed": [139, 159, 260, 331, 336, 342, 345], "stack_imag": [139, 159], "tread": [139, 159], "separet": [139, 159], "hub": [139, 159, 344], "resnet50_weight": [139, 159], "imagenet1k_v1": [139, 159], "download_path": [139, 159], "tensor_pixels_kei": [139, 159], "dest": [139, 157, 159, 235], "sub_seq_len": 140, "sample_dim": [140, 336], "primarili": 140, "hesit": 140, "request": 140, "robust": 140, "mix": [140, 208, 217, 273, 336, 342], "improp": 140, "create_copi": 141, "stuff": 141, "newnam": 141, "84": [142, 337, 339, 342, 343, 344], "halfcheetah": [142, 320, 336], "r2g": 143, "99": [143, 161, 196, 256, 269, 274, 281, 323, 336, 337, 338, 343, 344, 347], "reward_to_go": 143, "bernoulli_": 143, "9010": 143, "9404": [143, 281], "9701": [143, 281], "9900": [143, 281], "0000": [143, 152, 228, 229, 239, 281, 338, 339, 343, 347], "crash": 143, "clamp_min": 144, "clamp_max": 144, "clip_min": 144, "clip_max": 144, "episode_": 146, "reward1": 146, "reward2": 146, "episode_reward": [146, 342], "keep_reward": 147, "keep_don": 147, "squeeze_dim": 148, "step_count_kei": 149, "update_don": 149, "adaptec": 149, "accordingli": [149, 150, 190, 233, 339], "completet": 149, "recognis": 149, "accompani": 149, "target_return": 150, "primer": [151, 339], "default_valu": [151, 339], "unit": [151, 172, 184, 186, 187, 204, 205, 210, 211, 338], "transfomedenv": 151, "mykei": 151, "__unless": 151, "exists__": 151, "pool": 152, "increas": [152, 231, 342], "10th": 152, "0216": 152, "1149": 152, "1990": 152, "2749": 152, "3281": 152, "9290": 152, "3702": 152, "8978": 152, "from_int": 153, "shape_toler": 153, "permuat": 153, "ri": 153, "principl": 154, "cattransform": 154, "notabl": 154, "rewardsum": [154, 342], "cache_spec": 155, "set_missing_toler": 155, "keyerror": 155, "unsqueeze_dim": [156, 343], "danger": 156, "vc1": 157, "vc1_vec": 157, "small": [157, 336, 338, 342, 348], "untrain": 157, "make_noload_model": 157, "naiv": 157, "vip": [158, 159, 344], "toward": 159, "implicit": [159, 258, 345], "jason": 159, "ma": 159, "shagun": 159, "sodhani": 159, "dinesh": 159, "jayaraman": 159, "osbert": 159, "bastani": 159, "ami": 159, "zhang": 159, "vip_vec": 159, "final_nam": 160, "sb3": 160, "terminal_obs_read": 160, "truli": [160, 347], "till": 160, "did": [160, 281, 337, 338, 345, 348], "nan": 160, "shared_td": 161, "decai": [161, 224, 228, 229, 266, 309, 336, 337, 339, 348], "9999": [161, 343], "0001": [161, 184, 203, 338, 343], "fly": [161, 259, 332, 338, 343, 345, 348], "to_observation_norm": 161, "underflow": [161, 309], "build_td_for_shared_vecnorm": 161, "memmori": 161, "queue": [161, 345], "td_share": 161, "state_dim": [162, 175, 180, 207, 210, 211, 225], "action_dim": [162, 175, 176, 178, 180, 207, 225, 336, 341], "gsde": [162, 263, 327], "func": 162, "gsdemodul": 162, "check_dtyp": 163, "short": [163, 190, 191, 337, 338, 342], "discrep": [163, 245, 247, 248, 249, 259, 262, 264, 273], "imposs": 163, "probabilistictdmodul": [168, 169, 194, 232, 236, 274, 307], "next_tensordict": 170, "keep_oth": [170, 343], "exclude_reward": 170, "exclude_don": 170, "exclude_act": 170, "next_": 170, "funtion": 170, "write_full_fals": 171, "leav": [171, 336], "_terminated_or_trunc": 171, "entropi": [172, 245, 246, 247, 252, 258, 259, 261, 262, 263, 265, 267, 342], "botev": 172, "et": 172, "2013": 172, "cem": 172, "plan": [172, 195, 196], "varianc": [172, 189, 203, 215, 216, 332, 336, 338, 342], "k": [172, 186, 187, 190, 191], "repeat": [172, 338, 342, 343], "maximis": [172, 176, 178, 196, 331, 336, 337, 338, 342], "horizon": [172, 196, 338], "modelbasedenv": [172, 196], "planning_horizon": [172, 196], "optim_step": [172, 196, 337], "mpc": [172, 195, 196], "num_candid": [172, 196], "candid": [172, 196], "top_k": [172, 196], "modelbasedenvbas": [172, 195, 196, 329], "safemodul": [172, 195, 221, 223, 236, 245, 246, 252, 258, 262, 263, 264, 265, 267, 316, 317, 323, 329, 347], "num_cel": [173, 174, 176, 177, 178, 179, 184, 185, 188, 192, 194, 199, 200, 221, 337, 338, 339, 342, 347], "elu": [173, 174, 176, 177, 178, 179, 184, 185, 199, 337, 347], "activation_kwarg": [173, 174, 194], "norm_class": [173, 174, 176, 177, 194], "norm_kwarg": [173, 174, 194], "bias_last_lay": [173, 174, 176, 177, 178, 179, 185, 194], "aggregator_class": [173, 174, 176, 177, 337, 339, 347], "squashdim": [173, 174, 176, 199, 347], "aggregator_kwarg": [173, 174, 176, 177, 337, 339], "squeeze_output": [173, 174, 176, 177, 337, 339], "convolut": [173, 174, 176, 177, 199, 212], "produc": [173, 174, 194, 200, 206, 221, 223, 225, 294, 338, 339, 345, 348], "cell": [173, 174, 186, 187, 188, 190, 191, 192, 194, 199, 200, 338], "kernel": [173, 174, 185, 193, 199], "cnet": [173, 174], "conv3d": 173, "34": [173, 174, 194, 336, 337, 339, 343], "35": [173, 174, 194, 335, 337, 343, 344, 346, 348], "transformer_config": [175, 207, 225], "decisiontransform": [175, 207], "dtconfig": [175, 180, 207], "2202": [175, 180, 207, 261], "05607": [175, 180, 207, 261], "return_to_go": [175, 180, 207, 225], "conv_net_kwarg": [176, 177], "mlp_net_kwarg": [176, 177, 178], "use_avg_pool": [176, 177], "WITH": [176, 177, 178, 179, 231, 266], "1509": [176, 177, 178, 179, 196, 231, 249, 257, 266, 343], "02971": [176, 177, 178, 179, 231, 266], "convnet": [176, 199, 339, 347], "ndims_in": 176, "avgpool": [176, 177], "adaptiveavgpool2d": [177, 337, 339], "400": [178, 179, 342, 343, 345], "mlp_net_kwargs_net1": 179, "mlp_net_kwargs_net2": 179, "decion": 180, "desdescrib": 180, "n_embd": 180, "n_layer": [180, 186, 190], "n_head": 180, "n_inner": 180, "n_posit": 180, "resid_pdrop": 180, "attn_pdrop": 180, "gpt2config": 180, "atol": [181, 214], "06": [181, 214, 335, 336, 337, 338, 343, 346], "rtol": [181, 214], "batch_shap": [181, 214], "event_shap": [181, 214], "absolut": [181, 214, 336], "densiti": [181, 197, 198, 206, 216], "mass": [181, 197, 198, 206, 216, 343], "rsampl": [181, 198, 206, 236], "sample_shap": [181, 197, 198, 206], "dqnet": 182, "atom": 182, "softmax": [182, 198, 206, 226, 227], "var_num": [183, 209, 226, 227, 234], "action_value_kei": [183, 209, 226, 227, 233, 234, 260, 273], "action_mask_kei": [183, 209, 226, 227, 228, 229, 233, 234], "perspect": [183, 227, 253, 338], "1707": [183, 227, 253, 262], "06887": [183, 227, 253], "mult": [183, 200, 209, 226, 227, 233, 234], "tensordict_modul": [183, 186, 187, 190, 191, 209, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 245, 246, 248, 252, 258, 262, 263, 264, 265, 267, 331], "nbin": [183, 226, 331], "customdistributionalqv": 183, "log_softmax": [183, 226], "from_modul": [183, 232, 235, 238, 240], "one_hot": [183, 198, 209], "qvalue_actor": [183, 209, 226, 233, 331], "to_modul": [183, 232, 235, 238, 240], "std_bia": 184, "std_min_val": 184, "belief": [184, 204, 210, 211], "1912": [184, 254, 255, 256], "01603": [184, 254, 255, 256], "softplu": [184, 203, 242, 243, 244], "out_features_valu": 185, "cnn_kwarg": [185, 337], "mlp_kwarg": [185, 193, 337], "duel": 185, "cnn": [185, 199, 337, 347], "06581": 185, "batch_first": [186, 188, 190, 192, 339], "bidirect": [186, 190, 339], "cudnn": [186, 187, 190, 191, 339], "vmap": [186, 187, 190, 191, 218, 235, 238, 347], "rnn": [186, 187, 190, 191, 339], "device_count": [186, 187, 190, 191, 336, 337, 339, 344, 348], "els": [186, 187, 190, 191, 204, 331, 333, 336, 337, 338, 339, 342, 343, 344], "n_in": [186, 187, 190, 191], "n_out": [186, 187, 190, 191], "h0": [186, 187, 190, 191], "h1": [186, 187, 190, 191], "call_gru": [186, 187], "h_out": [186, 187, 190, 191], "batched_cal": [186, 187, 190, 191], "gate": [186, 187, 190], "r_t": 186, "sigma": [186, 187, 189, 190, 191, 207, 215, 216, 224, 231, 338], "w_": [186, 187, 190, 191], "ir": [186, 187], "x_t": [186, 190], "b_": [186, 187, 190, 191], "hr": [186, 187, 190], "h_": [186, 187, 190], "z_t": 186, "iz": [186, 187], "hz": [186, 187], "n_t": 186, "odot": [186, 187, 190, 191], "hn": [186, 187, 190], "h_t": [186, 190], "sigmoid": [186, 187, 190, 191], "hadamard": [186, 187, 190, 191], "multilay": [186, 190], "_t": [186, 190, 342, 343], "ge": [186, 190], "bernoulli": [186, 190], "b_ih": [186, 187, 190, 191, 192], "b_hh": [186, 187, 190, 191, 192], "seq": [186, 188, 190, 192, 339, 341], "h_0": [186, 190, 191], "unbatch": [186, 190], "pack": [186, 190, 338, 348], "pack_padded_sequ": [186, 190], "pack_sequ": [186, 190], "num": [186, 190], "_layer": [186, 190], "_size": [186, 187, 190, 191], "h_n": [186, 190], "packedsequ": [186, 190], "weight_ih_l": [186, 190], "learnabl": [186, 187, 190, 191], "w_ir": 186, "w_iz": 186, "w_in": 186, "num_direct": [186, 190], "weight_hh_l": [186, 190], "w_hr": 186, "w_hz": 186, "w_hn": 186, "bias_ih_l": [186, 190], "b_ir": 186, "b_iz": 186, "b_in": 186, "bias_hh_l": [186, 190], "b_hr": 186, "b_hz": 186, "b_hn": 186, "bias": [186, 187, 190, 191, 242, 332, 336], "mathcal": [186, 187, 190, 191], "sqrt": [186, 187, 190, 191, 231], "frac": [186, 187, 190, 191, 338], "seq_len": [186, 190], "subtli": 186, "matrix": [186, 190, 201, 202], "contrast": [186, 257, 345], "hx": [186, 187, 190, 191], "lstmcell": [187, 192], "gru_cel": 187, "z": 187, "weight_ih": [187, 191], "weight_hh": [187, 191], "bias_ih": [187, 191], "bias_hh": [187, 191], "rocm": [187, 191], "embedd": [188, 192, 193], "grucel": [188, 235], "proj_siz": [188, 190], "python_bas": [188, 192], "recurrent_st": [188, 339], "custom_kei": [188, 192], "recurrent_mod": [188, 192], "rs": [188, 336], "gru_module_train": 188, "policy_train": [188, 192], "traj_td": [188, 192], "policy_infer": [188, 192], "td_inf": [188, 192], "assert_clos": [188, 192], "upscal": [189, 215, 216], "tanh_loc": [189, 215, 216], "event_dim": [189, 214, 215], "ultim": [189, 215, 216], "poor": [189, 215, 216], "explos": [189, 215, 216], "switch": [189, 216], "formula": [189, 215, 216, 245, 247, 259, 262, 332, 338], "c0": [190, 191], "c1": [190, 191], "call_lstm": [190, 191], "c_out": [190, 191], "i_t": 190, "ii": [190, 191], "hi": [190, 191], "f_t": 190, "hf": [190, 191], "g_t": 190, "ig": [190, 191], "hg": [190, 191], "o_t": 190, "ho": [190, 191], "c_t": 190, "c_": 190, "forget": 190, "consequ": 190, "1402": 190, "1128": 190, "c_0": [190, 191], "proj": 190, "c_n": 190, "w_ii": 190, "w_if": 190, "w_ig": 190, "w_io": 190, "w_hi": 190, "w_hf": 190, "w_hg": 190, "w_ho": 190, "b_ii": 190, "b_if": 190, "b_ig": 190, "b_io": 190, "b_hi": 190, "b_hf": 190, "b_hg": 190, "b_ho": 190, "weight_hr_l": 190, "_revers": 190, "analog": 190, "cn": 190, "lstm_cell": 191, "h_1": 191, "c_1": 191, "time_step": [191, 193], "cx": 191, "trust": 192, "correspont": 192, "recurrent_state_h": [192, 339], "recurrent_state_c": [192, 339], "triplet": [192, 233, 234], "lstm_modul": 192, "rs_h": 192, "rs_c": 192, "hidden0": 192, "hidden1": 192, "lstm_kwarg": 193, "next_observ": [193, 245, 246, 248, 249, 251, 252, 258, 262, 263, 264, 265, 267, 341], "2d": [193, 342], "hidden0_in": 193, "hidden1_in": 193, "hidden0_out": 193, "hidden1_out": 193, "single_bias_last_lay": 194, "layer_class": 194, "layer_kwarg": 194, "perceptron": 194, "seamless": 194, "lazylinear": [194, 331, 338, 343, 344, 347], "42": [194, 245, 246, 248, 258, 265, 337, 338, 339, 343], "noisylinear": [194, 201, 329, 337], "noisylazylinear": [194, 329], "At": [195, 228, 337, 338, 339, 341, 343, 344], "mpcplanner": 195, "tensordict_out": [195, 348], "mppi": 196, "covari": 196, "william": [196, 264], "aldrich": 196, "theodor": 196, "01149": 196, "hansen": 196, "wang": 196, "su": 196, "04955": 196, "valueoper": [196, 221, 222, 223, 245, 246, 247, 248, 252, 258, 259, 262, 263, 264, 265, 267, 323, 331, 336, 338], "tdlambdaestim": [196, 329, 336], "value_net": [196, 249, 251, 264, 275, 276, 277, 278, 338], "adv": 196, "lmbda": [196, 269, 275, 278, 280, 286, 287, 288, 291, 292, 332, 336, 338, 342], "95": [196, 269, 336, 337, 338, 339, 343, 345], "value_network": [196, 248, 249, 251, 253, 258, 265, 275, 276, 277, 278, 332, 336, 338], "temperatur": [196, 246, 258], "neg_inf": [197, 198], "inf": [197, 198], "www": [197, 198], "api_doc": [197, 198], "tf_agent": [197, 198], "event": [197, 198, 206, 284, 285, 286, 287, 289, 290, 291, 292, 345], "unnorm": [197, 198, 206], "sparse_mask": [197, 198], "dens": [197, 198], "0831": [197, 198], "1203": [197, 198], "0928": [197, 198], "1972": [197, 198], "grad_method": [198, 206], "reparamgradientstrategi": [198, 206], "passthrough": [198, 206], "proxi": [198, 206, 332], "relaxedonehot": [198, 206], "zeros_lik": [198, 343], "sample_non_valid": 198, "centralis": [199, 200, 342], "share_param": [199, 200, 342], "basi": [199, 345], "homogen": [199, 200, 342], "agent_network": [199, 200], "modulelist": [199, 200, 320, 347], "lazyconv2d": [199, 347], "2592": [199, 337], "decentralis": [199, 342], "n_agent_input": [200, 342], "n_agent_output": [200, 342], "toech": 200, "centalis": 200, "shown": [200, 331, 341, 342, 345], "std_init": [201, 202], "initialize_paramet": 201, "isol": [201, 260], "1706": [202, 217, 339], "10295v3": 202, "induc": 202, "aid": 202, "scale_map": 203, "biased_softplus_1": 203, "scale_lb": [203, 210, 211], "exp": [203, 244], "module_norm": 203, "decod": 204, "1803": [204, 205, 208], "10122": [204, 205], "rnn_hidden": 204, "latent": 205, "excacli": 206, "inres": 207, "mu": [207, 231, 338], "state_shap": [208, 273], "mixing_embed_dim": [208, 273], "qmix": [208, 342], "mixer": [208, 217, 273], "monoton": 208, "hyper": 208, "11485": 208, "qmixerloss": [208, 217], "qmix_vdn": [208, 217], "eventu": [208, 339, 343], "vdn": [208, 217], "greedi": [209, 227, 228, 229, 234, 337, 339], "hidden_dim": [210, 211], "posterior": [210, 255], "rssm": [210, 211, 255], "1811": [210, 211], "04551": [210, 211], "obs_embed": 210, "rnn_hidden_dim": 211, "dream": 211, "tanhtransform": 215, "decomposit": 217, "05296": 217, "hide": [218, 338, 342], "satisfi": [218, 331], "vmap_dim": 218, "lam": 218, "sample_in": 218, "sample_in_td": 218, "vm": 218, "translat": [220, 232], "character": [220, 226, 232, 233, 235, 345], "overflow": [220, 226, 227, 232, 233, 234, 235, 236], "td_modul": [220, 221, 222, 223, 232, 235, 236, 238, 240, 347], "3635": 220, "0340": 220, "1476": 220, "3911": [220, 343], "1664": [220, 337, 343], "5455": 220, "2247": 220, "4583": 220, "2916": 220, "2160": 220, "5337": 220, "5193": 220, "grad_fn": [220, 228, 229, 347], "addmmbackward0": 220, "actorvalueoper": [221, 331], "get_policy_oper": [221, 222, 223, 247, 259, 262, 331], "standalon": [221, 222, 223], "tdmodul": [221, 222, 223, 323], "get_critic_oper": 221, "common_oper": [221, 223], "policy_oper": [221, 222, 223], "value_oper": [221, 222, 223], "normalparamwrapp": [221, 222, 223, 232, 238, 245, 246, 252, 258, 262, 263, 264, 265, 267, 329, 347], "module_hidden": [221, 223], "td_module_hidden": [221, 223], "module_act": [221, 223], "td_module_act": [221, 222, 223], "module_valu": [221, 222, 223], "td_module_valu": [221, 222, 223], "state_action_valu": [221, 240, 246, 265, 274, 320, 323, 331, 336, 347], "td_clone": [221, 222, 223], "tensordictmodulewrapp": [221, 316, 317, 323], "get_policy_head": [221, 222, 223], "safesequenti": [221, 222, 223, 273], "head": [221, 223, 247, 259, 262], "get_value_head": [221, 222, 223], "get_value_oper": [221, 222, 223, 247, 259, 262], "action_modul": 222, "state_valu": [222, 223, 240, 247, 259, 262, 263, 265, 275, 276, 277, 278, 280, 282, 284, 286, 288, 289, 291, 331, 336, 338, 342], "qualiti": [223, 331], "actorcriticoper": [223, 247, 259, 262, 331], "embeddig": 223, "refet": 223, "actorcriticwrapp": [223, 331, 336], "po": [224, 229], "sigma_init": 224, "epsilon": [224, 228, 229, 231, 266, 309, 337, 338, 339], "sigma_end": 224, "annealing_num_step": [224, 228, 229, 231, 336, 337, 339], "captur": [224, 228, 229, 231], "omiss": [224, 228, 229, 231], "ommit": [224, 228, 229, 231, 345], "inferec": 225, "set_tensor_kei": 225, "dt_inference_wrapp": 225, "baz": 225, "inference_context": 225, "obs_dim": 225, "tanhdelta": [225, 329, 336], "dtactor": 225, "actor_modul": [225, 347], "dist_class": 225, "dist_kwarg": 225, "distribution_kwarg": [225, 232, 236, 338, 342], "inference_actor": 225, "sequence_length": 225, "mask_context": 225, "out_act": 225, "qvaluemodul": [226, 233, 273, 339], "distributionaldqnnet": 226, "make_log_softmax": 226, "my_action_valu": [227, 234], "chanc": 227, "thid": 227, "threshold": [228, 246, 247, 338], "eps_init": [228, 229, 231, 337, 339], "eps_end": [228, 229, 231, 337], "explorative_polici": [228, 229, 231], "9055": [228, 229, 343], "9277": [228, 229], "6295": [228, 229], "2532": [228, 229], "addbackward0": [228, 229], "lmheadmodel": 230, "extract": [230, 336, 338], "actor_head": [230, 247, 259, 262], "base_model": 230, "lm_head": 230, "ornstein": 231, "uhlenbeck": 231, "ou": [231, 336], "correl": 231, "noise_t": 231, "noise_": 231, "theta": [231, 338, 343], "sigma_t": 231, "sigma_": 231, "anneal": 231, "ou_prev_nois": 231, "ou_step": 231, "x0": 231, "sigma_min": 231, "n_steps_ann": 231, "is_init_kei": 231, "_ou_prev_nois": 231, "_ou_step": 231, "default_interaction_typ": [232, 236], "interaction_typ": [232, 236], "set_interaction_typ": [232, 236], "cache_dist": [232, 236], "n_empirical_estim": [232, 236], "compound": 232, "compositedistribut": 232, "categ": 232, "distribution_map": 232, "chose": 234, "functionalmodul": 235, "functionalmodulewithbuff": 235, "td_fmodul": 235, "td_function": 235, "td_state": 235, "params_repeat": 235, "td_vmap": [235, 238], "random_sampl": [235, 236], "suppli": 236, "fist": 236, "log_prob_kei": [236, 342], "probabilistictensordictsequenti": [237, 245, 247, 259, 262, 264, 316, 317, 347], "partial_toler": [237, 238, 341], "who": [237, 238], "AND": [237, 238], "tensordictsequenci": 238, "tensordictsequ": 238, "safeprobabilisticmodul": [238, 331], "spec1": 238, "net1": 238, "module1": 238, "td_module1": 238, "spec2": 238, "module2": 238, "td_module2": 238, "clamp": [239, 255, 311, 343], "boundari": [239, 338, 342], "resolut": 239, "simplest": [239, 336, 338, 339, 342, 345, 348], "9944": 239, "9991": 239, "3020": 239, "2299": [239, 343], "5418": 239, "2989": 239, "6849": 239, "3169": 239, "2690": 239, "9649": [239, 343], "5686": 239, "8602": 239, "0315": 239, "8455": [239, 343], "6027": 239, "4746": 239, "7843": 239, "7782": 239, "2111": 239, "5115": 239, "4687": 239, "5760": 239, "custommodul": 240, "cat": [240, 246, 248, 258, 263, 265, 267, 347], "imaginari": 241, "imagin": 241, "transition_model": 241, "get_reward_oper": 241, "get_transition_model_oper": 241, "min_val": [242, 244], "_bia": 242, "invert": [243, 338], "surject": 244, "expln": 244, "biased_softplu": [244, 329], "beggin": 244, "biased_softplus_": 244, "syntax": [244, 336], "met": [244, 343], "1602": 245, "01783v2": 245, "entropy_bonu": [245, 247, 259, 262, 338], "favour": [245, 247, 259, 262], "samples_mc_entropi": [245, 247, 259, 261, 262], "mont": [245, 247, 259, 262, 336], "carlo": [245, 247, 259, 262, 336], "entropy_coef": [245, 247, 259, 262, 338, 342], "critic_coef": [245, 247, 259, 262, 338], "loss_critic_typ": [245, 247, 259, 262, 264, 338], "l1": [245, 247, 248, 249, 252, 259, 262, 263, 264, 267, 270, 273, 331, 336], "l2": [245, 247, 248, 249, 250, 251, 252, 255, 256, 259, 262, 263, 264, 267, 270, 273, 336], "smooth_l1": [245, 246, 247, 248, 249, 252, 258, 259, 262, 263, 264, 265, 267, 270, 273, 338], "separate_loss": [245, 247, 248, 252, 258, 259, 262, 263, 264, 265, 267], "propag": [245, 247, 248, 252, 258, 259, 262, 263, 264, 265, 267, 275, 276, 277, 278, 338, 342], "advantage_kei": [245, 247, 259, 262, 264, 275, 276, 277, 278], "value_target_kei": [245, 247, 259, 262, 264, 275, 276, 277, 278, 338], "value_target": [245, 247, 259, 262, 264, 275, 276, 277, 278, 338, 342], "loss_crit": [245, 262, 338, 342], "loss_entropi": [245, 262, 338, 342], "loss_object": [245, 262, 338, 342], "recur": [245, 246, 248, 249, 251, 252, 258, 262, 263, 264, 265, 267, 275, 276, 277, 278, 279], "next_reward": [245, 246, 248, 249, 251, 252, 258, 262, 263, 264, 265, 267, 275, 276, 277, 278], "next_don": [245, 246, 248, 249, 251, 252, 258, 262, 263, 264, 265, 267, 275, 276, 277, 278], "next_termin": [245, 246, 248, 249, 251, 252, 258, 262, 263, 264, 265, 267, 275, 276, 277, 278], "loss_obj": 245, "sacloss": [245, 257, 266, 329], "select_out_kei": [245, 246, 248, 252, 258, 262, 263, 265, 267], "essenti": [245, 246, 247, 252, 253, 254, 255, 256, 258, 259, 260, 262, 263, 264, 265, 267, 273, 337, 343, 345], "make_value_estim": [245, 246, 248, 249, 251, 252, 253, 254, 258, 260, 262, 263, 264, 265, 267, 268, 273, 332, 336, 337, 342], "value_typ": [245, 246, 248, 249, 251, 252, 253, 254, 258, 260, 262, 263, 264, 265, 267, 269, 273, 336], "valueestim": [245, 246, 248, 249, 251, 252, 253, 254, 258, 260, 262, 263, 264, 265, 267, 269, 273, 329, 332, 336, 342], "hyperparam": [245, 246, 248, 249, 251, 252, 253, 254, 258, 260, 262, 263, 264, 265, 267, 273, 336], "enum": [245, 246, 248, 249, 251, 252, 253, 254, 258, 260, 262, 263, 264, 265, 267, 269, 273, 336], "default_value_estim": [245, 246, 248, 249, 251, 252, 253, 254, 258, 260, 262, 263, 264, 265, 267, 273, 336], "default_value_kwarg": [245, 246, 248, 249, 251, 252, 253, 254, 258, 260, 262, 263, 264, 265, 267, 273, 329, 336], "dqn_loss": [245, 246, 248, 249, 251, 252, 253, 254, 258, 260, 262, 263, 264, 265, 267, 268, 273], "conserv": [246, 251], "2006": [246, 251, 343], "actor_network": [246, 248, 250, 252, 258, 261, 263, 265, 267, 336], "qvalue_network": [246, 252, 258, 263, 265, 267], "loss_funct": [246, 248, 249, 250, 251, 252, 258, 263, 265, 267, 270, 273, 336], "alpha_init": [246, 252, 261, 263, 265], "min_alpha": [246, 252, 261, 263, 265], "max_alpha": [246, 252, 261, 263, 265], "fixed_alpha": [246, 252, 261, 263, 265], "target_entropi": [246, 252, 261, 263, 265], "prod": [246, 261, 265], "n_action": [246, 249, 251, 261, 265], "delay_actor": [246, 248, 265, 267], "delay_qvalu": [246, 252, 263, 265, 267], "min_q_weight": 246, "max_q_backup": 246, "backup": 246, "deterministic_backup": 246, "num_random": 246, "with_lagrang": 246, "lagrang": 246, "lagrange_thresh": 246, "valueclass": [246, 248, 252, 258, 263, 265, 267], "qvalu": [246, 252, 258, 263, 265, 267, 320], "loss_actor": [246, 248, 252, 258, 263, 264, 265, 267, 306, 336, 347], "loss_alpha": [246, 252, 263, 265], "loss_alpha_prim": 246, "loss_qvalu": [246, 252, 258, 263, 265, 267], "clip_epsilon": [247, 338, 342], "normalize_advantag": [247, 259, 262, 342], "value_kei": [247, 259, 262, 275, 276, 277, 278, 336], "somemodul": [247, 259, 262], "someactor": [247, 259, 262], "value_head": [247, 259, 262], "somevalu": [247, 259, 262], "loss_modul": [247, 257, 259, 260, 262, 266, 311, 322, 323, 332, 333, 336, 337, 338, 342, 345], "ppoloss": [247, 259, 329], "delay_valu": [248, 249, 251, 253, 264, 265, 273, 337, 339], "loss_valu": [248, 258, 264, 265, 336, 338, 342, 347], "pred_valu": [248, 267, 336, 347], "pred_value_max": [248, 336, 347], "target_valu": [248, 263, 267, 274, 332, 336, 347], "target_value_max": [248, 336, 347], "qvalueactor": [249, 251, 273, 331, 337, 339], "double_dqn": 249, "06461": [249, 257], "mult_one_hot": [249, 252, 273], "loss_val": [249, 251, 332, 336, 338, 339, 342, 345], "2106": 250, "01345": 250, "distanc": [251, 259, 270, 274, 275, 342], "loss_cql": 251, "dcql_loss": 251, "num_qvalue_net": [252, 258, 263, 265, 267], "target_entropy_weight": 252, "onehotcategor": [252, 329], "disctount": 253, "distributionalqvalueactor": [253, 331], "input_tensordict": [253, 336], "actor_model": 254, "value_model": [254, 256], "model_based_env": 254, "dreamerenv": [254, 329], "imagination_horizon": 254, "unrol": [254, 280, 281, 284, 285, 286, 287, 288, 289, 290, 291, 292], "discount_loss": [254, 256], "lambda_kl": 255, "lambda_reco": 255, "lambda_reward": 255, "reco_loss": 255, "reward_loss": 255, "free_nat": 255, "nat": 255, "delayed_clamp": 255, "global_averag": 255, "value_loss": 256, "fake_data": 256, "ddpgloss": [257, 266, 323, 329, 336, 347], "td3loss": [257, 266, 329], "value_network_update_interv": 257, "2110": 258, "06169": 258, "expectil": 258, "tau": [258, 266, 336, 337], "antmaz": 258, "sticht": 258, "loss_value_diff": 258, "diff": 258, "old_polici": 259, "new_polici": 259, "apart": [259, 342], "dtarg": 259, "samples_mc_kl": 259, "analyt": 259, "decrement": 259, "loss_": [260, 306, 332, 336], "equip": [260, 339], "gh": 260, "_acceptedkei": 260, "dataclass": [260, 320], "_forward_value_estimator_kei": 260, "alter": [260, 331], "value_estim": [260, 275, 276, 277, 278, 279, 332, 336, 342], "myloss": 260, "action2": 260, "convert_to_funct": [260, 336], "expand_dim": 260, "create_target_param": [260, 336], "compare_against": [260, 336], "_param": 260, "expans": 260, "resampl": 260, "_target_param": 260, "blend": 260, "upcom": [260, 284, 285, 286, 287, 289, 290, 291, 292, 336], "proxim": [262, 338, 342], "optimis": [262, 307, 338, 342], "flavour": [262, 342, 347], "clipppoloss": [262, 329, 338, 342], "klpenppoloss": [262, 329], "regularis": 262, "06347": 262, "gae": [262, 329, 332, 336, 338, 342], "ppo_loss": 262, "tdlambda": [262, 269, 332, 336], "base_lay": 262, "randn_lik": 262, "samplelogprob": 262, "openreview": [263, 320], "ay8zfzm0tdd": [263, 320], "sub_sample_len": 263, "subsampl": [263, 302, 333], "action_log_prob_actor": 263, "state_action_value_actor": [263, 267], "connectionist": 264, "1992": 264, "doi": 264, "1007": 264, "bf00992696": 264, "actor_net": [264, 336, 338], "1801": 265, "01290": 265, "applic": [265, 273, 343], "1812": 265, "05905": 265, "redqloss": [266, 329], "math": 266, "theta_t": [266, 343], "theta_": [266, 343], "polyak": 266, "policy_nois": 267, "noise_clip": 267, "next_state_valu": [267, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 329], "td0": [268, 336], "strict_shap": 270, "view_a": 270, "qmixer": [273, 329], "local_valu": 273, "visibl": [273, 342], "dafault": 273, "acceptedkei": 273, "global_valu": 273, "penultim": 273, "local_value_network": 273, "mixer_network": 273, "suggest": [273, 342], "value_modul": [273, 338, 347], "qnet": [273, 336], "next_val_kei": 274, "pred_next_v": 274, "usus": 274, "mse": 274, "q_valu": 274, "n_steps_to_next": 274, "value_next_st": 274, "1506": [275, 280, 288], "02438": [275, 280, 288], "exponenti": [275, 276, 277, 278, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 309], "average_ga": [275, 338], "skip_exist": [275, 276, 277, 278], "advang": 275, "gradient_mod": 275, "value_error": [275, 276, 277, 278, 279], "sign": 275, "target_param": [275, 276, 277, 278, 279, 336, 342], "98": [275, 276, 277, 278, 336, 337, 343, 344], "94": [275, 278, 336, 337, 343, 344], "unpack": [275, 276, 277, 278], "tensor_kei": [275, 276, 277, 278, 279], "next_valu": [275, 276, 277, 278, 279], "aka": [276, 337], "average_reward": [276, 277, 278], "tdestim": [276, 277, 279], "infti": 277, "valuefunctionbas": 279, "time_dim": [280, 281, 284, 285, 286, 287, 288, 289, 290, 291, 292], "old_stat": [280, 282, 284, 286, 288, 289, 291], "new_stat": [280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292], "rolling_gamma": [284, 285, 286, 287, 289, 290, 291, 292], "g1": [284, 285, 286, 287, 289, 290, 291, 292], "g2": [284, 285, 286, 287, 289, 290, 291, 292], "g3": [284, 285, 286, 287, 289, 290, 291, 292], "g4": [284, 285, 286, 287, 289, 290, 291, 292], "v3": [284, 285, 286, 287, 289, 290, 291, 292], "out_file_bas": 293, "skip_reset": 293, "interv": [293, 294, 303, 313, 337, 343], "center_crop": 294, "make_grid": 294, "grid": 294, "exp_nam": [295, 296, 299, 300, 301, 323, 337], "log_dir": [295, 296, 298, 300, 337], "templat": 295, "csv": [296, 298, 337], "minim": [296, 345], "dependeci": 296, "experiment_nam": [297, 298], "uuid": [297, 337, 348], "logger_typ": 298, "logger_nam": 298, "tensorboard": [298, 300, 347], "wandb": [298, 301, 347], "mlflow": [298, 299], "wandb_kwarg": 298, "mlflow_kwarg": 298, "tracking_uri": 299, "uri": 299, "datastor": 299, "tb_log": 300, "tensoarboard": 300, "sub_traj_len": 302, "min_sub_traj_len": 302, "register_op": [302, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 333, 337], "process_optim_batch": [302, 308, 309, 333], "td_out": [302, 310], "_process_optim_batch_hook": [302, 333], "batch_subsampl": 302, "clear_cuda": 303, "pre_optim_step": [303, 333], "counter": [304, 333], "log_pbar": [304, 305, 307, 309, 333, 337], "progress": [304, 305, 307, 311, 333, 337, 339, 348], "count_fram": 304, "pre_steps_log": [304, 305, 333], "count_frames_log": 304, "lognam": 305, "r_train": [305, 337], "log_reward": [305, 337], "loss_compon": 306, "appl": 306, "omit": [306, 338, 343, 345], "optimizer_hook": 306, "record_interv": [307, 336, 337], "record_fram": [307, 314, 336, 337], "policy_explor": [307, 323, 336, 337], "log_kei": [307, 337], "suffix": 307, "underestim": 307, "set_exploration_typ": [307, 329, 338, 339, 347], "r_evalu": [307, 336], "flatten_tensordict": [308, 337], "max_dim": 308, "rb_trainer": 308, "batch_process": [308, 309, 310, 333], "post_loss": [308, 333], "999": [309, 337], "jitter": 309, "finfo": 309, "default_dtyp": 309, "get_default_dtyp": 309, "reward_norm": 309, "update_reward_stat": 309, "normalize_reward": 309, "make_train": [310, 329], "_process_batch_hook": [310, 333], "select_kei": [310, 333], "versatil": 311, "optim_steps_per_batch": [311, 333, 337], "epoch": [311, 338, 342], "clip_grad_norm": 311, "clip_norm": 311, "progress_bar": 311, "save_trainer_interv": 311, "log_interv": [311, 337], "save_trainer_fil": [311, 333], "datacollectorbas": [313, 316, 317, 323, 329], "update_weights_interv": [313, 337], "sit": [313, 337], "update_weight": 313, "post_step": [313, 333], "cfg": [314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 327], "dictconfig": [314, 315, 316, 317, 320, 321, 322, 323, 324, 327], "divid": [314, 331, 336, 342, 343], "unknowingli": 314, "annealing_fram": [314, 336], "init_env_step": [314, 315, 336], "proof_environ": [315, 320, 336], "sta": 315, "ot": 315, "actor_model_explor": [316, 317, 336], "make_env_kwarg": [316, 317], "targetnetupdat": [318, 319, 322, 323], "redqloss_deprec": 319, "actor_net_kwarg": 320, "qvalue_net_kwarg": 320, "observation_kei": 320, "parser_env_arg": 320, "parser_model_args_continu": 320, "cattensor": [320, 336, 341, 343, 348], "hydra": 320, "config_stor": 320, "configstor": 320, "config_field": 320, "config_cl": 320, "redqmodelconfig": 320, "envconfig": 320, "make_dataclass": 320, "cls_name": 320, "cs": 320, "config_path": 320, "config_nam": 320, "replayargsconfig": 321, "target_net_updat": [323, 336, 337], "constitu": 323, "learnt": [323, 336, 338], "tensorboardlogg": [323, 329], "egreedywrapp": [323, 337, 339], "env_proof": 323, "obs_spec": 323, "net_valu": 323, "dir": [323, 333, 337], "gettempdir": 323, "argpars": [324, 327], "namespac": [324, 327], "parser": [324, 327], "transformed_env_constructor": [324, 329], "num_env_per_collector": [325, 326], "video_tag": 327, "norm_obs_onli": 327, "use_env_cr": 327, "custom_env_mak": 327, "custom_env": 327, "return_transformed_env": 327, "action_dim_gsd": 327, "state_dim_gsd": 327, "obs_norm_state_dict": 327, "wheter": 327, "maker": 327, "asyncdatacollector": 329, "distributedsyncdatacollector": 329, "submitit_delayed_launch": 329, "raycollector": 329, "immutabledatasetwrit": 329, "tensordictmaxvaluewrit": 329, "d4rlexperiencereplai": 329, "minariexperiencereplai": 329, "openmlexperiencereplai": 329, "openxexperiencereplai": 329, "vd4rlexperiencereplai": 329, "unboundeddiscretetensorspec": [329, 348], "lazystackedtensorspec": 329, "lazystackedcompositespec": 329, "prompttensordicttoken": 329, "rolloutfrommodel": 329, "tokenizeddatasetload": 329, "create_infinite_iter": 329, "consolidate_spec": 329, "check_no_exclusive_kei": 329, "contains_lazy_spec": 329, "check_marl_group": 329, "tensordictrecord": 329, "videorecord": [329, 338], "get_available_librari": 329, "set_exploration_mod": 329, "make_composite_from_td": [329, 343], "terminated_or_trunc": 329, "braxwrapp": 329, "dmcontrolenv": [329, 336, 341, 348], "dmcontrolwrapp": [329, 348], "jumanjienv": 329, "jumanjiwrapp": 329, "mogymenv": 329, "mogymwrapp": 329, "multithreadedenvwrapp": 329, "openmlenv": 329, "pettingzooenv": 329, "robohiveenv": 329, "smacv2env": 329, "smacv2wrapp": 329, "vmaswrapp": 329, "qvaluehook": 329, "distributionalqvaluehook": 329, "reset_nois": 329, "cemplann": 329, "mpcplannerbas": 329, "mppiplann": 329, "independentnorm": 329, "truncatednorm": 329, "maskedonehotcategor": 329, "inv_softplu": 329, "vmapmodul": 329, "distributionaldqnloss": [329, 337], "discretesacloss": 329, "iqlloss": 329, "cqlloss": 329, "discretecqlloss": 329, "dtloss": 329, "onlinedtloss": 329, "a2closs": 329, "reinforceloss": 329, "dreameractorloss": 329, "dreamermodelloss": 329, "dreamervalueloss": 329, "td0estim": [329, 336], "td1estim": [329, 336], "td0_return_estim": 329, "td0_advantage_estim": 329, "td1_return_estim": 329, "vec_td1_return_estim": 329, "td1_advantage_estim": 329, "vec_td1_advantage_estim": 329, "td_lambda_return_estim": 329, "vec_td_lambda_return_estim": 329, "td_lambda_advantage_estim": 329, "vec_td_lambda_advantage_estim": 329, "generalized_advantage_estim": 329, "vec_generalized_advantage_estim": 329, "reward2go": 329, "distance_loss": [329, 336], "hold_out_net": 329, "hold_out_param": [329, 336], "softupd": [329, 336, 337, 339], "hardupd": [329, 336], "batchsubsampl": [329, 333], "clearcudacach": 329, "countframeslog": 329, "logreward": [329, 333, 337], "optimizerhook": [329, 337], "replaybuffertrain": [329, 333, 337], "rewardnorm": 329, "selectkei": [329, 333], "trainerhookbas": [329, 333, 337], "updateweight": [329, 333, 337], "make_collector_offpolici": 329, "make_collector_onpolici": 329, "make_dqn_loss": 329, "make_redq_loss": 329, "make_redq_model": 329, "make_replay_buff": [329, 336], "make_target_updat": 329, "parallel_env_constructor": [329, 336], "sync_async_collector": 329, "sync_sync_collector": 329, "correct_for_frame_skip": 329, "get_stats_random_rollout": 329, "csvlogger": [329, 337], "mlflowlogg": 329, "wandblogg": 329, "get_logg": 329, "generate_exp_nam": 329, "journei": 330, "textbook": 330, "highlight": 330, "ever": [330, 342], "bump": 330, "think": [330, 338, 342, 348], "benefit": [330, 342, 345], "pr": 330, "ground": [331, 336, 343], "categori": [331, 333], "recycl": [331, 345], "impos": 331, "violat": 331, "noisier": 331, "Their": [331, 342], "sd": 331, "prob_modul": 331, "pick": [331, 336, 337], "tabl": [331, 337], "hopefulli": [331, 337], "functional_modul": 331, "make_funct": [331, 347], "mathbb": [331, 337], "rightarrow": [331, 337], "soften": 331, "backbon": [331, 339, 341, 347], "make_actor": 331, "make_valu": 331, "shared_param": 331, "make_common": 331, "reusabl": [332, 336, 345], "swappabl": [332, 336], "characterist": [332, 336, 343], "trainabl": [332, 336, 344], "whatev": [332, 336], "smth": [332, 336], "metric": [332, 336], "nutshel": [332, 336], "barto": [332, 342], "chapter": 332, "significantli": [332, 336, 337, 342], "next_stat": 332, "value_net_loss": 332, "pow": [332, 336], "therebi": 332, "room": 332, "convers": 332, "signifi": [332, 342], "underperform": 332, "thin": 332, "intric": 332, "believ": 333, "scheme": [333, 348], "substenti": 333, "_pre_steps_log_hook": 333, "_pre_optim_hook": 333, "sub_batch": 333, "_post_loss_hook": 333, "_post_optim_hook": 333, "post_optim": [333, 337], "_post_optim_log": 333, "post_optim_log": 333, "_post_steps_hook": 333, "_post_steps_log_hook": 333, "post_steps_log": 333, "comment": [333, 337, 347], "reserv": 333, "logginghook": 333, "logging_hook": 333, "save_dict": 333, "some_valu": 333, "torchsnapshot": 333, "ckpt_backend": 333, "pt": [333, 344], "filepath": 333, "save_train": 333, "load_from_fil": 333, "388": [335, 343, 346], "galleri": [335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 347, 348], "mem": [335, 346], "mb": [335, 336, 337, 338, 339, 341, 342, 343, 344, 345, 346, 347, 348], "torchrl_demo": [335, 346, 347], "58": [335, 336, 337, 343, 346, 347], "037": [335, 346, 347], "torchrl_env": [335, 346, 348], "116": [335, 343, 346, 348], "dqn_with_rnn": [335, 339, 346], "282": [335, 339, 343, 346], "1705": [335, 346], "multiagent_ppo": [335, 342, 346], "439": [335, 342, 343, 346], "coding_dqn": [335, 337, 346], "02": [335, 336, 337, 338, 339, 342, 343, 344, 346], "45": [335, 336, 337, 343, 345, 346], "922": [335, 337, 346], "779": [335, 337, 346], "41": [335, 337, 342, 343, 345, 346], "068": [335, 343, 346], "rb_tutori": [335, 345, 346], "058": [335, 345, 346], "402": [335, 343, 346], "coding_ddpg": [335, 336, 346], "049": [335, 336, 346], "coding_ppo": [335, 338, 346], "36": [335, 337, 338, 343, 346], "986": [335, 338, 346], "pretrained_model": [335, 344, 346], "00": [335, 336, 337, 338, 339, 342, 343, 344, 346], "52": [335, 337, 338, 343, 344, 345, 346], "959": [335, 344, 346], "3544": [335, 344, 346], "multi_task": [335, 341, 346], "49": [335, 336, 337, 341, 343, 344, 346], "471": [335, 341, 343, 346], "25": [335, 336, 337, 338, 341, 342, 343, 346], "author": [336, 337, 338, 339, 342, 343, 345], "vincent": [336, 337, 338, 339, 343, 345], "moen": [336, 337, 338, 339, 343, 345], "assembl": 336, "focus": 336, "straightforward": [336, 337, 345], "overview": [336, 338, 342, 347], "transpar": [336, 339], "understood": 336, "sota": [336, 337, 347], "illustr": [336, 337, 345], "loss_dict": 336, "oblivi": [336, 338, 345], "elementari": 336, "didact": 336, "dilut": 336, "pessimist": [336, 337, 338], "target_actor_network_param": 336, "actor_in_kei": 336, "actor_crit": 336, "noth": [336, 338], "compromis": 336, "hp": 336, "hasattr": 336, "_value_estim": 336, "elif": [336, 337], "notimplementederror": 336, "unknown": 336, "_loss_actor": 336, "td_copi": 336, "actor_network_param": 336, "value_network_param": 336, "_loss_valu": 336, "pred_val": 336, "target_value_network_param": 336, "smooth": [336, 337], "loss_funt": 336, "glue": 336, "_forward": 336, "ndimens": 336, "remaind": 336, "focu": [336, 337, 338], "pixels_onli": [336, 337, 347, 348], "env_librari": 336, "env_task": 336, "env_arg": 336, "friendli": 336, "torchr": 336, "rescal": 336, "presum": 336, "make_transformed_env": 336, "reward_sc": 336, "double_to_float_list": 336, "double_to_float_inv_list": 336, "marker": 336, "env_per_collector": 336, "transform_state_dict": 336, "make_t_env": 336, "adjust": [336, 342, 343], "seem": [336, 339], "cheat": 336, "10m": 336, "cautiou": 336, "magnitud": 336, "thousand": [336, 339], "get_env_stat": 336, "proof_env": 336, "5000": [336, 337, 338], "maxim": [336, 343], "recal": [336, 338], "ddpgmlpactor": 336, "ddpgmlpqnet": 336, "materi": 336, "ornsteinuhlenbeckprocesswrapp": 336, "make_ddpg_actor": 336, "q_net": 336, "moduless": 336, "sugges": 336, "tight": 336, "10_000": [336, 338, 345], "traj_len": [336, 339], "make_record": 336, "recorder_obj": 336, "flavor": 336, "circular": 336, "buffer_s": [336, 337], "random_crop_len": 336, "prb": 336, "buffer_scratch_dir": 336, "temporari": 336, "dirrectori": 336, "trajecotri": 336, "sampel": 336, "dataflow": 336, "ceil_div": 336, "utd": [336, 339], "update_to_data": 336, "realiz": 336, "_must_": 336, "001": [336, 343], "outdat": 336, "trick": [336, 337], "despit": 336, "adam": [336, 337, 338, 339, 342, 343], "optimizer_actor": 336, "lr": [336, 337, 338, 339, 342, 343], "weight_decai": [336, 337], "optimizer_valu": 336, "total_collection_step": 336, "pretti": [336, 345], "rewards_ev": 336, "collected_fram": 336, "pbar": [336, 338, 339, 342, 343], "r0": 336, "numel": [336, 338, 339, 344, 345], "current_fram": 336, "sampled_tensordict": 336, "gn1": 336, "clip_grad_norm_": [336, 338, 342, 343], "gn2": 336, "gn": [336, 343], "td_record": 336, "rn": 336, "set_descript": [336, 338, 339, 342, 343], "2f": 336, "800": [336, 337], "2822": 336, "91it": 336, "1600": [336, 337], "1036": 336, "58it": [336, 337, 343], "3200": [336, 337], "2151": 336, "21it": [336, 337, 343], "48": [336, 337, 343, 344], "4800": [336, 337, 343], "3093": 336, "40it": [336, 337, 343], "82": [336, 337, 343, 344], "63": [336, 337, 343], "342": [336, 343], "91": [336, 337, 343], "56": [336, 337, 343, 344], "5600": 336, "6400": [336, 347], "1387": 336, "77it": [336, 337], "09": [336, 337, 338, 339, 343], "166": [336, 343], "254": [336, 343], "66": [336, 337, 343, 344], "69": [336, 337, 343], "72": [336, 337, 343], "7200": 336, "876": [336, 343], "66it": [336, 337, 343], "55": [336, 337, 343, 344], "153": [336, 343], "347": [336, 343], "80": [336, 337, 338, 342, 343, 344], "8000": [336, 338], "650": 336, "20it": 336, "51": [336, 337, 339, 343], "31": [336, 337, 343, 344], "154": [336, 343], "348": [336, 343], "40": [336, 337, 338, 342, 343], "8800": 336, "542": [336, 343], "97": [336, 337, 343], "74": [336, 337, 343, 344], "191": [336, 343], "59": [336, 337, 342, 343], "62": [336, 337, 342, 343, 344, 345], "96": [336, 337, 343, 344], "9600": 336, "405": [336, 343], "43it": [336, 343], "85": [336, 337, 343, 344], "113": [336, 339, 343], "61": [336, 337, 342, 343, 344], "213": [336, 343], "10400it": 336, "395": [336, 343], "17it": [336, 337], "60": [336, 337, 338, 342, 343, 344, 347], "07": [336, 337, 342, 343], "118": [336, 343], "143": [336, 343], "plot": [336, 338, 339, 342, 343], "mention": [336, 339, 345, 348], "matplotlib": [336, 338, 339, 342, 343, 345, 348], "pyplot": [336, 338, 339, 342, 343, 345, 348], "plt": [336, 338, 339, 342, 343, 345, 348], "zip": [336, 340], "legend": 336, "xlabel": [336, 339, 342, 343], "ylabel": [336, 342], "tight_layout": 336, "concret": [336, 338], "takeawai": [336, 337], "minut": [336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "jupyt": [336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 347, 348], "ipynb": [336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "sphinx": [336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 347, 348], "customis": [337, 342], "road": 337, "aspect": 337, "highest": 337, "prerequisit": [337, 339], "familiar": [337, 342, 348], "lookup": 337, "amort": [337, 338], "conjunct": 337, "cart": 337, "pole": 337, "un": 337, "actuat": 337, "frictionless": 337, "upright": 337, "duelingcnndqnet": 337, "is_notebook": 337, "shell": 337, "get_ipython": 337, "__class__": 337, "zmqinteractiveshel": 337, "qtconsol": 337, "terminalinteractiveshel": 337, "ipython": [337, 342, 343], "nameerror": 337, "umbrella": 337, "misplac": 337, "misus": 337, "orchestr": 337, "everyth": [337, 339], "five": [337, 338], "64x64": 337, "motion": [337, 343], "obs_norm_sd": 337, "simpler": 337, "get_norm_stat": 337, "test_env": 337, "make_model": 337, "dummy_env": 337, "output_s": [337, 339], "init_bia": 337, "actor_explor": 337, "eps_greedy_v": 337, "eps_greedy_val_env": 337, "get_replay_buff": 337, "n_optim": 337, "themselv": 337, "simplic": [337, 338, 344, 345], "get_collector": 337, "data_collector": 337, "bunch": 337, "concept": [337, 345], "power": 337, "ubiquit": 337, "get_loss_modul": 337, "target_updat": 337, "995": [337, 343], "sensit": 337, "variat": 337, "2e": [337, 343], "wd": 337, "upd": 337, "harder": [337, 347], "5_000": 337, "500000": 337, "100000": 337, "005": 337, "mandatori": [337, 338, 342, 343], "fairer": 337, "budget": [337, 338], "dqn_exp_": 337, "uuid1": [337, 348], "9895": 337, "0737": 337, "registr": 337, "cumbersom": 337, "buffer_hook": 337, "weight_updat": 337, "descript": [337, 338], "aliv": 337, "total_reward": 337, "4074": [337, 343], "9434": 337, "37it": [337, 343], "4045": 337, "47": [337, 339, 343], "06it": 337, "49it": [337, 343], "3409": 337, "32it": 337, "4404": 337, "192": [337, 343], "224": [337, 343], "14it": [337, 338, 343], "4676": 337, "53": [337, 342, 343], "34it": [337, 343], "4497": 337, "288": [337, 343], "22it": 337, "3862": 337, "29it": 337, "3952": 337, "352": [337, 343], "65": [337, 343, 344], "70it": [337, 343], "3982": [337, 343], "384": [337, 343], "67": [337, 341, 343, 344], "26it": [337, 343], "416": [337, 343], "68": [337, 343, 344], "68it": [337, 339, 343], "4948": 337, "448": [337, 343], "70": [337, 338, 342, 343, 344], "39it": 337, "4524": 337, "480": [337, 343, 344], "71": [337, 342, 343, 344], "88it": 337, "76it": [337, 343], "544": [337, 343], "73": [337, 343], "4224": 337, "576": [337, 343], "608": [337, 343], "81it": [337, 338], "4526": 337, "640": 337, "18it": 337, "672": 337, "4797": 337, "704": 337, "57": [337, 343, 344], "736": 337, "46it": 337, "768": 337, "02it": 337, "86it": [337, 338], "832": 337, "864": 337, "07it": 337, "896": 337, "94it": 337, "928": 337, "54": [337, 342, 343], "960": 337, "992": [337, 343], "09it": 337, "36it": 337, "1056": 337, "64it": [337, 338, 343], "1088": 337, "11it": [337, 343], "1120": 337, "1152": 337, "65it": [337, 343], "4345": 337, "1184": 337, "30it": [337, 343], "1216": 337, "1248": 337, "55it": [337, 343], "1280": 337, "38it": 337, "25it": [337, 339], "1344": 337, "67it": [337, 343], "4134": 337, "1376": 337, "1408": 337, "1440": 337, "76": [337, 343, 344], "03it": [337, 338], "1472": 337, "1504": 337, "1536": 337, "59it": [337, 338, 343], "1568": 337, "97it": [337, 343], "42it": 337, "1632": 337, "1696": 337, "43": [337, 339, 343], "4254": [337, 343], "1728": 337, "1760": 337, "1792": 337, "1824": 337, "61it": [337, 343], "1856": 337, "1888": 337, "1920": 337, "84it": 337, "1952": 337, "1984": 337, "2016": 337, "2048": [337, 344], "80it": 337, "2080": 337, "00it": [337, 338], "2112": [337, 343], "47it": [337, 343], "2144": 337, "13it": 337, "2176": 337, "83it": 337, "2208": 337, "73it": [337, 343], "2240": 337, "2272": 337, "57it": [337, 343], "2304": 337, "2336": 337, "2368": 337, "2400": 337, "99it": 337, "2432": 337, "23it": [337, 343], "2464": 337, "79it": 337, "2496": 337, "2528": [337, 343], "45it": [337, 338, 339, 343], "2560": 337, "71it": [337, 343], "2624": 337, "69it": [337, 343], "2656": [337, 343], "2688": 337, "27it": 337, "2720": [337, 343], "2752": 337, "56it": [337, 343], "2784": 337, "2816": 337, "95it": 337, "2848": 337, "19it": 337, "4586": 337, "2880": 337, "63it": [337, 343], "2912": 337, "2944": [337, 343], "41it": 337, "2976": [337, 343], "4314": 337, "3040": 337, "3072": 337, "87it": [337, 339, 343], "3104": 337, "96it": [337, 338], "3136": 337, "3168": 337, "74it": [337, 343], "3232": [337, 343], "92it": [337, 343], "0909": 337, "3264": 337, "60it": [337, 343], "3296": 337, "3328": 337, "3360": 337, "54it": [337, 343], "3392": 337, "3424": 337, "78it": [337, 343], "3456": [337, 343], "3488": 337, "3520": 337, "3552": 337, "3584": 337, "3616": 337, "3648": 337, "24it": [337, 343], "3680": 337, "3712": 337, "3744": 337, "3776": 337, "3808": 337, "77": [337, 343, 344, 345], "3840": 337, "3872": 337, "35it": 337, "78": [337, 343, 345], "3904": 337, "79": [337, 343, 344], "3936": 337, "28it": 337, "3968": 337, "05": [337, 342, 343, 344], "72it": [337, 343], "4000": [337, 338], "4032": 337, "4064": 337, "10it": [337, 338], "4096": 337, "83": [337, 343, 344, 345], "4128": [337, 343], "4160": 337, "4192": 337, "90it": 337, "98it": [337, 343], "4256": [337, 343], "4288": [337, 343], "50it": [337, 343], "4320": 337, "4352": 337, "4384": 337, "4416": 337, "89": [337, 343, 344, 345], "4448": 337, "90": [337, 338, 342, 343, 344], "4480": 337, "4512": 337, "4544": 337, "92": [337, 343, 344], "4576": 337, "4608": 337, "93": [337, 343], "4640": 337, "4672": [337, 343], "4704": 337, "4736": 337, "52it": [337, 343], "4768": 337, "82it": [337, 343], "4832": 337, "08it": 337, "4864": 337, "4896": 337, "44it": [337, 343], "4928": 337, "4960": 337, "4992": 337, "5024it": 337, "print_csv_files_in_fold": 337, "folder_path": 337, "csv_file": 337, "output_str": 337, "dirpath": 337, "walk": [337, 341], "endswith": 337, "strip": 337, "tmp": [337, 345], "tmp3on9wjs5": 337, "dqn_exp_643fb04": 337, "b085": 337, "11ee": [337, 348], "bf2c": [337, 348], "0242ac110002": [337, 348], "44965073466300964": 337, "4796708822250366": 337, "45262256264686584": 337, "4948333501815796": 337, "44965070486068726": 337, "3170991837978363": 337, "3426666259765625": 337, "34993094205856323": 337, "32437121868133545": 337, "2498892992734909": 337, "2859511971473694": 337, "27599582076072693": 337, "26562798023223877": 337, "4587341248989105": 337, "grad_norm_0": 337, "416203498840332": 337, "0127689838409424": 337, "8552615642547607": 337, "7605936527252197": 337, "7004356384277344": 337, "4873006343841553": 337, "1813576221466064": 337, "132855176925659": 337, "12117862701416": 337, "10000000894069672": 337, "090909004211426": 337, "qvaluenetwork": 337, "worst": 337, "accuraci": 337, "fanci": 337, "talk": 338, "repetit": 338, "six": 338, "sophist": [338, 342], "invent": 338, "theta_k": 338, "pi_": 338, "exceed": 338, "discourag": [338, 343], "indispens": 338, "analyz": 338, "lingua": 338, "franca": 338, "defaultdict": [338, 343], "has_cuda": [338, 342, 348], "3e": [338, 339, 342], "max_grad_norm": [338, 342], "ourselv": [338, 348], "benefici": 338, "errat": 338, "hamper": [338, 345], "reactiv": 338, "xy": 338, "sub_batch_s": 338, "num_epoch": [338, 342], "entropy_ep": [338, 342], "generalist": 338, "interchang": [338, 344, 345], "panel": 338, "charact": 338, "inverteddoublependulum": 338, "transmit": 338, "stai": 338, "supplementari": [338, 348], "told": 338, "stringent": [338, 342], "confid": [338, 342], "ran": 338, "f_": 338, "mu_": 338, "difficulti": [338, 348], "brought": [338, 339], "d_ob": 338, "d_action": 338, "policy_modul": [338, 342], "That": 338, "said": 338, "briefli": [338, 342], "refil": [338, 342], "conveni": [338, 342, 343], "easiest": [338, 342], "mathemat": [338, 342], "tradeoff": [338, 342], "advantage_modul": 338, "lr_schedul": [338, 343], "cosineannealinglr": [338, 343], "eval_str": 338, "tensordict_data": [338, 342], "data_view": [338, 342], "subdata": [338, 342], "cum_reward_str": 338, "4f": [338, 339, 343], "stepcount_str": 338, "param_group": 338, "lr_str": 338, "eval_rollout": 338, "nice": 338, "329": [338, 343], "120": [338, 343], "2374": [338, 343], "0845": 338, "0003": [338, 343], "330": [338, 343], "1068": 338, "3000": 338, "332": [338, 343], "1617": 338, "333": [338, 343], "1863": 338, "0002": [338, 343], "2179": 338, "6000": 338, "334": [338, 343], "2255": 338, "7000": 338, "2222": 338, "2475": 338, "9000": 338, "2530": 338, "335": [338, 343], "2626": 338, "cap": [338, 345], "figsiz": [338, 343], "subplot": [338, 343, 348], "titl": [338, 339, 342, 343], "bit": [338, 339, 342, 345], "lstmmodul": 339, "84x84": 339, "accessori": 339, "stamp": 339, "tensordictprim": 339, "assist": 339, "emb": 339, "n_cell": 339, "customiz": 339, "almost": 339, "wouldn": 339, "make_tensordict_prim": 339, "qval": 339, "stoch_polici": 339, "opportun": 339, "coupl": [339, 343, 345], "uniniti": 339, "again": [339, 342, 344, 345, 348], "redund": 339, "strongli": 339, "million": 339, "sake": [339, 344, 345], "20_000": [339, 343], "longest": 339, "npai": 339, "action_spread": 339, "1000000": 339, "117": [339, 343], "0008": [339, 343], "0004": [339, 343], "150": [339, 343], "148": [339, 343], "165": [339, 343], "tutorials_python": 340, "tutorials_jupyt": 340, "humanoid": 341, "env1_obs_kei": 341, "observation_stand": 341, "env2_obs_kei": 341, "observation_walk": 341, "tdreset1": 341, "tdreset2": 341, "tdreset": 341, "policy_common": 341, "policy_stand": 341, "policy_walk": 341, "But": 341, "exclusive_field": [341, 347], "stack_dim": [341, 347], "env1_mak": 341, "env2_mak": 341, "_single_task": 341, "td_rollout": 341, "matteo": 342, "bettini": 342, "benchmarl": 342, "maddpg": 342, "navig": 342, "lidar": 342, "sensor": 342, "collis": 342, "tie": 342, "mappo": 342, "ippo": 342, "phase": [342, 345], "mathbf": 342, "pi": [342, 343], "fed": [342, 345], "approxim": [342, 348], "literatur": 342, "overcom": 342, "stationari": 342, "concurr": 342, "analys": 342, "gui": 342, "visualis": 342, "multiagentmlp": 342, "divic": 342, "vmas_devic": 342, "6_000": 342, "team": [342, 347], "n_iter": 342, "minibatch_s": 342, "generalis": 342, "furthermor": 342, "simd": 342, "parallelis": 342, "warp": 342, "todai": 342, "circl": 342, "surround": 342, "dot": [342, 343], "collid": 342, "drag": 342, "elast": 342, "acceler": 342, "penalis": 342, "num_vmas_env": 342, "scenario_nam": 342, "four": [342, 343], "environmnet": 342, "final_rew": 342, "agent_collis": 342, "stress": 342, "paramount": 342, "n_rollout_step": 342, "evolut": 342, "yourself": 342, "utilis": 342, "n_actions_per_ag": 342, "n_obs_per_ag": 342, "share_parameters_polici": 342, "policy_net": 342, "denot": 342, "carefulli": [342, 348], "grant": 342, "converg": 342, "cooper": 342, "share_parameters_crit": 342, "critic_net": 342, "fantast": 342, "minibatch": 342, "desc": 342, "episode_reward_mean": 342, "episode_reward_mean_list": 342, "get_item_shap": 342, "critic_param": 342, "target_critic_param": 342, "refresh": 342, "3641679584980011": 342, "4940122067928314": 342, "0600677728652954": 342, "4344534873962402": 342, "1100871562957764": 342, "304917335510254": 342, "6943857669830322": 342, "871443748474121": 342, "8500826358795166": 342, "759843587875366": 342, "xvfb": 342, "pyvirtualdisplai": 342, "1400": [342, 343], "900": 342, "pil": 342, "rendering_callback": 342, "fromarrai": 342, "rgb_arrai": [342, 343], "gif": 342, "save_al": 342, "append_imag": 342, "profici": 342, "master": 342, "freeli": 343, "codebas": 343, "touch": 343, "undertaken": 343, "broader": 343, "wider": 343, "algebra": 343, "acquaint": 343, "avenu": 343, "_apply_to_composit": 343, "default_x": 343, "default_i": 343, "torqu": 343, "upward": 343, "angular": 343, "sin": 343, "rad": 343, "sec": 343, "gravit": 343, "angl": 343, "deleg": 343, "new_th": 343, "new_thdot": 343, "thdot": 343, "g_forc": 343, "max_torqu": 343, "angle_norm": 343, "max_spe": 343, "albeit": 343, "gen_param": 343, "high_th": 343, "high_thdot": 343, "low_th": 343, "low_thdot": 343, "rng": 343, "lazili": 343, "organ": [343, 345], "trivial": 343, "shortcut": [343, 348], "irrelev": 343, "_make_spec": 343, "td_param": 343, "pseudo": 343, "render_mod": 343, "render_fp": 343, "random_": 343, "_make_step": 343, "staticmethod": 343, "complic": [343, 345, 348], "showcas": 343, "skeleton": 343, "_apply_transform": [343, 348], "_inv_apply_transform": [343, 348], "subset": [343, 344], "unitari": 343, "sine": 343, "cosin": 343, "sintransform": 343, "tensordict_reset": 343, "costransform": 343, "t_sin": 343, "t_co": 343, "cat_transform": 343, "mdp": 343, "simple_rollout": 343, "unexplor": 343, "recreat": 343, "init_td": 343, "traj_return": 343, "last_reward": 343, "is_ipython": 343, "inlin": 343, "get_backend": 343, "ion": 343, "gcf": 343, "clear_output": 343, "625": 343, "0488": 343, "0748": 343, "519": 343, "48it": 343, "0499": 343, "4472": 343, "073": 343, "0685": 343, "0408": 343, "552": 343, "5154": 343, "9086": 343, "9385": 343, "155": 343, "2568": 343, "4981": 343, "223": 343, "8929": 343, "4491": 343, "581": 343, "75it": 343, "3233": 343, "0664": 343, "596": 343, "1021": 343, "5263": 343, "9579": 343, "5807": 343, "8075": 343, "212": 343, "2009": 343, "5525": 343, "914": 343, "2894": 343, "0115": 343, "0977": 343, "1845": 343, "1830": 343, "4858": 343, "233": 343, "2863": 343, "0297": 343, "464": 343, "4617": 343, "5997": 343, "904": 343, "1647": 343, "0777": 343, "901": 343, "4709": 343, "6813": 343, "8317": 343, "3221": 343, "5554": 343, "276": 343, "3353": 343, "701": 343, "8570": 343, "6656": 343, "463": 343, "7779": 343, "6911": 343, "875": 343, "0796": 343, "7082": 343, "308": 343, "0421": 343, "1496": 343, "5037": 343, "1755": 343, "5029": 343, "9454": 343, "665": 343, "9330": 343, "2118": 343, "444": 343, "0995": 343, "6294": 343, "3146": 343, "2909": 343, "461": 343, "9720": 343, "1298": 343, "9923": 343, "0345": 343, "3438": 343, "3688": 343, "424": 343, "6953": 343, "5233": 343, "411": 343, "8011": 343, "5329": 343, "2677": 343, "6969": 343, "7010": 343, "376": 343, "9352": 343, "7707": 343, "6178": 343, "5646": 343, "7304": 343, "9407": 343, "942": 343, "3882": 343, "7604": 343, "3507": 343, "8928": 343, "258": 343, "6978": 343, "4641": 343, "549": 343, "6047": 343, "5005": 343, "4136": 343, "2993": 343, "3222": 343, "4046": 343, "7314": 343, "275": 343, "6331": 343, "9318": 343, "961": 343, "8331": 343, "1604": 343, "4099": 343, "4761": 343, "125": 343, "4262": 343, "6363": 343, "382": 343, "3593": 343, "7377": 343, "2847": 343, "3443": 343, "867": 343, "3592": 343, "4760": 343, "441": 343, "9950": 343, "8021": 343, "3528": 343, "1214": 343, "708": 343, "4023": 343, "3583": 343, "041": 343, "3801": 343, "0310": 343, "4244": 343, "2039": 343, "4850": 343, "8748": 343, "706": 343, "4897": 343, "9210": 343, "8964": 343, "0832": 343, "3934": 343, "456": 343, "8971": 343, "2933": 343, "3377": 343, "6996": 343, "2274": 343, "8916": 343, "098": 343, "2660": 343, "9110": 343, "4503": 343, "6956": 343, "9172": 343, "4026": 343, "946": 343, "9229": 343, "5205": 343, "294": 343, "8872": 343, "6637": 343, "019": 343, "9281": 343, "2082": 343, "724": 343, "8561": 343, "6574": 343, "357": 343, "4138": 343, "5230": 343, "385": 343, "4065": 343, "5642": 343, "921": 343, "9786": 343, "4129": 343, "5831": 343, "266": 343, "7723": 343, "4152": 343, "0898": 343, "389": 343, "5155": 343, "5376": 343, "5616": 343, "4094": 343, "283": 343, "5333": 343, "4803": 343, "895": 343, "6566": 343, "2588": 343, "662": 343, "4732": 343, "7503": 343, "0714": 343, "3370": 343, "059": 343, "8612": 343, "1915": 343, "3855": 343, "0349": 343, "9644": 343, "4538": 343, "445": 343, "0392": 343, "4080": 343, "1648": 343, "9599": 343, "4284": 343, "5946": 343, "2590": 343, "9181": 343, "4621": 343, "9075": 343, "674": 343, "1772": 343, "9444": 343, "351": 343, "9391": 343, "5595": 343, "8673": 343, "6240": 343, "5919": 343, "0018": 343, "1071": 343, "9127": 343, "251": 343, "9799": 343, "3131": 343, "9612": 343, "9705": 343, "8741": 343, "2230": 343, "0972": 343, "0337": 343, "0350": 343, "0654": 343, "102": [343, 345], "2441": 343, "4596": 343, "362": 343, "103": 343, "4362": 343, "171": 343, "104": 343, "4041": 343, "6907": 343, "105": 343, "4664": 343, "2760": 343, "0299": 343, "9712": 343, "349": 343, "107": 343, "3332": 343, "4479": 343, "772": 343, "108": [343, 345], "4357": 343, "9591": 343, "543": 343, "109": [343, 345], "6216": 343, "1353": 343, "692": 343, "110": 343, "6261": 343, "7086": 343, "496": 343, "111": 343, "7758": 343, "9818": 343, "112": 343, "7772": 343, "5055": 343, "5840": 343, "3180": 343, "2083": 343, "115": 343, "5275": 343, "6873": 343, "4107": 343, "1624": 343, "6372": 343, "2571": 343, "4039": 343, "4428": 343, "119": 343, "4728": 343, "5628": 343, "6767": 343, "2466": 343, "522": 343, "121": [343, 348], "5873": 343, "5072": 343, "122": [343, 345, 348], "6548": 343, "3766": 343, "123": [343, 345], "5134": 343, "1955": 343, "124": 343, "2481": 343, "0591": 343, "4500": 343, "3368": 343, "126": 343, "9708": 343, "7059": 343, "127": [343, 345], "3031": 343, "2534": 343, "843": 343, "3327": 343, "6193": 343, "129": 343, "4831": 343, "1172": 343, "2593": 343, "4219": 343, "962": 343, "8380": 343, "899": 343, "132": 343, "2721": 343, "9048": 343, "133": 343, "2419": 343, "5248": 343, "134": 343, "2139": 343, "4278": 343, "135": 343, "0690": 343, "5140": 343, "136": 343, "1140": 343, "7402": 343, "137": 343, "5356": 343, "1636": 343, "138": 343, "0671": 343, "8798": 343, "139": [343, 345], "8918": 343, "3298": 343, "307": 343, "140": 343, "1779": 343, "141": 343, "1771": 343, "3624": 343, "936": 343, "142": 343, "1683": 343, "4810": 343, "9373": 343, "4435": 343, "144": 343, "4396": 343, "8092": 343, "145": 343, "2572": 343, "146": 343, "4212": 343, "0260": 343, "147": 343, "0939": 343, "6478": 343, "605": 343, "6606": 343, "7289": 343, "149": 343, "9300": 343, "7193": 343, "563": 343, "1166": 343, "8514": 343, "151": 343, "9108": 343, "0672": 343, "292": 343, "152": 343, "8591": 343, "3768": 343, "9976": 343, "0576": 343, "0067": 343, "935": 343, "4199": 343, "1722": 343, "156": [343, 345], "8310": 343, "3466": 343, "157": 343, "8631": 343, "2492": 343, "158": 343, "8763": 343, "1277": 343, "159": [343, 345], "5562": 343, "7446": 343, "1082": 343, "9830": 343, "161": 343, "0946": 343, "5229": 343, "162": 343, "4574": 343, "6900": 343, "163": [343, 344, 345], "2229": 343, "0318": 343, "482": 343, "164": 343, "0543": 343, "0817": 343, "761": 343, "2809": 343, "5118": 343, "366": 343, "1142": 343, "5635": 343, "167": 343, "1949": 343, "2327": 343, "982": 343, "168": 343, "0967": 343, "0387": 343, "457": 343, "169": 343, "0782": 343, "2150": 343, "170": 343, "5222": 343, "3725": 343, "15it": 343, "9288": 343, "9837": 343, "172": 343, "1416": 343, "1099": 343, "173": 343, "8620": 343, "8475": 343, "174": [343, 345], "1807": 343, "4375": 343, "175": 343, "1148": 343, "0645": 343, "2751": 343, "8313": 343, "177": 343, "9286": 343, "9770": 343, "178": 343, "53it": 343, "5735": 343, "2837": 343, "179": 343, "2926": 343, "9489": 343, "180": 343, "1507": 343, "181": 343, "8724": 343, "3567": 343, "182": 343, "3574": 343, "6140": 343, "183": 343, "7895": 343, "2518": 343, "184": 343, "6146": 343, "185": 343, "8776": 343, "7358": 343, "186": 343, "3722": 343, "8428": 343, "187": 343, "7955": 343, "188": 343, "0092": 343, "7106": 343, "829": 343, "189": [343, 345], "2264": 343, "6919": 343, "190": 343, "1438": 343, "1362": 343, "0618": 343, "8217": 343, "9420": 343, "6765": 343, "193": 343, "7745": 343, "0709": 343, "194": 343, "9478": 343, "6867": 343, "195": 343, "6507": 343, "6225": 343, "196": 343, "2244": 343, "2195": 343, "197": 343, "5385": 343, "9263": 343, "198": 343, "1878": 343, "199": 343, "8054": 343, "3504": 343, "557": 343, "0766": 343, "6825": 343, "201": 343, "2011": 343, "8393": 343, "202": 343, "0803": 343, "7815": 343, "203": 343, "8363": 343, "2460": 343, "204": 343, "8643": 343, "2191": 343, "593": 343, "205": 343, "0773": 343, "1343": 343, "206": 343, "8657": 343, "207": 343, "9304": 343, "7584": 343, "208": 343, "8752": 343, "2307": 343, "209": 343, "5250": 343, "4869": 343, "7837": 343, "5762": 343, "211": 343, "6661": 343, "8600": 343, "2502": 343, "1752": 343, "3075": 343, "8871": 343, "214": 343, "9406": 343, "8090": 343, "215": 343, "6291": 343, "8923": 343, "216": 343, "9504": 343, "21e": 343, "217": 343, "7431": 343, "7880": 343, "218": 343, "4463": 343, "5432": 343, "219": 343, "3793": 343, "3313": 343, "220": 343, "8843": 343, "0369": 343, "065": 343, "221": 343, "4828": 343, "8391": 343, "222": 343, "6265": 343, "2913": 343, "947": 343, "5541": 343, "1252": 343, "7342": 343, "2396": 343, "225": 343, "5936": 343, "1924": 343, "226": 343, "9975": 343, "2045": 343, "227": 343, "8367": 343, "9540": 343, "228": 343, "7259": 343, "6743": 343, "229": 343, "4827": 343, "7528": 343, "230": 343, "7361": 343, "8756": 343, "231": 343, "7646": 343, "1116": 343, "232": 343, "5426": 343, "8385": 343, "5662": 343, "8585": 343, "234": 343, "8234": 343, "7930": 343, "235": 343, "2648": 343, "9309": 343, "236": 343, "6817": 343, "237": 343, "0943": 343, "1533": 343, "238": 343, "3045": 343, "0483": 343, "239": 343, "240": [343, 347, 348], "6415": 343, "0201": 343, "241": 343, "4437": 343, "4365": 343, "242": 343, "0358": 343, "4943": 343, "243": 343, "1272": 343, "5003": 343, "1180": 343, "2637": 343, "245": 343, "7197": 343, "0873": 343, "246": 343, "2917": 343, "247": 343, "0160": 343, "0738": 343, "248": 343, "3689": 343, "0120": 343, "249": 343, "5570": 343, "0475": 343, "250": 343, "4423": 343, "2220": 343, "6803": 343, "252": 343, "1465": 343, "7214": 343, "253": 343, "8801": 343, "7034": 343, "9136": 343, "4076": 343, "7589": 343, "5013": 343, "8150": 343, "2241": 343, "257": 343, "0753": 343, "8081": 343, "1951": 343, "8314": 343, "259": 343, "0038": 343, "260": 343, "0889": 343, "4616": 343, "261": 343, "0655": 343, "262": 343, "8333": 343, "9476": 343, "263": 343, "7554": 343, "3798": 343, "264": 343, "3717": 343, "3947": 343, "529": 343, "265": 343, "3060": 343, "6495": 343, "7467": 343, "8889": 343, "267": 343, "8457": 343, "591": 343, "268": 343, "7137": 343, "0536": 343, "771": 343, "269": 343, "1651": 343, "270": 343, "8246": 343, "5709": 343, "281": 343, "271": 343, "7502": 343, "0521": 343, "032": 343, "272": 343, "5475": 343, "7253": 343, "273": 343, "2856": 343, "7130": 343, "274": 343, "2778": 343, "4122": 343, "8368": 343, "1841": 343, "9622": 343, "1603": 343, "003e": 343, "277": 343, "0247": 343, "346": 343, "278": 343, "2238": 343, "6418": 343, "279": 343, "0626": 343, "2538": 343, "280": 343, "0149": 343, "7380": 343, "2167": 343, "8911": 343, "62it": 343, "8725": 343, "1983": 343, "8142": 343, "3709": 343, "284": 343, "4989": 343, "285": 343, "6464": 343, "6210": 343, "286": 343, "9726": 343, "0820": 343, "287": 343, "6975": 343, "9091": 343, "4926": 343, "4791": 343, "289": 343, "0905": 343, "3500": 343, "290": 343, "2287": 343, "291": 343, "9918": 343, "5543": 343, "9245": 343, "6444": 343, "631": 343, "293": 343, "0448": 343, "4769": 343, "51it": 343, "8566": 343, "7208": 343, "295": 343, "0966": 343, "296": 343, "5303": 343, "1537": 343, "023": 343, "297": 343, "2682": 343, "564": 343, "298": 343, "4318": 343, "5063": 343, "299": 343, "7475": 343, "4190": 343, "8186": 343, "5077": 343, "301": 343, "1883": 343, "5291": 343, "472": 343, "302": 343, "1256": 343, "3998": 343, "303": 343, "3622": 343, "0930": 343, "626": 343, "304": 343, "9500": 343, "0075": 343, "5664": 343, "305": 343, "5697": 343, "3024": 343, "306": 343, "3117": 343, "0052": 343, "006": 343, "0981": 343, "9312": 343, "3873": 343, "309": 343, "0411": 343, "2650": 343, "310": 343, "1656": 343, "0228": 343, "004": 343, "311": 343, "1196": 343, "2478": 343, "312": 343, "7353": 343, "0812": 343, "313": 343, "3022": 343, "758": 343, "314": 343, "1406": 343, "4626": 343, "315": 343, "2156": 343, "851": 343, "316": 343, "1953": 343, "3774": 343, "317": 343, "6385": 343, "9917": 343, "318": 343, "2764": 343, "905": 343, "319": 343, "6391": 343, "9317": 343, "9748": 343, "2679": 343, "321": 343, "8495": 343, "5125": 343, "8177": 343, "6602": 343, "323": 343, "0704": 343, "5776": 343, "324": 343, "9833": [343, 347], "1339": 343, "325": 343, "1238": 343, "326": 343, "9299": 343, "0227": 343, "327": 343, "7727": 343, "1607": 343, "336": 343, "328": 343, "3958": 343, "3223": 343, "763": 343, "4742": 343, "1797": 343, "0144": 343, "0085": 343, "791": 343, "331": 343, "8284": 343, "0428": 343, "0098": 343, "7365": 343, "4566": 343, "0781": 343, "086": 343, "3355": 343, "0230": 343, "9346": 343, "0423": 343, "076": 343, "3711": 343, "1335": 343, "6855": 343, "337": 343, "0304": 343, "0023": 343, "8459": 343, "338": 343, "9998": 343, "4399": 343, "339": 343, "2303": 343, "1346": 343, "340": 343, "2915": 343, "7116": 343, "341": 343, "5560": 343, "0487": 343, "5119": 343, "061": 343, "343": 343, "3305": 343, "3705": 343, "957": 343, "344": 343, "6068": 343, "345": 343, "5731": 343, "3897": 343, "0376": 343, "0434": 343, "012": 343, "1300": 343, "1215": 343, "0968": 343, "0885": 343, "350": 343, "1348": 343, "0073": 343, "5052": 343, "4184": 343, "2817": 343, "8887": 343, "353": 343, "4779": 343, "1009": 343, "354": 343, "0604": 343, "599": 343, "355": 343, "4486": 343, "1176": 343, "656": 343, "356": 343, "2436": 343, "0668": 343, "8849": 343, "0012": 343, "358": 343, "7511": 343, "8804": 343, "359": 343, "8870": 343, "6728": 343, "360": 343, "8841": 343, "5508": 343, "361": 343, "5242": 343, "0268": 343, "0013": 343, "6185": 343, "363": 343, "1378": 343, "0204": 343, "364": 343, "0355": 343, "685": 343, "365": 343, "4884": 343, "0231": 343, "0770": 343, "0014": 343, "6793": 343, "367": 343, "9834": 343, "863": 343, "368": 343, "6709": 343, "462": 343, "369": 343, "5199": 343, "9790": 343, "370": 343, "9401": 343, "7802": 343, "371": 343, "6723": 343, "372": 343, "2678": 343, "6201": 343, "373": 343, "2184": 343, "7385": 343, "374": 343, "6344": 343, "617": 343, "375": 343, "9945": 343, "0772": 343, "567": 343, "7576": 343, "0398": 343, "377": 343, "3396": 343, "0022": 343, "094": 343, "378": 343, "3073": 343, "4018": 343, "379": 343, "1869": 343, "380": 343, "0481": 343, "1117": 343, "381": 343, "6823": 343, "981": 343, "8305": 343, "0210": 343, "383": 343, "4908": 343, "0272": 343, "538": 343, "3267": 343, "0111": 343, "7965": 343, "1796": 343, "0039": 343, "5396": 343, "386": 343, "3757": 343, "0490": 343, "387": 343, "1394": 343, "4187": 343, "2986": 343, "7954": 343, "1274": 343, "0063": 343, "813": 343, "390": 343, "8706": 343, "0114": 343, "391": 343, "6922": 343, "2423": 343, "392": 343, "9115": 343, "2602": 343, "393": 343, "2449": 343, "0783": 343, "394": 343, "0631": 343, "0057": 343, "7444": 343, "3339": 343, "0167": 343, "396": 343, "4806": 343, "397": 343, "4171": 343, "067": 343, "398": 343, "2618": 343, "5809": 343, "399": 343, "0054": 343, "3364": 343, "8733": 343, "0184": 343, "401": 343, "9137": 343, "0113": 343, "025": 343, "0386": 343, "0625": 343, "403": [343, 345], "1332": 343, "0582": 343, "7816": 343, "404": 343, "8341": 343, "0941": 343, "854": 343, "8615": 343, "588": 343, "406": 343, "3849": 343, "008": 343, "407": 343, "9395": 343, "0765": 343, "055": 343, "408": 343, "2685": 343, "2235": 343, "688": 343, "409": 343, "3052": 343, "4249": 343, "410": 343, "6806": 343, "6383": 343, "3721": 343, "9981": 343, "412": 343, "1862": 343, "822": 343, "413": 343, "9811": 343, "0171": 343, "013": 343, "414": 343, "0252": 343, "0049": 343, "6205": 343, "415": 343, "1108": 343, "4921": 343, "9142": 343, "8130": 343, "417": 343, "1725": 343, "0036": 343, "3196": 343, "418": 343, "7795": 343, "0242": 343, "799": 343, "419": 343, "7737": 343, "0138": 343, "420": 343, "1462": 343, "0053": 343, "421": 343, "9226": 343, "6139": 343, "422": 343, "9889": 343, "0403": 343, "423": 343, "6194": 343, "0032": 343, "3989": 343, "0104": 343, "425": 343, "9960": 343, "0009": 343, "6009": 343, "426": 343, "2697": 343, "0914": 343, "427": 343, "1114": 343, "428": 343, "9862": 343, "1932": 343, "429": 343, "0637": 343, "0623": 343, "082": 343, "430": 343, "9906": 343, "2031": 343, "431": 343, "9948": 343, "0895": 343, "432": 343, "1970": 343, "0256": 343, "433": 343, "4231": 343, "0449": 343, "644": 343, "434": 343, "1039": 343, "1973": 343, "435": 343, "4561": 343, "1225": 343, "436": 343, "0211": 343, "2125": 343, "437": 343, "3866": 343, "0050": 343, "7202": 343, "438": 343, "6388": 343, "0072": 343, "1187": 343, "0015": 343, "5116": 343, "440": 343, "0432": 343, "0025": 343, "7809": 343, "1925": 343, "0103": 343, "442": 343, "9570": 343, "443": 343, "0871": 343, "5601": 343, "0165": 343, "0047": 343, "6061": 343, "2746": 343, "0027": 343, "7887": 343, "446": 343, "1835": 343, "0035": 343, "855": 343, "447": 343, "8420": 343, "548": 343, "2653": 343, "0126": 343, "9736": 343, "449": 343, "0594": 343, "0119": 343, "6196": 343, "450": 343, "4509": 343, "0373": 343, "451": 343, "0620": 343, "452": 343, "6898": 343, "3235": 343, "687": 343, "453": 343, "5879": 343, "454": 343, "8406": 343, "0694": 343, "455": 343, "8259": 343, "0235": 343, "8500": 343, "0024": 343, "4054": 343, "458": 343, "2027": 343, "0894": 343, "459": 343, "5966": 343, "460": 343, "6942": 343, "0016": 343, "6703": 343, "0145": 343, "8124": 343, "0218": 343, "9196": 343, "0188": 343, "8986": 343, "0884": 343, "0084": 343, "5624": 343, "465": 343, "8862": 343, "0006": 343, "5384": 343, "466": 343, "5837": 343, "467": 343, "31it": 343, "8954": 343, "0101": 343, "6751": 343, "468": 343, "8063": 343, "0122": 343, "9635": 343, "469": 343, "0692": 343, "4216": 343, "470": 343, "1227": 343, "0586": 343, "162e": 343, "9690": 343, "0074": 343, "4166": 343, "6324": 343, "473": 343, "0778": 343, "474": 343, "8548": 343, "0017": 343, "4408": 343, "475": 343, "8125": 343, "1515": 343, "476": 343, "2733": 343, "0044": 343, "2836": 343, "477": 343, "7497": 343, "7681": 343, "478": 343, "8547": 343, "0105": 343, "7212": 343, "479": 343, "9848": 343, "0019": 343, "6498": 343, "1987": 343, "0011": 343, "5473": 343, "481": 343, "8991": 343, "0033": 343, "6091": 343, "9189": 343, "5771": 343, "483": 343, "6781": 343, "7542": 343, "484": 343, "5959": 343, "0064": 343, "4295": 343, "485": 343, "2547": 343, "486": 343, "0636": 343, "547": 343, "487": 343, "0065": 343, "488": 343, "1694": 343, "0083": 343, "5759": 343, "489": 343, "0493": 343, "0021": 343, "7805": 343, "490": 343, "0950": 343, "497": 343, "491": 343, "9717": 343, "3672": 343, "492": 343, "0207": 343, "493": 343, "8266": 343, "0069": 343, "5365": 343, "494": 343, "2623": 343, "5078": 343, "495": 343, "4545": 343, "09636": 343, "8754": 343, "0010": 343, "498": 343, "0031": 343, "8269": 343, "499": 343, "4082": 343, "6642": 343, "2284": 343, "501": 343, "9130": 343, "502": 343, "503": 343, "7624": 343, "0056": 343, "3858": 343, "504": 343, "0890": 343, "0042": 343, "505": 343, "7505": 343, "2157": 343, "506": 343, "8394": 343, "3413": 343, "507": 343, "9609": 343, "0041": 343, "6905": 343, "508": 343, "8467": 343, "4409": 343, "509": 343, "510": 343, "8128": 343, "3559": 343, "511": 343, "1479": 343, "0264": 343, "1589": 343, "566": 343, "513": 343, "2756": 343, "0046": 343, "5266": 343, "514": 343, "9873": 343, "0112": 343, "9314": 343, "515": 343, "3791": 343, "0721": 343, "516": 343, "4580": 343, "0758": 343, "6114": 343, "517": 343, "2431": 343, "518": 343, "1958": 343, "5553": 343, "8924": 343, "0097": 343, "520": 343, "3737": 343, "0234": 343, "521": 343, "9125": 343, "4623": 343, "3230": 343, "0589": 343, "3784": 343, "523": 343, "9482": 343, "0051": 343, "524": 343, "1979": 343, "0045": 343, "6401": 343, "525": 343, "1588": 343, "0048": 343, "6255": 343, "526": 343, "6084": 343, "3477": 343, "1475": 343, "0209": 343, "528": 343, "7611": 343, "1040": 343, "0099": 343, "0173": 343, "643": 343, "530": 343, "8189": 343, "4358": 343, "531": 343, "9897": 343, "532": 343, "1548": 343, "9751": 343, "533": 343, "6362": 343, "7495": 343, "534": 343, "1749": 343, "9513": 343, "535": 343, "7708": 343, "0371": 343, "536": 343, "2649": 343, "0437": 343, "537": 343, "5491": 343, "0276": 343, "6426": 343, "7294": 343, "078e": 343, "539": 343, "9928": 343, "540": 343, "7937": 343, "0124": 343, "9664": 343, "541": 343, "3342": 343, "2046": 343, "5496": 343, "0956": 343, "0059": 343, "545": 343, "9028": 343, "5843": 343, "546": 343, "0674": 343, "0178": 343, "797": 343, "2815": 343, "0599": 343, "1587": 343, "9276": 343, "8228": 343, "6164": 343, "551": 343, "6850": 343, "9167": 343, "3092": 343, "0670": 343, "9177": 343, "553": 343, "1599": 343, "0043": 343, "554": 343, "6367": 343, "555": 343, "3657": 343, "556": 343, "6694": 343, "2622": 343, "0372": 343, "4841": 343, "558": 343, "2707": 343, "0058": 343, "757": 343, "559": 343, "2267": 343, "5415": 343, "560": 343, "4556": 343, "0163": 343, "561": 343, "1839": 343, "0809": 343, "6262": 343, "562": 343, "0278": 343, "1112": 343, "6155": 343, "565": 343, "1427": 343, "3582": 343, "624": 343, "7870": 343, "9490": 343, "0439": 343, "8796": 343, "568": 343, "8026": 343, "612": 343, "569": 343, "3147": 343, "8486": 343, "570": 343, "7917": 343, "0129": 343, "571": 343, "9553": 343, "0020": 343, "6871": 343, "572": 343, "3132": 343, "0159": 343, "8646": 343, "573": 343, "5320": 343, "0269": 343, "574": 343, "2955": 343, "0245": 343, "575": 343, "3347": 343, "0179": 343, "9718": 343, "1629": 343, "804": 343, "577": 343, "4164": 343, "0070": 343, "4335": 343, "578": 343, "579": 343, "3049": 343, "9063": 343, "580": 343, "8785": 343, "3295": 343, "5184": 343, "0546": 343, "582": 343, "4589": 343, "583": 343, "4697": 343, "2476": 343, "584": 343, "2397": 343, "585": 343, "4953": 343, "1775": 343, "586": 343, "2258": 343, "0110": 343, "7671": 343, "587": 343, "3981": 343, "8590": 343, "0007": 343, "589": 343, "9820": 343, "4221": 343, "590": 343, "1293": 343, "0116": 343, "868": 343, "1675": 343, "5931": 343, "592": 343, "2910": 343, "5219": 343, "2124": 343, "1730": 343, "737": 343, "594": 343, "2914": 343, "0206": 343, "595": 343, "0172": 343, "0945": 343, "0121": 343, "4789": 343, "597": 343, "3805": 343, "598": 343, "3310": 343, "5065": 343, "6028": 343, "6316": 343, "6724": 343, "6523": 343, "601": 343, "0136": 343, "4298": 343, "602": 343, "3524": 343, "2629": 343, "603": 343, "2635": 343, "7839": 343, "604": 343, "6041": 343, "8027": 343, "4170": 343, "4675": 343, "606": 343, "3153": 343, "9316": 343, "607": 343, "0649": 343, "9722": 343, "7989": 343, "0329": 343, "609": 343, "1976": 343, "6852": 343, "610": 343, "4793": 343, "1255": 343, "611": 343, "4581": 343, "0394": 343, "2047": 343, "0326": 343, "613": 343, "8967": 343, "8619": 343, "614": 343, "5906": 343, "6491": 343, "615": 343, "6634": 343, "4394": 343, "616": 343, "0624": 343, "0061": 343, "5676": 343, "3259": 343, "0131": 343, "7733": 343, "618": 343, "7515": 343, "0189": 343, "5575": 343, "619": 343, "9313": 343, "6286": 343, "620": 343, "4325": 343, "7832": 343, "621": 343, "1134": 343, "622": 343, "4572": 343, "0500": 343, "5838": 343, "623": 343, "3818": 343, "8623": 343, "1253": 343, "6622": 343, "subject": 343, "saw": [343, 345], "explain": 344, "semat": 344, "r3mtransform": 344, "ai": 344, "env_transform": [344, 348], "s3": 344, "amazonaw": 344, "r3m_50": 344, "374m": 344, "2m": 344, "117mb": 344, "5m": 344, "2mb": 344, "9m": 344, "9mb": 344, "7mb": 344, "6m": 344, "104mb": 344, "4m": 344, "1mb": 344, "106m": 344, "115m": 344, "130m": 344, "4mb": 344, "140m": 344, "148m": 344, "164m": 344, "180m": 344, "6mb": 344, "195m": 344, "206m": 344, "215m": 344, "229m": 344, "3mb": 344, "244m": 344, "253m": 344, "262m": 344, "277m": 344, "284m": 344, "5mb": 344, "289m": 344, "295m": 344, "305m": 344, "311m": 344, "8mb": 344, "326m": 344, "333m": 344, "344m": 344, "359m": 344, "366m": 344, "wiser": 344, "conclud": 344, "_storag": [344, 345], "supervis": [345, 348], "pull": 345, "temporarili": 345, "ram": [345, 348], "batteri": 345, "dataliststorag": 345, "datalazytensorstorag": 345, "tensordidct": 345, "datalazymemmapstorag": 345, "buffer_list": 345, "lowest": 345, "medium": 345, "buffer_lazytensor": 345, "buffer_lazymemmap": 345, "tempdir": 345, "tmp1pew95d6": 345, "fullest": 345, "convini": 345, "mydata": 345, "background": 345, "question": [345, 347], "_i": 345, "artifici": 345, "0892946e": 345, "she": 345, "augment": 345, "proport": 345, "hist": 345, "barcontain": 345, "artist": 345, "revert": 345, "expens": 345, "reappear": 345, "unfold": 345, "problemat": 345, "window": 345, "4th": 345, "demo": 347, "icml": 347, "vmoen": 347, "fb": 347, "invest": 347, "platform": 347, "media": 347, "predominantli": 347, "tensordict1": 347, "tensordict2": 347, "tensordict_sampl": 347, "_sampler": 347, "_sum_tre": 347, "modulenotfounderror": 347, "28791671991348267": 347, "gym_env": 347, "noopresetenv": [347, 348], "backbone_modul": 347, "params_expand": 347, "tensordict_exp": 347, "base_modul": 347, "0137": 347, "1524": 347, "0641": 347, "viewbackward0": 347, "asstridedbackward0": 347, "8728": 347, "1334": 347, "3494": 347, "6887": 347, "6402": 347, "_safetanhbackward": 347, "1132": 347, "1762": 347, "3430": 347, "2668": 347, "2918": 347, "6239": 347, "roughli": 347, "tensordicts_prealloc": 347, "tensordicts_stack": 347, "tensordict_rollout": [347, 348], "disclaim": 347, "concatmodul": 347, "loss_td": 347, "year": 347, "roadmap": 347, "compris": 347, "contributor": 347, "curiou": 347, "nascent": 347, "unsupervis": 348, "rom": 348, "licens": 348, "pygam": 348, "unifi": 348, "_build_env": 348, "adventur": 348, "airraid": 348, "alien": 348, "amidar": 348, "assault": 348, "5034": 348, "deserv": 348, "__episode__": 348, "__trajectory__": 348, "void": 348, "reproduct": 348, "tensordict_tprim": 348, "imshow": 348, "axesimag": 348, "0x7f245c9e8610": 348, "inconsist": 348, "0x7f24a970a580": 348, "swingup": 348, "wrapper1": 348, "wrapper2": 348, "obviou": 348, "truth": 348, "env0": 348, "env_transformed_bi": 348, "stanc": 348, "transformeddistribut": 348, "base_dist": 348, "concat": 348, "mofidi": 348, "transformedenviron": 348, "moderet": 348, "computation": 348, "legitim": 348, "incom": 348, "amongst": 348, "wor": 348, "convention": 348, "scope": 348, "markovian": 348, "3288080526": 348, "constain": 348, "bar_": 348, "get_someth": 348, "bar_7ae3f1e": 348, "b084": 348, "aargh": 348, "foo_list": 348, "batched_env": 348, "_dispatch_caller_parallel": 348, "0x7f245ca198e0": 348, "bar_82511a06": 348, "a93d": 348, "bar_82497f44": 348, "a442": 348, "bar_8251c190": 348, "b540": 348, "parallen": 348, "particularili": 348, "evolv": 348, "steadi": 348, "approx": 348, "8002": 348, "2003": 348, "3470": 348, "6280": 348, "5549": 348, "3532": 348, "_extra_st": 348, "observation_ssq": 348, "observation_sum": 348, "1221": 348, "1043": 348, "0470": 348, "2128": 348, "2270": 348, "2553": 348, "dispach": 348, "absor": 348}, "objects": {"torchrl._utils": [[11, 0, 1, "", "implement_for"]], "torchrl._utils.implement_for": [[11, 1, 1, "", "get_class_that_defined_method"], [11, 1, 1, "", "import_module"], [11, 1, 1, "", "module_set"], [11, 1, 1, "", "reset"]], "torchrl.collectors.collectors": [[12, 0, 1, "", "DataCollectorBase"], [13, 0, 1, "", "MultiSyncDataCollector"], [14, 0, 1, "", "MultiaSyncDataCollector"], [15, 0, 1, "", "RandomPolicy"], [16, 0, 1, "", "SyncDataCollector"], [17, 0, 1, "", "aSyncDataCollector"]], "torchrl.collectors.collectors.DataCollectorBase": [[12, 1, 1, "", "update_policy_weights_"]], "torchrl.collectors.collectors.MultiSyncDataCollector": [[13, 1, 1, "", "load_state_dict"], [13, 1, 1, "", "reset"], [13, 1, 1, "", "set_seed"], [13, 1, 1, "", "shutdown"], [13, 1, 1, "", "state_dict"], [13, 1, 1, "", "update_policy_weights_"]], "torchrl.collectors.collectors.MultiaSyncDataCollector": [[14, 1, 1, "", "load_state_dict"], [14, 1, 1, "", "reset"], [14, 1, 1, "", "set_seed"], [14, 1, 1, "", "shutdown"], [14, 1, 1, "", "state_dict"], [14, 1, 1, "", "update_policy_weights_"]], "torchrl.collectors.collectors.SyncDataCollector": [[16, 1, 1, "", "iterator"], [16, 1, 1, "", "load_state_dict"], [16, 1, 1, "", "reset"], [16, 1, 1, "", "rollout"], [16, 1, 1, "", "set_seed"], [16, 1, 1, "", "shutdown"], [16, 1, 1, "", "state_dict"], [16, 1, 1, "", "update_policy_weights_"]], "torchrl.collectors.collectors.aSyncDataCollector": [[17, 1, 1, "", "load_state_dict"], [17, 1, 1, "", "reset"], [17, 1, 1, "", "set_seed"], [17, 1, 1, "", "shutdown"], [17, 1, 1, "", "state_dict"], [17, 1, 1, "", "update_policy_weights_"]], "torchrl.collectors.distributed": [[18, 0, 1, "", "DistributedDataCollector"], [19, 0, 1, "", "DistributedSyncDataCollector"], [20, 0, 1, "", "RPCDataCollector"], [21, 0, 1, "", "RayCollector"], [22, 0, 1, "", "submitit_delayed_launcher"]], "torchrl.collectors.distributed.DistributedDataCollector": [[18, 1, 1, "", "update_policy_weights_"]], "torchrl.collectors.distributed.DistributedSyncDataCollector": [[19, 1, 1, "", "update_policy_weights_"]], "torchrl.collectors.distributed.RPCDataCollector": [[20, 1, 1, "", "update_policy_weights_"]], "torchrl.collectors.distributed.RayCollector": [[21, 1, 1, "", "add_collectors"], [21, 1, 1, "", "load_state_dict"], [21, 1, 1, "", "local_policy"], [21, 1, 1, "", "remote_collectors"], [21, 1, 1, "", "set_seed"], [21, 1, 1, "", "shutdown"], [21, 1, 1, "", "state_dict"], [21, 1, 1, "", "stop_remote_collectors"], [21, 1, 1, "", "update_policy_weights_"]], "torchrl.collectors.utils": [[23, 2, 1, "", "split_trajectories"]], "torchrl.data": [[24, 0, 1, "", "BinaryDiscreteTensorSpec"], [25, 0, 1, "", "BoundedTensorSpec"], [26, 0, 1, "", "CompositeSpec"], [27, 0, 1, "", "DiscreteTensorSpec"], [28, 0, 1, "", "LazyStackedCompositeSpec"], [29, 0, 1, "", "LazyStackedTensorSpec"], [30, 0, 1, "", "MultiDiscreteTensorSpec"], [31, 0, 1, "", "MultiOneHotDiscreteTensorSpec"], [32, 0, 1, "", "MultiStep"], [33, 0, 1, "", "OneHotDiscreteTensorSpec"], [34, 0, 1, "", "PairwiseDataset"], [35, 0, 1, "", "PrioritizedReplayBuffer"], [36, 0, 1, "", "PromptData"], [37, 0, 1, "", "PromptTensorDictTokenizer"], [38, 0, 1, "", "ReplayBuffer"], [39, 0, 1, "", "RewardData"], [40, 0, 1, "", "RolloutFromModel"], [41, 0, 1, "", "TensorDictPrioritizedReplayBuffer"], [42, 0, 1, "", "TensorDictReplayBuffer"], [43, 0, 1, "", "TensorDictTokenizer"], [44, 0, 1, "", "TensorSpec"], [45, 0, 1, "", "TokenizedDatasetLoader"], [46, 0, 1, "", "UnboundedContinuousTensorSpec"], [47, 0, 1, "", "UnboundedDiscreteTensorSpec"], [48, 0, 1, "", "check_no_exclusive_keys"], [49, 0, 1, "", "consolidate_spec"], [50, 0, 1, "", "contains_lazy_spec"], [51, 0, 1, "", "create_infinite_iterator"], [58, 0, 1, "", "get_dataloader"]], "torchrl.data.BinaryDiscreteTensorSpec": [[24, 1, 1, "", "assert_is_in"], [24, 1, 1, "", "encode"], [24, 1, 1, "", "expand"], [24, 1, 1, "", "implements_for_spec"], [24, 1, 1, "", "index"], [24, 1, 1, "", "is_in"], [24, 1, 1, "", "project"], [24, 1, 1, "", "rand"], [24, 1, 1, "", "squeeze"], [24, 1, 1, "", "to_numpy"], [24, 1, 1, "", "to_one_hot"], [24, 1, 1, "", "to_one_hot_spec"], [24, 1, 1, "", "type_check"], [24, 1, 1, "", "zero"]], "torchrl.data.BoundedTensorSpec": [[25, 1, 1, "", "assert_is_in"], [25, 1, 1, "", "encode"], [25, 1, 1, "", "expand"], [25, 1, 1, "", "implements_for_spec"], [25, 1, 1, "", "index"], [25, 1, 1, "", "is_in"], [25, 1, 1, "", "project"], [25, 1, 1, "", "rand"], [25, 1, 1, "", "squeeze"], [25, 1, 1, "", "to_numpy"], [25, 1, 1, "", "type_check"], [25, 1, 1, "", "zero"]], "torchrl.data.CompositeSpec": [[26, 1, 1, "", "assert_is_in"], [26, 1, 1, "", "empty"], [26, 1, 1, "", "encode"], [26, 1, 1, "", "expand"], [26, 1, 1, "", "implements_for_spec"], [26, 1, 1, "", "index"], [26, 1, 1, "", "is_empty"], [26, 1, 1, "", "is_in"], [26, 1, 1, "", "items"], [26, 1, 1, "", "keys"], [26, 1, 1, "", "lock_"], [26, 1, 1, "", "project"], [26, 1, 1, "", "rand"], [26, 1, 1, "", "squeeze"], [26, 1, 1, "", "to_numpy"], [26, 1, 1, "", "type_check"], [26, 1, 1, "", "unlock_"], [26, 1, 1, "", "values"], [26, 1, 1, "", "zero"]], "torchrl.data.DiscreteTensorSpec": [[27, 1, 1, "", "assert_is_in"], [27, 1, 1, "", "encode"], [27, 1, 1, "", "expand"], [27, 1, 1, "", "implements_for_spec"], [27, 1, 1, "", "index"], [27, 1, 1, "", "is_in"], [27, 1, 1, "", "project"], [27, 1, 1, "", "rand"], [27, 1, 1, "", "squeeze"], [27, 1, 1, "", "to_numpy"], [27, 1, 1, "", "to_one_hot"], [27, 1, 1, "", "to_one_hot_spec"], [27, 1, 1, "", "type_check"], [27, 1, 1, "", "zero"]], "torchrl.data.LazyStackedCompositeSpec": [[28, 1, 1, "", "assert_is_in"], [28, 1, 1, "", "empty"], [28, 1, 1, "", "encode"], [28, 1, 1, "", "expand"], [28, 1, 1, "", "implements_for_spec"], [28, 1, 1, "", "index"], [28, 1, 1, "", "is_empty"], [28, 1, 1, "", "is_in"], [28, 1, 1, "", "items"], [28, 1, 1, "", "keys"], [28, 1, 1, "", "lock_"], [28, 1, 1, "", "project"], [28, 1, 1, "", "rand"], [28, 1, 1, "", "squeeze"], [28, 1, 1, "", "to_numpy"], [28, 1, 1, "", "type_check"], [28, 1, 1, "", "unlock_"], [28, 1, 1, "", "values"], [28, 1, 1, "", "zero"]], "torchrl.data.LazyStackedTensorSpec": [[29, 1, 1, "", "assert_is_in"], [29, 1, 1, "", "encode"], [29, 1, 1, "", "expand"], [29, 1, 1, "", "implements_for_spec"], [29, 1, 1, "", "index"], [29, 1, 1, "", "is_in"], [29, 1, 1, "", "project"], [29, 1, 1, "", "rand"], [29, 1, 1, "", "squeeze"], [29, 1, 1, "", "to_numpy"], [29, 1, 1, "", "type_check"], [29, 1, 1, "", "zero"]], "torchrl.data.MultiDiscreteTensorSpec": [[30, 1, 1, "", "assert_is_in"], [30, 1, 1, "", "encode"], [30, 1, 1, "", "expand"], [30, 1, 1, "", "implements_for_spec"], [30, 1, 1, "", "index"], [30, 1, 1, "", "is_in"], [30, 1, 1, "", "project"], [30, 1, 1, "", "rand"], [30, 1, 1, "", "squeeze"], [30, 1, 1, "", "to_numpy"], [30, 1, 1, "", "to_one_hot"], [30, 1, 1, "", "to_one_hot_spec"], [30, 1, 1, "", "type_check"], [30, 1, 1, "", "zero"]], "torchrl.data.MultiOneHotDiscreteTensorSpec": [[31, 1, 1, "", "assert_is_in"], [31, 1, 1, "", "encode"], [31, 1, 1, "", "expand"], [31, 1, 1, "", "implements_for_spec"], [31, 1, 1, "", "index"], [31, 1, 1, "", "is_in"], [31, 1, 1, "", "project"], [31, 1, 1, "", "rand"], [31, 1, 1, "", "squeeze"], [31, 1, 1, "", "to_categorical"], [31, 1, 1, "", "to_categorical_spec"], [31, 1, 1, "", "to_numpy"], [31, 1, 1, "", "type_check"], [31, 1, 1, "", "zero"]], "torchrl.data.MultiStep": [[32, 1, 1, "", "add_module"], [32, 1, 1, "", "apply"], [32, 1, 1, "", "bfloat16"], [32, 1, 1, "", "buffers"], [32, 1, 1, "", "children"], [32, 1, 1, "", "compile"], [32, 1, 1, "", "cpu"], [32, 1, 1, "", "cuda"], [32, 1, 1, "", "double"], [32, 1, 1, "", "eval"], [32, 1, 1, "", "extra_repr"], [32, 1, 1, "", "float"], [32, 1, 1, "", "forward"], [32, 1, 1, "", "get_buffer"], [32, 1, 1, "", "get_extra_state"], [32, 1, 1, "", "get_parameter"], [32, 1, 1, "", "get_submodule"], [32, 1, 1, "", "half"], [32, 1, 1, "", "ipu"], [32, 1, 1, "", "load_state_dict"], [32, 1, 1, "", "modules"], [32, 1, 1, "", "named_buffers"], [32, 1, 1, "", "named_children"], [32, 1, 1, "", "named_modules"], [32, 1, 1, "", "named_parameters"], [32, 1, 1, "", "parameters"], [32, 1, 1, "", "register_backward_hook"], [32, 1, 1, "", "register_buffer"], [32, 1, 1, "", "register_forward_hook"], [32, 1, 1, "", "register_forward_pre_hook"], [32, 1, 1, "", "register_full_backward_hook"], [32, 1, 1, "", "register_full_backward_pre_hook"], [32, 1, 1, "", "register_load_state_dict_post_hook"], [32, 1, 1, "", "register_module"], [32, 1, 1, "", "register_parameter"], [32, 1, 1, "", "register_state_dict_pre_hook"], [32, 1, 1, "", "requires_grad_"], [32, 1, 1, "", "set_extra_state"], [32, 1, 1, "", "share_memory"], [32, 1, 1, "", "state_dict"], [32, 1, 1, "", "to"], [32, 1, 1, "", "to_empty"], [32, 1, 1, "", "train"], [32, 1, 1, "", "type"], [32, 1, 1, "", "xpu"], [32, 1, 1, "", "zero_grad"]], "torchrl.data.OneHotDiscreteTensorSpec": [[33, 1, 1, "", "assert_is_in"], [33, 1, 1, "", "encode"], [33, 1, 1, "", "expand"], [33, 1, 1, "", "implements_for_spec"], [33, 1, 1, "", "index"], [33, 1, 1, "", "is_in"], [33, 1, 1, "", "project"], [33, 1, 1, "", "rand"], [33, 1, 1, "", "squeeze"], [33, 1, 1, "", "to_categorical"], [33, 1, 1, "", "to_categorical_spec"], [33, 1, 1, "", "to_numpy"], [33, 1, 1, "", "type_check"], [33, 1, 1, "", "zero"]], "torchrl.data.PairwiseDataset": [[34, 3, 1, "", "batch_size"], [34, 3, 1, "", "device"], [34, 1, 1, "", "from_dataset"], [34, 1, 1, "", "from_dict"], [34, 1, 1, "", "from_tensordict"], [34, 1, 1, "", "get"], [34, 1, 1, "", "load_state_dict"], [34, 1, 1, "", "memmap"], [34, 1, 1, "", "memmap_"], [34, 1, 1, "", "memmap_like"], [34, 1, 1, "", "set"], [34, 1, 1, "", "state_dict"], [34, 1, 1, "", "to_tensordict"], [34, 1, 1, "", "unbind"]], "torchrl.data.PrioritizedReplayBuffer": [[35, 1, 1, "", "add"], [35, 1, 1, "", "append_transform"], [35, 1, 1, "", "dumps"], [35, 1, 1, "", "empty"], [35, 1, 1, "", "extend"], [35, 1, 1, "", "insert_transform"], [35, 1, 1, "", "loads"], [35, 1, 1, "", "sample"]], "torchrl.data.PromptData": [[36, 3, 1, "", "batch_size"], [36, 3, 1, "", "device"], [36, 1, 1, "", "from_dataset"], [36, 1, 1, "", "from_dict"], [36, 1, 1, "", "from_tensordict"], [36, 1, 1, "", "get"], [36, 1, 1, "", "load_state_dict"], [36, 1, 1, "", "memmap"], [36, 1, 1, "", "memmap_"], [36, 1, 1, "", "memmap_like"], [36, 1, 1, "", "set"], [36, 1, 1, "", "state_dict"], [36, 1, 1, "", "to_tensordict"], [36, 1, 1, "", "unbind"]], "torchrl.data.ReplayBuffer": [[38, 1, 1, "", "add"], [38, 1, 1, "", "append_transform"], [38, 1, 1, "", "dumps"], [38, 1, 1, "", "empty"], [38, 1, 1, "", "extend"], [38, 1, 1, "", "insert_transform"], [38, 1, 1, "", "loads"], [38, 1, 1, "", "sample"]], "torchrl.data.RewardData": [[39, 3, 1, "", "batch_size"], [39, 3, 1, "", "device"], [39, 1, 1, "", "from_dict"], [39, 1, 1, "", "from_tensordict"], [39, 1, 1, "", "get"], [39, 1, 1, "", "load_state_dict"], [39, 1, 1, "", "memmap"], [39, 1, 1, "", "memmap_"], [39, 1, 1, "", "memmap_like"], [39, 1, 1, "", "set"], [39, 1, 1, "", "state_dict"], [39, 1, 1, "", "to_tensordict"], [39, 1, 1, "", "unbind"]], "torchrl.data.RolloutFromModel": [[40, 1, 1, "", "create_rollout_td"], [40, 1, 1, "", "generate"], [40, 1, 1, "", "logprobs_of_labels"]], "torchrl.data.TensorDictPrioritizedReplayBuffer": [[41, 1, 1, "", "add"], [41, 1, 1, "", "append_transform"], [41, 1, 1, "", "dumps"], [41, 1, 1, "", "empty"], [41, 1, 1, "", "extend"], [41, 1, 1, "", "insert_transform"], [41, 1, 1, "", "loads"], [41, 1, 1, "", "sample"]], "torchrl.data.TensorDictReplayBuffer": [[42, 1, 1, "", "add"], [42, 1, 1, "", "append_transform"], [42, 1, 1, "", "dumps"], [42, 1, 1, "", "empty"], [42, 1, 1, "", "extend"], [42, 1, 1, "", "insert_transform"], [42, 1, 1, "", "loads"], [42, 1, 1, "", "sample"]], "torchrl.data.TensorSpec": [[44, 1, 1, "", "assert_is_in"], [44, 1, 1, "", "encode"], [44, 1, 1, "", "expand"], [44, 1, 1, "", "implements_for_spec"], [44, 1, 1, "", "index"], [44, 1, 1, "", "is_in"], [44, 1, 1, "", "project"], [44, 1, 1, "", "rand"], [44, 1, 1, "", "squeeze"], [44, 1, 1, "", "to_numpy"], [44, 1, 1, "", "type_check"], [44, 1, 1, "", "zero"]], "torchrl.data.TokenizedDatasetLoader": [[45, 1, 1, "", "dataset_to_tensordict"], [45, 1, 1, "", "load"]], "torchrl.data.UnboundedContinuousTensorSpec": [[46, 1, 1, "", "assert_is_in"], [46, 1, 1, "", "encode"], [46, 1, 1, "", "expand"], [46, 1, 1, "", "implements_for_spec"], [46, 1, 1, "", "index"], [46, 1, 1, "", "is_in"], [46, 1, 1, "", "project"], [46, 1, 1, "", "rand"], [46, 1, 1, "", "squeeze"], [46, 1, 1, "", "to_numpy"], [46, 1, 1, "", "type_check"], [46, 1, 1, "", "zero"]], "torchrl.data.UnboundedDiscreteTensorSpec": [[47, 1, 1, "", "assert_is_in"], [47, 1, 1, "", "encode"], [47, 1, 1, "", "expand"], [47, 1, 1, "", "implements_for_spec"], [47, 1, 1, "", "index"], [47, 1, 1, "", "is_in"], [47, 1, 1, "", "project"], [47, 1, 1, "", "rand"], [47, 1, 1, "", "squeeze"], [47, 1, 1, "", "to_numpy"], [47, 1, 1, "", "type_check"], [47, 1, 1, "", "zero"]], "torchrl.data.datasets": [[52, 0, 1, "", "D4RLExperienceReplay"], [53, 0, 1, "", "MinariExperienceReplay"], [54, 0, 1, "", "OpenMLExperienceReplay"], [55, 0, 1, "", "OpenXExperienceReplay"], [56, 0, 1, "", "RobosetExperienceReplay"], [57, 0, 1, "", "VD4RLExperienceReplay"]], "torchrl.data.datasets.D4RLExperienceReplay": [[52, 1, 1, "", "add"], [52, 1, 1, "", "append_transform"], [52, 1, 1, "", "dumps"], [52, 1, 1, "", "empty"], [52, 1, 1, "", "extend"], [52, 1, 1, "", "insert_transform"], [52, 1, 1, "", "loads"], [52, 1, 1, "", "sample"]], "torchrl.data.datasets.MinariExperienceReplay": [[53, 1, 1, "", "add"], [53, 1, 1, "", "append_transform"], [53, 1, 1, "", "dumps"], [53, 1, 1, "", "empty"], [53, 1, 1, "", "extend"], [53, 1, 1, "", "insert_transform"], [53, 1, 1, "", "loads"], [53, 1, 1, "", "sample"]], "torchrl.data.datasets.OpenMLExperienceReplay": [[54, 1, 1, "", "add"], [54, 1, 1, "", "append_transform"], [54, 1, 1, "", "dumps"], [54, 1, 1, "", "empty"], [54, 1, 1, "", "extend"], [54, 1, 1, "", "insert_transform"], [54, 1, 1, "", "loads"], [54, 1, 1, "", "sample"]], "torchrl.data.datasets.OpenXExperienceReplay": [[55, 1, 1, "", "add"], [55, 1, 1, "", "append_transform"], [55, 1, 1, "", "dumps"], [55, 1, 1, "", "empty"], [55, 1, 1, "", "extend"], [55, 1, 1, "", "insert_transform"], [55, 1, 1, "", "loads"], [55, 1, 1, "", "sample"]], "torchrl.data.datasets.RobosetExperienceReplay": [[56, 1, 1, "", "add"], [56, 1, 1, "", "append_transform"], [56, 1, 1, "", "dumps"], [56, 1, 1, "", "empty"], [56, 1, 1, "", "extend"], [56, 1, 1, "", "insert_transform"], [56, 1, 1, "", "loads"], [56, 1, 1, "", "sample"]], "torchrl.data.datasets.VD4RLExperienceReplay": [[57, 1, 1, "", "add"], [57, 1, 1, "", "append_transform"], [57, 1, 1, "", "dumps"], [57, 1, 1, "", "empty"], [57, 1, 1, "", "extend"], [57, 1, 1, "", "insert_transform"], [57, 1, 1, "", "loads"], [57, 1, 1, "", "sample"]], "torchrl.data.replay_buffers": [[59, 0, 1, "", "ImmutableDatasetWriter"], [60, 0, 1, "", "LazyMemmapStorage"], [61, 0, 1, "", "LazyTensorStorage"], [62, 0, 1, "", "ListStorage"], [63, 0, 1, "", "PrioritizedSampler"], [64, 0, 1, "", "RandomSampler"], [65, 0, 1, "", "ReplayBufferEnsemble"], [66, 0, 1, "", "RoundRobinWriter"], [67, 0, 1, "", "Sampler"], [68, 0, 1, "", "SamplerEnsemble"], [69, 0, 1, "", "SamplerWithoutReplacement"], [70, 0, 1, "", "SliceSampler"], [71, 0, 1, "", "SliceSamplerWithoutReplacement"], [72, 0, 1, "", "Storage"], [73, 0, 1, "", "StorageEnsemble"], [74, 0, 1, "", "TensorDictMaxValueWriter"], [75, 0, 1, "", "TensorDictRoundRobinWriter"], [76, 0, 1, "", "TensorStorage"], [77, 0, 1, "", "Writer"], [78, 0, 1, "", "WriterEnsemble"]], "torchrl.data.replay_buffers.ImmutableDatasetWriter": [[59, 1, 1, "", "add"], [59, 1, 1, "", "extend"]], "torchrl.data.replay_buffers.LazyMemmapStorage": [[60, 1, 1, "", "attach"]], "torchrl.data.replay_buffers.LazyTensorStorage": [[61, 1, 1, "", "attach"]], "torchrl.data.replay_buffers.ListStorage": [[62, 1, 1, "", "attach"]], "torchrl.data.replay_buffers.PrioritizedSampler": [[63, 1, 1, "", "update_priority"]], "torchrl.data.replay_buffers.ReplayBufferEnsemble": [[65, 1, 1, "", "add"], [65, 1, 1, "", "append_transform"], [65, 1, 1, "", "dumps"], [65, 1, 1, "", "empty"], [65, 1, 1, "", "extend"], [65, 1, 1, "", "insert_transform"], [65, 1, 1, "", "loads"], [65, 1, 1, "", "sample"]], "torchrl.data.replay_buffers.RoundRobinWriter": [[66, 1, 1, "", "add"], [66, 1, 1, "", "extend"]], "torchrl.data.replay_buffers.Storage": [[72, 1, 1, "", "attach"]], "torchrl.data.replay_buffers.StorageEnsemble": [[73, 1, 1, "", "attach"]], "torchrl.data.replay_buffers.TensorDictMaxValueWriter": [[74, 1, 1, "", "add"], [74, 1, 1, "", "extend"], [74, 1, 1, "", "get_insert_index"]], "torchrl.data.replay_buffers.TensorDictRoundRobinWriter": [[75, 1, 1, "", "add"], [75, 1, 1, "", "extend"]], "torchrl.data.replay_buffers.TensorStorage": [[76, 1, 1, "", "attach"]], "torchrl.data.replay_buffers.Writer": [[77, 1, 1, "", "add"], [77, 1, 1, "", "extend"]], "torchrl.data.replay_buffers.WriterEnsemble": [[78, 1, 1, "", "add"], [78, 1, 1, "", "extend"]], "torchrl.envs": [[79, 2, 1, "", "BraxEnv"], [80, 2, 1, "", "BraxWrapper"], [81, 2, 1, "", "DMControlEnv"], [82, 2, 1, "", "DMControlWrapper"], [83, 0, 1, "", "EnvBase"], [84, 0, 1, "", "EnvCreator"], [85, 0, 1, "", "EnvMetaData"], [86, 2, 1, "", "GymEnv"], [87, 0, 1, "", "GymLikeEnv"], [88, 2, 1, "", "GymWrapper"], [89, 2, 1, "", "HabitatEnv"], [90, 2, 1, "", "IsaacGymEnv"], [91, 2, 1, "", "IsaacGymWrapper"], [92, 2, 1, "", "JumanjiEnv"], [93, 2, 1, "", "JumanjiWrapper"], [94, 2, 1, "", "MOGymEnv"], [95, 2, 1, "", "MOGymWrapper"], [96, 2, 1, "", "MarlGroupMapType"], [97, 2, 1, "", "ModelBasedEnvBase"], [98, 2, 1, "", "MultiThreadedEnv"], [99, 2, 1, "", "MultiThreadedEnvWrapper"], [100, 2, 1, "", "OpenMLEnv"], [101, 0, 1, "", "ParallelEnv"], [102, 2, 1, "", "PettingZooEnv"], [103, 2, 1, "", "PettingZooWrapper"], [104, 2, 1, "", "RoboHiveEnv"], [105, 2, 1, "", "SMACv2Env"], [106, 2, 1, "", "SMACv2Wrapper"], [107, 0, 1, "", "SerialEnv"], [108, 2, 1, "", "VmasEnv"], [109, 2, 1, "", "VmasWrapper"], [110, 2, 1, "", "check_marl_grouping"], [111, 2, 1, "", "gym_backend"], [97, 1, 1, "", "rand_step"], [97, 1, 1, "", "reset"], [97, 1, 1, "", "rollout"], [113, 2, 1, "", "set_gym_backend"], [97, 1, 1, "", "set_seed"], [97, 1, 1, "", "step"]], "torchrl.envs.EnvBase": [[83, 3, 1, "", "action_key"], [83, 3, 1, "", "action_keys"], [83, 3, 1, "", "action_spec"], [83, 1, 1, "", "add_module"], [83, 1, 1, "", "apply"], [83, 3, 1, "", "batch_locked"], [83, 1, 1, "", "bfloat16"], [83, 1, 1, "", "buffers"], [83, 1, 1, "", "children"], [83, 1, 1, "", "compile"], [83, 1, 1, "", "cpu"], [83, 1, 1, "", "cuda"], [83, 3, 1, "", "done_key"], [83, 3, 1, "", "done_keys"], [83, 3, 1, "", "done_keys_groups"], [83, 3, 1, "", "done_spec"], [83, 1, 1, "", "double"], [83, 1, 1, "", "empty_cache"], [83, 1, 1, "", "eval"], [83, 1, 1, "", "extra_repr"], [83, 1, 1, "", "fake_tensordict"], [83, 1, 1, "", "float"], [83, 1, 1, "", "forward"], [83, 3, 1, "", "full_action_spec"], [83, 3, 1, "", "full_done_spec"], [83, 3, 1, "", "full_reward_spec"], [83, 3, 1, "", "full_state_spec"], [83, 1, 1, "", "get_buffer"], [83, 1, 1, "", "get_extra_state"], [83, 1, 1, "", "get_parameter"], [83, 1, 1, "", "get_submodule"], [83, 1, 1, "", "half"], [83, 3, 1, "", "input_spec"], [83, 1, 1, "", "ipu"], [83, 1, 1, "", "load_state_dict"], [83, 1, 1, "", "modules"], [83, 1, 1, "", "named_buffers"], [83, 1, 1, "", "named_children"], [83, 1, 1, "", "named_modules"], [83, 1, 1, "", "named_parameters"], [83, 3, 1, "", "observation_spec"], [83, 3, 1, "", "output_spec"], [83, 1, 1, "", "parameters"], [83, 1, 1, "", "rand_action"], [83, 1, 1, "id0", "rand_step"], [83, 1, 1, "", "register_backward_hook"], [83, 1, 1, "", "register_buffer"], [83, 1, 1, "", "register_forward_hook"], [83, 1, 1, "", "register_forward_pre_hook"], [83, 1, 1, "", "register_full_backward_hook"], [83, 1, 1, "", "register_full_backward_pre_hook"], [83, 1, 1, "", "register_load_state_dict_post_hook"], [83, 1, 1, "", "register_module"], [83, 1, 1, "", "register_parameter"], [83, 1, 1, "", "register_state_dict_pre_hook"], [83, 1, 1, "", "requires_grad_"], [83, 1, 1, "id1", "reset"], [83, 3, 1, "", "reset_keys"], [83, 3, 1, "", "reward_key"], [83, 3, 1, "", "reward_keys"], [83, 3, 1, "", "reward_spec"], [83, 1, 1, "id2", "rollout"], [83, 1, 1, "", "set_extra_state"], [83, 1, 1, "id3", "set_seed"], [83, 1, 1, "", "share_memory"], [83, 3, 1, "", "specs"], [83, 1, 1, "", "state_dict"], [83, 3, 1, "", "state_spec"], [83, 1, 1, "id4", "step"], [83, 1, 1, "", "step_and_maybe_reset"], [83, 1, 1, "", "to"], [83, 1, 1, "", "to_empty"], [83, 1, 1, "", "train"], [83, 1, 1, "", "type"], [83, 1, 1, "", "xpu"], [83, 1, 1, "", "zero_grad"]], "torchrl.envs.GymLikeEnv": [[87, 3, 1, "", "action_key"], [87, 3, 1, "", "action_keys"], [87, 3, 1, "", "action_spec"], [87, 1, 1, "", "add_module"], [87, 1, 1, "", "apply"], [87, 3, 1, "", "batch_locked"], [87, 1, 1, "", "bfloat16"], [87, 1, 1, "", "buffers"], [87, 1, 1, "", "children"], [87, 1, 1, "", "close"], [87, 1, 1, "", "compile"], [87, 1, 1, "", "cpu"], [87, 1, 1, "", "cuda"], [87, 3, 1, "", "done_key"], [87, 3, 1, "", "done_keys"], [87, 3, 1, "", "done_keys_groups"], [87, 3, 1, "", "done_spec"], [87, 1, 1, "", "double"], [87, 1, 1, "", "empty_cache"], [87, 1, 1, "", "eval"], [87, 1, 1, "", "extra_repr"], [87, 1, 1, "", "fake_tensordict"], [87, 1, 1, "", "float"], [87, 1, 1, "", "forward"], [87, 3, 1, "", "full_action_spec"], [87, 3, 1, "", "full_done_spec"], [87, 3, 1, "", "full_reward_spec"], [87, 3, 1, "", "full_state_spec"], [87, 1, 1, "", "get_buffer"], [87, 1, 1, "", "get_extra_state"], [87, 1, 1, "", "get_parameter"], [87, 1, 1, "", "get_submodule"], [87, 1, 1, "", "half"], [87, 3, 1, "", "input_spec"], [87, 1, 1, "", "ipu"], [87, 1, 1, "", "load_state_dict"], [87, 1, 1, "", "modules"], [87, 1, 1, "", "named_buffers"], [87, 1, 1, "", "named_children"], [87, 1, 1, "", "named_modules"], [87, 1, 1, "", "named_parameters"], [87, 3, 1, "", "observation_spec"], [87, 3, 1, "", "output_spec"], [87, 1, 1, "", "parameters"], [87, 1, 1, "", "rand_action"], [87, 1, 1, "", "rand_step"], [87, 1, 1, "", "read_action"], [87, 1, 1, "", "read_done"], [87, 1, 1, "", "read_obs"], [87, 1, 1, "", "read_reward"], [87, 1, 1, "", "register_backward_hook"], [87, 1, 1, "", "register_buffer"], [87, 1, 1, "", "register_forward_hook"], [87, 1, 1, "", "register_forward_pre_hook"], [87, 1, 1, "", "register_full_backward_hook"], [87, 1, 1, "", "register_full_backward_pre_hook"], [87, 1, 1, "", "register_load_state_dict_post_hook"], [87, 1, 1, "", "register_module"], [87, 1, 1, "", "register_parameter"], [87, 1, 1, "", "register_state_dict_pre_hook"], [87, 1, 1, "", "requires_grad_"], [87, 1, 1, "", "reset"], [87, 3, 1, "", "reset_keys"], [87, 3, 1, "", "reward_key"], [87, 3, 1, "", "reward_keys"], [87, 3, 1, "", "reward_spec"], [87, 1, 1, "", "rollout"], [87, 1, 1, "", "set_extra_state"], [87, 1, 1, "", "set_info_dict_reader"], [87, 1, 1, "", "set_seed"], [87, 1, 1, "", "share_memory"], [87, 3, 1, "", "specs"], [87, 1, 1, "", "state_dict"], [87, 3, 1, "", "state_spec"], [87, 1, 1, "", "step"], [87, 1, 1, "", "step_and_maybe_reset"], [87, 1, 1, "", "to"], [87, 1, 1, "", "to_empty"], [87, 1, 1, "", "train"], [87, 1, 1, "", "type"], [87, 1, 1, "", "xpu"], [87, 1, 1, "", "zero_grad"]], "torchrl.envs.ParallelEnv": [[101, 3, 1, "", "action_key"], [101, 3, 1, "", "action_keys"], [101, 3, 1, "", "action_spec"], [101, 1, 1, "", "add_module"], [101, 1, 1, "", "apply"], [101, 3, 1, "", "batch_locked"], [101, 1, 1, "", "bfloat16"], [101, 1, 1, "", "buffers"], [101, 1, 1, "", "children"], [101, 1, 1, "", "compile"], [101, 1, 1, "", "cpu"], [101, 1, 1, "", "cuda"], [101, 3, 1, "", "done_key"], [101, 3, 1, "", "done_keys"], [101, 3, 1, "", "done_keys_groups"], [101, 3, 1, "", "done_spec"], [101, 1, 1, "", "double"], [101, 1, 1, "", "empty_cache"], [101, 1, 1, "", "eval"], [101, 1, 1, "", "extra_repr"], [101, 1, 1, "", "fake_tensordict"], [101, 1, 1, "", "float"], [101, 1, 1, "", "forward"], [101, 3, 1, "", "full_action_spec"], [101, 3, 1, "", "full_done_spec"], [101, 3, 1, "", "full_reward_spec"], [101, 3, 1, "", "full_state_spec"], [101, 1, 1, "", "get_buffer"], [101, 1, 1, "", "get_extra_state"], [101, 1, 1, "", "get_parameter"], [101, 1, 1, "", "get_submodule"], [101, 1, 1, "", "half"], [101, 3, 1, "", "input_spec"], [101, 1, 1, "", "ipu"], [101, 1, 1, "", "load_state_dict"], [101, 1, 1, "", "modules"], [101, 1, 1, "", "named_buffers"], [101, 1, 1, "", "named_children"], [101, 1, 1, "", "named_modules"], [101, 1, 1, "", "named_parameters"], [101, 3, 1, "", "observation_spec"], [101, 3, 1, "", "output_spec"], [101, 1, 1, "", "parameters"], [101, 1, 1, "", "rand_action"], [101, 1, 1, "", "rand_step"], [101, 1, 1, "", "register_backward_hook"], [101, 1, 1, "", "register_buffer"], [101, 1, 1, "", "register_forward_hook"], [101, 1, 1, "", "register_forward_pre_hook"], [101, 1, 1, "", "register_full_backward_hook"], [101, 1, 1, "", "register_full_backward_pre_hook"], [101, 1, 1, "", "register_load_state_dict_post_hook"], [101, 1, 1, "", "register_module"], [101, 1, 1, "", "register_parameter"], [101, 1, 1, "", "register_state_dict_pre_hook"], [101, 1, 1, "", "requires_grad_"], [101, 1, 1, "", "reset"], [101, 3, 1, "", "reset_keys"], [101, 3, 1, "", "reward_key"], [101, 3, 1, "", "reward_keys"], [101, 3, 1, "", "reward_spec"], [101, 1, 1, "", "rollout"], [101, 1, 1, "", "set_extra_state"], [101, 1, 1, "", "set_seed"], [101, 1, 1, "", "share_memory"], [101, 3, 1, "", "specs"], [101, 1, 1, "", "state_dict"], [101, 3, 1, "", "state_spec"], [101, 1, 1, "", "step"], [101, 1, 1, "", "step_and_maybe_reset"], [101, 1, 1, "", "to"], [101, 1, 1, "", "to_empty"], [101, 1, 1, "", "train"], [101, 1, 1, "", "type"], [101, 1, 1, "", "update_kwargs"], [101, 1, 1, "", "xpu"], [101, 1, 1, "", "zero_grad"]], "torchrl.envs.SerialEnv": [[107, 3, 1, "", "action_key"], [107, 3, 1, "", "action_keys"], [107, 3, 1, "", "action_spec"], [107, 1, 1, "", "add_module"], [107, 1, 1, "", "apply"], [107, 3, 1, "", "batch_locked"], [107, 1, 1, "", "bfloat16"], [107, 1, 1, "", "buffers"], [107, 1, 1, "", "children"], [107, 1, 1, "", "compile"], [107, 1, 1, "", "cpu"], [107, 1, 1, "", "cuda"], [107, 3, 1, "", "done_key"], [107, 3, 1, "", "done_keys"], [107, 3, 1, "", "done_keys_groups"], [107, 3, 1, "", "done_spec"], [107, 1, 1, "", "double"], [107, 1, 1, "", "empty_cache"], [107, 1, 1, "", "eval"], [107, 1, 1, "", "extra_repr"], [107, 1, 1, "", "fake_tensordict"], [107, 1, 1, "", "float"], [107, 1, 1, "", "forward"], [107, 3, 1, "", "full_action_spec"], [107, 3, 1, "", "full_done_spec"], [107, 3, 1, "", "full_reward_spec"], [107, 3, 1, "", "full_state_spec"], [107, 1, 1, "", "get_buffer"], [107, 1, 1, "", "get_extra_state"], [107, 1, 1, "", "get_parameter"], [107, 1, 1, "", "get_submodule"], [107, 1, 1, "", "half"], [107, 3, 1, "", "input_spec"], [107, 1, 1, "", "ipu"], [107, 1, 1, "", "load_state_dict"], [107, 1, 1, "", "modules"], [107, 1, 1, "", "named_buffers"], [107, 1, 1, "", "named_children"], [107, 1, 1, "", "named_modules"], [107, 1, 1, "", "named_parameters"], [107, 3, 1, "", "observation_spec"], [107, 3, 1, "", "output_spec"], [107, 1, 1, "", "parameters"], [107, 1, 1, "", "rand_action"], [107, 1, 1, "", "rand_step"], [107, 1, 1, "", "register_backward_hook"], [107, 1, 1, "", "register_buffer"], [107, 1, 1, "", "register_forward_hook"], [107, 1, 1, "", "register_forward_pre_hook"], [107, 1, 1, "", "register_full_backward_hook"], [107, 1, 1, "", "register_full_backward_pre_hook"], [107, 1, 1, "", "register_load_state_dict_post_hook"], [107, 1, 1, "", "register_module"], [107, 1, 1, "", "register_parameter"], [107, 1, 1, "", "register_state_dict_pre_hook"], [107, 1, 1, "", "requires_grad_"], [107, 1, 1, "", "reset"], [107, 3, 1, "", "reset_keys"], [107, 3, 1, "", "reward_key"], [107, 3, 1, "", "reward_keys"], [107, 3, 1, "", "reward_spec"], [107, 1, 1, "", "rollout"], [107, 1, 1, "", "set_extra_state"], [107, 1, 1, "", "set_seed"], [107, 1, 1, "", "share_memory"], [107, 3, 1, "", "specs"], [107, 1, 1, "", "state_dict"], [107, 3, 1, "", "state_spec"], [107, 1, 1, "", "step"], [107, 1, 1, "", "step_and_maybe_reset"], [107, 1, 1, "", "to"], [107, 1, 1, "", "to_empty"], [107, 1, 1, "", "train"], [107, 1, 1, "", "type"], [107, 1, 1, "", "update_kwargs"], [107, 1, 1, "", "xpu"], [107, 1, 1, "", "zero_grad"]], "torchrl.envs.model_based.dreamer": [[112, 2, 1, "", "DreamerEnv"]], "torchrl.envs.transforms": [[114, 0, 1, "", "ActionMask"], [115, 0, 1, "", "BinarizeReward"], [116, 0, 1, "", "BurnInTransform"], [117, 0, 1, "", "CatFrames"], [118, 0, 1, "", "CatTensors"], [119, 0, 1, "", "CenterCrop"], [120, 0, 1, "", "ClipTransform"], [121, 0, 1, "", "Compose"], [122, 0, 1, "", "DTypeCastTransform"], [123, 0, 1, "", "DeviceCastTransform"], [124, 0, 1, "", "DiscreteActionProjection"], [125, 0, 1, "", "DoubleToFloat"], [126, 0, 1, "", "EndOfLifeTransform"], [127, 0, 1, "", "ExcludeTransform"], [128, 0, 1, "", "FiniteTensorDictCheck"], [129, 0, 1, "", "FlattenObservation"], [130, 0, 1, "", "FrameSkipTransform"], [131, 0, 1, "", "GrayScale"], [132, 0, 1, "", "InitTracker"], [133, 0, 1, "", "KLRewardTransform"], [134, 0, 1, "", "NoopResetEnv"], [135, 0, 1, "", "ObservationNorm"], [136, 0, 1, "", "ObservationTransform"], [137, 0, 1, "", "PermuteTransform"], [138, 0, 1, "", "PinMemoryTransform"], [139, 0, 1, "", "R3MTransform"], [140, 0, 1, "", "RandomCropTensorDict"], [141, 0, 1, "", "RenameTransform"], [142, 0, 1, "", "Resize"], [143, 0, 1, "", "Reward2GoTransform"], [144, 0, 1, "", "RewardClipping"], [145, 0, 1, "", "RewardScaling"], [146, 0, 1, "", "RewardSum"], [147, 0, 1, "", "SelectTransform"], [148, 0, 1, "", "SqueezeTransform"], [149, 0, 1, "", "StepCounter"], [150, 0, 1, "", "TargetReturn"], [151, 0, 1, "", "TensorDictPrimer"], [152, 0, 1, "", "TimeMaxPool"], [153, 0, 1, "", "ToTensorImage"], [154, 0, 1, "", "Transform"], [155, 0, 1, "", "TransformedEnv"], [156, 0, 1, "", "UnsqueezeTransform"], [157, 0, 1, "", "VC1Transform"], [158, 0, 1, "", "VIPRewardTransform"], [159, 0, 1, "", "VIPTransform"], [160, 0, 1, "", "VecGymEnvTransform"], [161, 0, 1, "", "VecNorm"], [162, 0, 1, "", "gSDENoise"]], "torchrl.envs.transforms.ActionMask": [[114, 1, 1, "", "forward"]], "torchrl.envs.transforms.BinarizeReward": [[115, 1, 1, "", "transform_reward_spec"]], "torchrl.envs.transforms.BurnInTransform": [[116, 1, 1, "", "forward"]], "torchrl.envs.transforms.CatFrames": [[117, 1, 1, "", "forward"], [117, 1, 1, "", "transform_observation_spec"]], "torchrl.envs.transforms.CatTensors": [[118, 1, 1, "", "forward"], [118, 1, 1, "", "transform_observation_spec"]], "torchrl.envs.transforms.CenterCrop": [[119, 1, 1, "", "transform_observation_spec"]], "torchrl.envs.transforms.ClipTransform": [[120, 1, 1, "", "transform_observation_spec"], [120, 1, 1, "", "transform_reward_spec"]], "torchrl.envs.transforms.Compose": [[121, 1, 1, "", "forward"], [121, 1, 1, "", "to"], [121, 1, 1, "", "transform_env_device"], [121, 1, 1, "", "transform_input_spec"], [121, 1, 1, "", "transform_observation_spec"], [121, 1, 1, "", "transform_output_spec"], [121, 1, 1, "", "transform_reward_spec"]], "torchrl.envs.transforms.DTypeCastTransform": [[122, 1, 1, "", "forward"], [122, 1, 1, "", "transform_input_spec"], [122, 1, 1, "", "transform_observation_spec"], [122, 1, 1, "", "transform_output_spec"]], "torchrl.envs.transforms.DeviceCastTransform": [[123, 1, 1, "", "forward"], [123, 1, 1, "", "transform_done_spec"], [123, 1, 1, "", "transform_env_device"], [123, 1, 1, "", "transform_input_spec"], [123, 1, 1, "", "transform_observation_spec"], [123, 1, 1, "", "transform_output_spec"], [123, 1, 1, "", "transform_reward_spec"]], "torchrl.envs.transforms.DiscreteActionProjection": [[124, 1, 1, "", "transform_input_spec"]], "torchrl.envs.transforms.EndOfLifeTransform": [[126, 1, 1, "", "forward"], [126, 1, 1, "", "register_keys"], [126, 1, 1, "", "transform_observation_spec"]], "torchrl.envs.transforms.ExcludeTransform": [[127, 1, 1, "", "forward"], [127, 1, 1, "", "transform_output_spec"]], "torchrl.envs.transforms.FiniteTensorDictCheck": [[128, 1, 1, "", "forward"]], "torchrl.envs.transforms.FlattenObservation": [[129, 1, 1, "", "forward"], [129, 1, 1, "", "transform_observation_spec"]], "torchrl.envs.transforms.FrameSkipTransform": [[130, 1, 1, "", "forward"]], "torchrl.envs.transforms.GrayScale": [[131, 1, 1, "", "transform_observation_spec"]], "torchrl.envs.transforms.InitTracker": [[132, 1, 1, "", "forward"], [132, 1, 1, "", "transform_observation_spec"]], "torchrl.envs.transforms.KLRewardTransform": [[133, 1, 1, "", "forward"], [133, 1, 1, "", "transform_output_spec"]], "torchrl.envs.transforms.ObservationNorm": [[135, 1, 1, "", "init_stats"], [135, 1, 1, "", "transform_input_spec"], [135, 1, 1, "", "transform_observation_spec"]], "torchrl.envs.transforms.PermuteTransform": [[137, 1, 1, "", "transform_input_spec"], [137, 1, 1, "", "transform_observation_spec"]], "torchrl.envs.transforms.PinMemoryTransform": [[138, 1, 1, "", "forward"]], "torchrl.envs.transforms.R3MTransform": [[139, 1, 1, "", "to"]], "torchrl.envs.transforms.RandomCropTensorDict": [[140, 1, 1, "", "forward"]], "torchrl.envs.transforms.RenameTransform": [[141, 1, 1, "", "forward"], [141, 1, 1, "", "transform_input_spec"], [141, 1, 1, "", "transform_output_spec"]], "torchrl.envs.transforms.Resize": [[142, 1, 1, "", "transform_observation_spec"]], "torchrl.envs.transforms.Reward2GoTransform": [[143, 1, 1, "", "forward"]], "torchrl.envs.transforms.RewardClipping": [[144, 1, 1, "", "transform_reward_spec"]], "torchrl.envs.transforms.RewardScaling": [[145, 1, 1, "", "transform_reward_spec"]], "torchrl.envs.transforms.RewardSum": [[146, 1, 1, "", "forward"], [146, 1, 1, "", "transform_input_spec"], [146, 1, 1, "", "transform_observation_spec"]], "torchrl.envs.transforms.SelectTransform": [[147, 1, 1, "", "forward"], [147, 1, 1, "", "transform_output_spec"]], "torchrl.envs.transforms.StepCounter": [[149, 1, 1, "", "forward"], [149, 1, 1, "", "transform_input_spec"], [149, 1, 1, "", "transform_observation_spec"], [149, 1, 1, "", "transform_output_spec"]], "torchrl.envs.transforms.TargetReturn": [[150, 1, 1, "", "forward"], [150, 1, 1, "", "transform_input_spec"], [150, 1, 1, "", "transform_observation_spec"]], "torchrl.envs.transforms.TensorDictPrimer": [[151, 1, 1, "", "forward"], [151, 1, 1, "", "to"], [151, 1, 1, "", "transform_input_spec"], [151, 1, 1, "", "transform_observation_spec"]], "torchrl.envs.transforms.TimeMaxPool": [[152, 1, 1, "", "forward"], [152, 1, 1, "", "transform_observation_spec"]], "torchrl.envs.transforms.ToTensorImage": [[153, 1, 1, "", "transform_observation_spec"]], "torchrl.envs.transforms.Transform": [[154, 3, 1, "", "container"], [154, 1, 1, "", "forward"], [154, 3, 1, "", "parent"], [154, 1, 1, "", "to"], [154, 1, 1, "", "transform_done_spec"], [154, 1, 1, "", "transform_env_device"], [154, 1, 1, "", "transform_input_spec"], [154, 1, 1, "", "transform_observation_spec"], [154, 1, 1, "", "transform_output_spec"], [154, 1, 1, "", "transform_reward_spec"]], "torchrl.envs.transforms.TransformedEnv": [[155, 3, 1, "", "batch_locked"], [155, 1, 1, "", "empty_cache"], [155, 1, 1, "", "eval"], [155, 3, 1, "", "input_spec"], [155, 1, 1, "", "load_state_dict"], [155, 3, 1, "", "output_spec"], [155, 1, 1, "", "set_missing_tolerance"], [155, 1, 1, "", "set_seed"], [155, 1, 1, "", "state_dict"], [155, 1, 1, "", "to"], [155, 1, 1, "", "train"]], "torchrl.envs.transforms.UnsqueezeTransform": [[156, 1, 1, "", "transform_input_spec"], [156, 1, 1, "", "transform_observation_spec"], [156, 1, 1, "", "transform_reward_spec"]], "torchrl.envs.transforms.VC1Transform": [[157, 1, 1, "", "forward"], [157, 1, 1, "", "make_noload_model"], [157, 1, 1, "", "to"], [157, 1, 1, "", "transform_observation_spec"]], "torchrl.envs.transforms.VIPRewardTransform": [[158, 1, 1, "", "forward"], [158, 1, 1, "", "transform_input_spec"]], "torchrl.envs.transforms.VIPTransform": [[159, 1, 1, "", "to"]], "torchrl.envs.transforms.VecGymEnvTransform": [[160, 1, 1, "", "forward"], [160, 1, 1, "", "transform_observation_spec"]], "torchrl.envs.transforms.VecNorm": [[161, 1, 1, "", "build_td_for_shared_vecnorm"], [161, 1, 1, "", "forward"], [161, 1, 1, "", "get_extra_state"], [161, 1, 1, "", "set_extra_state"], [161, 1, 1, "", "to_observation_norm"]], "torchrl.envs.utils": [[163, 2, 1, "", "check_env_specs"], [164, 2, 1, "", "exploration_mode"], [165, 2, 1, "", "exploration_type"], [166, 2, 1, "", "get_available_libraries"], [167, 2, 1, "", "make_composite_from_td"], [168, 2, 1, "", "set_exploration_mode"], [169, 2, 1, "", "set_exploration_type"], [170, 2, 1, "", "step_mdp"], [171, 2, 1, "", "terminated_or_truncated"]], "torchrl.modules": [[172, 0, 1, "", "CEMPlanner"], [173, 0, 1, "", "Conv3dNet"], [174, 0, 1, "", "ConvNet"], [175, 0, 1, "", "DTActor"], [176, 0, 1, "", "DdpgCnnActor"], [177, 0, 1, "", "DdpgCnnQNet"], [178, 0, 1, "", "DdpgMlpActor"], [179, 0, 1, "", "DdpgMlpQNet"], [180, 0, 1, "", "DecisionTransformer"], [181, 0, 1, "", "Delta"], [182, 0, 1, "", "DistributionalDQNnet"], [183, 0, 1, "", "DistributionalQValueHook"], [184, 0, 1, "", "DreamerActor"], [185, 0, 1, "", "DuelingCnnDQNet"], [186, 0, 1, "", "GRU"], [187, 0, 1, "", "GRUCell"], [188, 0, 1, "", "GRUModule"], [189, 0, 1, "", "IndependentNormal"], [190, 0, 1, "", "LSTM"], [191, 0, 1, "", "LSTMCell"], [192, 0, 1, "", "LSTMModule"], [193, 0, 1, "", "LSTMNet"], [194, 0, 1, "", "MLP"], [195, 0, 1, "", "MPCPlannerBase"], [196, 0, 1, "", "MPPIPlanner"], [197, 0, 1, "", "MaskedCategorical"], [198, 0, 1, "", "MaskedOneHotCategorical"], [199, 0, 1, "", "MultiAgentConvNet"], [200, 0, 1, "", "MultiAgentMLP"], [201, 0, 1, "", "NoisyLazyLinear"], [202, 0, 1, "", "NoisyLinear"], [203, 0, 1, "", "NormalParamWrapper"], [204, 0, 1, "", "ObsDecoder"], [205, 0, 1, "", "ObsEncoder"], [206, 0, 1, "", "OneHotCategorical"], [207, 0, 1, "", "OnlineDTActor"], [208, 0, 1, "", "QMixer"], [209, 0, 1, "", "QValueHook"], [210, 0, 1, "", "RSSMPosterior"], [211, 0, 1, "", "RSSMPrior"], [212, 0, 1, "", "Squeeze2dLayer"], [213, 0, 1, "", "SqueezeLayer"], [214, 0, 1, "", "TanhDelta"], [215, 0, 1, "", "TanhNormal"], [216, 0, 1, "", "TruncatedNormal"], [217, 0, 1, "", "VDNMixer"], [218, 0, 1, "", "VmapModule"], [219, 0, 1, "", "reset_noise"]], "torchrl.modules.CEMPlanner": [[172, 1, 1, "", "planning"]], "torchrl.modules.Conv3dNet": [[173, 1, 1, "", "forward"]], "torchrl.modules.ConvNet": [[174, 1, 1, "", "forward"]], "torchrl.modules.DTActor": [[175, 1, 1, "", "default_config"], [175, 1, 1, "", "forward"]], "torchrl.modules.DdpgCnnActor": [[176, 1, 1, "", "forward"]], "torchrl.modules.DdpgCnnQNet": [[177, 1, 1, "", "forward"]], "torchrl.modules.DdpgMlpActor": [[178, 1, 1, "", "forward"]], "torchrl.modules.DdpgMlpQNet": [[179, 1, 1, "", "forward"]], "torchrl.modules.DecisionTransformer": [[180, 0, 1, "", "DTConfig"], [180, 1, 1, "", "forward"]], "torchrl.modules.Delta": [[181, 1, 1, "", "log_prob"], [181, 3, 1, "", "mean"], [181, 3, 1, "", "mode"], [181, 1, 1, "", "rsample"], [181, 1, 1, "", "sample"]], "torchrl.modules.DistributionalDQNnet": [[182, 1, 1, "", "forward"]], "torchrl.modules.DreamerActor": [[184, 1, 1, "", "forward"]], "torchrl.modules.DuelingCnnDQNet": [[185, 1, 1, "", "forward"]], "torchrl.modules.GRU": [[186, 1, 1, "", "forward"]], "torchrl.modules.GRUCell": [[187, 1, 1, "", "forward"]], "torchrl.modules.GRUModule": [[188, 1, 1, "", "forward"], [188, 1, 1, "id0", "set_recurrent_mode"]], "torchrl.modules.IndependentNormal": [[189, 3, 1, "", "mode"]], "torchrl.modules.LSTM": [[190, 1, 1, "", "forward"]], "torchrl.modules.LSTMCell": [[191, 1, 1, "", "forward"]], "torchrl.modules.LSTMModule": [[192, 1, 1, "", "forward"], [192, 1, 1, "id0", "set_recurrent_mode"]], "torchrl.modules.LSTMNet": [[193, 1, 1, "", "forward"]], "torchrl.modules.MLP": [[194, 1, 1, "", "forward"]], "torchrl.modules.MPCPlannerBase": [[195, 1, 1, "", "forward"], [195, 1, 1, "", "planning"]], "torchrl.modules.MPPIPlanner": [[196, 1, 1, "", "planning"]], "torchrl.modules.MaskedCategorical": [[197, 1, 1, "", "log_prob"], [197, 1, 1, "", "sample"]], "torchrl.modules.MaskedOneHotCategorical": [[198, 1, 1, "", "log_prob"], [198, 1, 1, "", "rsample"], [198, 1, 1, "", "sample"]], "torchrl.modules.MultiAgentConvNet": [[199, 1, 1, "", "forward"]], "torchrl.modules.MultiAgentMLP": [[200, 1, 1, "", "forward"]], "torchrl.modules.NoisyLazyLinear": [[201, 1, 1, "", "initialize_parameters"]], "torchrl.modules.NormalParamWrapper": [[203, 1, 1, "", "forward"]], "torchrl.modules.ObsDecoder": [[204, 1, 1, "", "forward"]], "torchrl.modules.ObsEncoder": [[205, 1, 1, "", "forward"]], "torchrl.modules.OneHotCategorical": [[206, 1, 1, "", "log_prob"], [206, 3, 1, "", "mode"], [206, 1, 1, "", "rsample"], [206, 1, 1, "", "sample"]], "torchrl.modules.OnlineDTActor": [[207, 1, 1, "", "default_config"], [207, 1, 1, "", "forward"]], "torchrl.modules.QMixer": [[208, 1, 1, "", "mix"]], "torchrl.modules.RSSMPosterior": [[210, 1, 1, "", "forward"]], "torchrl.modules.RSSMPrior": [[211, 1, 1, "", "forward"]], "torchrl.modules.SqueezeLayer": [[213, 1, 1, "", "forward"]], "torchrl.modules.TanhDelta": [[214, 3, 1, "", "mean"], [214, 3, 1, "", "mode"]], "torchrl.modules.TanhNormal": [[215, 3, 1, "", "mode"]], "torchrl.modules.TruncatedNormal": [[216, 1, 1, "", "log_prob"], [216, 3, 1, "", "mode"]], "torchrl.modules.VDNMixer": [[217, 1, 1, "", "mix"]], "torchrl.modules.VmapModule": [[218, 1, 1, "", "forward"]], "torchrl.modules.tensordict_module": [[220, 0, 1, "", "Actor"], [221, 0, 1, "", "ActorCriticOperator"], [222, 0, 1, "", "ActorCriticWrapper"], [223, 0, 1, "", "ActorValueOperator"], [224, 0, 1, "", "AdditiveGaussianWrapper"], [225, 0, 1, "", "DecisionTransformerInferenceWrapper"], [226, 0, 1, "", "DistributionalQValueActor"], [227, 0, 1, "", "DistributionalQValueModule"], [228, 0, 1, "", "EGreedyModule"], [229, 0, 1, "", "EGreedyWrapper"], [230, 0, 1, "", "LMHeadActorValueOperator"], [231, 0, 1, "", "OrnsteinUhlenbeckProcessWrapper"], [232, 0, 1, "", "ProbabilisticActor"], [233, 0, 1, "", "QValueActor"], [234, 0, 1, "", "QValueModule"], [235, 0, 1, "", "SafeModule"], [236, 0, 1, "", "SafeProbabilisticModule"], [237, 0, 1, "", "SafeProbabilisticTensorDictSequential"], [238, 0, 1, "", "SafeSequential"], [239, 0, 1, "", "TanhModule"], [240, 0, 1, "", "ValueOperator"], [241, 0, 1, "", "WorldModelWrapper"]], "torchrl.modules.tensordict_module.ActorCriticOperator": [[221, 1, 1, "", "get_critic_operator"], [221, 1, 1, "", "get_policy_head"], [221, 1, 1, "", "get_value_head"], [221, 1, 1, "", "get_value_operator"]], "torchrl.modules.tensordict_module.ActorCriticWrapper": [[222, 1, 1, "", "get_policy_head"], [222, 1, 1, "", "get_policy_operator"], [222, 1, 1, "", "get_value_head"], [222, 1, 1, "", "get_value_operator"]], "torchrl.modules.tensordict_module.ActorValueOperator": [[223, 1, 1, "", "get_policy_head"], [223, 1, 1, "", "get_policy_operator"], [223, 1, 1, "", "get_value_head"], [223, 1, 1, "", "get_value_operator"]], "torchrl.modules.tensordict_module.AdditiveGaussianWrapper": [[224, 1, 1, "", "forward"], [224, 1, 1, "", "step"]], "torchrl.modules.tensordict_module.DecisionTransformerInferenceWrapper": [[225, 1, 1, "", "forward"], [225, 1, 1, "", "mask_context"], [225, 1, 1, "", "set_tensor_keys"]], "torchrl.modules.tensordict_module.DistributionalQValueModule": [[227, 1, 1, "", "forward"]], "torchrl.modules.tensordict_module.EGreedyModule": [[228, 1, 1, "", "forward"], [228, 1, 1, "", "step"]], "torchrl.modules.tensordict_module.EGreedyWrapper": [[229, 1, 1, "", "forward"], [229, 1, 1, "", "step"]], "torchrl.modules.tensordict_module.OrnsteinUhlenbeckProcessWrapper": [[231, 1, 1, "", "forward"], [231, 1, 1, "", "step"]], "torchrl.modules.tensordict_module.QValueModule": [[234, 1, 1, "", "forward"]], "torchrl.modules.tensordict_module.SafeModule": [[235, 1, 1, "", "random"], [235, 1, 1, "", "random_sample"], [235, 1, 1, "", "to"]], "torchrl.modules.tensordict_module.SafeProbabilisticModule": [[236, 1, 1, "", "random"], [236, 1, 1, "", "random_sample"]], "torchrl.modules.tensordict_module.TanhModule": [[239, 1, 1, "", "forward"]], "torchrl.modules.tensordict_module.WorldModelWrapper": [[241, 1, 1, "", "get_reward_operator"], [241, 1, 1, "", "get_transition_model_operator"]], "torchrl.modules.utils": [[242, 0, 1, "", "biased_softplus"], [243, 0, 1, "", "inv_softplus"], [244, 0, 1, "", "mappings"]], "torchrl.modules.utils.biased_softplus": [[242, 1, 1, "", "forward"]], "torchrl.objectives": [[245, 0, 1, "", "A2CLoss"], [246, 0, 1, "", "CQLLoss"], [247, 0, 1, "", "ClipPPOLoss"], [248, 0, 1, "", "DDPGLoss"], [249, 0, 1, "", "DQNLoss"], [250, 0, 1, "", "DTLoss"], [251, 0, 1, "", "DiscreteCQLLoss"], [252, 0, 1, "", "DiscreteSACLoss"], [253, 0, 1, "", "DistributionalDQNLoss"], [254, 0, 1, "", "DreamerActorLoss"], [255, 0, 1, "", "DreamerModelLoss"], [256, 0, 1, "", "DreamerValueLoss"], [257, 0, 1, "", "HardUpdate"], [258, 0, 1, "", "IQLLoss"], [259, 0, 1, "", "KLPENPPOLoss"], [260, 0, 1, "", "LossModule"], [261, 0, 1, "", "OnlineDTLoss"], [262, 0, 1, "", "PPOLoss"], [263, 0, 1, "", "REDQLoss"], [264, 0, 1, "", "ReinforceLoss"], [265, 0, 1, "", "SACLoss"], [266, 0, 1, "", "SoftUpdate"], [267, 0, 1, "", "TD3Loss"], [268, 0, 1, "", "ValueEstimators"], [269, 0, 1, "", "default_value_kwargs"], [270, 0, 1, "", "distance_loss"], [271, 0, 1, "", "hold_out_net"], [272, 0, 1, "", "hold_out_params"], [274, 0, 1, "", "next_state_value"]], "torchrl.objectives.A2CLoss": [[245, 1, 1, "", "forward"], [245, 1, 1, "", "make_value_estimator"]], "torchrl.objectives.CQLLoss": [[246, 1, 1, "", "forward"], [246, 1, 1, "", "make_value_estimator"]], "torchrl.objectives.ClipPPOLoss": [[247, 1, 1, "", "forward"]], "torchrl.objectives.DDPGLoss": [[248, 1, 1, "", "forward"], [248, 1, 1, "", "make_value_estimator"]], "torchrl.objectives.DQNLoss": [[249, 1, 1, "", "forward"], [249, 1, 1, "", "make_value_estimator"]], "torchrl.objectives.DTLoss": [[250, 1, 1, "", "forward"]], "torchrl.objectives.DiscreteCQLLoss": [[251, 1, 1, "", "forward"], [251, 1, 1, "", "make_value_estimator"]], "torchrl.objectives.DiscreteSACLoss": [[252, 1, 1, "", "forward"], [252, 1, 1, "", "make_value_estimator"]], "torchrl.objectives.DistributionalDQNLoss": [[253, 1, 1, "", "forward"], [253, 1, 1, "", "make_value_estimator"]], "torchrl.objectives.DreamerActorLoss": [[254, 1, 1, "", "forward"], [254, 1, 1, "", "make_value_estimator"]], "torchrl.objectives.DreamerModelLoss": [[255, 1, 1, "", "forward"]], "torchrl.objectives.DreamerValueLoss": [[256, 1, 1, "", "forward"]], "torchrl.objectives.IQLLoss": [[258, 1, 1, "", "forward"], [258, 1, 1, "", "loss_value_diff"], [258, 1, 1, "", "make_value_estimator"]], "torchrl.objectives.KLPENPPOLoss": [[259, 1, 1, "", "forward"]], "torchrl.objectives.LossModule": [[260, 1, 1, "", "convert_to_functional"], [260, 1, 1, "", "forward"], [260, 1, 1, "", "make_value_estimator"], [260, 1, 1, "", "named_parameters"], [260, 1, 1, "", "parameters"], [260, 1, 1, "", "set_keys"], [260, 3, 1, "", "value_estimator"]], "torchrl.objectives.OnlineDTLoss": [[261, 1, 1, "", "forward"]], "torchrl.objectives.PPOLoss": [[262, 1, 1, "", "forward"], [262, 1, 1, "", "make_value_estimator"]], "torchrl.objectives.REDQLoss": [[263, 1, 1, "", "forward"], [263, 1, 1, "", "make_value_estimator"]], "torchrl.objectives.ReinforceLoss": [[264, 1, 1, "", "forward"], [264, 1, 1, "", "make_value_estimator"]], "torchrl.objectives.SACLoss": [[265, 1, 1, "", "forward"], [265, 1, 1, "", "load_state_dict"], [265, 1, 1, "", "make_value_estimator"], [265, 1, 1, "", "state_dict"]], "torchrl.objectives.TD3Loss": [[267, 1, 1, "", "forward"], [267, 1, 1, "", "make_value_estimator"]], "torchrl.objectives.multiagent": [[273, 0, 1, "", "QMixerLoss"]], "torchrl.objectives.multiagent.QMixerLoss": [[273, 1, 1, "", "forward"], [273, 1, 1, "", "make_value_estimator"]], "torchrl.objectives.value": [[275, 0, 1, "", "GAE"], [276, 0, 1, "", "TD0Estimator"], [277, 0, 1, "", "TD1Estimator"], [278, 0, 1, "", "TDLambdaEstimator"], [279, 0, 1, "", "ValueEstimatorBase"]], "torchrl.objectives.value.GAE": [[275, 1, 1, "", "forward"], [275, 1, 1, "", "value_estimate"]], "torchrl.objectives.value.TD0Estimator": [[276, 1, 1, "", "forward"], [276, 1, 1, "", "value_estimate"]], "torchrl.objectives.value.TD1Estimator": [[277, 1, 1, "", "forward"], [277, 1, 1, "", "value_estimate"]], "torchrl.objectives.value.TDLambdaEstimator": [[278, 1, 1, "", "forward"], [278, 1, 1, "", "value_estimate"]], "torchrl.objectives.value.ValueEstimatorBase": [[279, 1, 1, "", "forward"], [279, 1, 1, "", "set_keys"], [279, 1, 1, "", "value_estimate"]], "torchrl.objectives.value.functional": [[280, 0, 1, "", "generalized_advantage_estimate"], [281, 0, 1, "", "reward2go"], [282, 0, 1, "", "td0_advantage_estimate"], [283, 0, 1, "", "td0_return_estimate"], [284, 0, 1, "", "td1_advantage_estimate"], [285, 0, 1, "", "td1_return_estimate"], [286, 0, 1, "", "td_lambda_advantage_estimate"], [287, 0, 1, "", "td_lambda_return_estimate"], [288, 0, 1, "", "vec_generalized_advantage_estimate"], [289, 0, 1, "", "vec_td1_advantage_estimate"], [290, 0, 1, "", "vec_td1_return_estimate"], [291, 0, 1, "", "vec_td_lambda_advantage_estimate"], [292, 0, 1, "", "vec_td_lambda_return_estimate"]], "torchrl.record": [[293, 2, 1, "", "TensorDictRecorder"], [294, 2, 1, "", "VideoRecorder"]], "torchrl.record.loggers": [[295, 2, 1, "", "Logger"], [297, 2, 1, "", "generate_exp_name"], [298, 2, 1, "", "get_logger"]], "torchrl.record.loggers.csv": [[296, 2, 1, "", "CSVLogger"]], "torchrl.record.loggers.mlflow": [[299, 2, 1, "", "MLFlowLogger"]], "torchrl.record.loggers.tensorboard": [[300, 2, 1, "", "TensorboardLogger"]], "torchrl.record.loggers.wandb": [[301, 2, 1, "", "WandbLogger"]], "torchrl.trainers": [[302, 0, 1, "", "BatchSubSampler"], [303, 0, 1, "", "ClearCudaCache"], [304, 0, 1, "", "CountFramesLog"], [305, 0, 1, "", "LogReward"], [306, 0, 1, "", "OptimizerHook"], [307, 0, 1, "", "Recorder"], [308, 0, 1, "", "ReplayBufferTrainer"], [309, 0, 1, "", "RewardNormalizer"], [310, 0, 1, "", "SelectKeys"], [311, 0, 1, "", "Trainer"], [312, 0, 1, "", "TrainerHookBase"], [313, 0, 1, "", "UpdateWeights"]], "torchrl.trainers.BatchSubSampler": [[302, 1, 1, "", "register"]], "torchrl.trainers.ClearCudaCache": [[303, 1, 1, "", "register"]], "torchrl.trainers.CountFramesLog": [[304, 1, 1, "", "register"]], "torchrl.trainers.LogReward": [[305, 1, 1, "", "register"]], "torchrl.trainers.OptimizerHook": [[306, 1, 1, "", "register"]], "torchrl.trainers.Recorder": [[307, 1, 1, "", "register"]], "torchrl.trainers.ReplayBufferTrainer": [[308, 1, 1, "", "register"]], "torchrl.trainers.RewardNormalizer": [[309, 1, 1, "", "register"]], "torchrl.trainers.SelectKeys": [[310, 1, 1, "", "register"]], "torchrl.trainers.TrainerHookBase": [[312, 1, 1, "", "register"]], "torchrl.trainers.UpdateWeights": [[313, 1, 1, "", "register"]], "torchrl.trainers.helpers": [[314, 2, 1, "", "correct_for_frame_skip"], [315, 2, 1, "", "get_stats_random_rollout"], [316, 2, 1, "", "make_collector_offpolicy"], [317, 2, 1, "", "make_collector_onpolicy"], [318, 2, 1, "", "make_dqn_loss"], [319, 2, 1, "", "make_redq_loss"], [320, 2, 1, "", "make_redq_model"], [321, 2, 1, "", "make_replay_buffer"], [322, 2, 1, "", "make_target_updater"], [323, 2, 1, "", "make_trainer"], [324, 2, 1, "", "parallel_env_constructor"], [325, 2, 1, "", "sync_async_collector"], [326, 2, 1, "", "sync_sync_collector"], [327, 2, 1, "", "transformed_env_constructor"]]}, "objtypes": {"0": "py:class", "1": "py:method", "2": "py:function", "3": "py:property"}, "objnames": {"0": ["py", "class", "Python class"], "1": ["py", "method", "Python method"], "2": ["py", "function", "Python function"], "3": ["py", "property", "Python property"]}, "titleterms": {"torchrl": [0, 1, 2, 3, 6, 9, 331, 332, 333, 334, 336, 337, 338, 342, 343, 347, 348], "tutori": [0, 338, 342], "basic": [0, 345], "intermedi": [0, 8], "advanc": 0, "refer": [0, 329], "knowledg": [0, 330], "base": [0, 7, 330], "indic": 0, "tabl": 0, "collector": [1, 336, 337, 338, 339, 342, 347], "packag": [1, 2, 3, 331, 332, 333, 334], "singl": [1, 4], "node": 1, "data": [1, 2, 4, 336, 337, 338, 342, 347], "distribut": [1, 331], "helper": [1, 3], "function": [1, 4, 332, 337, 338, 342, 347], "replai": [2, 336, 337, 338, 339, 342, 345, 347], "buffer": [2, 336, 337, 338, 339, 342, 345, 347], "compos": [2, 121], "share": 2, "across": 2, "process": 2, "store": [2, 337], "trajectori": 2, "checkpoint": [2, 333], "dataset": 2, "tensorspec": [2, 44], "reinforc": [2, 332, 338, 342], "learn": [2, 4, 338, 342], "from": [2, 6, 7], "human": 2, "feedback": 2, "rlhf": 2, "util": [2, 331, 332, 333], "env": [3, 343, 347, 348], "vector": [3, 347], "multi": [3, 331, 332, 341, 342], "agent": [3, 4, 331, 332, 342], "environ": [3, 4, 6, 7, 336, 337, 338, 339, 341, 342, 343, 347, 348], "transform": [3, 154, 336, 338, 342, 343, 345, 347, 348], "clone": [3, 7], "mask": 3, "action": [3, 4, 339, 343], "record": [3, 307, 333, 336], "domain": [3, 331], "specif": [3, 331, 341], "librari": [3, 347], "thing": [4, 336, 343], "consid": 4, "when": [4, 7], "debug": 4, "rl": [4, 9, 347], "gener": [4, 331], "have": 4, "you": 4, "valid": 4, "your": [4, 6, 336, 343], "algorithm": [4, 331], "implement": 4, "few": 4, "small": 4, "toi": 4, "problem": 4, "known": 4, "optim": [4, 336, 337], "return": [4, 332], "e": 4, "g": 4, "gridworld": 4, "mountaincar": 4, "visual": 4, "Be": 4, "veri": 4, "care": 4, "ani": 4, "augment": 4, "polici": [4, 336, 338, 339, 341, 342, 343], "doe": 4, "entropi": 4, "converg": 4, "too": [4, 8], "quickli": 4, "slowli": 4, "chang": [4, 347], "drastic": 4, "reward": 4, "beyond": 4, "go": 4, "up": [4, 6], "Is": 4, "favor": 4, "compon": 4, "i": 4, "veloc": 4, "vs": 4, "l2": 4, "magnitud": 4, "task": [4, 341], "horizon": 4, "extrem": 4, "long": 4, "ar": 4, "normal": [4, 336, 337, 338], "standard": 4, "explor": [4, 331, 336, 337], "valu": [4, 331, 332, 336, 338, 339], "loss": [4, 336, 337, 338, 339, 342], "earli": 4, "train": [4, 8, 332, 336, 338, 339, 342, 343], "roughli": 4, "uniformli": 4, "random": [4, 342], "intrins": 4, "decai": 4, "progress": 4, "singleton": 4, "episod": 4, "remain": 4, "constant": [4, 337], "increas": 4, "an": [4, 338, 339, 343], "dynam": [4, 345], "can": 4, "low": 4, "forward": [4, 336], "model": [4, 331, 336, 337, 339, 344, 347], "also": 4, "us": [4, 6, 9, 339, 344, 345, 347], "offlin": 4, "observ": [4, 336], "space": 4, "effect": [4, 343], "dramat": 4, "dure": [4, 7], "high": 4, "dimension": 4, "work": [5, 6, 7], "gym": [5, 348], "what": 5, "openai": 5, "version": [5, 7, 10], "habitat": 6, "lab": 6, "set": 6, "instal": [6, 7, 347], "pip": [6, 7], "common": [6, 7, 8], "issu": [6, 7, 10], "mujoco": 7, "prerequisit": 7, "render": [7, 342, 348], "all": 7, "new": 7, "bindindg": 7, "2": 7, "1": 7, "old": 7, "bind": 7, "py": 7, "option": 7, "repo": [7, 9], "import": [7, 336], "pytorch": [8, 9, 10], "error": 8, "solut": 8, "gradient": 8, "relat": 8, "newcom": 8, "my": 8, "slow": 8, "bug": 8, "resourc": 9, "paper": 9, "document": 9, "functorch": 9, "blog": 9, "websit": 9, "educ": 9, "forum": 9, "how": 10, "reproduc": [10, 343], "workaround": 10, "implement_for": 11, "datacollectorbas": 12, "multisyncdatacollector": 13, "multiasyncdatacollector": 14, "randompolici": 15, "syncdatacollector": 16, "asyncdatacollector": 17, "distributeddatacollector": 18, "distributedsyncdatacollector": 19, "rpcdatacollector": 20, "raycollector": 21, "submitit_delayed_launch": 22, "split_trajectori": 23, "binarydiscretetensorspec": 24, "boundedtensorspec": 25, "compositespec": 26, "discretetensorspec": 27, "lazystackedcompositespec": 28, "lazystackedtensorspec": 29, "multidiscretetensorspec": 30, "multionehotdiscretetensorspec": 31, "multistep": 32, "onehotdiscretetensorspec": 33, "pairwisedataset": 34, "prioritizedreplaybuff": 35, "promptdata": 36, "prompttensordicttoken": 37, "replaybuff": 38, "rewarddata": 39, "rolloutfrommodel": 40, "tensordictprioritizedreplaybuff": 41, "tensordictreplaybuff": 42, "tensordicttoken": 43, "tokenizeddatasetload": 45, "unboundedcontinuoustensorspec": 46, "unboundeddiscretetensorspec": 47, "check_no_exclusive_kei": 48, "consolidate_spec": 49, "contains_lazy_spec": 50, "create_infinite_iter": 51, "d4rlexperiencereplai": 52, "minariexperiencereplai": 53, "openmlexperiencereplai": 54, "openxexperiencereplai": 55, "robosetexperiencereplai": 56, "vd4rlexperiencereplai": 57, "get_dataload": 58, "immutabledatasetwrit": 59, "lazymemmapstorag": 60, "lazytensorstorag": 61, "liststorag": 62, "prioritizedsampl": 63, "randomsampl": 64, "replaybufferensembl": 65, "roundrobinwrit": 66, "sampler": 67, "samplerensembl": 68, "samplerwithoutreplac": 69, "slicesampl": 70, "slicesamplerwithoutreplac": 71, "storag": [72, 336, 345], "storageensembl": 73, "tensordictmaxvaluewrit": 74, "tensordictroundrobinwrit": 75, "tensorstorag": 76, "writer": 77, "writerensembl": 78, "braxenv": 79, "braxwrapp": 80, "dmcontrolenv": 81, "dmcontrolwrapp": 82, "envbas": [83, 343], "envcreat": 84, "envmetadata": 85, "gymenv": 86, "gymlikeenv": 87, "gymwrapp": 88, "habitatenv": 89, "isaacgymenv": 90, "isaacgymwrapp": 91, "jumanjienv": 92, "jumanjiwrapp": 93, "mogymenv": 94, "mogymwrapp": 95, "marlgroupmaptyp": 96, "modelbasedenvbas": 97, "multithreadedenv": 98, "multithreadedenvwrapp": 99, "openmlenv": 100, "parallelenv": 101, "pettingzooenv": 102, "pettingzoowrapp": 103, "robohiveenv": 104, "smacv2env": 105, "smacv2wrapp": 106, "serialenv": 107, "vmasenv": 108, "vmaswrapp": 109, "check_marl_group": 110, "gym_backend": 111, "dreamerenv": 112, "set_gym_backend": 113, "actionmask": 114, "binarizereward": 115, "burnintransform": 116, "catfram": [117, 345], "cattensor": 118, "centercrop": 119, "cliptransform": 120, "dtypecasttransform": 122, "devicecasttransform": 123, "discreteactionproject": 124, "doubletofloat": 125, "endoflifetransform": 126, "excludetransform": 127, "finitetensordictcheck": 128, "flattenobserv": 129, "frameskiptransform": 130, "grayscal": 131, "inittrack": 132, "klrewardtransform": 133, "noopresetenv": 134, "observationnorm": 135, "observationtransform": 136, "permutetransform": 137, "pinmemorytransform": 138, "r3mtransform": 139, "randomcroptensordict": 140, "renametransform": 141, "resiz": 142, "reward2gotransform": 143, "rewardclip": 144, "rewardsc": 145, "rewardsum": 146, "selecttransform": 147, "squeezetransform": 148, "stepcount": 149, "targetreturn": 150, "tensordictprim": 151, "timemaxpool": 152, "totensorimag": 153, "transformedenv": 155, "unsqueezetransform": 156, "vc1transform": 157, "viprewardtransform": 158, "viptransform": 159, "vecgymenvtransform": 160, "vecnorm": [161, 348], "gsdenois": 162, "check_env_spec": 163, "exploration_mod": 164, "exploration_typ": 165, "get_available_librari": 166, "make_composite_from_td": 167, "set_exploration_mod": 168, "set_exploration_typ": 169, "step_mdp": 170, "terminated_or_trunc": 171, "cemplann": 172, "conv3dnet": 173, "convnet": 174, "dtactor": 175, "ddpgcnnactor": 176, "ddpgcnnqnet": 177, "ddpgmlpactor": 178, "ddpgmlpqnet": 179, "decisiontransform": 180, "delta": 181, "distributionaldqnnet": 182, "distributionalqvaluehook": 183, "dreameractor": 184, "duelingcnndqnet": 185, "gru": 186, "grucel": 187, "grumodul": 188, "independentnorm": 189, "lstm": [190, 339], "lstmcell": 191, "lstmmodul": 192, "lstmnet": 193, "mlp": [194, 339], "mpcplannerbas": 195, "mppiplann": 196, "maskedcategor": 197, "maskedonehotcategor": 198, "multiagentconvnet": 199, "multiagentmlp": 200, "noisylazylinear": 201, "noisylinear": 202, "normalparamwrapp": 203, "obsdecod": 204, "obsencod": 205, "onehotcategor": 206, "onlinedtactor": 207, "qmixer": [208, 332], "qvaluehook": 209, "rssmposterior": 210, "rssmprior": 211, "squeeze2dlay": 212, "squeezelay": 213, "tanhdelta": 214, "tanhnorm": 215, "truncatednorm": 216, "vdnmixer": 217, "vmapmodul": 218, "reset_nois": 219, "actor": [220, 331, 336], "actorcriticoper": 221, "actorcriticwrapp": 222, "actorvalueoper": 223, "additivegaussianwrapp": 224, "decisiontransformerinferencewrapp": 225, "distributionalqvalueactor": 226, "distributionalqvaluemodul": 227, "egreedymodul": 228, "egreedywrapp": 229, "lmheadactorvalueoper": 230, "ornsteinuhlenbeckprocesswrapp": 231, "probabilisticactor": 232, "qvalueactor": 233, "qvaluemodul": 234, "safemodul": [235, 331], "safeprobabilisticmodul": 236, "safeprobabilistictensordictsequenti": 237, "safesequenti": 238, "tanhmodul": 239, "valueoper": 240, "worldmodelwrapp": 241, "biased_softplu": 242, "inv_softplu": 243, "map": 244, "a2closs": 245, "cqlloss": 246, "clipppoloss": 247, "ddpgloss": 248, "dqnloss": 249, "dtloss": 250, "discretecqlloss": 251, "discretesacloss": 252, "distributionaldqnloss": 253, "dreameractorloss": 254, "dreamermodelloss": 255, "dreamervalueloss": 256, "hardupd": 257, "iqlloss": 258, "klpenppoloss": 259, "lossmodul": [260, 336], "onlinedtloss": 261, "ppoloss": 262, "redqloss": 263, "reinforceloss": 264, "sacloss": 265, "softupd": 266, "td3loss": 267, "valueestim": 268, "default_value_kwarg": 269, "distance_loss": 270, "hold_out_net": 271, "hold_out_param": 272, "qmixerloss": 273, "next_state_valu": 274, "gae": 275, "td0estim": 276, "td1estim": 277, "tdlambdaestim": 278, "valueestimatorbas": 279, "generalized_advantage_estim": 280, "reward2go": 281, "td0_advantage_estim": 282, "td0_return_estim": 283, "td1_advantage_estim": 284, "td1_return_estim": 285, "td_lambda_advantage_estim": 286, "td_lambda_return_estim": 287, "vec_generalized_advantage_estim": 288, "vec_td1_advantage_estim": 289, "vec_td1_return_estim": 290, "vec_td_lambda_advantage_estim": 291, "vec_td_lambda_return_estim": 292, "tensordictrecord": 293, "videorecord": 294, "logger": [295, 333], "csvlogger": 296, "generate_exp_nam": 297, "get_logg": 298, "mlflowlogg": 299, "tensorboardlogg": 300, "wandblogg": 301, "batchsubsampl": 302, "clearcudacach": 303, "countframeslog": 304, "logreward": 305, "optimizerhook": 306, "replaybuffertrain": 308, "rewardnorm": 309, "selectkei": 310, "trainer": [311, 333, 337], "trainerhookbas": 312, "updateweight": 313, "correct_for_frame_skip": 314, "get_stats_random_rollout": 315, "make_collector_offpolici": 316, "make_collector_onpolici": 317, "make_dqn_loss": 318, "make_redq_loss": 319, "make_redq_model": 320, "make_replay_buff": 321, "make_target_updat": 322, "make_train": 323, "parallel_env_constructor": 324, "sync_async_collector": 325, "sync_sync_collector": 326, "transformed_env_constructor": 327, "readm": [328, 340], "tuto": [328, 340], "api": 329, "contribut": [330, 347], "content": 330, "modul": [331, 336, 339, 347], "tensordict": [331, 345, 347], "wrapper": 331, "probabilist": 331, "q": [331, 337, 339], "oper": 331, "join": 331, "hook": [331, 333, 337], "regular": 331, "planner": 331, "object": [332, 336, 347], "dqn": [332, 337, 339], "ddpg": [332, 336], "sac": 332, "redq": 332, "iql": 332, "cql": 332, "dt": 332, "td3": 332, "ppo": [332, 338, 342], "a2c": 332, "dreamer": 332, "builder": 333, "_util": 334, "comput": [335, 337, 343, 346], "time": [335, 336, 346], "code": [336, 343], "setup": [336, 339], "The": 336, "__init__": 336, "method": 336, "estim": 336, "put": 336, "togeth": [336, 343], "call": 336, "parallel": [336, 341, 348], "execut": [336, 341, 343], "stat": 336, "build": [336, 337, 345], "evalu": 336, "batch": [336, 343, 345], "size": [336, 345], "construct": 336, "target": [336, 337], "network": [336, 337, 338, 339, 342], "updat": 336, "experi": [336, 343], "result": [336, 338, 342], "conclus": [336, 337, 338, 339, 342, 343, 345], "A": [337, 345], "exampl": [337, 345], "deep": 337, "collect": [337, 338], "paramet": [337, 338], "hyperparamet": [337, 338, 342], "regist": 337, "possibl": 337, "improv": 337, "defin": [338, 342], "loop": [338, 339, 342, 343], "next": [338, 342], "step": [338, 342, 348], "recurr": 339, "overview": 339, "convolut": 339, "select": 339, "further": 339, "read": 339, "divers": 341, "rollout": [341, 342, 343, 348], "critic": 342, "pendulum": 343, "write": 343, "_step": 343, "reset": [343, 348], "simul": 343, "_reset": 343, "metadata": 343, "_spec": 343, "spec": [343, 348], "shape": 343, "seed": [343, 348], "wrap": 343, "class": [343, 347], "test": 343, "our": 343, "custom": [343, 345], "simpl": 343, "pretrain": 344, "vanilla": 345, "integr": 345, "tensorclass": 345, "sampl": 345, "iter": 345, "over": 345, "fix": 345, "priorit": 345, "save": 345, "raw": 345, "imag": 345, "more": 345, "complex": 345, "introduct": 347, "config": 347, "tensordictmodul": 347, "sequenc": 347, "program": 347, "ensembl": 347, "meta": 347, "special": 347, "state": 347, "frame_skip": 348, "deepmind": 348, "control": 348, "devic": 348, "run": 348, "close": 348, "access": 348, "attribut": 348, "kwarg": 348}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 6, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.viewcode": 1, "sphinx.ext.intersphinx": 1, "sphinx": 56}}) \ No newline at end of file +Search.setIndex({"docnames": ["index", "reference/collectors", "reference/data", "reference/envs", "reference/generated/knowledge_base/DEBUGGING_RL", "reference/generated/knowledge_base/GYM", "reference/generated/knowledge_base/HABITAT", "reference/generated/knowledge_base/MUJOCO_INSTALLATION", "reference/generated/knowledge_base/PRO-TIPS", "reference/generated/knowledge_base/RESOURCES", "reference/generated/knowledge_base/VERSIONING_ISSUES", "reference/generated/torchrl._utils.implement_for", "reference/generated/torchrl.collectors.collectors.DataCollectorBase", "reference/generated/torchrl.collectors.collectors.MultiSyncDataCollector", "reference/generated/torchrl.collectors.collectors.MultiaSyncDataCollector", "reference/generated/torchrl.collectors.collectors.RandomPolicy", "reference/generated/torchrl.collectors.collectors.SyncDataCollector", "reference/generated/torchrl.collectors.collectors.aSyncDataCollector", "reference/generated/torchrl.collectors.distributed.DistributedDataCollector", "reference/generated/torchrl.collectors.distributed.DistributedSyncDataCollector", "reference/generated/torchrl.collectors.distributed.RPCDataCollector", "reference/generated/torchrl.collectors.distributed.RayCollector", "reference/generated/torchrl.collectors.distributed.submitit_delayed_launcher", "reference/generated/torchrl.collectors.utils.split_trajectories", "reference/generated/torchrl.data.BinaryDiscreteTensorSpec", "reference/generated/torchrl.data.BoundedTensorSpec", "reference/generated/torchrl.data.CompositeSpec", "reference/generated/torchrl.data.DiscreteTensorSpec", "reference/generated/torchrl.data.LazyStackedCompositeSpec", "reference/generated/torchrl.data.LazyStackedTensorSpec", "reference/generated/torchrl.data.MultiDiscreteTensorSpec", "reference/generated/torchrl.data.MultiOneHotDiscreteTensorSpec", "reference/generated/torchrl.data.MultiStep", "reference/generated/torchrl.data.OneHotDiscreteTensorSpec", "reference/generated/torchrl.data.PairwiseDataset", "reference/generated/torchrl.data.PrioritizedReplayBuffer", "reference/generated/torchrl.data.PromptData", "reference/generated/torchrl.data.PromptTensorDictTokenizer", "reference/generated/torchrl.data.ReplayBuffer", "reference/generated/torchrl.data.RewardData", "reference/generated/torchrl.data.RolloutFromModel", "reference/generated/torchrl.data.TensorDictPrioritizedReplayBuffer", "reference/generated/torchrl.data.TensorDictReplayBuffer", "reference/generated/torchrl.data.TensorDictTokenizer", "reference/generated/torchrl.data.TensorSpec", "reference/generated/torchrl.data.TokenizedDatasetLoader", "reference/generated/torchrl.data.UnboundedContinuousTensorSpec", "reference/generated/torchrl.data.UnboundedDiscreteTensorSpec", "reference/generated/torchrl.data.check_no_exclusive_keys", "reference/generated/torchrl.data.consolidate_spec", "reference/generated/torchrl.data.contains_lazy_spec", "reference/generated/torchrl.data.create_infinite_iterator", "reference/generated/torchrl.data.datasets.D4RLExperienceReplay", "reference/generated/torchrl.data.datasets.MinariExperienceReplay", "reference/generated/torchrl.data.datasets.OpenMLExperienceReplay", "reference/generated/torchrl.data.datasets.OpenXExperienceReplay", "reference/generated/torchrl.data.datasets.RobosetExperienceReplay", "reference/generated/torchrl.data.datasets.VD4RLExperienceReplay", "reference/generated/torchrl.data.get_dataloader", "reference/generated/torchrl.data.replay_buffers.ImmutableDatasetWriter", "reference/generated/torchrl.data.replay_buffers.LazyMemmapStorage", "reference/generated/torchrl.data.replay_buffers.LazyTensorStorage", "reference/generated/torchrl.data.replay_buffers.ListStorage", "reference/generated/torchrl.data.replay_buffers.PrioritizedSampler", "reference/generated/torchrl.data.replay_buffers.RandomSampler", "reference/generated/torchrl.data.replay_buffers.ReplayBufferEnsemble", "reference/generated/torchrl.data.replay_buffers.RoundRobinWriter", "reference/generated/torchrl.data.replay_buffers.Sampler", "reference/generated/torchrl.data.replay_buffers.SamplerEnsemble", "reference/generated/torchrl.data.replay_buffers.SamplerWithoutReplacement", "reference/generated/torchrl.data.replay_buffers.SliceSampler", "reference/generated/torchrl.data.replay_buffers.SliceSamplerWithoutReplacement", "reference/generated/torchrl.data.replay_buffers.Storage", "reference/generated/torchrl.data.replay_buffers.StorageEnsemble", "reference/generated/torchrl.data.replay_buffers.TensorDictMaxValueWriter", "reference/generated/torchrl.data.replay_buffers.TensorDictRoundRobinWriter", "reference/generated/torchrl.data.replay_buffers.TensorStorage", "reference/generated/torchrl.data.replay_buffers.Writer", "reference/generated/torchrl.data.replay_buffers.WriterEnsemble", "reference/generated/torchrl.envs.BraxEnv", "reference/generated/torchrl.envs.BraxWrapper", "reference/generated/torchrl.envs.DMControlEnv", "reference/generated/torchrl.envs.DMControlWrapper", "reference/generated/torchrl.envs.EnvBase", "reference/generated/torchrl.envs.EnvCreator", "reference/generated/torchrl.envs.EnvMetaData", "reference/generated/torchrl.envs.GymEnv", "reference/generated/torchrl.envs.GymLikeEnv", "reference/generated/torchrl.envs.GymWrapper", "reference/generated/torchrl.envs.HabitatEnv", "reference/generated/torchrl.envs.IsaacGymEnv", "reference/generated/torchrl.envs.IsaacGymWrapper", "reference/generated/torchrl.envs.JumanjiEnv", "reference/generated/torchrl.envs.JumanjiWrapper", "reference/generated/torchrl.envs.MOGymEnv", "reference/generated/torchrl.envs.MOGymWrapper", "reference/generated/torchrl.envs.MarlGroupMapType", "reference/generated/torchrl.envs.ModelBasedEnvBase", "reference/generated/torchrl.envs.MultiThreadedEnv", "reference/generated/torchrl.envs.MultiThreadedEnvWrapper", "reference/generated/torchrl.envs.OpenMLEnv", "reference/generated/torchrl.envs.ParallelEnv", "reference/generated/torchrl.envs.PettingZooEnv", "reference/generated/torchrl.envs.PettingZooWrapper", "reference/generated/torchrl.envs.RoboHiveEnv", "reference/generated/torchrl.envs.SMACv2Env", "reference/generated/torchrl.envs.SMACv2Wrapper", "reference/generated/torchrl.envs.SerialEnv", "reference/generated/torchrl.envs.VmasEnv", "reference/generated/torchrl.envs.VmasWrapper", "reference/generated/torchrl.envs.check_marl_grouping", "reference/generated/torchrl.envs.gym_backend", "reference/generated/torchrl.envs.model_based.dreamer.DreamerEnv", "reference/generated/torchrl.envs.set_gym_backend", "reference/generated/torchrl.envs.transforms.ActionMask", "reference/generated/torchrl.envs.transforms.BinarizeReward", "reference/generated/torchrl.envs.transforms.BurnInTransform", "reference/generated/torchrl.envs.transforms.CatFrames", "reference/generated/torchrl.envs.transforms.CatTensors", "reference/generated/torchrl.envs.transforms.CenterCrop", "reference/generated/torchrl.envs.transforms.ClipTransform", "reference/generated/torchrl.envs.transforms.Compose", "reference/generated/torchrl.envs.transforms.DTypeCastTransform", "reference/generated/torchrl.envs.transforms.DeviceCastTransform", "reference/generated/torchrl.envs.transforms.DiscreteActionProjection", "reference/generated/torchrl.envs.transforms.DoubleToFloat", "reference/generated/torchrl.envs.transforms.EndOfLifeTransform", "reference/generated/torchrl.envs.transforms.ExcludeTransform", "reference/generated/torchrl.envs.transforms.FiniteTensorDictCheck", "reference/generated/torchrl.envs.transforms.FlattenObservation", "reference/generated/torchrl.envs.transforms.FrameSkipTransform", "reference/generated/torchrl.envs.transforms.GrayScale", "reference/generated/torchrl.envs.transforms.InitTracker", "reference/generated/torchrl.envs.transforms.KLRewardTransform", "reference/generated/torchrl.envs.transforms.NoopResetEnv", "reference/generated/torchrl.envs.transforms.ObservationNorm", "reference/generated/torchrl.envs.transforms.ObservationTransform", "reference/generated/torchrl.envs.transforms.PermuteTransform", "reference/generated/torchrl.envs.transforms.PinMemoryTransform", "reference/generated/torchrl.envs.transforms.R3MTransform", "reference/generated/torchrl.envs.transforms.RandomCropTensorDict", "reference/generated/torchrl.envs.transforms.RenameTransform", "reference/generated/torchrl.envs.transforms.Resize", "reference/generated/torchrl.envs.transforms.Reward2GoTransform", "reference/generated/torchrl.envs.transforms.RewardClipping", "reference/generated/torchrl.envs.transforms.RewardScaling", "reference/generated/torchrl.envs.transforms.RewardSum", "reference/generated/torchrl.envs.transforms.SelectTransform", "reference/generated/torchrl.envs.transforms.SqueezeTransform", "reference/generated/torchrl.envs.transforms.StepCounter", "reference/generated/torchrl.envs.transforms.TargetReturn", "reference/generated/torchrl.envs.transforms.TensorDictPrimer", "reference/generated/torchrl.envs.transforms.TimeMaxPool", "reference/generated/torchrl.envs.transforms.ToTensorImage", "reference/generated/torchrl.envs.transforms.Transform", "reference/generated/torchrl.envs.transforms.TransformedEnv", "reference/generated/torchrl.envs.transforms.UnsqueezeTransform", "reference/generated/torchrl.envs.transforms.VC1Transform", "reference/generated/torchrl.envs.transforms.VIPRewardTransform", "reference/generated/torchrl.envs.transforms.VIPTransform", "reference/generated/torchrl.envs.transforms.VecGymEnvTransform", "reference/generated/torchrl.envs.transforms.VecNorm", "reference/generated/torchrl.envs.transforms.gSDENoise", "reference/generated/torchrl.envs.utils.check_env_specs", "reference/generated/torchrl.envs.utils.exploration_mode", "reference/generated/torchrl.envs.utils.exploration_type", "reference/generated/torchrl.envs.utils.get_available_libraries", "reference/generated/torchrl.envs.utils.make_composite_from_td", "reference/generated/torchrl.envs.utils.set_exploration_mode", "reference/generated/torchrl.envs.utils.set_exploration_type", "reference/generated/torchrl.envs.utils.step_mdp", "reference/generated/torchrl.envs.utils.terminated_or_truncated", "reference/generated/torchrl.modules.CEMPlanner", "reference/generated/torchrl.modules.Conv3dNet", "reference/generated/torchrl.modules.ConvNet", "reference/generated/torchrl.modules.DTActor", "reference/generated/torchrl.modules.DdpgCnnActor", "reference/generated/torchrl.modules.DdpgCnnQNet", "reference/generated/torchrl.modules.DdpgMlpActor", "reference/generated/torchrl.modules.DdpgMlpQNet", "reference/generated/torchrl.modules.DecisionTransformer", "reference/generated/torchrl.modules.Delta", "reference/generated/torchrl.modules.DistributionalDQNnet", "reference/generated/torchrl.modules.DistributionalQValueHook", "reference/generated/torchrl.modules.DreamerActor", "reference/generated/torchrl.modules.DuelingCnnDQNet", "reference/generated/torchrl.modules.GRU", "reference/generated/torchrl.modules.GRUCell", "reference/generated/torchrl.modules.GRUModule", "reference/generated/torchrl.modules.IndependentNormal", "reference/generated/torchrl.modules.LSTM", "reference/generated/torchrl.modules.LSTMCell", "reference/generated/torchrl.modules.LSTMModule", "reference/generated/torchrl.modules.LSTMNet", "reference/generated/torchrl.modules.MLP", "reference/generated/torchrl.modules.MPCPlannerBase", "reference/generated/torchrl.modules.MPPIPlanner", "reference/generated/torchrl.modules.MaskedCategorical", "reference/generated/torchrl.modules.MaskedOneHotCategorical", "reference/generated/torchrl.modules.MultiAgentConvNet", "reference/generated/torchrl.modules.MultiAgentMLP", "reference/generated/torchrl.modules.NoisyLazyLinear", "reference/generated/torchrl.modules.NoisyLinear", "reference/generated/torchrl.modules.NormalParamWrapper", "reference/generated/torchrl.modules.ObsDecoder", "reference/generated/torchrl.modules.ObsEncoder", "reference/generated/torchrl.modules.OneHotCategorical", "reference/generated/torchrl.modules.OnlineDTActor", "reference/generated/torchrl.modules.QMixer", "reference/generated/torchrl.modules.QValueHook", "reference/generated/torchrl.modules.RSSMPosterior", "reference/generated/torchrl.modules.RSSMPrior", "reference/generated/torchrl.modules.Squeeze2dLayer", "reference/generated/torchrl.modules.SqueezeLayer", "reference/generated/torchrl.modules.TanhDelta", "reference/generated/torchrl.modules.TanhNormal", "reference/generated/torchrl.modules.TruncatedNormal", "reference/generated/torchrl.modules.VDNMixer", "reference/generated/torchrl.modules.VmapModule", "reference/generated/torchrl.modules.reset_noise", "reference/generated/torchrl.modules.tensordict_module.Actor", "reference/generated/torchrl.modules.tensordict_module.ActorCriticOperator", "reference/generated/torchrl.modules.tensordict_module.ActorCriticWrapper", "reference/generated/torchrl.modules.tensordict_module.ActorValueOperator", "reference/generated/torchrl.modules.tensordict_module.AdditiveGaussianWrapper", "reference/generated/torchrl.modules.tensordict_module.DecisionTransformerInferenceWrapper", "reference/generated/torchrl.modules.tensordict_module.DistributionalQValueActor", "reference/generated/torchrl.modules.tensordict_module.DistributionalQValueModule", "reference/generated/torchrl.modules.tensordict_module.EGreedyModule", "reference/generated/torchrl.modules.tensordict_module.EGreedyWrapper", "reference/generated/torchrl.modules.tensordict_module.LMHeadActorValueOperator", "reference/generated/torchrl.modules.tensordict_module.OrnsteinUhlenbeckProcessWrapper", "reference/generated/torchrl.modules.tensordict_module.ProbabilisticActor", "reference/generated/torchrl.modules.tensordict_module.QValueActor", "reference/generated/torchrl.modules.tensordict_module.QValueModule", "reference/generated/torchrl.modules.tensordict_module.SafeModule", "reference/generated/torchrl.modules.tensordict_module.SafeProbabilisticModule", "reference/generated/torchrl.modules.tensordict_module.SafeProbabilisticTensorDictSequential", "reference/generated/torchrl.modules.tensordict_module.SafeSequential", "reference/generated/torchrl.modules.tensordict_module.TanhModule", "reference/generated/torchrl.modules.tensordict_module.ValueOperator", "reference/generated/torchrl.modules.tensordict_module.WorldModelWrapper", "reference/generated/torchrl.modules.utils.biased_softplus", "reference/generated/torchrl.modules.utils.inv_softplus", "reference/generated/torchrl.modules.utils.mappings", "reference/generated/torchrl.objectives.A2CLoss", "reference/generated/torchrl.objectives.CQLLoss", "reference/generated/torchrl.objectives.ClipPPOLoss", "reference/generated/torchrl.objectives.DDPGLoss", "reference/generated/torchrl.objectives.DQNLoss", "reference/generated/torchrl.objectives.DTLoss", "reference/generated/torchrl.objectives.DiscreteCQLLoss", "reference/generated/torchrl.objectives.DiscreteSACLoss", "reference/generated/torchrl.objectives.DistributionalDQNLoss", "reference/generated/torchrl.objectives.DreamerActorLoss", "reference/generated/torchrl.objectives.DreamerModelLoss", "reference/generated/torchrl.objectives.DreamerValueLoss", "reference/generated/torchrl.objectives.HardUpdate", "reference/generated/torchrl.objectives.IQLLoss", "reference/generated/torchrl.objectives.KLPENPPOLoss", "reference/generated/torchrl.objectives.LossModule", "reference/generated/torchrl.objectives.OnlineDTLoss", "reference/generated/torchrl.objectives.PPOLoss", "reference/generated/torchrl.objectives.REDQLoss", "reference/generated/torchrl.objectives.ReinforceLoss", "reference/generated/torchrl.objectives.SACLoss", "reference/generated/torchrl.objectives.SoftUpdate", "reference/generated/torchrl.objectives.TD3Loss", "reference/generated/torchrl.objectives.ValueEstimators", "reference/generated/torchrl.objectives.default_value_kwargs", "reference/generated/torchrl.objectives.distance_loss", "reference/generated/torchrl.objectives.hold_out_net", "reference/generated/torchrl.objectives.hold_out_params", "reference/generated/torchrl.objectives.multiagent.QMixerLoss", "reference/generated/torchrl.objectives.next_state_value", "reference/generated/torchrl.objectives.value.GAE", "reference/generated/torchrl.objectives.value.TD0Estimator", "reference/generated/torchrl.objectives.value.TD1Estimator", "reference/generated/torchrl.objectives.value.TDLambdaEstimator", "reference/generated/torchrl.objectives.value.ValueEstimatorBase", "reference/generated/torchrl.objectives.value.functional.generalized_advantage_estimate", "reference/generated/torchrl.objectives.value.functional.reward2go", "reference/generated/torchrl.objectives.value.functional.td0_advantage_estimate", "reference/generated/torchrl.objectives.value.functional.td0_return_estimate", "reference/generated/torchrl.objectives.value.functional.td1_advantage_estimate", "reference/generated/torchrl.objectives.value.functional.td1_return_estimate", "reference/generated/torchrl.objectives.value.functional.td_lambda_advantage_estimate", "reference/generated/torchrl.objectives.value.functional.td_lambda_return_estimate", "reference/generated/torchrl.objectives.value.functional.vec_generalized_advantage_estimate", "reference/generated/torchrl.objectives.value.functional.vec_td1_advantage_estimate", "reference/generated/torchrl.objectives.value.functional.vec_td1_return_estimate", "reference/generated/torchrl.objectives.value.functional.vec_td_lambda_advantage_estimate", "reference/generated/torchrl.objectives.value.functional.vec_td_lambda_return_estimate", "reference/generated/torchrl.record.TensorDictRecorder", "reference/generated/torchrl.record.VideoRecorder", "reference/generated/torchrl.record.loggers.Logger", "reference/generated/torchrl.record.loggers.csv.CSVLogger", "reference/generated/torchrl.record.loggers.generate_exp_name", "reference/generated/torchrl.record.loggers.get_logger", "reference/generated/torchrl.record.loggers.mlflow.MLFlowLogger", "reference/generated/torchrl.record.loggers.tensorboard.TensorboardLogger", "reference/generated/torchrl.record.loggers.wandb.WandbLogger", "reference/generated/torchrl.trainers.BatchSubSampler", "reference/generated/torchrl.trainers.ClearCudaCache", "reference/generated/torchrl.trainers.CountFramesLog", "reference/generated/torchrl.trainers.LogReward", "reference/generated/torchrl.trainers.OptimizerHook", "reference/generated/torchrl.trainers.Recorder", "reference/generated/torchrl.trainers.ReplayBufferTrainer", "reference/generated/torchrl.trainers.RewardNormalizer", "reference/generated/torchrl.trainers.SelectKeys", "reference/generated/torchrl.trainers.Trainer", "reference/generated/torchrl.trainers.TrainerHookBase", "reference/generated/torchrl.trainers.UpdateWeights", "reference/generated/torchrl.trainers.helpers.correct_for_frame_skip", "reference/generated/torchrl.trainers.helpers.get_stats_random_rollout", "reference/generated/torchrl.trainers.helpers.make_collector_offpolicy", "reference/generated/torchrl.trainers.helpers.make_collector_onpolicy", "reference/generated/torchrl.trainers.helpers.make_dqn_loss", "reference/generated/torchrl.trainers.helpers.make_redq_loss", "reference/generated/torchrl.trainers.helpers.make_redq_model", "reference/generated/torchrl.trainers.helpers.make_replay_buffer", "reference/generated/torchrl.trainers.helpers.make_target_updater", "reference/generated/torchrl.trainers.helpers.make_trainer", "reference/generated/torchrl.trainers.helpers.parallel_env_constructor", "reference/generated/torchrl.trainers.helpers.sync_async_collector", "reference/generated/torchrl.trainers.helpers.sync_sync_collector", "reference/generated/torchrl.trainers.helpers.transformed_env_constructor", "reference/generated/tutorials/README", "reference/index", "reference/knowledge_base", "reference/modules", "reference/objectives", "reference/trainers", "reference/utils", "sg_execution_times", "tutorials/coding_ddpg", "tutorials/coding_dqn", "tutorials/coding_ppo", "tutorials/dqn_with_rnn", "tutorials/index", "tutorials/multi_task", "tutorials/multiagent_ppo", "tutorials/pendulum", "tutorials/pretrained_models", "tutorials/rb_tutorial", "tutorials/sg_execution_times", "tutorials/torchrl_demo", "tutorials/torchrl_envs"], "filenames": ["index.rst", "reference/collectors.rst", "reference/data.rst", "reference/envs.rst", "reference/generated/knowledge_base/DEBUGGING_RL.rst", "reference/generated/knowledge_base/GYM.rst", "reference/generated/knowledge_base/HABITAT.rst", "reference/generated/knowledge_base/MUJOCO_INSTALLATION.rst", "reference/generated/knowledge_base/PRO-TIPS.rst", "reference/generated/knowledge_base/RESOURCES.rst", "reference/generated/knowledge_base/VERSIONING_ISSUES.rst", "reference/generated/torchrl._utils.implement_for.rst", "reference/generated/torchrl.collectors.collectors.DataCollectorBase.rst", "reference/generated/torchrl.collectors.collectors.MultiSyncDataCollector.rst", "reference/generated/torchrl.collectors.collectors.MultiaSyncDataCollector.rst", "reference/generated/torchrl.collectors.collectors.RandomPolicy.rst", "reference/generated/torchrl.collectors.collectors.SyncDataCollector.rst", "reference/generated/torchrl.collectors.collectors.aSyncDataCollector.rst", "reference/generated/torchrl.collectors.distributed.DistributedDataCollector.rst", "reference/generated/torchrl.collectors.distributed.DistributedSyncDataCollector.rst", "reference/generated/torchrl.collectors.distributed.RPCDataCollector.rst", "reference/generated/torchrl.collectors.distributed.RayCollector.rst", "reference/generated/torchrl.collectors.distributed.submitit_delayed_launcher.rst", "reference/generated/torchrl.collectors.utils.split_trajectories.rst", "reference/generated/torchrl.data.BinaryDiscreteTensorSpec.rst", "reference/generated/torchrl.data.BoundedTensorSpec.rst", "reference/generated/torchrl.data.CompositeSpec.rst", "reference/generated/torchrl.data.DiscreteTensorSpec.rst", "reference/generated/torchrl.data.LazyStackedCompositeSpec.rst", "reference/generated/torchrl.data.LazyStackedTensorSpec.rst", "reference/generated/torchrl.data.MultiDiscreteTensorSpec.rst", "reference/generated/torchrl.data.MultiOneHotDiscreteTensorSpec.rst", "reference/generated/torchrl.data.MultiStep.rst", "reference/generated/torchrl.data.OneHotDiscreteTensorSpec.rst", "reference/generated/torchrl.data.PairwiseDataset.rst", "reference/generated/torchrl.data.PrioritizedReplayBuffer.rst", "reference/generated/torchrl.data.PromptData.rst", "reference/generated/torchrl.data.PromptTensorDictTokenizer.rst", "reference/generated/torchrl.data.ReplayBuffer.rst", "reference/generated/torchrl.data.RewardData.rst", "reference/generated/torchrl.data.RolloutFromModel.rst", "reference/generated/torchrl.data.TensorDictPrioritizedReplayBuffer.rst", "reference/generated/torchrl.data.TensorDictReplayBuffer.rst", "reference/generated/torchrl.data.TensorDictTokenizer.rst", "reference/generated/torchrl.data.TensorSpec.rst", "reference/generated/torchrl.data.TokenizedDatasetLoader.rst", "reference/generated/torchrl.data.UnboundedContinuousTensorSpec.rst", "reference/generated/torchrl.data.UnboundedDiscreteTensorSpec.rst", "reference/generated/torchrl.data.check_no_exclusive_keys.rst", "reference/generated/torchrl.data.consolidate_spec.rst", "reference/generated/torchrl.data.contains_lazy_spec.rst", "reference/generated/torchrl.data.create_infinite_iterator.rst", "reference/generated/torchrl.data.datasets.D4RLExperienceReplay.rst", "reference/generated/torchrl.data.datasets.MinariExperienceReplay.rst", "reference/generated/torchrl.data.datasets.OpenMLExperienceReplay.rst", "reference/generated/torchrl.data.datasets.OpenXExperienceReplay.rst", "reference/generated/torchrl.data.datasets.RobosetExperienceReplay.rst", "reference/generated/torchrl.data.datasets.VD4RLExperienceReplay.rst", "reference/generated/torchrl.data.get_dataloader.rst", "reference/generated/torchrl.data.replay_buffers.ImmutableDatasetWriter.rst", "reference/generated/torchrl.data.replay_buffers.LazyMemmapStorage.rst", "reference/generated/torchrl.data.replay_buffers.LazyTensorStorage.rst", "reference/generated/torchrl.data.replay_buffers.ListStorage.rst", "reference/generated/torchrl.data.replay_buffers.PrioritizedSampler.rst", "reference/generated/torchrl.data.replay_buffers.RandomSampler.rst", "reference/generated/torchrl.data.replay_buffers.ReplayBufferEnsemble.rst", "reference/generated/torchrl.data.replay_buffers.RoundRobinWriter.rst", "reference/generated/torchrl.data.replay_buffers.Sampler.rst", "reference/generated/torchrl.data.replay_buffers.SamplerEnsemble.rst", "reference/generated/torchrl.data.replay_buffers.SamplerWithoutReplacement.rst", "reference/generated/torchrl.data.replay_buffers.SliceSampler.rst", "reference/generated/torchrl.data.replay_buffers.SliceSamplerWithoutReplacement.rst", "reference/generated/torchrl.data.replay_buffers.Storage.rst", "reference/generated/torchrl.data.replay_buffers.StorageEnsemble.rst", "reference/generated/torchrl.data.replay_buffers.TensorDictMaxValueWriter.rst", "reference/generated/torchrl.data.replay_buffers.TensorDictRoundRobinWriter.rst", "reference/generated/torchrl.data.replay_buffers.TensorStorage.rst", "reference/generated/torchrl.data.replay_buffers.Writer.rst", "reference/generated/torchrl.data.replay_buffers.WriterEnsemble.rst", "reference/generated/torchrl.envs.BraxEnv.rst", "reference/generated/torchrl.envs.BraxWrapper.rst", "reference/generated/torchrl.envs.DMControlEnv.rst", "reference/generated/torchrl.envs.DMControlWrapper.rst", "reference/generated/torchrl.envs.EnvBase.rst", "reference/generated/torchrl.envs.EnvCreator.rst", "reference/generated/torchrl.envs.EnvMetaData.rst", "reference/generated/torchrl.envs.GymEnv.rst", "reference/generated/torchrl.envs.GymLikeEnv.rst", "reference/generated/torchrl.envs.GymWrapper.rst", "reference/generated/torchrl.envs.HabitatEnv.rst", "reference/generated/torchrl.envs.IsaacGymEnv.rst", "reference/generated/torchrl.envs.IsaacGymWrapper.rst", "reference/generated/torchrl.envs.JumanjiEnv.rst", "reference/generated/torchrl.envs.JumanjiWrapper.rst", "reference/generated/torchrl.envs.MOGymEnv.rst", "reference/generated/torchrl.envs.MOGymWrapper.rst", "reference/generated/torchrl.envs.MarlGroupMapType.rst", "reference/generated/torchrl.envs.ModelBasedEnvBase.rst", "reference/generated/torchrl.envs.MultiThreadedEnv.rst", "reference/generated/torchrl.envs.MultiThreadedEnvWrapper.rst", "reference/generated/torchrl.envs.OpenMLEnv.rst", "reference/generated/torchrl.envs.ParallelEnv.rst", "reference/generated/torchrl.envs.PettingZooEnv.rst", "reference/generated/torchrl.envs.PettingZooWrapper.rst", "reference/generated/torchrl.envs.RoboHiveEnv.rst", "reference/generated/torchrl.envs.SMACv2Env.rst", "reference/generated/torchrl.envs.SMACv2Wrapper.rst", "reference/generated/torchrl.envs.SerialEnv.rst", "reference/generated/torchrl.envs.VmasEnv.rst", "reference/generated/torchrl.envs.VmasWrapper.rst", "reference/generated/torchrl.envs.check_marl_grouping.rst", "reference/generated/torchrl.envs.gym_backend.rst", "reference/generated/torchrl.envs.model_based.dreamer.DreamerEnv.rst", "reference/generated/torchrl.envs.set_gym_backend.rst", "reference/generated/torchrl.envs.transforms.ActionMask.rst", "reference/generated/torchrl.envs.transforms.BinarizeReward.rst", "reference/generated/torchrl.envs.transforms.BurnInTransform.rst", "reference/generated/torchrl.envs.transforms.CatFrames.rst", "reference/generated/torchrl.envs.transforms.CatTensors.rst", "reference/generated/torchrl.envs.transforms.CenterCrop.rst", "reference/generated/torchrl.envs.transforms.ClipTransform.rst", "reference/generated/torchrl.envs.transforms.Compose.rst", "reference/generated/torchrl.envs.transforms.DTypeCastTransform.rst", "reference/generated/torchrl.envs.transforms.DeviceCastTransform.rst", "reference/generated/torchrl.envs.transforms.DiscreteActionProjection.rst", "reference/generated/torchrl.envs.transforms.DoubleToFloat.rst", "reference/generated/torchrl.envs.transforms.EndOfLifeTransform.rst", "reference/generated/torchrl.envs.transforms.ExcludeTransform.rst", "reference/generated/torchrl.envs.transforms.FiniteTensorDictCheck.rst", "reference/generated/torchrl.envs.transforms.FlattenObservation.rst", "reference/generated/torchrl.envs.transforms.FrameSkipTransform.rst", "reference/generated/torchrl.envs.transforms.GrayScale.rst", "reference/generated/torchrl.envs.transforms.InitTracker.rst", "reference/generated/torchrl.envs.transforms.KLRewardTransform.rst", "reference/generated/torchrl.envs.transforms.NoopResetEnv.rst", "reference/generated/torchrl.envs.transforms.ObservationNorm.rst", "reference/generated/torchrl.envs.transforms.ObservationTransform.rst", "reference/generated/torchrl.envs.transforms.PermuteTransform.rst", "reference/generated/torchrl.envs.transforms.PinMemoryTransform.rst", "reference/generated/torchrl.envs.transforms.R3MTransform.rst", "reference/generated/torchrl.envs.transforms.RandomCropTensorDict.rst", "reference/generated/torchrl.envs.transforms.RenameTransform.rst", "reference/generated/torchrl.envs.transforms.Resize.rst", "reference/generated/torchrl.envs.transforms.Reward2GoTransform.rst", "reference/generated/torchrl.envs.transforms.RewardClipping.rst", "reference/generated/torchrl.envs.transforms.RewardScaling.rst", "reference/generated/torchrl.envs.transforms.RewardSum.rst", "reference/generated/torchrl.envs.transforms.SelectTransform.rst", "reference/generated/torchrl.envs.transforms.SqueezeTransform.rst", "reference/generated/torchrl.envs.transforms.StepCounter.rst", "reference/generated/torchrl.envs.transforms.TargetReturn.rst", "reference/generated/torchrl.envs.transforms.TensorDictPrimer.rst", "reference/generated/torchrl.envs.transforms.TimeMaxPool.rst", "reference/generated/torchrl.envs.transforms.ToTensorImage.rst", "reference/generated/torchrl.envs.transforms.Transform.rst", "reference/generated/torchrl.envs.transforms.TransformedEnv.rst", "reference/generated/torchrl.envs.transforms.UnsqueezeTransform.rst", "reference/generated/torchrl.envs.transforms.VC1Transform.rst", "reference/generated/torchrl.envs.transforms.VIPRewardTransform.rst", "reference/generated/torchrl.envs.transforms.VIPTransform.rst", "reference/generated/torchrl.envs.transforms.VecGymEnvTransform.rst", "reference/generated/torchrl.envs.transforms.VecNorm.rst", "reference/generated/torchrl.envs.transforms.gSDENoise.rst", "reference/generated/torchrl.envs.utils.check_env_specs.rst", "reference/generated/torchrl.envs.utils.exploration_mode.rst", "reference/generated/torchrl.envs.utils.exploration_type.rst", "reference/generated/torchrl.envs.utils.get_available_libraries.rst", "reference/generated/torchrl.envs.utils.make_composite_from_td.rst", "reference/generated/torchrl.envs.utils.set_exploration_mode.rst", "reference/generated/torchrl.envs.utils.set_exploration_type.rst", "reference/generated/torchrl.envs.utils.step_mdp.rst", "reference/generated/torchrl.envs.utils.terminated_or_truncated.rst", "reference/generated/torchrl.modules.CEMPlanner.rst", "reference/generated/torchrl.modules.Conv3dNet.rst", "reference/generated/torchrl.modules.ConvNet.rst", "reference/generated/torchrl.modules.DTActor.rst", "reference/generated/torchrl.modules.DdpgCnnActor.rst", "reference/generated/torchrl.modules.DdpgCnnQNet.rst", "reference/generated/torchrl.modules.DdpgMlpActor.rst", "reference/generated/torchrl.modules.DdpgMlpQNet.rst", "reference/generated/torchrl.modules.DecisionTransformer.rst", "reference/generated/torchrl.modules.Delta.rst", "reference/generated/torchrl.modules.DistributionalDQNnet.rst", "reference/generated/torchrl.modules.DistributionalQValueHook.rst", "reference/generated/torchrl.modules.DreamerActor.rst", "reference/generated/torchrl.modules.DuelingCnnDQNet.rst", "reference/generated/torchrl.modules.GRU.rst", "reference/generated/torchrl.modules.GRUCell.rst", "reference/generated/torchrl.modules.GRUModule.rst", "reference/generated/torchrl.modules.IndependentNormal.rst", "reference/generated/torchrl.modules.LSTM.rst", "reference/generated/torchrl.modules.LSTMCell.rst", "reference/generated/torchrl.modules.LSTMModule.rst", "reference/generated/torchrl.modules.LSTMNet.rst", "reference/generated/torchrl.modules.MLP.rst", "reference/generated/torchrl.modules.MPCPlannerBase.rst", "reference/generated/torchrl.modules.MPPIPlanner.rst", "reference/generated/torchrl.modules.MaskedCategorical.rst", "reference/generated/torchrl.modules.MaskedOneHotCategorical.rst", "reference/generated/torchrl.modules.MultiAgentConvNet.rst", "reference/generated/torchrl.modules.MultiAgentMLP.rst", "reference/generated/torchrl.modules.NoisyLazyLinear.rst", "reference/generated/torchrl.modules.NoisyLinear.rst", "reference/generated/torchrl.modules.NormalParamWrapper.rst", "reference/generated/torchrl.modules.ObsDecoder.rst", "reference/generated/torchrl.modules.ObsEncoder.rst", "reference/generated/torchrl.modules.OneHotCategorical.rst", "reference/generated/torchrl.modules.OnlineDTActor.rst", "reference/generated/torchrl.modules.QMixer.rst", "reference/generated/torchrl.modules.QValueHook.rst", "reference/generated/torchrl.modules.RSSMPosterior.rst", "reference/generated/torchrl.modules.RSSMPrior.rst", "reference/generated/torchrl.modules.Squeeze2dLayer.rst", "reference/generated/torchrl.modules.SqueezeLayer.rst", "reference/generated/torchrl.modules.TanhDelta.rst", "reference/generated/torchrl.modules.TanhNormal.rst", "reference/generated/torchrl.modules.TruncatedNormal.rst", "reference/generated/torchrl.modules.VDNMixer.rst", "reference/generated/torchrl.modules.VmapModule.rst", "reference/generated/torchrl.modules.reset_noise.rst", "reference/generated/torchrl.modules.tensordict_module.Actor.rst", "reference/generated/torchrl.modules.tensordict_module.ActorCriticOperator.rst", "reference/generated/torchrl.modules.tensordict_module.ActorCriticWrapper.rst", "reference/generated/torchrl.modules.tensordict_module.ActorValueOperator.rst", "reference/generated/torchrl.modules.tensordict_module.AdditiveGaussianWrapper.rst", "reference/generated/torchrl.modules.tensordict_module.DecisionTransformerInferenceWrapper.rst", "reference/generated/torchrl.modules.tensordict_module.DistributionalQValueActor.rst", "reference/generated/torchrl.modules.tensordict_module.DistributionalQValueModule.rst", "reference/generated/torchrl.modules.tensordict_module.EGreedyModule.rst", "reference/generated/torchrl.modules.tensordict_module.EGreedyWrapper.rst", "reference/generated/torchrl.modules.tensordict_module.LMHeadActorValueOperator.rst", "reference/generated/torchrl.modules.tensordict_module.OrnsteinUhlenbeckProcessWrapper.rst", "reference/generated/torchrl.modules.tensordict_module.ProbabilisticActor.rst", "reference/generated/torchrl.modules.tensordict_module.QValueActor.rst", "reference/generated/torchrl.modules.tensordict_module.QValueModule.rst", "reference/generated/torchrl.modules.tensordict_module.SafeModule.rst", "reference/generated/torchrl.modules.tensordict_module.SafeProbabilisticModule.rst", "reference/generated/torchrl.modules.tensordict_module.SafeProbabilisticTensorDictSequential.rst", "reference/generated/torchrl.modules.tensordict_module.SafeSequential.rst", "reference/generated/torchrl.modules.tensordict_module.TanhModule.rst", "reference/generated/torchrl.modules.tensordict_module.ValueOperator.rst", "reference/generated/torchrl.modules.tensordict_module.WorldModelWrapper.rst", "reference/generated/torchrl.modules.utils.biased_softplus.rst", "reference/generated/torchrl.modules.utils.inv_softplus.rst", "reference/generated/torchrl.modules.utils.mappings.rst", "reference/generated/torchrl.objectives.A2CLoss.rst", "reference/generated/torchrl.objectives.CQLLoss.rst", "reference/generated/torchrl.objectives.ClipPPOLoss.rst", "reference/generated/torchrl.objectives.DDPGLoss.rst", "reference/generated/torchrl.objectives.DQNLoss.rst", "reference/generated/torchrl.objectives.DTLoss.rst", "reference/generated/torchrl.objectives.DiscreteCQLLoss.rst", "reference/generated/torchrl.objectives.DiscreteSACLoss.rst", "reference/generated/torchrl.objectives.DistributionalDQNLoss.rst", "reference/generated/torchrl.objectives.DreamerActorLoss.rst", "reference/generated/torchrl.objectives.DreamerModelLoss.rst", "reference/generated/torchrl.objectives.DreamerValueLoss.rst", "reference/generated/torchrl.objectives.HardUpdate.rst", "reference/generated/torchrl.objectives.IQLLoss.rst", "reference/generated/torchrl.objectives.KLPENPPOLoss.rst", "reference/generated/torchrl.objectives.LossModule.rst", "reference/generated/torchrl.objectives.OnlineDTLoss.rst", "reference/generated/torchrl.objectives.PPOLoss.rst", "reference/generated/torchrl.objectives.REDQLoss.rst", "reference/generated/torchrl.objectives.ReinforceLoss.rst", "reference/generated/torchrl.objectives.SACLoss.rst", "reference/generated/torchrl.objectives.SoftUpdate.rst", "reference/generated/torchrl.objectives.TD3Loss.rst", "reference/generated/torchrl.objectives.ValueEstimators.rst", "reference/generated/torchrl.objectives.default_value_kwargs.rst", "reference/generated/torchrl.objectives.distance_loss.rst", "reference/generated/torchrl.objectives.hold_out_net.rst", "reference/generated/torchrl.objectives.hold_out_params.rst", "reference/generated/torchrl.objectives.multiagent.QMixerLoss.rst", "reference/generated/torchrl.objectives.next_state_value.rst", "reference/generated/torchrl.objectives.value.GAE.rst", "reference/generated/torchrl.objectives.value.TD0Estimator.rst", "reference/generated/torchrl.objectives.value.TD1Estimator.rst", "reference/generated/torchrl.objectives.value.TDLambdaEstimator.rst", "reference/generated/torchrl.objectives.value.ValueEstimatorBase.rst", "reference/generated/torchrl.objectives.value.functional.generalized_advantage_estimate.rst", "reference/generated/torchrl.objectives.value.functional.reward2go.rst", "reference/generated/torchrl.objectives.value.functional.td0_advantage_estimate.rst", "reference/generated/torchrl.objectives.value.functional.td0_return_estimate.rst", "reference/generated/torchrl.objectives.value.functional.td1_advantage_estimate.rst", "reference/generated/torchrl.objectives.value.functional.td1_return_estimate.rst", "reference/generated/torchrl.objectives.value.functional.td_lambda_advantage_estimate.rst", "reference/generated/torchrl.objectives.value.functional.td_lambda_return_estimate.rst", "reference/generated/torchrl.objectives.value.functional.vec_generalized_advantage_estimate.rst", "reference/generated/torchrl.objectives.value.functional.vec_td1_advantage_estimate.rst", "reference/generated/torchrl.objectives.value.functional.vec_td1_return_estimate.rst", "reference/generated/torchrl.objectives.value.functional.vec_td_lambda_advantage_estimate.rst", "reference/generated/torchrl.objectives.value.functional.vec_td_lambda_return_estimate.rst", "reference/generated/torchrl.record.TensorDictRecorder.rst", "reference/generated/torchrl.record.VideoRecorder.rst", "reference/generated/torchrl.record.loggers.Logger.rst", "reference/generated/torchrl.record.loggers.csv.CSVLogger.rst", "reference/generated/torchrl.record.loggers.generate_exp_name.rst", "reference/generated/torchrl.record.loggers.get_logger.rst", "reference/generated/torchrl.record.loggers.mlflow.MLFlowLogger.rst", "reference/generated/torchrl.record.loggers.tensorboard.TensorboardLogger.rst", "reference/generated/torchrl.record.loggers.wandb.WandbLogger.rst", "reference/generated/torchrl.trainers.BatchSubSampler.rst", "reference/generated/torchrl.trainers.ClearCudaCache.rst", "reference/generated/torchrl.trainers.CountFramesLog.rst", "reference/generated/torchrl.trainers.LogReward.rst", "reference/generated/torchrl.trainers.OptimizerHook.rst", "reference/generated/torchrl.trainers.Recorder.rst", "reference/generated/torchrl.trainers.ReplayBufferTrainer.rst", "reference/generated/torchrl.trainers.RewardNormalizer.rst", "reference/generated/torchrl.trainers.SelectKeys.rst", "reference/generated/torchrl.trainers.Trainer.rst", "reference/generated/torchrl.trainers.TrainerHookBase.rst", "reference/generated/torchrl.trainers.UpdateWeights.rst", "reference/generated/torchrl.trainers.helpers.correct_for_frame_skip.rst", "reference/generated/torchrl.trainers.helpers.get_stats_random_rollout.rst", "reference/generated/torchrl.trainers.helpers.make_collector_offpolicy.rst", "reference/generated/torchrl.trainers.helpers.make_collector_onpolicy.rst", "reference/generated/torchrl.trainers.helpers.make_dqn_loss.rst", "reference/generated/torchrl.trainers.helpers.make_redq_loss.rst", "reference/generated/torchrl.trainers.helpers.make_redq_model.rst", "reference/generated/torchrl.trainers.helpers.make_replay_buffer.rst", "reference/generated/torchrl.trainers.helpers.make_target_updater.rst", "reference/generated/torchrl.trainers.helpers.make_trainer.rst", "reference/generated/torchrl.trainers.helpers.parallel_env_constructor.rst", "reference/generated/torchrl.trainers.helpers.sync_async_collector.rst", "reference/generated/torchrl.trainers.helpers.sync_sync_collector.rst", "reference/generated/torchrl.trainers.helpers.transformed_env_constructor.rst", "reference/generated/tutorials/README.rst", "reference/index.rst", "reference/knowledge_base.rst", "reference/modules.rst", "reference/objectives.rst", "reference/trainers.rst", "reference/utils.rst", "sg_execution_times.rst", "tutorials/coding_ddpg.rst", "tutorials/coding_dqn.rst", "tutorials/coding_ppo.rst", "tutorials/dqn_with_rnn.rst", "tutorials/index.rst", "tutorials/multi_task.rst", "tutorials/multiagent_ppo.rst", "tutorials/pendulum.rst", "tutorials/pretrained_models.rst", "tutorials/rb_tutorial.rst", "tutorials/sg_execution_times.rst", "tutorials/torchrl_demo.rst", "tutorials/torchrl_envs.rst"], "titles": ["TorchRL", "torchrl.collectors package", "torchrl.data package", "torchrl.envs package", "Things to consider when debugging RL", "Working with gym", "Working with habitat-lab", "Working with MuJoCo-based environments", "Common PyTorch errors and solutions", "Useful resources", "Versioning Issues", "implement_for", "DataCollectorBase", "MultiSyncDataCollector", "MultiaSyncDataCollector", "RandomPolicy", "SyncDataCollector", "aSyncDataCollector", "DistributedDataCollector", "DistributedSyncDataCollector", "RPCDataCollector", "RayCollector", "submitit_delayed_launcher", "split_trajectories", "BinaryDiscreteTensorSpec", "BoundedTensorSpec", "CompositeSpec", "DiscreteTensorSpec", "LazyStackedCompositeSpec", "LazyStackedTensorSpec", "MultiDiscreteTensorSpec", "MultiOneHotDiscreteTensorSpec", "MultiStep", "OneHotDiscreteTensorSpec", "PairwiseDataset", "PrioritizedReplayBuffer", "PromptData", "PromptTensorDictTokenizer", "ReplayBuffer", "RewardData", "RolloutFromModel", "TensorDictPrioritizedReplayBuffer", "TensorDictReplayBuffer", "TensorDictTokenizer", "TensorSpec", "TokenizedDatasetLoader", "UnboundedContinuousTensorSpec", "UnboundedDiscreteTensorSpec", "check_no_exclusive_keys", "consolidate_spec", "contains_lazy_spec", "create_infinite_iterator", "D4RLExperienceReplay", "MinariExperienceReplay", "OpenMLExperienceReplay", "OpenXExperienceReplay", "RobosetExperienceReplay", "VD4RLExperienceReplay", "get_dataloader", "ImmutableDatasetWriter", "LazyMemmapStorage", "LazyTensorStorage", "ListStorage", "PrioritizedSampler", "RandomSampler", "ReplayBufferEnsemble", "RoundRobinWriter", "Sampler", "SamplerEnsemble", "SamplerWithoutReplacement", "SliceSampler", "SliceSamplerWithoutReplacement", "Storage", "StorageEnsemble", "TensorDictMaxValueWriter", "TensorDictRoundRobinWriter", "TensorStorage", "Writer", "WriterEnsemble", "BraxEnv", "BraxWrapper", "DMControlEnv", "DMControlWrapper", "EnvBase", "EnvCreator", "EnvMetaData", "GymEnv", "GymLikeEnv", "GymWrapper", "HabitatEnv", "IsaacGymEnv", "IsaacGymWrapper", "JumanjiEnv", "JumanjiWrapper", "MOGymEnv", "MOGymWrapper", "MarlGroupMapType", "ModelBasedEnvBase", "MultiThreadedEnv", "MultiThreadedEnvWrapper", "OpenMLEnv", "ParallelEnv", "PettingZooEnv", "PettingZooWrapper", "RoboHiveEnv", "SMACv2Env", "SMACv2Wrapper", "SerialEnv", "VmasEnv", "VmasWrapper", "check_marl_grouping", "gym_backend", "DreamerEnv", "set_gym_backend", "ActionMask", "BinarizeReward", "BurnInTransform", "CatFrames", "CatTensors", "CenterCrop", "ClipTransform", "Compose", "DTypeCastTransform", "DeviceCastTransform", "DiscreteActionProjection", "DoubleToFloat", "EndOfLifeTransform", "ExcludeTransform", "FiniteTensorDictCheck", "FlattenObservation", "FrameSkipTransform", "GrayScale", "InitTracker", "KLRewardTransform", "NoopResetEnv", "ObservationNorm", "ObservationTransform", "PermuteTransform", "PinMemoryTransform", "R3MTransform", "RandomCropTensorDict", "RenameTransform", "Resize", "Reward2GoTransform", "RewardClipping", "RewardScaling", "RewardSum", "SelectTransform", "SqueezeTransform", "StepCounter", "TargetReturn", "TensorDictPrimer", "TimeMaxPool", "ToTensorImage", "Transform", "TransformedEnv", "UnsqueezeTransform", "VC1Transform", "VIPRewardTransform", "VIPTransform", "VecGymEnvTransform", "VecNorm", "gSDENoise", "check_env_specs", "exploration_mode", "exploration_type", "get_available_libraries", "make_composite_from_td", "set_exploration_mode", "set_exploration_type", "step_mdp", "terminated_or_truncated", "CEMPlanner", "Conv3dNet", "ConvNet", "DTActor", "DdpgCnnActor", "DdpgCnnQNet", "DdpgMlpActor", "DdpgMlpQNet", "DecisionTransformer", "Delta", "DistributionalDQNnet", "DistributionalQValueHook", "DreamerActor", "DuelingCnnDQNet", "GRU", "GRUCell", "GRUModule", "IndependentNormal", "LSTM", "LSTMCell", "LSTMModule", "LSTMNet", "MLP", "MPCPlannerBase", "MPPIPlanner", "MaskedCategorical", "MaskedOneHotCategorical", "MultiAgentConvNet", "MultiAgentMLP", "NoisyLazyLinear", "NoisyLinear", "NormalParamWrapper", "ObsDecoder", "ObsEncoder", "OneHotCategorical", "OnlineDTActor", "QMixer", "QValueHook", "RSSMPosterior", "RSSMPrior", "Squeeze2dLayer", "SqueezeLayer", "TanhDelta", "TanhNormal", "TruncatedNormal", "VDNMixer", "VmapModule", "reset_noise", "Actor", "ActorCriticOperator", "ActorCriticWrapper", "ActorValueOperator", "AdditiveGaussianWrapper", "DecisionTransformerInferenceWrapper", "DistributionalQValueActor", "DistributionalQValueModule", "EGreedyModule", "EGreedyWrapper", "LMHeadActorValueOperator", "OrnsteinUhlenbeckProcessWrapper", "ProbabilisticActor", "QValueActor", "QValueModule", "SafeModule", "SafeProbabilisticModule", "SafeProbabilisticTensorDictSequential", "SafeSequential", "TanhModule", "ValueOperator", "WorldModelWrapper", "biased_softplus", "inv_softplus", "mappings", "A2CLoss", "CQLLoss", "ClipPPOLoss", "DDPGLoss", "DQNLoss", "DTLoss", "DiscreteCQLLoss", "DiscreteSACLoss", "DistributionalDQNLoss", "DreamerActorLoss", "DreamerModelLoss", "DreamerValueLoss", "HardUpdate", "IQLLoss", "KLPENPPOLoss", "LossModule", "OnlineDTLoss", "PPOLoss", "REDQLoss", "ReinforceLoss", "SACLoss", "SoftUpdate", "TD3Loss", "ValueEstimators", "default_value_kwargs", "distance_loss", "hold_out_net", "hold_out_params", "QMixerLoss", "next_state_value", "GAE", "TD0Estimator", "TD1Estimator", "TDLambdaEstimator", "ValueEstimatorBase", "generalized_advantage_estimate", "reward2go", "td0_advantage_estimate", "td0_return_estimate", "td1_advantage_estimate", "td1_return_estimate", "td_lambda_advantage_estimate", "td_lambda_return_estimate", "vec_generalized_advantage_estimate", "vec_td1_advantage_estimate", "vec_td1_return_estimate", "vec_td_lambda_advantage_estimate", "vec_td_lambda_return_estimate", "TensorDictRecorder", "VideoRecorder", "Logger", "CSVLogger", "generate_exp_name", "get_logger", "MLFlowLogger", "TensorboardLogger", "WandbLogger", "BatchSubSampler", "ClearCudaCache", "CountFramesLog", "LogReward", "OptimizerHook", "Recorder", "ReplayBufferTrainer", "RewardNormalizer", "SelectKeys", "Trainer", "TrainerHookBase", "UpdateWeights", "correct_for_frame_skip", "get_stats_random_rollout", "make_collector_offpolicy", "make_collector_onpolicy", "make_dqn_loss", "make_redq_loss", "make_redq_model", "make_replay_buffer", "make_target_updater", "make_trainer", "parallel_env_constructor", "sync_async_collector", "sync_sync_collector", "transformed_env_constructor", "README Tutos", "API Reference", "Knowledge Base", "torchrl.modules package", "torchrl.objectives package", "torchrl.trainers package", "torchrl._utils package", "Computation times", "TorchRL objectives: Coding a DDPG loss", "TorchRL trainer: A DQN example", "Reinforcement Learning (PPO) with TorchRL Tutorial", "Recurrent DQN: Training recurrent policies", "README Tutos", "Task-specific policy in multi-task environments", "Multi-Agent Reinforcement Learning (PPO) with TorchRL Tutorial", "Pendulum: Writing your environment and transforms with TorchRL", "Using pretrained models", "Using Replay Buffers", "Computation times", "Introduction to TorchRL", "TorchRL envs"], "terms": {"an": [0, 1, 2, 3, 5, 8, 9, 10, 13, 14, 16, 17, 18, 19, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 44, 46, 47, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 65, 66, 68, 72, 73, 74, 75, 76, 77, 78, 81, 83, 84, 87, 97, 98, 100, 101, 102, 103, 107, 110, 114, 116, 117, 119, 122, 124, 125, 128, 134, 135, 139, 140, 141, 143, 150, 151, 152, 153, 154, 155, 157, 160, 161, 163, 173, 174, 176, 177, 178, 179, 186, 188, 190, 192, 193, 194, 195, 199, 200, 201, 205, 212, 213, 221, 222, 223, 224, 225, 226, 227, 228, 230, 231, 232, 233, 236, 237, 241, 244, 245, 246, 247, 249, 252, 253, 254, 255, 256, 258, 259, 260, 262, 263, 264, 265, 267, 273, 275, 276, 277, 278, 279, 294, 297, 306, 307, 311, 312, 315, 324, 325, 326, 327, 330, 331, 332, 336, 337, 341, 342, 344, 345, 347, 348], "open": [0, 5, 7, 11, 55, 337, 342, 347], "sourc": [0, 1, 4, 7, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 166, 167, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 347, 348], "reinforc": [0, 3, 9, 117, 176, 177, 178, 179, 183, 227, 231, 245, 246, 250, 251, 253, 257, 258, 264, 265, 266, 329, 335, 337, 340, 343, 346, 347], "learn": [0, 3, 7, 8, 9, 18, 32, 54, 56, 57, 117, 176, 177, 178, 179, 183, 196, 202, 227, 231, 245, 246, 250, 251, 253, 257, 258, 263, 264, 265, 266, 329, 331, 332, 335, 336, 337, 339, 340, 341, 343, 345, 346, 347, 348], "rl": [0, 1, 2, 3, 5, 8, 10, 13, 14, 16, 17, 97, 150, 202, 220, 232, 240, 245, 260, 262, 302, 330, 331, 332, 333, 336, 337, 338, 342, 344, 345, 348], "librari": [0, 1, 2, 5, 6, 7, 8, 9, 10, 18, 19, 20, 37, 43, 91, 98, 166, 329, 330, 331, 334, 336, 337, 338, 342, 343, 348], "pytorch": [0, 1, 2, 3, 53, 153, 186, 190, 201, 202, 311, 330, 333, 336, 338, 339, 342, 343, 344, 347, 348], "It": [0, 2, 3, 4, 7, 32, 37, 40, 41, 43, 45, 52, 53, 55, 56, 57, 65, 68, 78, 83, 87, 89, 97, 98, 101, 102, 103, 107, 116, 126, 133, 135, 140, 150, 155, 160, 163, 176, 178, 184, 199, 200, 208, 210, 211, 217, 218, 227, 228, 231, 234, 236, 245, 246, 247, 252, 253, 254, 255, 256, 258, 259, 260, 262, 263, 264, 265, 266, 267, 273, 274, 275, 307, 320, 330, 331, 332, 336, 337, 339, 342, 343, 344, 345, 347, 348], "provid": [0, 1, 2, 3, 5, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 24, 30, 31, 32, 33, 35, 38, 41, 42, 45, 49, 52, 53, 54, 55, 56, 57, 58, 60, 64, 65, 68, 70, 71, 74, 83, 87, 97, 101, 102, 103, 107, 116, 117, 118, 119, 120, 122, 125, 129, 134, 135, 137, 139, 140, 142, 143, 146, 147, 150, 151, 152, 155, 157, 159, 160, 161, 171, 173, 174, 180, 183, 186, 187, 188, 190, 191, 192, 193, 194, 195, 197, 198, 199, 200, 218, 220, 224, 227, 228, 229, 231, 232, 233, 234, 239, 245, 246, 248, 249, 251, 252, 253, 254, 258, 260, 262, 263, 264, 265, 267, 273, 274, 275, 276, 277, 278, 279, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 294, 298, 302, 308, 315, 320, 323, 330, 331, 332, 333, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "python": [0, 3, 5, 6, 7, 10, 21, 113, 186, 187, 188, 190, 191, 192, 197, 198, 333, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 347, 348], "first": [0, 1, 3, 4, 5, 7, 8, 18, 20, 21, 26, 28, 52, 53, 55, 56, 57, 60, 61, 70, 71, 76, 87, 117, 118, 129, 135, 139, 140, 153, 155, 157, 186, 188, 190, 192, 194, 199, 200, 201, 205, 220, 225, 226, 227, 232, 233, 235, 236, 247, 255, 259, 260, 262, 293, 310, 331, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "low": [0, 25, 83, 87, 101, 107, 120, 124, 167, 227, 232, 239, 336, 337, 338, 342, 343, 347, 348], "high": [0, 9, 25, 41, 83, 87, 101, 107, 120, 124, 134, 167, 227, 232, 239, 275, 280, 288, 336, 337, 338, 342, 343, 345, 347, 348], "level": [0, 3, 4, 22, 26, 28, 117, 149, 259, 336, 337, 347], "abstract": [0, 3, 8, 24, 25, 26, 27, 28, 29, 30, 44, 46, 47, 77, 83, 136, 195, 279, 303, 312, 333, 338, 343, 347], "ar": [0, 1, 2, 3, 7, 8, 9, 10, 13, 14, 16, 17, 18, 19, 20, 21, 23, 28, 29, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 45, 48, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 65, 68, 69, 71, 72, 73, 76, 83, 84, 87, 96, 97, 100, 101, 102, 103, 104, 107, 109, 116, 117, 120, 121, 122, 124, 125, 126, 128, 129, 133, 134, 137, 139, 143, 146, 151, 152, 153, 154, 155, 156, 157, 159, 160, 161, 167, 171, 172, 179, 181, 186, 187, 188, 190, 191, 192, 193, 195, 197, 198, 199, 202, 206, 208, 211, 225, 226, 228, 231, 232, 233, 235, 236, 237, 238, 239, 244, 245, 246, 247, 248, 249, 251, 252, 253, 254, 255, 256, 258, 259, 260, 262, 263, 264, 265, 267, 270, 273, 274, 275, 276, 277, 278, 279, 308, 323, 327, 331, 332, 333, 334, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "intend": [0, 7, 13, 14, 16, 17, 18, 19, 20, 21, 45, 116, 124, 218, 260, 331, 347], "effici": [0, 1, 2, 4, 8, 186, 202, 331, 336, 337, 338, 339, 341, 342, 344, 345, 347], "modular": [0, 238, 345, 347], "document": [0, 5, 7, 18, 19, 21, 32, 55, 83, 87, 101, 107, 155, 337, 339, 347], "properli": [0, 83, 87, 101, 107, 338, 342, 343, 347], "test": [0, 3, 5, 157, 163, 188, 192, 193, 307, 323, 338, 339, 347], "The": [0, 1, 2, 3, 4, 5, 7, 8, 13, 14, 16, 17, 18, 19, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 44, 45, 46, 47, 52, 53, 54, 55, 56, 57, 58, 65, 68, 70, 71, 72, 74, 83, 87, 91, 101, 102, 103, 107, 116, 117, 121, 122, 125, 126, 127, 135, 137, 139, 143, 145, 146, 147, 149, 150, 151, 154, 155, 157, 159, 160, 170, 171, 172, 176, 177, 178, 179, 180, 183, 186, 187, 188, 190, 191, 192, 193, 195, 196, 197, 198, 199, 202, 203, 209, 210, 211, 220, 221, 225, 226, 227, 231, 232, 233, 234, 235, 236, 238, 240, 241, 242, 245, 246, 247, 248, 249, 251, 252, 253, 254, 255, 256, 258, 259, 260, 262, 263, 264, 265, 267, 273, 274, 275, 276, 277, 278, 279, 281, 296, 299, 300, 301, 302, 306, 323, 325, 326, 331, 332, 333, 337, 338, 339, 342, 343, 344, 345, 347, 348], "code": [0, 3, 5, 7, 8, 55, 83, 87, 101, 107, 139, 155, 157, 186, 187, 188, 190, 191, 192, 238, 335, 337, 338, 339, 340, 341, 342, 344, 345, 346, 347, 348], "aim": [0, 3, 7, 28, 29, 139, 157, 159, 194, 314, 330, 331, 332, 336, 337, 347], "support": [0, 1, 3, 18, 20, 26, 54, 57, 58, 60, 61, 72, 73, 76, 78, 98, 100, 102, 117, 126, 135, 151, 152, 154, 166, 183, 218, 226, 227, 232, 235, 238, 253, 275, 276, 277, 278, 299, 331, 333, 338, 339, 342, 343, 345, 347], "research": [0, 7, 9, 347], "most": [0, 3, 7, 8, 32, 70, 71, 124, 160, 336, 338, 343, 347, 348], "written": [0, 3, 34, 36, 39, 45, 52, 55, 60, 65, 70, 71, 83, 87, 101, 107, 117, 126, 133, 146, 149, 152, 160, 170, 171, 220, 231, 232, 235, 236, 240, 245, 247, 259, 262, 264, 274, 293, 294, 331, 332, 333, 336, 339, 341, 343, 347], "highli": [0, 2, 347, 348], "wai": [0, 2, 3, 4, 53, 65, 91, 139, 141, 159, 160, 190, 262, 275, 276, 277, 278, 331, 336, 337, 338, 341, 342, 343, 344, 345, 347, 348], "can": [0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 13, 14, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 44, 45, 46, 47, 52, 53, 55, 56, 57, 63, 65, 69, 70, 71, 83, 84, 87, 91, 96, 101, 102, 103, 105, 106, 107, 109, 113, 114, 116, 117, 120, 121, 122, 124, 125, 126, 134, 135, 139, 140, 143, 146, 149, 150, 151, 154, 155, 157, 159, 161, 171, 172, 186, 188, 189, 190, 192, 195, 196, 199, 200, 202, 203, 216, 218, 220, 224, 226, 227, 228, 229, 232, 233, 234, 235, 236, 237, 238, 239, 244, 245, 246, 247, 248, 249, 251, 252, 253, 254, 255, 256, 258, 259, 260, 262, 263, 264, 265, 267, 273, 274, 275, 276, 277, 278, 279, 307, 320, 325, 326, 327, 330, 331, 332, 333, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "easili": [0, 3, 7, 83, 87, 101, 107, 320, 332, 336, 337, 338, 342, 347, 348], "swap": [0, 3, 160, 338, 344, 347], "compon": [0, 2, 3, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 60, 61, 62, 65, 72, 73, 76, 183, 209, 226, 227, 234, 245, 246, 247, 252, 253, 254, 255, 256, 258, 259, 260, 262, 263, 264, 265, 267, 273, 306, 311, 336, 337, 338, 339, 341, 342, 343, 344, 347], "transform": [0, 1, 2, 4, 8, 13, 14, 16, 18, 19, 20, 21, 32, 35, 37, 38, 40, 41, 42, 43, 52, 53, 54, 55, 56, 57, 65, 73, 83, 84, 87, 101, 102, 103, 107, 109, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 155, 156, 157, 158, 159, 160, 161, 162, 175, 176, 180, 183, 184, 207, 208, 209, 217, 225, 230, 239, 242, 244, 250, 261, 294, 308, 320, 327, 329, 335, 337, 339, 340, 344, 346], "them": [0, 2, 3, 7, 9, 21, 32, 35, 37, 38, 41, 42, 52, 53, 54, 55, 56, 57, 65, 78, 83, 84, 87, 91, 96, 101, 102, 103, 107, 109, 122, 125, 155, 173, 174, 175, 176, 177, 178, 179, 180, 182, 184, 185, 186, 187, 188, 190, 191, 192, 193, 194, 199, 200, 203, 204, 205, 207, 210, 211, 213, 217, 218, 224, 225, 227, 228, 229, 231, 234, 239, 242, 259, 265, 294, 336, 337, 339, 341, 342, 343, 344, 345, 347, 348], "write": [0, 3, 8, 23, 32, 34, 36, 37, 39, 45, 65, 73, 78, 87, 120, 137, 138, 146, 149, 153, 171, 220, 235, 236, 238, 240, 248, 249, 251, 252, 258, 263, 265, 267, 274, 279, 294, 331, 333, 335, 336, 337, 338, 339, 340, 341, 342, 344, 345, 346, 347, 348], "new": [0, 2, 3, 4, 8, 13, 14, 16, 17, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 39, 41, 44, 46, 47, 63, 69, 83, 87, 98, 101, 105, 106, 107, 146, 154, 161, 170, 171, 186, 188, 192, 231, 235, 236, 241, 245, 246, 247, 249, 252, 253, 254, 255, 256, 258, 259, 260, 262, 263, 264, 265, 267, 273, 336, 338, 339, 342, 343, 347, 348], "ones": [0, 2, 15, 26, 32, 35, 41, 42, 83, 87, 101, 107, 118, 121, 122, 123, 125, 135, 139, 143, 151, 154, 155, 157, 159, 197, 198, 218, 235, 245, 246, 248, 258, 262, 263, 265, 267, 281, 336, 338, 342, 343, 345, 347, 348], "littl": [0, 3, 43, 338, 339, 345, 347, 348], "effort": [0, 3, 343, 345, 347], "thi": [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 52, 53, 54, 55, 56, 57, 60, 61, 62, 65, 68, 69, 70, 71, 72, 73, 74, 76, 78, 83, 87, 89, 96, 97, 101, 102, 103, 107, 109, 113, 114, 116, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 130, 132, 133, 135, 139, 140, 141, 143, 146, 147, 149, 151, 152, 154, 155, 157, 158, 159, 160, 161, 163, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 199, 200, 201, 202, 203, 204, 205, 206, 207, 209, 210, 211, 213, 216, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 238, 239, 241, 242, 245, 246, 247, 248, 249, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 273, 275, 276, 277, 278, 279, 293, 302, 304, 307, 308, 311, 313, 314, 315, 320, 323, 327, 330, 331, 332, 333, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "repo": [0, 6, 52, 117, 152, 157, 330, 342, 347], "attempt": [0, 70, 71, 224, 229, 231, 249, 258, 273, 347], "align": [0, 186, 190, 347], "exist": [0, 3, 4, 11, 18, 21, 32, 34, 36, 39, 45, 83, 87, 101, 107, 118, 123, 155, 265, 315, 327, 342, 347, 348], "ecosystem": [0, 347], "ha": [0, 2, 3, 4, 5, 7, 8, 10, 16, 17, 18, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 37, 40, 44, 46, 47, 55, 65, 68, 70, 83, 84, 87, 91, 101, 107, 109, 117, 149, 150, 151, 152, 155, 186, 188, 190, 192, 199, 224, 227, 229, 231, 236, 259, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "dataset": [0, 34, 35, 36, 37, 38, 39, 40, 41, 42, 45, 52, 53, 54, 55, 56, 57, 58, 59, 65, 68, 70, 71, 100, 161, 329, 336, 337, 344, 345, 347, 348], "pillar": [0, 347], "environ": [0, 1, 2, 5, 8, 11, 13, 14, 16, 17, 18, 19, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 44, 46, 47, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 112, 114, 116, 117, 118, 122, 123, 124, 125, 130, 134, 135, 139, 140, 146, 149, 150, 151, 152, 154, 155, 157, 160, 161, 163, 172, 188, 192, 193, 195, 196, 224, 231, 251, 254, 275, 276, 277, 278, 279, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 294, 302, 304, 307, 314, 315, 316, 317, 320, 323, 324, 325, 326, 327, 329, 330, 331, 335, 340, 344, 345, 346], "model": [0, 1, 3, 8, 9, 13, 14, 16, 17, 18, 19, 20, 21, 32, 40, 45, 83, 87, 97, 101, 107, 122, 139, 151, 157, 159, 162, 173, 174, 175, 180, 188, 192, 194, 195, 196, 200, 207, 208, 217, 221, 222, 223, 230, 235, 241, 245, 246, 247, 249, 250, 251, 254, 255, 256, 258, 259, 260, 262, 263, 265, 273, 311, 316, 317, 318, 319, 320, 329, 330, 333, 335, 338, 340, 342, 343, 345, 346, 348], "data": [0, 3, 8, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 83, 85, 87, 97, 100, 101, 102, 103, 107, 114, 116, 117, 122, 123, 125, 127, 133, 135, 143, 149, 160, 163, 167, 171, 172, 183, 188, 192, 193, 196, 199, 200, 209, 218, 220, 226, 228, 229, 231, 232, 233, 235, 238, 239, 240, 245, 246, 248, 249, 251, 252, 258, 262, 263, 264, 265, 267, 273, 275, 276, 277, 278, 279, 302, 308, 311, 313, 316, 323, 325, 326, 327, 329, 331, 332, 333, 339, 343, 344, 345, 348], "util": [0, 3, 17, 23, 32, 40, 83, 87, 101, 102, 103, 107, 110, 139, 159, 163, 164, 165, 166, 167, 168, 169, 170, 171, 173, 174, 180, 186, 190, 242, 243, 244, 260, 323, 329, 334, 336, 338, 342, 343, 347, 348], "e": [0, 1, 3, 7, 8, 10, 11, 13, 14, 16, 17, 18, 19, 20, 21, 26, 28, 32, 33, 60, 61, 76, 83, 84, 87, 101, 107, 116, 118, 121, 129, 135, 139, 146, 151, 154, 155, 157, 159, 163, 186, 188, 189, 190, 192, 196, 200, 203, 209, 215, 216, 225, 227, 232, 234, 235, 236, 265, 274, 275, 276, 277, 278, 302, 314, 326, 331, 336, 337, 338, 342, 344, 347, 348], "g": [0, 1, 3, 7, 8, 10, 11, 32, 33, 83, 84, 87, 101, 107, 116, 118, 121, 129, 135, 139, 146, 151, 154, 155, 157, 159, 163, 186, 188, 189, 190, 191, 192, 196, 200, 215, 216, 225, 232, 235, 236, 265, 274, 284, 285, 286, 287, 289, 290, 291, 292, 326, 331, 336, 337, 338, 342, 343, 344, 347, 348], "collector": [0, 3, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 40, 55, 70, 71, 117, 143, 149, 231, 308, 311, 313, 316, 317, 323, 325, 326, 329, 333, 345, 348], "contain": [0, 3, 7, 12, 13, 14, 16, 17, 19, 20, 26, 28, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 44, 45, 50, 52, 53, 54, 55, 56, 57, 59, 63, 65, 66, 68, 72, 75, 77, 78, 83, 87, 97, 101, 107, 121, 122, 125, 139, 151, 154, 155, 157, 159, 160, 161, 170, 171, 172, 173, 174, 186, 187, 190, 191, 194, 196, 200, 220, 226, 227, 232, 234, 235, 240, 245, 246, 247, 248, 249, 251, 252, 253, 254, 255, 256, 258, 259, 260, 262, 263, 264, 265, 267, 273, 274, 275, 276, 277, 278, 279, 281, 298, 302, 314, 320, 323, 324, 325, 326, 327, 331, 332, 333, 336, 337, 338, 339, 342, 343, 344, 345, 347, 348], "etc": [0, 3, 7, 8, 11, 32, 46, 47, 55, 83, 87, 101, 107, 133, 155, 194, 200, 336, 337, 338, 345, 347, 348], "have": [0, 1, 2, 3, 5, 6, 7, 8, 9, 13, 14, 17, 18, 20, 21, 26, 30, 32, 34, 35, 36, 38, 39, 40, 41, 42, 45, 52, 53, 54, 55, 56, 57, 65, 69, 72, 83, 87, 101, 102, 103, 107, 117, 122, 125, 126, 133, 134, 135, 149, 154, 155, 161, 163, 171, 173, 174, 193, 194, 199, 200, 218, 237, 238, 245, 247, 259, 262, 270, 273, 275, 276, 277, 278, 279, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 302, 311, 331, 332, 333, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "few": [0, 2, 8, 302, 338, 339, 342, 345, 347, 348], "depend": [0, 1, 2, 3, 4, 7, 8, 34, 36, 122, 125, 240, 262, 331, 336, 338, 339, 342, 343, 347, 348], "possibl": [0, 2, 3, 4, 27, 29, 32, 33, 34, 36, 39, 55, 57, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 173, 174, 186, 187, 190, 191, 235, 307, 311, 331, 336, 338, 339, 342, 343, 345, 347, 348], "standard": [0, 3, 135, 145, 161, 172, 184, 196, 201, 202, 224, 225, 267, 275, 276, 277, 278, 336, 337, 342, 345, 347], "numpi": [0, 11, 24, 25, 26, 27, 28, 29, 30, 31, 33, 44, 46, 47, 101, 107, 153, 311, 343, 345, 347, 348], "common": [0, 2, 3, 4, 21, 87, 114, 221, 222, 223, 230, 245, 246, 247, 252, 258, 259, 262, 263, 264, 265, 267, 323, 330, 331, 333, 336, 338, 341, 342, 343, 344, 347, 348], "openai": [0, 7, 86, 88, 104, 338, 343, 347, 348], "gym": [0, 1, 3, 4, 8, 11, 13, 14, 16, 17, 21, 22, 83, 84, 86, 87, 88, 91, 101, 104, 107, 111, 113, 117, 120, 126, 132, 133, 135, 137, 141, 143, 146, 151, 154, 160, 161, 320, 323, 330, 336, 337, 338, 339, 343, 344, 345, 347], "onli": [0, 1, 3, 4, 7, 13, 14, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 38, 41, 44, 46, 47, 52, 60, 61, 70, 71, 76, 83, 87, 91, 98, 101, 102, 103, 107, 117, 118, 120, 121, 122, 124, 125, 129, 135, 139, 140, 143, 149, 150, 151, 152, 154, 155, 157, 159, 161, 190, 192, 193, 199, 200, 220, 225, 226, 232, 233, 235, 236, 237, 238, 245, 247, 248, 252, 258, 259, 260, 262, 263, 264, 265, 266, 267, 275, 276, 277, 278, 279, 315, 333, 336, 337, 338, 339, 341, 342, 343, 345, 347, 348], "option": [0, 1, 3, 4, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 52, 53, 54, 55, 56, 57, 58, 60, 61, 63, 64, 65, 68, 69, 70, 71, 73, 76, 81, 83, 84, 87, 97, 100, 101, 102, 103, 104, 107, 109, 114, 116, 117, 118, 119, 120, 122, 124, 125, 126, 129, 130, 132, 133, 134, 135, 139, 140, 141, 142, 143, 145, 146, 147, 149, 150, 151, 152, 153, 154, 155, 156, 157, 159, 160, 161, 163, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 183, 184, 185, 187, 188, 189, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 209, 210, 211, 214, 215, 216, 218, 220, 224, 225, 226, 227, 228, 229, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 245, 246, 247, 248, 249, 251, 252, 253, 254, 255, 256, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 273, 274, 275, 276, 277, 278, 279, 281, 284, 285, 286, 287, 289, 290, 291, 292, 293, 294, 296, 299, 302, 304, 305, 306, 307, 308, 309, 311, 315, 316, 317, 318, 319, 320, 322, 323, 325, 326, 327, 331, 339, 342, 343, 345, 347], "On": [0, 3, 7, 18, 19, 20, 21, 187, 191, 331, 337, 342], "end": [0, 3, 13, 14, 32, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 65, 69, 70, 71, 83, 87, 101, 107, 126, 137, 149, 150, 155, 173, 174, 186, 187, 190, 191, 195, 265, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "come": [0, 1, 3, 8, 87, 96, 101, 107, 122, 125, 220, 221, 222, 223, 232, 240, 336, 337, 338, 339, 342, 345, 347, 348], "set": [0, 1, 2, 3, 7, 9, 11, 13, 14, 16, 17, 18, 19, 20, 21, 28, 29, 32, 33, 34, 35, 36, 38, 39, 41, 42, 52, 53, 54, 55, 56, 57, 60, 61, 65, 69, 72, 76, 83, 85, 87, 97, 101, 102, 103, 107, 113, 114, 117, 118, 121, 122, 125, 132, 133, 139, 143, 149, 150, 151, 152, 154, 155, 157, 159, 161, 163, 168, 169, 171, 186, 188, 190, 192, 195, 199, 200, 224, 225, 235, 252, 260, 262, 265, 279, 302, 307, 308, 317, 327, 330, 331, 332, 334, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "re": [0, 3, 8, 32, 69, 83, 87, 101, 107, 192, 197, 198, 232, 236, 333, 336, 338, 339, 341, 343, 347, 348], "usabl": [0, 333, 339, 347], "function": [0, 3, 8, 11, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 39, 40, 43, 44, 45, 46, 47, 49, 60, 61, 62, 65, 72, 73, 76, 83, 84, 87, 101, 107, 113, 122, 125, 155, 161, 163, 171, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 184, 185, 186, 187, 188, 190, 191, 192, 193, 194, 197, 198, 199, 200, 203, 204, 205, 206, 207, 210, 211, 213, 216, 218, 221, 222, 223, 224, 225, 227, 228, 229, 231, 232, 234, 235, 236, 238, 239, 240, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 258, 259, 260, 262, 263, 264, 265, 267, 268, 269, 270, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 320, 323, 329, 331, 336, 339, 341, 343, 345, 348], "cost": [0, 2, 27, 55, 336, 337, 342, 343, 345], "return": [0, 2, 3, 7, 8, 11, 13, 14, 16, 17, 18, 19, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 52, 53, 54, 55, 56, 57, 58, 59, 65, 66, 68, 70, 71, 73, 74, 75, 77, 78, 81, 83, 84, 87, 97, 100, 101, 102, 103, 107, 111, 113, 114, 115, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 129, 131, 132, 133, 135, 137, 139, 140, 141, 142, 144, 145, 146, 147, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 164, 165, 166, 170, 171, 172, 175, 176, 177, 178, 179, 181, 183, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 200, 203, 206, 207, 208, 210, 211, 214, 215, 216, 217, 220, 221, 222, 223, 225, 232, 234, 235, 236, 240, 241, 242, 244, 245, 246, 247, 248, 249, 251, 252, 253, 254, 255, 256, 258, 259, 260, 262, 263, 264, 265, 267, 270, 273, 274, 275, 276, 277, 278, 279, 281, 282, 283, 284, 285, 286, 287, 289, 290, 291, 292, 298, 311, 314, 316, 320, 323, 324, 325, 326, 327, 329, 331, 333, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "process": [0, 1, 3, 4, 5, 8, 13, 14, 16, 17, 18, 19, 20, 21, 32, 34, 35, 36, 39, 43, 45, 56, 57, 83, 84, 87, 91, 96, 98, 101, 102, 103, 107, 116, 122, 125, 153, 161, 199, 200, 227, 231, 234, 329, 333, 336, 337, 339, 342, 343, 344, 345, 347, 348], "good": [0, 1, 4, 9, 336, 338, 339, 342, 347, 348], "runtim": [0, 3, 32, 83, 87, 101, 107, 343], "perform": [0, 3, 4, 8, 13, 14, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 40, 44, 45, 46, 47, 83, 87, 101, 107, 110, 122, 125, 134, 155, 172, 173, 174, 175, 176, 177, 178, 179, 180, 182, 184, 185, 186, 187, 188, 190, 191, 192, 193, 194, 195, 196, 199, 200, 203, 204, 205, 207, 210, 211, 213, 218, 224, 225, 227, 228, 229, 231, 234, 239, 242, 255, 262, 265, 307, 311, 332, 336, 337, 338, 339, 341, 342, 343, 348], "To": [0, 2, 3, 4, 6, 7, 8, 9, 18, 19, 20, 32, 35, 38, 40, 41, 42, 52, 53, 54, 55, 56, 57, 70, 71, 73, 78, 83, 87, 96, 101, 102, 103, 105, 106, 107, 149, 161, 221, 222, 223, 231, 252, 260, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 331, 332, 336, 337, 338, 339, 342, 343, 344, 345, 347, 348], "read": [0, 2, 3, 7, 17, 23, 37, 40, 55, 60, 61, 62, 65, 72, 73, 76, 83, 87, 101, 107, 114, 116, 117, 118, 120, 121, 122, 123, 124, 126, 127, 128, 129, 130, 132, 133, 137, 138, 140, 141, 143, 146, 147, 149, 150, 151, 152, 154, 157, 158, 160, 161, 171, 206, 220, 221, 222, 223, 226, 232, 235, 236, 238, 240, 241, 245, 246, 247, 252, 253, 254, 255, 256, 258, 259, 260, 262, 263, 264, 265, 267, 273, 275, 276, 277, 278, 279, 294, 307, 311, 320, 331, 336, 337, 338, 341, 342, 343, 344, 348], "more": [0, 2, 3, 4, 6, 8, 9, 11, 13, 14, 16, 17, 18, 19, 20, 21, 32, 35, 38, 41, 42, 43, 52, 53, 54, 55, 56, 57, 65, 83, 87, 90, 91, 101, 102, 103, 107, 109, 153, 157, 162, 183, 190, 194, 201, 203, 220, 224, 226, 227, 235, 240, 245, 253, 260, 262, 275, 280, 288, 306, 330, 332, 333, 336, 337, 338, 339, 341, 342, 343, 344, 348], "about": [0, 2, 3, 5, 7, 9, 18, 19, 20, 43, 56, 57, 332, 336, 337, 338, 342, 343, 347, 348], "philosophi": [0, 9], "capabl": [0, 1, 7, 9, 333, 336, 341, 344, 348], "beyond": 0, "api": [0, 2, 3, 5, 102, 103, 104, 139, 159, 332, 333, 342, 343, 347, 348], "check": [0, 2, 3, 4, 5, 6, 7, 9, 11, 18, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 44, 46, 47, 48, 50, 70, 83, 84, 87, 97, 101, 107, 110, 117, 118, 128, 133, 140, 153, 163, 188, 192, 220, 226, 227, 232, 233, 234, 235, 236, 331, 332, 337, 338, 339, 341, 342, 343, 344, 345, 348], "paper": [0, 55, 139, 157, 159, 186, 208, 217, 251, 257, 320, 336, 338, 342], "ppo": [0, 4, 8, 232, 236, 247, 259, 262, 329, 331, 335, 336, 337, 340, 346], "pendulum": [0, 3, 13, 14, 16, 17, 21, 22, 83, 84, 86, 87, 88, 98, 101, 107, 117, 120, 121, 127, 132, 133, 135, 141, 143, 149, 151, 152, 154, 155, 161, 188, 192, 323, 331, 335, 337, 338, 340, 346, 347, 348], "your": [0, 2, 3, 7, 8, 10, 18, 32, 83, 87, 91, 96, 101, 102, 103, 107, 161, 327, 330, 331, 332, 335, 337, 338, 339, 340, 342, 345, 346, 347], "introduct": [0, 332, 335, 340, 342, 346, 348], "multi": [0, 7, 9, 28, 29, 32, 83, 87, 101, 105, 106, 107, 186, 188, 190, 192, 193, 194, 199, 200, 273, 275, 276, 277, 278, 329, 335, 336, 337, 338, 339, 340, 343, 346, 347], "agent": [0, 9, 28, 29, 96, 102, 103, 105, 106, 108, 109, 110, 149, 150, 197, 198, 199, 200, 202, 208, 217, 273, 329, 335, 340, 343, 346], "env": [0, 1, 2, 5, 6, 7, 8, 13, 14, 16, 17, 18, 19, 20, 21, 22, 32, 40, 52, 53, 55, 56, 57, 65, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 188, 192, 195, 196, 235, 260, 293, 315, 316, 317, 320, 323, 325, 326, 327, 329, 331, 335, 336, 337, 338, 339, 340, 341, 342, 344, 345, 346], "us": [0, 1, 2, 3, 5, 7, 8, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 52, 53, 54, 55, 56, 57, 58, 63, 64, 65, 70, 71, 76, 81, 83, 84, 87, 97, 100, 101, 102, 103, 104, 105, 106, 107, 113, 114, 116, 117, 118, 119, 121, 122, 123, 124, 125, 126, 127, 132, 133, 135, 139, 140, 141, 143, 146, 147, 149, 150, 151, 152, 153, 154, 155, 157, 159, 161, 163, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 180, 183, 184, 186, 187, 188, 189, 190, 191, 192, 194, 195, 196, 198, 199, 200, 202, 203, 206, 207, 208, 209, 215, 216, 217, 218, 220, 225, 226, 227, 228, 230, 231, 232, 233, 234, 235, 236, 239, 240, 241, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 258, 259, 260, 262, 263, 264, 265, 267, 270, 273, 274, 275, 276, 277, 278, 279, 280, 281, 283, 288, 297, 298, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 315, 316, 317, 321, 323, 327, 330, 331, 332, 333, 334, 335, 336, 337, 338, 340, 341, 342, 343, 346, 348], "pretrain": [0, 335, 340, 346], "recurr": [0, 116, 186, 187, 188, 190, 192, 211, 335, 337, 340, 345, 346], "dqn": [0, 126, 183, 226, 227, 245, 246, 248, 249, 251, 252, 253, 254, 257, 258, 260, 262, 263, 264, 265, 266, 267, 273, 318, 329, 331, 335, 340, 346], "train": [0, 1, 3, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 32, 34, 36, 39, 40, 45, 58, 83, 87, 101, 102, 103, 107, 122, 130, 139, 150, 155, 157, 159, 163, 176, 178, 188, 192, 224, 228, 229, 231, 245, 246, 247, 248, 252, 253, 254, 255, 256, 258, 259, 260, 262, 263, 264, 265, 267, 273, 275, 311, 313, 323, 329, 333, 335, 337, 340, 344, 345, 346, 348], "polici": [0, 1, 2, 3, 8, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 83, 87, 97, 101, 107, 124, 133, 150, 168, 169, 183, 188, 192, 199, 200, 202, 209, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 231, 232, 233, 234, 235, 236, 239, 245, 246, 247, 248, 252, 258, 259, 261, 262, 263, 264, 265, 267, 307, 313, 316, 317, 323, 325, 326, 331, 332, 333, 335, 337, 340, 344, 345, 346, 347, 348], "replai": [0, 8, 13, 14, 16, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 63, 64, 65, 66, 67, 69, 71, 72, 73, 74, 75, 78, 116, 117, 124, 140, 143, 151, 248, 249, 251, 252, 258, 263, 265, 267, 308, 311, 321, 323, 329, 333, 335, 340, 343, 344, 346], "buffer": [0, 1, 3, 4, 8, 13, 14, 16, 32, 34, 35, 36, 38, 39, 41, 42, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 83, 87, 97, 101, 107, 116, 117, 121, 124, 139, 140, 143, 151, 154, 155, 157, 159, 235, 238, 248, 249, 251, 252, 258, 263, 265, 267, 308, 311, 321, 323, 329, 333, 335, 340, 343, 344, 346, 348], "task": [0, 2, 3, 9, 28, 29, 40, 45, 55, 81, 87, 90, 101, 102, 103, 104, 107, 139, 149, 157, 159, 258, 335, 336, 337, 338, 339, 340, 342, 343, 346, 347, 348], "specif": [0, 2, 5, 8, 41, 42, 87, 180, 225, 311, 329, 332, 333, 335, 338, 339, 340, 342, 345, 346], "object": [0, 3, 4, 6, 13, 14, 15, 16, 17, 18, 19, 20, 21, 26, 32, 34, 36, 39, 45, 60, 61, 62, 65, 68, 72, 73, 76, 78, 83, 87, 101, 107, 122, 125, 126, 135, 139, 154, 155, 157, 161, 196, 208, 217, 220, 221, 232, 235, 236, 237, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 294, 315, 316, 317, 322, 323, 327, 329, 331, 333, 335, 337, 338, 339, 340, 342, 343, 345, 346, 348], "ddpg": [0, 176, 177, 178, 179, 248, 257, 266, 329, 331, 335, 337, 340, 346], "loss": [0, 3, 8, 36, 126, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 270, 273, 274, 275, 306, 311, 318, 319, 320, 323, 332, 333, 335, 340, 343, 345, 346, 347], "trainer": [0, 245, 246, 247, 252, 253, 254, 255, 256, 258, 259, 260, 262, 263, 264, 265, 267, 273, 302, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 329, 335, 336, 340, 346], "A": [0, 1, 2, 3, 8, 9, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 45, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 64, 65, 66, 67, 69, 72, 74, 75, 76, 77, 83, 85, 87, 89, 90, 101, 104, 107, 116, 120, 124, 130, 133, 139, 140, 141, 151, 154, 155, 157, 158, 160, 161, 162, 163, 170, 172, 173, 174, 183, 186, 187, 188, 190, 191, 192, 194, 196, 197, 198, 200, 202, 203, 218, 224, 225, 226, 227, 228, 229, 232, 233, 236, 238, 239, 242, 245, 246, 247, 248, 249, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 270, 273, 275, 276, 277, 278, 279, 281, 295, 296, 299, 304, 311, 313, 320, 323, 332, 335, 336, 338, 340, 342, 343, 346, 348], "exampl": [0, 1, 2, 3, 4, 9, 10, 11, 13, 14, 15, 16, 17, 18, 21, 22, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 52, 53, 54, 55, 56, 57, 58, 60, 61, 65, 70, 71, 74, 76, 79, 80, 81, 82, 83, 84, 86, 87, 88, 90, 92, 93, 94, 95, 97, 100, 101, 102, 103, 105, 106, 107, 108, 109, 110, 111, 113, 114, 116, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 132, 133, 135, 137, 139, 141, 142, 143, 146, 149, 150, 151, 152, 153, 154, 155, 157, 159, 161, 167, 170, 171, 172, 173, 174, 175, 180, 183, 186, 187, 188, 190, 191, 192, 193, 194, 196, 199, 200, 203, 206, 207, 208, 209, 217, 218, 220, 221, 222, 223, 225, 226, 227, 228, 229, 231, 232, 233, 234, 235, 238, 239, 240, 245, 246, 248, 249, 251, 252, 253, 254, 258, 260, 262, 263, 264, 265, 267, 268, 269, 273, 275, 276, 277, 278, 281, 302, 303, 304, 305, 306, 308, 309, 310, 313, 320, 323, 331, 332, 333, 335, 336, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348], "packag": [0, 6, 7, 10, 113, 329, 330, 348], "singl": [0, 3, 13, 14, 17, 18, 19, 20, 21, 32, 35, 38, 41, 42, 43, 52, 53, 54, 55, 56, 57, 65, 74, 83, 87, 101, 107, 117, 118, 139, 143, 159, 173, 174, 186, 187, 188, 190, 191, 192, 193, 194, 200, 234, 238, 247, 249, 251, 252, 253, 259, 262, 263, 267, 275, 276, 277, 278, 284, 285, 286, 287, 289, 290, 291, 292, 320, 327, 329, 336, 337, 338, 339, 341, 342, 343, 344, 345], "node": [0, 2, 18, 19, 20, 21, 22, 57, 320, 329], "distribut": [0, 2, 3, 4, 9, 10, 18, 19, 20, 21, 22, 102, 103, 133, 135, 172, 181, 182, 183, 184, 189, 196, 197, 198, 203, 206, 207, 210, 211, 214, 215, 216, 224, 225, 226, 227, 232, 236, 237, 245, 246, 247, 252, 253, 258, 259, 262, 263, 264, 265, 267, 329, 333, 337, 338, 342, 343, 347, 348], "helper": [0, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 329, 336, 337, 339, 343], "compos": [0, 3, 32, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 64, 65, 66, 67, 74, 75, 83, 87, 101, 107, 117, 142, 154, 155, 161, 230, 255, 265, 320, 329, 336, 337, 338, 339, 341, 342, 345, 347, 348], "tensorspec": [0, 3, 15, 24, 25, 26, 27, 28, 29, 30, 31, 33, 46, 47, 48, 49, 50, 83, 87, 97, 101, 107, 109, 115, 117, 118, 119, 120, 121, 122, 123, 124, 126, 127, 129, 131, 132, 133, 135, 137, 141, 142, 144, 145, 146, 147, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 160, 171, 211, 220, 224, 225, 226, 227, 228, 229, 231, 232, 233, 234, 235, 236, 237, 239, 246, 249, 252, 263, 265, 267, 273, 329, 343], "from": [0, 1, 3, 4, 5, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 65, 68, 69, 70, 71, 72, 73, 74, 76, 83, 84, 87, 96, 97, 101, 102, 103, 105, 106, 107, 109, 110, 113, 114, 116, 117, 118, 120, 122, 123, 124, 125, 126, 127, 132, 133, 135, 137, 139, 140, 141, 142, 143, 146, 147, 149, 150, 151, 152, 153, 154, 155, 156, 157, 159, 160, 161, 167, 170, 171, 172, 176, 177, 178, 179, 180, 183, 186, 187, 188, 189, 190, 191, 192, 194, 195, 196, 198, 199, 200, 201, 203, 206, 207, 208, 209, 215, 216, 217, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 245, 246, 247, 248, 249, 251, 252, 253, 254, 258, 259, 260, 262, 263, 264, 265, 267, 269, 273, 274, 275, 276, 277, 278, 281, 293, 294, 302, 308, 311, 314, 315, 320, 321, 323, 324, 327, 329, 330, 331, 332, 333, 335, 336, 337, 338, 339, 341, 342, 343, 344, 345, 346, 347, 348], "human": [0, 53, 329, 343], "feedback": [0, 329, 347], "rlhf": [0, 40, 45, 58, 133, 329, 331], "envbas": [0, 3, 13, 14, 16, 17, 18, 19, 20, 21, 84, 87, 101, 107, 114, 122, 125, 134, 141, 154, 155, 161, 163, 172, 195, 196, 307, 315, 316, 317, 320, 323, 325, 326, 327, 329], "gymlikeenv": [0, 329], "envmetadata": [0, 329], "vector": [0, 1, 8, 24, 27, 33, 96, 102, 103, 109, 124, 160, 176, 178, 186, 187, 190, 191, 194, 275, 278, 288, 289, 290, 291, 292, 329, 336, 337, 339, 341, 342, 343, 344, 348], "mask": [0, 1, 4, 23, 27, 30, 31, 33, 102, 103, 114, 140, 183, 197, 198, 209, 225, 226, 227, 228, 229, 233, 234, 308, 329, 337, 339, 348], "action": [0, 2, 8, 9, 13, 14, 15, 16, 17, 21, 27, 33, 40, 44, 53, 55, 56, 57, 80, 83, 87, 93, 96, 97, 101, 102, 103, 105, 106, 107, 108, 109, 114, 120, 122, 124, 125, 126, 127, 130, 133, 134, 137, 141, 143, 147, 149, 155, 160, 167, 170, 172, 175, 176, 177, 178, 179, 180, 182, 183, 184, 188, 192, 194, 195, 196, 197, 198, 199, 207, 208, 209, 211, 214, 215, 217, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 231, 232, 233, 234, 236, 239, 240, 245, 246, 248, 249, 251, 252, 258, 260, 262, 263, 264, 265, 267, 273, 275, 276, 277, 278, 279, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 320, 323, 327, 329, 331, 332, 333, 336, 337, 338, 341, 342, 344, 345, 347, 348], "record": [0, 32, 83, 87, 101, 107, 133, 262, 293, 294, 295, 296, 297, 298, 299, 300, 301, 323, 329, 337, 338], "domain": [0, 2, 8, 24, 25, 26, 27, 28, 29, 30, 31, 33, 44, 46, 47, 83, 87, 101, 107, 124, 151, 167, 220, 226, 227, 232, 233, 234, 235, 236, 237, 238, 329, 338, 339, 342, 343, 347, 348], "modul": [0, 2, 3, 4, 8, 11, 32, 40, 74, 83, 87, 96, 97, 101, 107, 113, 116, 121, 124, 126, 133, 139, 140, 150, 151, 154, 155, 157, 159, 161, 162, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 251, 252, 253, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 271, 273, 275, 276, 277, 278, 279, 311, 318, 319, 323, 329, 332, 333, 337, 338, 341, 342, 343, 344, 345], "tensordict": [0, 1, 2, 3, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 52, 53, 54, 55, 56, 57, 60, 61, 63, 65, 68, 70, 71, 74, 75, 76, 80, 83, 84, 85, 87, 93, 96, 97, 100, 101, 102, 103, 105, 106, 107, 108, 109, 114, 116, 117, 118, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 135, 137, 138, 139, 140, 141, 143, 146, 147, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 167, 170, 171, 172, 182, 183, 188, 192, 193, 195, 196, 208, 209, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 258, 259, 260, 261, 262, 263, 264, 265, 267, 273, 274, 275, 276, 277, 278, 279, 293, 302, 306, 307, 308, 310, 311, 320, 329, 332, 333, 336, 337, 338, 339, 341, 342, 343, 344, 348], "actor": [0, 3, 4, 15, 21, 133, 172, 175, 176, 178, 183, 184, 196, 207, 209, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 258, 259, 260, 261, 262, 263, 264, 265, 267, 268, 273, 320, 329, 332, 337, 338, 339, 342, 344, 347], "explor": [0, 1, 162, 202, 220, 224, 226, 227, 228, 229, 231, 232, 233, 234, 235, 236, 245, 307, 316, 317, 323, 329, 338, 339, 342, 343], "valu": [0, 1, 3, 8, 11, 13, 14, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 41, 42, 44, 45, 46, 47, 52, 55, 58, 70, 71, 83, 87, 96, 101, 107, 113, 115, 117, 118, 120, 122, 124, 125, 126, 134, 135, 139, 140, 142, 143, 144, 146, 151, 152, 154, 155, 159, 161, 167, 171, 176, 177, 178, 179, 181, 183, 184, 185, 188, 189, 192, 194, 196, 197, 198, 199, 200, 201, 202, 203, 206, 208, 209, 214, 215, 216, 217, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 239, 240, 242, 243, 244, 245, 246, 247, 248, 249, 251, 252, 253, 254, 255, 256, 258, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 270, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 294, 302, 304, 305, 306, 307, 308, 311, 320, 323, 329, 333, 337, 341, 342, 343, 345, 347, 348], "gener": [0, 1, 2, 3, 7, 8, 9, 16, 35, 38, 40, 67, 69, 83, 84, 87, 97, 101, 102, 103, 105, 106, 107, 121, 122, 123, 127, 133, 135, 141, 146, 147, 149, 154, 160, 171, 181, 197, 198, 206, 220, 232, 236, 240, 241, 263, 269, 275, 280, 288, 297, 311, 329, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 347, 348], "hook": [0, 32, 83, 87, 101, 107, 173, 174, 175, 176, 177, 178, 179, 180, 182, 183, 184, 185, 186, 187, 188, 190, 191, 192, 193, 194, 199, 200, 203, 204, 205, 207, 209, 210, 211, 213, 218, 224, 225, 227, 228, 229, 231, 234, 239, 242, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 329], "planner": [0, 172, 196, 329], "sac": [0, 252, 263, 265, 329], "redq": [0, 263, 319, 320, 329], "iql": [0, 258, 329, 342], "cql": [0, 246, 251, 329], "dt": [0, 231, 329, 343], "td3": [0, 267, 329], "a2c": [0, 245, 329], "dreamer": [0, 112, 184, 254, 255, 256, 329, 331], "checkpoint": [0, 329, 344], "builder": [0, 329, 337, 348], "logger": [0, 294, 296, 297, 298, 299, 300, 301, 305, 311, 323, 327, 329, 337], "_util": [0, 3, 11, 329], "implement_for": [0, 3, 329], "contribut": 0, "thing": [0, 3, 7, 8, 330, 338, 339, 342, 345, 348], "consid": [0, 1, 3, 8, 20, 32, 34, 36, 39, 60, 61, 76, 83, 87, 101, 107, 124, 161, 181, 199, 214, 330, 336, 343, 345], "when": [0, 1, 2, 3, 5, 8, 13, 14, 16, 17, 18, 19, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 38, 41, 42, 44, 45, 46, 47, 52, 53, 54, 55, 56, 57, 60, 61, 62, 64, 65, 69, 72, 73, 76, 83, 84, 87, 96, 98, 100, 101, 102, 103, 107, 114, 116, 117, 121, 122, 124, 125, 133, 134, 135, 139, 140, 146, 151, 154, 155, 157, 159, 160, 161, 168, 169, 172, 183, 186, 187, 190, 191, 194, 195, 196, 197, 198, 201, 209, 215, 232, 235, 236, 238, 242, 247, 249, 253, 259, 262, 265, 268, 273, 274, 275, 276, 277, 278, 293, 294, 308, 327, 330, 331, 333, 336, 337, 338, 339, 342, 343, 344, 345, 348], "debug": [0, 6, 8, 40, 330, 348], "work": [0, 2, 3, 4, 8, 11, 32, 34, 36, 38, 39, 68, 70, 71, 73, 78, 83, 87, 91, 101, 107, 118, 133, 139, 157, 160, 161, 173, 174, 194, 227, 234, 239, 247, 259, 262, 311, 330, 331, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "habitat": [0, 3, 89, 330, 344], "lab": [0, 3, 81, 82, 330], "mujoco": [0, 6, 8, 104, 330, 338, 339], "error": [0, 1, 3, 7, 10, 11, 29, 32, 83, 87, 101, 107, 110, 140, 163, 330, 336, 338, 342, 348], "solut": [0, 3, 6, 7, 9, 21, 330, 331, 333, 347], "resourc": [0, 1, 21, 330, 336, 338, 342], "version": [0, 1, 3, 6, 11, 32, 34, 36, 40, 57, 70, 83, 87, 101, 102, 107, 109, 160, 223, 260, 265, 275, 278, 330, 331, 336, 338, 339, 342, 343, 344, 348], "issu": [0, 4, 5, 8, 53, 60, 61, 76, 91, 117, 140, 152, 220, 226, 227, 232, 233, 234, 235, 236, 330, 347], "index": [0, 3, 7, 8, 10, 16, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 44, 45, 46, 47, 52, 53, 54, 55, 56, 57, 59, 60, 61, 63, 65, 66, 68, 73, 74, 75, 76, 77, 78, 83, 87, 101, 107, 109, 117, 124, 170, 197, 198, 341, 342, 345, 347], "search": [0, 171, 337], "page": [0, 7], "somewhat": [1, 332, 348], "equival": [1, 3, 17, 24, 27, 30, 31, 32, 33, 34, 36, 39, 45, 52, 53, 55, 56, 57, 58, 83, 87, 101, 107, 123, 126, 155, 183, 190, 209, 226, 227, 233, 234, 262, 308, 347, 348], "dataload": [1, 58, 69, 71, 337, 338, 345], "except": [1, 2, 3, 13, 14, 16, 18, 19, 20, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 39, 44, 46, 47, 55, 83, 87, 101, 107, 117, 128, 143, 150, 151, 152, 186, 188, 190, 192, 206, 224, 228, 229, 231, 331, 337, 345, 347, 348], "1": [1, 2, 3, 4, 8, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 44, 45, 46, 47, 52, 53, 54, 55, 56, 57, 58, 65, 70, 71, 74, 80, 83, 84, 87, 93, 96, 97, 100, 101, 102, 103, 105, 106, 107, 108, 109, 114, 115, 116, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 130, 133, 135, 137, 139, 140, 141, 143, 146, 147, 149, 150, 151, 152, 153, 154, 155, 157, 159, 161, 167, 170, 172, 173, 174, 175, 176, 177, 179, 180, 183, 185, 186, 187, 188, 189, 190, 191, 192, 194, 196, 197, 198, 199, 200, 201, 202, 203, 206, 207, 208, 210, 211, 213, 214, 215, 216, 217, 220, 221, 222, 223, 224, 225, 227, 228, 229, 231, 232, 233, 234, 235, 238, 239, 240, 242, 245, 246, 247, 248, 249, 251, 252, 255, 258, 259, 261, 262, 263, 264, 265, 266, 267, 273, 274, 275, 276, 277, 278, 281, 283, 284, 285, 289, 290, 292, 302, 307, 308, 309, 320, 323, 327, 330, 331, 332, 333, 335, 336, 337, 338, 339, 341, 342, 343, 344, 345, 346, 347, 348], "thei": [1, 2, 3, 4, 8, 9, 18, 19, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 44, 46, 47, 55, 83, 87, 96, 101, 102, 103, 107, 109, 116, 128, 133, 139, 147, 154, 155, 159, 192, 193, 245, 246, 247, 252, 253, 254, 255, 256, 258, 259, 260, 262, 263, 264, 265, 267, 273, 308, 311, 331, 332, 333, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "collect": [1, 2, 3, 4, 8, 13, 14, 16, 17, 18, 19, 20, 21, 22, 32, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 65, 69, 101, 104, 107, 117, 135, 139, 159, 163, 231, 246, 248, 251, 252, 263, 265, 267, 302, 308, 311, 313, 314, 315, 323, 333, 336, 339, 342, 343, 344, 345, 347, 348], "over": [1, 2, 3, 4, 8, 13, 14, 16, 17, 18, 19, 20, 21, 32, 38, 42, 43, 45, 51, 55, 69, 74, 83, 87, 101, 107, 124, 135, 146, 152, 170, 218, 238, 253, 255, 260, 281, 314, 333, 336, 337, 338, 342, 343, 348], "non": [1, 3, 8, 21, 32, 34, 35, 36, 38, 39, 41, 42, 55, 83, 87, 101, 102, 103, 107, 115, 121, 129, 139, 151, 154, 155, 156, 157, 159, 170, 186, 188, 190, 192, 199, 235, 236, 245, 246, 248, 249, 251, 252, 253, 254, 255, 258, 260, 262, 263, 264, 265, 267, 273, 275, 276, 277, 278, 331, 336, 339, 342, 343, 345, 348], "static": [1, 11, 40, 45, 70, 71, 161, 258, 343, 345], "2": [1, 2, 3, 8, 9, 10, 11, 13, 14, 16, 21, 22, 26, 28, 30, 31, 32, 35, 36, 37, 38, 41, 42, 43, 45, 55, 56, 58, 65, 70, 71, 83, 84, 87, 96, 100, 101, 102, 103, 105, 106, 107, 108, 109, 116, 118, 121, 122, 123, 124, 125, 133, 135, 137, 139, 143, 146, 149, 150, 151, 154, 155, 157, 159, 161, 167, 171, 173, 174, 175, 176, 177, 178, 180, 183, 185, 186, 187, 188, 190, 191, 192, 193, 194, 197, 198, 199, 200, 203, 207, 218, 225, 226, 227, 228, 229, 231, 235, 239, 240, 245, 246, 247, 248, 252, 258, 259, 262, 263, 264, 265, 267, 274, 275, 276, 277, 278, 280, 281, 284, 285, 286, 287, 288, 289, 290, 291, 292, 294, 302, 331, 332, 335, 336, 337, 338, 339, 341, 342, 343, 345, 346, 347, 348], "like": [1, 2, 3, 4, 7, 21, 26, 28, 32, 35, 38, 41, 42, 45, 65, 71, 83, 87, 89, 96, 101, 102, 103, 107, 126, 153, 163, 186, 190, 200, 230, 263, 332, 336, 338, 339, 342, 343, 344, 345, 348], "being": [1, 2, 3, 7, 8, 17, 18, 20, 21, 32, 58, 83, 87, 101, 107, 116, 122, 124, 125, 134, 141, 155, 168, 169, 188, 192, 228, 231, 247, 259, 262, 265, 294, 308, 313, 325, 326, 327, 331, 336, 337, 338, 339, 342, 343, 345], "s": [1, 2, 3, 6, 7, 8, 32, 34, 35, 36, 38, 39, 41, 42, 52, 53, 54, 55, 56, 57, 65, 70, 71, 83, 87, 91, 98, 101, 102, 103, 107, 117, 121, 139, 149, 151, 153, 154, 155, 157, 159, 161, 163, 173, 174, 188, 192, 198, 199, 200, 202, 208, 217, 221, 223, 224, 227, 228, 232, 235, 236, 239, 246, 258, 260, 265, 275, 276, 277, 278, 279, 320, 331, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "accept": [1, 13, 14, 16, 17, 18, 19, 20, 21, 32, 38, 53, 56, 57, 58, 83, 87, 97, 101, 107, 117, 121, 129, 139, 146, 151, 154, 155, 156, 157, 159, 218, 235, 236, 237, 265, 333, 338, 348], "two": [1, 2, 3, 4, 8, 10, 32, 40, 55, 65, 69, 71, 83, 87, 101, 107, 135, 139, 159, 179, 186, 188, 190, 192, 212, 236, 259, 270, 307, 311, 320, 332, 336, 337, 338, 339, 341, 342, 343, 345, 347, 348], "main": [1, 2, 3, 5, 20, 22, 57, 84, 236, 311, 331, 332, 336, 337, 341, 348], "argument": [1, 3, 13, 14, 16, 17, 18, 19, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 41, 42, 44, 46, 47, 53, 55, 56, 57, 58, 65, 68, 69, 70, 71, 73, 83, 87, 98, 101, 102, 107, 120, 121, 139, 147, 149, 151, 153, 154, 155, 157, 159, 170, 173, 174, 186, 188, 190, 192, 194, 197, 198, 199, 200, 201, 218, 220, 224, 225, 226, 227, 228, 229, 231, 232, 233, 234, 235, 236, 237, 239, 240, 245, 246, 247, 248, 249, 250, 251, 252, 257, 258, 259, 261, 262, 263, 264, 265, 267, 269, 273, 275, 276, 277, 278, 279, 283, 293, 304, 314, 320, 323, 324, 327, 336, 337, 338, 339, 342, 343, 345, 348], "list": [1, 6, 7, 8, 9, 13, 14, 18, 19, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 38, 41, 42, 44, 45, 46, 47, 49, 52, 53, 54, 55, 56, 57, 62, 65, 68, 69, 70, 71, 72, 73, 83, 87, 97, 101, 102, 103, 107, 109, 110, 116, 120, 122, 125, 133, 135, 137, 139, 146, 153, 155, 157, 159, 161, 170, 182, 188, 192, 194, 197, 198, 204, 209, 227, 233, 234, 236, 238, 239, 240, 260, 265, 272, 275, 278, 293, 307, 308, 325, 326, 331, 336, 338, 341, 343, 344, 345, 347, 348], "constructor": [1, 16, 18, 19, 20, 21, 38, 45, 55, 154, 245, 246, 248, 249, 251, 252, 253, 254, 258, 260, 262, 263, 264, 265, 267, 273, 275, 276, 277, 278, 279, 320, 324, 327, 331, 336, 337, 338, 342, 345], "iter": [1, 11, 13, 14, 16, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 41, 42, 44, 46, 47, 51, 52, 53, 54, 55, 56, 57, 58, 65, 69, 83, 87, 101, 107, 127, 135, 147, 173, 174, 194, 199, 200, 213, 220, 226, 232, 233, 235, 237, 238, 240, 260, 272, 307, 310, 311, 320, 332, 333, 336, 338, 339, 342, 343], "execut": [1, 3, 6, 7, 8, 13, 14, 16, 18, 19, 20, 21, 32, 35, 37, 38, 41, 42, 52, 53, 54, 55, 56, 57, 65, 83, 84, 87, 91, 97, 98, 101, 107, 114, 155, 186, 188, 190, 192, 228, 237, 238, 315, 327, 331, 333, 335, 337, 338, 339, 342, 345, 346, 348], "step": [1, 2, 3, 4, 8, 13, 14, 16, 17, 18, 19, 20, 21, 32, 40, 80, 83, 84, 87, 93, 97, 101, 102, 103, 107, 114, 116, 129, 132, 135, 149, 150, 151, 152, 155, 160, 170, 171, 172, 184, 186, 188, 190, 192, 193, 195, 196, 224, 228, 229, 231, 232, 236, 245, 254, 262, 274, 275, 276, 277, 278, 281, 282, 283, 293, 302, 307, 311, 333, 336, 337, 339, 341, 343, 344, 345, 347], "queri": [1, 3, 13, 14, 16, 17, 32, 34, 36, 39, 83, 87, 101, 107, 139, 154, 157, 161, 238, 336, 343, 347], "defin": [1, 2, 11, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 44, 46, 47, 55, 83, 87, 101, 107, 140, 150, 173, 174, 175, 176, 177, 178, 179, 180, 182, 184, 185, 186, 187, 188, 190, 191, 192, 193, 194, 199, 200, 203, 204, 205, 207, 210, 211, 213, 218, 224, 225, 227, 228, 229, 231, 234, 239, 242, 249, 251, 260, 275, 276, 277, 278, 279, 293, 324, 336, 337, 339, 343, 345, 348], "number": [1, 2, 3, 8, 13, 14, 16, 17, 18, 19, 20, 21, 22, 25, 27, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 45, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 68, 70, 71, 76, 83, 87, 97, 98, 100, 101, 102, 103, 107, 116, 117, 124, 130, 134, 135, 145, 149, 152, 161, 172, 173, 174, 181, 182, 184, 185, 186, 187, 188, 189, 190, 191, 192, 194, 196, 199, 200, 203, 204, 205, 208, 210, 211, 214, 215, 216, 217, 220, 224, 225, 228, 229, 231, 232, 235, 236, 240, 244, 246, 252, 254, 258, 259, 261, 263, 265, 267, 302, 304, 307, 311, 313, 314, 315, 325, 326, 327, 331, 336, 337, 338, 339, 342, 343, 344, 348], "befor": [1, 2, 3, 4, 6, 7, 10, 13, 14, 16, 17, 18, 19, 20, 21, 32, 40, 45, 54, 69, 83, 87, 101, 107, 115, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 129, 131, 132, 133, 134, 135, 137, 141, 142, 144, 145, 146, 147, 149, 150, 151, 152, 153, 154, 156, 157, 158, 160, 186, 188, 192, 194, 201, 202, 245, 246, 247, 252, 253, 254, 255, 256, 258, 259, 260, 262, 263, 264, 265, 267, 273, 276, 277, 278, 308, 336, 338, 339, 342, 343, 345, 348], "deliv": [1, 16, 18, 19, 20, 55, 336, 337, 347], "stack": [1, 2, 3, 7, 8, 18, 20, 21, 28, 29, 50, 65, 83, 87, 96, 101, 102, 103, 107, 161, 186, 188, 190, 191, 192, 237, 238, 293, 302, 331, 337, 341, 343, 347], "user": [1, 2, 3, 5, 8, 21, 32, 52, 53, 55, 56, 57, 71, 83, 87, 101, 107, 150, 155, 180, 193, 262, 265, 324, 332, 333, 336, 337, 343, 347, 348], "reset": [1, 3, 8, 11, 13, 14, 16, 17, 18, 19, 20, 21, 32, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 65, 71, 80, 83, 84, 87, 93, 96, 97, 98, 100, 101, 102, 103, 107, 117, 126, 129, 132, 134, 139, 146, 149, 150, 151, 152, 154, 157, 160, 161, 163, 171, 186, 188, 192, 219, 231, 293, 320, 336, 337, 338, 339, 341, 342, 347], "whenev": [1, 2, 3, 32, 35, 38, 41, 42, 55, 113, 132, 155, 160, 260, 275, 276, 277, 278, 313, 331], "reach": [1, 13, 14, 16, 17, 18, 19, 20, 21, 22, 40, 69, 83, 87, 101, 107, 149, 224, 228, 229, 231, 336, 338, 342, 347, 348], "done": [1, 2, 3, 4, 7, 8, 13, 14, 16, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 40, 44, 46, 47, 52, 53, 55, 56, 57, 65, 70, 71, 80, 83, 84, 87, 93, 96, 97, 100, 101, 102, 103, 105, 106, 107, 108, 109, 114, 117, 122, 123, 125, 126, 127, 134, 135, 137, 141, 143, 145, 147, 149, 151, 152, 154, 155, 161, 170, 171, 172, 186, 188, 192, 196, 245, 246, 248, 249, 251, 252, 258, 262, 263, 264, 265, 267, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 320, 332, 336, 338, 339, 341, 342, 343, 344, 345, 347, 348], "state": [1, 2, 3, 4, 13, 14, 16, 17, 32, 35, 38, 40, 41, 42, 52, 53, 54, 55, 56, 57, 65, 80, 83, 87, 93, 97, 101, 102, 103, 105, 106, 107, 116, 117, 118, 120, 126, 135, 141, 149, 150, 154, 155, 161, 170, 171, 172, 175, 180, 184, 186, 187, 188, 190, 191, 192, 193, 194, 196, 204, 207, 208, 210, 211, 217, 221, 235, 241, 245, 247, 251, 259, 260, 262, 263, 264, 265, 273, 274, 275, 276, 277, 278, 279, 327, 331, 332, 336, 337, 338, 339, 342, 343, 348], "after": [1, 2, 3, 8, 13, 14, 18, 20, 21, 26, 32, 40, 65, 83, 87, 91, 101, 107, 114, 115, 117, 118, 119, 120, 121, 122, 123, 124, 126, 127, 129, 131, 132, 133, 134, 135, 137, 141, 142, 144, 145, 146, 147, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 160, 170, 186, 188, 192, 201, 224, 226, 228, 229, 233, 255, 265, 337, 338, 339, 342, 343, 344, 345, 348], "predefin": [1, 337, 338, 339, 345], "becaus": [1, 3, 4, 7, 34, 36, 39, 40, 83, 87, 101, 107, 126, 133, 149, 154, 160, 179, 193, 200, 220, 226, 227, 232, 233, 234, 235, 236, 336, 337, 339, 341, 342, 343, 345, 348], "potenti": [1, 2, 343, 345], "comput": [1, 3, 4, 8, 13, 16, 21, 27, 32, 40, 83, 87, 101, 107, 135, 155, 158, 171, 173, 174, 175, 176, 177, 178, 179, 180, 182, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 198, 199, 200, 203, 204, 205, 206, 207, 210, 211, 213, 215, 216, 218, 221, 224, 225, 227, 228, 229, 231, 232, 234, 236, 239, 242, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 258, 259, 260, 261, 262, 263, 264, 265, 267, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 281, 315, 332, 336, 338, 339, 341, 342, 344, 345], "heavi": [1, 8, 345], "crucial": [1, 224, 228, 229, 231, 258, 260, 336, 337, 338, 339, 342, 343, 348], "configur": [1, 8, 13, 14, 16, 17, 21, 22, 40, 133, 175, 180, 207, 260, 262, 320, 331, 336, 337, 338, 342, 343], "hyperparamet": [1, 68, 245, 246, 248, 249, 251, 252, 253, 254, 258, 260, 262, 263, 264, 265, 267, 273, 336, 343, 345], "appropri": [1, 3, 4, 7, 13, 14, 16, 17, 59, 66, 74, 75, 77, 78, 101, 107, 126, 324, 327, 336, 345], "paramet": [1, 8, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 68, 69, 72, 73, 76, 78, 81, 82, 83, 84, 87, 97, 98, 100, 101, 102, 103, 104, 107, 109, 110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 129, 130, 131, 132, 133, 134, 135, 137, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 163, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 213, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 269, 270, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 296, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 320, 323, 324, 325, 326, 327, 331, 332, 336, 339, 342, 343, 344, 347], "take": [1, 3, 8, 23, 40, 83, 87, 101, 107, 120, 149, 152, 154, 173, 174, 175, 176, 177, 178, 179, 180, 182, 184, 185, 186, 187, 188, 190, 191, 192, 193, 194, 199, 200, 203, 204, 205, 207, 210, 211, 213, 218, 224, 225, 227, 228, 229, 230, 231, 232, 234, 239, 242, 244, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 302, 313, 331, 333, 336, 337, 338, 342, 343, 345, 348], "consider": [1, 3, 8, 337, 342, 345], "whether": [1, 2, 3, 13, 14, 16, 17, 18, 19, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 37, 38, 40, 41, 42, 43, 44, 46, 47, 52, 53, 54, 55, 56, 57, 65, 83, 87, 97, 101, 102, 103, 104, 107, 109, 122, 125, 150, 155, 171, 173, 174, 188, 192, 194, 240, 246, 247, 248, 249, 251, 252, 253, 259, 260, 262, 263, 265, 267, 273, 275, 278, 336, 337, 338, 342, 343, 348], "should": [1, 3, 4, 5, 7, 8, 11, 13, 14, 16, 17, 18, 19, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 52, 53, 54, 55, 56, 57, 58, 65, 70, 71, 72, 74, 83, 87, 96, 97, 101, 102, 103, 104, 107, 117, 120, 121, 122, 123, 126, 127, 129, 133, 135, 140, 141, 143, 146, 147, 149, 150, 152, 154, 155, 160, 161, 163, 170, 171, 173, 174, 175, 176, 177, 178, 179, 180, 182, 184, 185, 186, 187, 188, 190, 191, 192, 193, 194, 199, 200, 203, 204, 205, 207, 210, 211, 213, 218, 224, 225, 227, 228, 229, 231, 232, 234, 235, 236, 239, 242, 252, 257, 259, 260, 262, 263, 266, 274, 275, 276, 277, 278, 279, 294, 306, 307, 308, 311, 323, 325, 326, 327, 331, 333, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "occur": [1, 8, 14, 28, 29, 118, 135, 140, 160, 171, 220, 226, 227, 232, 233, 234, 235, 236, 255, 345, 348], "serial": [1, 2, 3, 32, 83, 87, 101, 107, 161], "optim": [1, 2, 8, 32, 40, 83, 87, 101, 107, 155, 172, 196, 201, 202, 246, 260, 261, 262, 265, 306, 311, 323, 332, 333, 338, 339, 342, 343], "parallel": [1, 3, 8, 17, 102, 103, 160, 163, 245, 324, 325, 326, 327, 337, 338, 342], "syncdatacollector": [1, 13, 14, 17, 18, 19, 20, 21, 117, 143, 323, 326, 329, 338, 339, 342, 345], "class": [1, 2, 3, 5, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 83, 84, 85, 87, 89, 96, 97, 101, 102, 103, 107, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 325, 326, 327, 331, 332, 333, 336, 337, 338, 339, 342, 345, 348], "worker": [1, 2, 13, 14, 16, 17, 18, 19, 20, 21, 22, 36, 45, 58, 84, 98, 101, 107, 161, 325, 326, 327, 336, 338, 347, 348], "multisyncdatacollector": [1, 18, 19, 20, 21, 326, 329, 338, 347], "split": [1, 13, 14, 16, 17, 18, 19, 20, 21, 34, 36, 45, 52, 53, 55, 56, 57, 58, 70, 71, 96, 102, 103, 186, 190, 245, 246, 247, 252, 253, 254, 255, 256, 258, 259, 260, 262, 263, 264, 265, 267, 273, 331, 333, 338, 345, 347], "workload": 1, "across": [1, 3, 8, 18, 19, 20, 21, 35, 38, 41, 42, 70, 71, 91, 161, 199, 231, 313, 329, 331, 336, 342, 343], "aggreg": [1, 3, 171, 173, 174, 176, 177, 238], "result": [1, 3, 7, 13, 14, 16, 17, 18, 19, 20, 21, 32, 34, 35, 36, 37, 38, 39, 41, 42, 52, 53, 54, 55, 56, 57, 65, 69, 70, 71, 83, 84, 87, 101, 107, 115, 117, 118, 119, 120, 121, 122, 123, 124, 126, 127, 129, 131, 132, 133, 134, 135, 137, 141, 142, 144, 145, 146, 147, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 160, 161, 163, 170, 171, 186, 188, 190, 192, 194, 199, 209, 225, 227, 228, 234, 245, 246, 248, 249, 251, 252, 253, 254, 258, 260, 262, 263, 264, 265, 267, 273, 275, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 313, 331, 337, 339, 343, 344, 347, 348], "final": [1, 3, 4, 21, 34, 36, 39, 40, 160, 186, 188, 190, 192, 199, 224, 228, 229, 230, 231, 237, 275, 307, 331, 336, 337, 338, 342, 343, 348], "multiasyncdatacollector": [1, 17, 18, 19, 20, 21, 325, 329, 336, 337, 338, 347], "sever": [1, 8, 30, 32, 45, 83, 87, 101, 107, 118, 120, 155, 262, 336, 338, 345, 348], "batch": [1, 3, 13, 14, 16, 17, 18, 19, 20, 21, 23, 27, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 52, 53, 54, 55, 56, 57, 58, 60, 61, 64, 65, 69, 70, 71, 74, 76, 83, 87, 97, 98, 100, 101, 107, 117, 129, 135, 137, 140, 143, 151, 155, 156, 160, 161, 171, 181, 182, 186, 187, 188, 190, 191, 192, 193, 197, 198, 199, 200, 201, 206, 208, 214, 218, 231, 235, 245, 246, 247, 248, 249, 251, 252, 253, 254, 255, 256, 258, 259, 260, 262, 263, 264, 265, 267, 273, 275, 276, 277, 278, 279, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 294, 302, 305, 308, 309, 310, 311, 313, 325, 326, 327, 333, 337, 338, 339, 341, 342, 344, 347, 348], "gather": [1, 3, 18, 20, 21, 45, 58, 60, 61, 76, 140, 198, 206, 274, 315, 330, 336, 337, 338, 339, 342, 343, 345, 348], "continu": [1, 9, 25, 46, 71, 83, 87, 101, 102, 103, 107, 167, 176, 177, 178, 179, 231, 238, 245, 246, 252, 258, 262, 263, 264, 265, 266, 267, 275, 280, 288, 331, 336, 338, 339, 342, 343, 345, 347, 348], "concomitantli": 1, "network": [1, 4, 8, 32, 83, 87, 96, 101, 102, 103, 107, 173, 174, 176, 177, 178, 179, 182, 184, 185, 190, 194, 199, 200, 202, 204, 205, 208, 210, 211, 212, 217, 221, 222, 223, 225, 235, 239, 246, 247, 248, 249, 251, 252, 253, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 271, 273, 275, 276, 277, 278, 279, 322, 323, 331, 332, 333, 341, 343, 348], "impli": [1, 348], "weight": [1, 4, 9, 12, 13, 14, 16, 17, 18, 19, 20, 21, 32, 35, 40, 65, 68, 83, 87, 101, 105, 106, 107, 121, 139, 151, 154, 155, 157, 159, 186, 187, 188, 190, 191, 192, 199, 202, 235, 245, 246, 247, 252, 255, 265, 313, 322, 331, 333, 336, 337, 338, 339, 341, 343, 345, 347], "mai": [1, 2, 3, 4, 5, 7, 8, 13, 14, 16, 17, 18, 20, 21, 28, 29, 32, 52, 53, 55, 56, 57, 83, 87, 101, 107, 133, 135, 147, 155, 156, 161, 163, 194, 199, 332, 333, 336, 337, 338, 339, 342, 343, 344, 345, 347, 348], "slightli": [1, 331, 332, 339, 343, 344, 345, 348], "lag": [1, 13, 14, 16, 17, 336, 337, 338], "therefor": [1, 3, 7, 56, 57, 83, 87, 101, 107, 143, 262, 273, 348], "although": [1, 8, 83, 87, 101, 107, 173, 174, 175, 176, 177, 178, 179, 180, 182, 184, 185, 186, 187, 188, 190, 191, 192, 193, 194, 199, 200, 203, 204, 205, 207, 210, 211, 213, 218, 224, 225, 227, 228, 229, 231, 234, 239, 242, 333, 336, 337, 345], "fastest": 1, "price": 1, "suitabl": [1, 2], "where": [1, 2, 3, 4, 7, 8, 13, 14, 16, 17, 18, 19, 20, 21, 28, 29, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 52, 53, 54, 55, 56, 57, 58, 60, 61, 65, 70, 71, 74, 76, 83, 87, 96, 97, 100, 101, 102, 103, 107, 114, 117, 126, 133, 139, 143, 146, 149, 150, 152, 154, 156, 159, 160, 170, 171, 186, 187, 190, 191, 197, 198, 199, 224, 228, 229, 231, 232, 235, 236, 244, 245, 246, 247, 252, 253, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 274, 275, 276, 277, 278, 279, 280, 281, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 332, 333, 336, 337, 338, 341, 342, 343, 345, 348], "asynchron": [1, 9, 14, 21, 32, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 235, 245, 325, 337, 338], "off": [1, 2, 4, 189, 216, 226, 265, 307, 316, 331, 333, 336, 337, 338, 342, 344, 348], "curriculum": [1, 4], "For": [1, 2, 3, 4, 7, 8, 9, 10, 13, 14, 16, 17, 18, 20, 21, 32, 52, 53, 55, 56, 57, 70, 83, 87, 101, 102, 103, 107, 122, 125, 129, 135, 150, 155, 160, 183, 186, 188, 190, 192, 200, 201, 221, 223, 225, 227, 233, 245, 253, 258, 262, 307, 331, 333, 336, 337, 338, 339, 342, 343, 344, 345, 348], "remot": [1, 2, 18, 19, 20, 21, 101, 107, 348], "rollout": [1, 2, 3, 13, 14, 16, 21, 23, 40, 83, 87, 90, 97, 98, 101, 102, 103, 105, 106, 107, 108, 109, 114, 117, 120, 122, 125, 126, 127, 133, 137, 141, 146, 147, 149, 150, 152, 163, 172, 188, 192, 196, 231, 245, 315, 331, 336, 338, 339, 344, 345, 347], "necessari": [1, 4, 6, 8, 13, 14, 16, 17, 53, 55, 56, 57, 147, 263, 275, 276, 277, 278, 279, 332, 336, 338], "synchronis": [1, 84, 342], "either": [1, 5, 22, 32, 40, 58, 65, 83, 87, 101, 107, 149, 150, 241, 267, 298, 333, 336, 337, 339, 344, 345, 347, 348], "update_policy_weights_": [1, 12, 13, 14, 16, 17, 18, 19, 20, 21, 336, 342, 347], "update_at_each_batch": [1, 13, 14, 17, 336], "true": [1, 3, 4, 8, 13, 14, 16, 17, 18, 19, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 65, 68, 69, 70, 71, 81, 82, 83, 84, 85, 87, 97, 101, 102, 103, 104, 105, 106, 107, 108, 109, 114, 116, 117, 118, 121, 124, 129, 132, 133, 134, 135, 139, 140, 141, 142, 145, 147, 149, 151, 153, 154, 155, 156, 157, 159, 161, 163, 167, 170, 171, 172, 173, 174, 176, 177, 178, 179, 185, 186, 187, 188, 190, 191, 192, 194, 196, 197, 198, 199, 200, 201, 202, 215, 216, 220, 221, 222, 223, 224, 226, 227, 231, 232, 233, 234, 235, 236, 237, 238, 239, 245, 246, 247, 248, 251, 252, 254, 255, 256, 258, 259, 260, 261, 262, 263, 264, 265, 267, 270, 275, 276, 277, 278, 281, 284, 285, 286, 287, 289, 290, 291, 292, 293, 294, 304, 305, 307, 308, 311, 327, 331, 332, 333, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "second": [1, 3, 8, 186, 188, 190, 192, 227, 247, 259, 262, 265, 310, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "devic": [1, 2, 3, 7, 8, 12, 13, 14, 16, 17, 18, 19, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 53, 55, 56, 57, 58, 60, 61, 76, 80, 83, 85, 87, 90, 91, 93, 96, 97, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 121, 122, 123, 125, 126, 127, 133, 137, 138, 139, 141, 143, 147, 149, 151, 153, 154, 155, 157, 159, 167, 170, 172, 173, 174, 175, 176, 177, 178, 179, 183, 185, 186, 187, 188, 190, 191, 192, 193, 194, 196, 199, 200, 201, 202, 207, 208, 209, 217, 220, 221, 222, 223, 225, 226, 227, 231, 232, 233, 234, 235, 238, 240, 245, 246, 248, 249, 251, 252, 258, 262, 263, 264, 265, 267, 273, 275, 276, 277, 278, 308, 313, 320, 321, 331, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347], "oper": [1, 3, 4, 7, 8, 13, 14, 17, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 39, 44, 45, 46, 47, 83, 87, 101, 107, 129, 133, 154, 182, 183, 187, 191, 203, 221, 222, 223, 226, 227, 230, 235, 241, 245, 247, 248, 249, 253, 259, 262, 264, 273, 274, 275, 276, 277, 278, 311, 320, 329, 333, 336, 337, 338, 339, 341, 342, 343, 348], "instanc": [1, 2, 3, 4, 7, 8, 13, 14, 16, 17, 18, 19, 20, 21, 32, 34, 36, 37, 39, 43, 44, 45, 52, 55, 65, 70, 71, 82, 83, 84, 87, 97, 101, 107, 117, 135, 151, 154, 161, 167, 171, 173, 174, 175, 176, 177, 178, 179, 180, 182, 184, 185, 186, 187, 188, 190, 191, 192, 193, 194, 195, 199, 200, 203, 204, 205, 207, 210, 211, 213, 218, 224, 225, 226, 227, 228, 229, 231, 232, 233, 234, 236, 237, 238, 239, 242, 249, 252, 260, 273, 275, 276, 277, 278, 294, 298, 307, 315, 316, 317, 320, 323, 325, 326, 331, 332, 333, 336, 338, 339, 343, 345, 348], "cpu": [1, 3, 8, 10, 13, 14, 16, 18, 19, 20, 21, 24, 26, 28, 32, 34, 36, 37, 39, 40, 41, 42, 43, 44, 45, 53, 55, 56, 57, 58, 60, 61, 76, 80, 83, 87, 93, 96, 97, 100, 101, 102, 103, 105, 106, 107, 108, 109, 121, 122, 123, 125, 126, 127, 137, 139, 141, 143, 147, 149, 151, 154, 155, 157, 159, 167, 170, 172, 186, 187, 188, 190, 191, 192, 196, 201, 202, 208, 209, 217, 220, 221, 222, 223, 225, 226, 227, 232, 233, 234, 235, 238, 240, 245, 246, 248, 249, 251, 252, 258, 262, 263, 264, 265, 267, 273, 308, 320, 331, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "slower": 1, "than": [1, 2, 3, 4, 8, 13, 14, 16, 17, 52, 55, 68, 70, 71, 73, 83, 87, 91, 101, 107, 141, 179, 188, 190, 192, 194, 203, 218, 220, 224, 226, 235, 240, 260, 302, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 330, 332, 336, 337, 338, 342, 343, 345, 347, 348], "one": [1, 2, 3, 4, 5, 7, 8, 11, 13, 14, 16, 17, 18, 19, 20, 21, 22, 24, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 52, 53, 54, 55, 56, 57, 59, 63, 65, 66, 70, 71, 72, 73, 75, 77, 78, 83, 84, 87, 91, 96, 100, 101, 102, 103, 107, 109, 114, 117, 120, 122, 123, 124, 125, 134, 135, 139, 143, 146, 148, 150, 151, 152, 154, 155, 156, 159, 161, 173, 174, 175, 176, 177, 178, 179, 180, 182, 183, 184, 185, 186, 187, 188, 190, 191, 192, 193, 194, 199, 200, 203, 204, 205, 206, 207, 209, 210, 211, 213, 218, 220, 224, 225, 226, 227, 228, 229, 231, 232, 233, 234, 235, 236, 239, 240, 242, 244, 245, 246, 247, 248, 249, 251, 252, 253, 254, 258, 259, 260, 262, 263, 264, 265, 266, 267, 273, 275, 276, 277, 278, 282, 283, 304, 306, 307, 311, 315, 320, 327, 330, 331, 332, 333, 336, 337, 338, 339, 341, 342, 343, 344, 345, 348], "cuda": [1, 3, 7, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 44, 46, 47, 83, 87, 90, 91, 101, 107, 121, 133, 138, 139, 151, 154, 155, 157, 159, 186, 187, 190, 191, 235, 251, 303, 336, 337, 338, 339, 342, 344, 348], "multipl": [1, 2, 3, 5, 8, 13, 14, 16, 17, 18, 19, 20, 21, 27, 43, 65, 101, 107, 118, 120, 124, 134, 143, 146, 149, 154, 161, 186, 190, 192, 193, 199, 201, 202, 220, 226, 232, 233, 235, 236, 239, 247, 252, 259, 262, 263, 267, 281, 320, 327, 331, 333, 336, 337, 338, 342, 343, 345, 347], "infer": [1, 101, 107, 117, 161, 188, 192, 201, 225, 251, 336, 338, 345], "run": [1, 3, 4, 5, 6, 7, 8, 10, 13, 14, 17, 21, 32, 81, 82, 83, 87, 97, 101, 107, 134, 135, 155, 161, 173, 174, 175, 176, 177, 178, 179, 180, 182, 184, 185, 186, 187, 188, 190, 191, 192, 193, 194, 199, 200, 203, 204, 205, 207, 210, 211, 213, 218, 224, 225, 227, 228, 229, 231, 234, 237, 238, 239, 242, 265, 307, 325, 326, 327, 330, 333, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347], "dispatch": [1, 18, 19, 20, 21, 218], "avail": [1, 3, 4, 6, 21, 57, 69, 91, 101, 102, 103, 116, 133, 183, 209, 232, 236, 260, 325, 326, 331, 336, 337, 338, 339, 342, 343, 345, 348], "speed": [1, 2, 4, 8, 27, 101, 107, 332, 336, 337, 338, 339, 342, 343, 345], "up": [1, 2, 3, 8, 9, 13, 14, 16, 27, 40, 52, 53, 55, 56, 57, 101, 107, 116, 152, 154, 262, 330, 331, 332, 336, 337, 338, 339, 342, 343, 345, 348], "avoid": [1, 32, 60, 61, 76, 83, 87, 101, 107, 113, 155, 161, 220, 235, 240, 247, 259, 262, 265, 314, 338, 342], "oom": [1, 60, 61, 76], "choic": [1, 2, 52, 53, 55, 56, 57, 101, 203, 331, 332, 336, 337, 342], "size": [1, 2, 3, 13, 14, 16, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 52, 53, 54, 55, 56, 57, 58, 60, 61, 64, 65, 69, 70, 71, 72, 74, 76, 80, 83, 85, 87, 93, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107, 108, 109, 116, 118, 122, 125, 126, 127, 129, 137, 139, 141, 143, 147, 148, 149, 151, 153, 154, 155, 156, 159, 161, 167, 170, 172, 173, 174, 175, 180, 181, 183, 186, 187, 188, 190, 191, 192, 193, 194, 196, 197, 198, 199, 200, 203, 206, 207, 208, 209, 210, 211, 214, 217, 218, 220, 221, 222, 223, 225, 226, 227, 228, 229, 231, 232, 233, 234, 235, 238, 240, 245, 246, 248, 249, 251, 252, 258, 260, 262, 263, 264, 265, 267, 273, 274, 275, 276, 277, 278, 279, 294, 302, 308, 320, 331, 337, 338, 339, 341, 342, 343, 344, 347, 348], "pass": [1, 3, 4, 13, 14, 16, 18, 19, 20, 21, 22, 26, 32, 35, 38, 40, 41, 42, 45, 53, 55, 56, 57, 60, 61, 65, 74, 76, 83, 84, 85, 87, 96, 98, 101, 102, 103, 107, 122, 125, 141, 154, 156, 161, 173, 174, 175, 176, 177, 178, 179, 180, 182, 184, 185, 186, 187, 188, 190, 191, 192, 193, 194, 199, 200, 201, 203, 204, 205, 207, 208, 210, 211, 213, 217, 218, 220, 224, 225, 226, 227, 228, 229, 231, 232, 233, 234, 235, 236, 238, 239, 240, 242, 247, 259, 260, 262, 275, 276, 277, 278, 279, 308, 325, 326, 327, 331, 336, 337, 338, 339, 341, 342, 343, 345, 348], "ie": [1, 3, 18, 20, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 39, 41, 44, 45, 46, 47, 55, 63, 71, 83, 87, 91, 100, 101, 107, 117, 129, 156, 161, 171, 188, 192, 225, 245, 247, 248, 252, 258, 259, 262, 263, 264, 265, 267, 275, 276, 277, 278, 331, 332, 337, 338, 342, 345], "store": [1, 3, 8, 13, 14, 16, 17, 20, 26, 32, 34, 36, 37, 39, 41, 42, 43, 45, 55, 56, 58, 60, 61, 62, 63, 76, 83, 87, 101, 107, 160, 161, 172, 193, 196, 245, 246, 248, 249, 251, 252, 253, 254, 258, 260, 262, 263, 264, 265, 267, 273, 320, 329, 333, 336, 338, 339, 342, 344, 345, 348], "while": [1, 3, 7, 8, 32, 83, 87, 101, 107, 143, 155, 173, 174, 175, 176, 177, 178, 179, 180, 182, 184, 185, 186, 187, 188, 190, 191, 192, 193, 194, 199, 200, 203, 204, 205, 207, 210, 211, 213, 218, 224, 225, 227, 228, 229, 231, 234, 239, 242, 258, 259, 262, 265, 331, 336, 338, 339, 342, 343, 344, 345, 347], "wait": [1, 20, 21, 22, 339, 343], "also": [1, 2, 3, 8, 9, 11, 32, 34, 36, 39, 41, 53, 55, 56, 57, 58, 60, 61, 65, 76, 83, 87, 101, 102, 103, 107, 113, 116, 117, 124, 135, 141, 143, 146, 147, 149, 151, 155, 186, 190, 211, 232, 237, 238, 239, 245, 246, 248, 249, 251, 252, 258, 262, 265, 275, 282, 283, 331, 333, 336, 337, 338, 339, 341, 342, 343, 345, 348], "impact": [1, 55, 122, 125, 337, 339, 342], "memori": [1, 2, 3, 8, 21, 27, 32, 34, 36, 39, 45, 52, 53, 55, 56, 57, 60, 83, 84, 87, 91, 101, 107, 117, 121, 139, 151, 154, 155, 157, 159, 161, 190, 191, 235, 327, 333, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "manag": [1, 8, 271, 272, 275, 276, 277, 278, 307], "kei": [1, 2, 3, 7, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 52, 65, 68, 70, 71, 74, 83, 87, 101, 107, 114, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 135, 138, 139, 140, 141, 143, 146, 147, 149, 150, 151, 152, 153, 154, 155, 157, 158, 159, 160, 161, 170, 171, 172, 182, 183, 188, 192, 195, 196, 209, 220, 224, 225, 226, 227, 228, 229, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 244, 245, 246, 247, 248, 249, 251, 252, 253, 254, 255, 256, 258, 259, 260, 262, 263, 264, 265, 267, 273, 274, 275, 276, 277, 278, 279, 294, 305, 306, 307, 309, 310, 311, 315, 320, 332, 333, 336, 338, 339, 341, 342, 343, 345, 347, 348], "control": [1, 3, 5, 8, 16, 81, 82, 96, 102, 103, 124, 170, 176, 177, 178, 179, 188, 192, 195, 196, 211, 218, 231, 235, 236, 237, 245, 247, 259, 262, 266, 275, 280, 288, 331, 333, 336, 337, 338, 342, 343, 345], "which": [1, 2, 3, 4, 7, 8, 11, 13, 14, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 39, 40, 41, 42, 44, 45, 46, 47, 52, 53, 55, 56, 57, 58, 68, 69, 83, 87, 91, 98, 101, 104, 107, 117, 118, 122, 125, 130, 133, 134, 135, 139, 140, 149, 151, 152, 154, 155, 157, 163, 186, 187, 189, 190, 191, 192, 197, 198, 199, 216, 221, 222, 223, 225, 232, 235, 236, 238, 245, 246, 247, 249, 252, 253, 254, 255, 256, 258, 259, 260, 262, 263, 264, 265, 267, 270, 273, 275, 276, 277, 278, 302, 306, 320, 331, 332, 333, 336, 337, 338, 339, 341, 342, 343, 344, 345, 348], "storing_devic": [1, 13, 14, 16, 17, 18, 19, 20, 21, 336, 337, 342, 347], "dure": [1, 2, 3, 13, 14, 16, 17, 18, 19, 20, 36, 40, 45, 52, 53, 54, 55, 56, 57, 58, 65, 68, 83, 87, 101, 102, 103, 107, 117, 120, 122, 125, 130, 137, 155, 188, 192, 307, 311, 332, 336, 337, 338, 339, 342, 343, 345, 348], "heurist": [1, 4, 24, 25, 26, 27, 28, 29, 30, 31, 33, 44, 46, 47, 231, 336, 348], "usual": [1, 2, 3, 4, 6, 7, 8, 52, 68, 83, 87, 101, 107, 202, 262, 275, 276, 277, 278, 279, 293, 320, 330, 331, 333, 336, 337, 338, 339, 342, 345, 348], "same": [1, 2, 3, 4, 11, 13, 14, 16, 18, 19, 20, 21, 28, 29, 32, 34, 36, 39, 43, 45, 52, 55, 69, 73, 83, 84, 87, 96, 101, 102, 103, 107, 117, 122, 124, 125, 130, 134, 135, 154, 155, 161, 173, 174, 187, 188, 191, 192, 194, 197, 198, 199, 200, 225, 231, 239, 265, 336, 337, 338, 341, 342, 344, 345, 348], "storag": [1, 2, 8, 32, 34, 35, 36, 38, 39, 41, 42, 52, 53, 54, 55, 56, 57, 60, 61, 62, 65, 69, 70, 71, 73, 74, 76, 83, 85, 87, 101, 107, 116, 117, 122, 125, 143, 329, 333, 337, 338, 339, 342, 344], "default": [1, 2, 3, 10, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 60, 61, 63, 65, 68, 69, 70, 71, 76, 81, 83, 87, 100, 101, 102, 103, 104, 107, 109, 114, 116, 117, 118, 122, 124, 125, 126, 129, 133, 134, 135, 137, 139, 140, 143, 145, 147, 149, 150, 151, 152, 153, 155, 156, 157, 159, 160, 161, 163, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 194, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 207, 209, 210, 211, 213, 214, 215, 216, 220, 224, 225, 226, 227, 228, 229, 231, 232, 233, 234, 235, 236, 239, 240, 242, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 267, 269, 270, 273, 274, 275, 276, 277, 278, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 320, 323, 327, 333, 336, 337, 338, 339, 344, 345, 347, 348], "behaviour": [1, 3, 21, 55, 87, 118, 122, 125, 135, 140, 150, 170, 188, 189, 192, 216, 307, 331, 337, 345], "besid": 1, "those": [1, 2, 3, 5, 7, 26, 28, 101, 107, 117, 122, 125, 135, 151, 152, 192, 232, 236, 237, 238, 313, 325, 326, 331, 336, 337, 342, 343, 348], "choos": [1, 96, 188, 192, 262, 331, 332, 336, 337, 338, 342, 345], "follow": [1, 2, 3, 6, 7, 8, 32, 34, 36, 37, 39, 40, 52, 54, 83, 87, 97, 100, 101, 102, 103, 105, 106, 107, 109, 133, 139, 157, 173, 174, 186, 188, 190, 192, 194, 227, 233, 234, 244, 245, 246, 247, 248, 252, 258, 259, 262, 263, 264, 265, 267, 311, 320, 331, 332, 333, 336, 337, 338, 339, 341, 342, 343, 345, 347, 348], "max_frames_per_traj": [1, 13, 14, 16, 17, 18, 19, 20, 21, 314, 336, 338, 347], "frame": [1, 2, 13, 14, 16, 17, 18, 19, 20, 21, 32, 117, 130, 224, 228, 229, 231, 293, 294, 304, 307, 311, 314, 315, 336, 337, 338, 339, 342, 345, 347, 348], "call": [1, 2, 3, 7, 8, 11, 13, 14, 16, 17, 18, 19, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 44, 45, 46, 47, 49, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 64, 65, 69, 72, 73, 76, 83, 87, 100, 101, 107, 117, 120, 121, 124, 129, 132, 133, 135, 137, 138, 139, 146, 151, 154, 155, 157, 159, 160, 161, 163, 168, 169, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 182, 184, 185, 186, 187, 188, 190, 191, 192, 193, 194, 196, 199, 200, 201, 203, 204, 205, 207, 210, 211, 213, 218, 224, 225, 227, 228, 229, 231, 234, 235, 236, 238, 239, 242, 247, 259, 262, 265, 274, 275, 276, 277, 278, 293, 307, 333, 337, 338, 339, 342, 343, 345, 348], "frames_per_batch": [1, 13, 14, 16, 17, 18, 19, 20, 21, 117, 143, 314, 336, 337, 338, 339, 342, 345, 347], "each": [1, 2, 3, 4, 7, 8, 11, 13, 14, 16, 17, 18, 19, 20, 21, 23, 30, 31, 32, 40, 41, 52, 55, 65, 68, 70, 71, 83, 84, 87, 101, 102, 103, 107, 109, 139, 143, 146, 149, 150, 151, 152, 159, 161, 183, 186, 187, 188, 190, 192, 199, 200, 204, 208, 209, 217, 224, 226, 227, 228, 234, 238, 281, 284, 285, 286, 287, 289, 290, 291, 292, 307, 308, 325, 326, 331, 336, 337, 338, 339, 342, 343, 344, 345, 347, 348], "init_random_fram": [1, 13, 14, 16, 17, 18, 19, 20, 21, 314, 336, 337], "random": [1, 3, 13, 14, 15, 16, 17, 18, 19, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 33, 40, 44, 46, 47, 55, 57, 64, 83, 87, 97, 101, 107, 124, 134, 135, 151, 163, 186, 188, 190, 192, 228, 232, 235, 236, 246, 263, 307, 315, 331, 336, 337, 338, 339, 343, 344, 345, 347, 348], "rand_step": [1, 3, 79, 81, 82, 83, 84, 86, 87, 88, 92, 94, 95, 97, 98, 101, 107, 132, 151, 161, 343, 347, 348], "reset_at_each_it": [1, 13, 14, 16, 17, 18, 19, 20, 21, 336], "split_traj": [1, 13, 14, 16, 17, 18, 19, 20, 21, 52, 53, 55, 56, 57, 336, 337, 338], "trajectori": [1, 3, 13, 14, 16, 17, 18, 19, 20, 21, 23, 32, 41, 52, 53, 55, 56, 57, 63, 70, 71, 74, 83, 87, 101, 107, 140, 149, 154, 172, 192, 196, 231, 262, 275, 278, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 302, 329, 332, 336, 337, 338, 339, 343, 345, 347, 348], "pad": [1, 2, 3, 23, 37, 43, 52, 53, 55, 56, 57, 117, 173, 174, 176, 177, 192, 193, 197, 198, 199, 308], "along": [1, 2, 3, 23, 28, 29, 34, 36, 39, 40, 45, 52, 53, 55, 56, 57, 61, 65, 70, 71, 76, 116, 117, 118, 135, 137, 140, 146, 153, 192, 194, 197, 198, 202, 226, 232, 235, 236, 260, 331, 336, 337, 339, 342, 343, 345], "point": [1, 2, 3, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 44, 46, 47, 54, 59, 63, 66, 74, 75, 77, 78, 83, 87, 101, 107, 116, 117, 121, 139, 150, 151, 153, 154, 155, 157, 159, 195, 235, 244, 253, 311, 330, 337, 338, 341, 342, 343, 345, 348], "boolean": [1, 13, 14, 16, 17, 18, 19, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 40, 44, 46, 47, 87, 140, 149, 171, 197, 198, 224, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 333, 339], "repres": [1, 2, 3, 13, 14, 16, 17, 18, 19, 20, 21, 26, 28, 41, 53, 83, 87, 101, 107, 109, 130, 140, 161, 183, 197, 198, 209, 226, 227, 233, 234, 236, 270, 275, 308, 336, 338, 339, 342], "valid": [1, 3, 23, 34, 36, 37, 45, 58, 110, 140, 155, 173, 174, 194, 197, 198, 224, 231, 259, 275, 276, 277, 278, 308, 333, 348], "exploration_typ": [1, 13, 14, 16, 18, 19, 20, 21, 307, 329, 336, 337], "strategi": [1, 2, 16, 55, 68, 96, 198, 206, 228, 331, 333, 336, 337, 342, 345], "reset_when_don": [1, 13, 14, 16, 18, 19, 20, 21], "These": [1, 2, 7, 32, 40, 57, 83, 87, 101, 107, 139, 159, 331, 332, 336, 338, 342, 343, 345, 348], "tool": [1, 2, 3, 5, 339, 343, 345, 348], "backend": [1, 3, 7, 11, 18, 19, 21, 22, 101, 111, 113, 333, 336, 338, 339, 343], "gloo": [1, 18, 19, 22], "nccl": [1, 18, 19], "mpi": [1, 18, 19], "distributeddatacollector": [1, 22, 329], "rpc": [1, 20, 22], "rpcdatacollector": [1, 22, 329], "launcher": [1, 18, 19, 20, 22], "rai": [1, 21], "submitit": [1, 18, 19, 20, 22], "torch": [1, 2, 3, 8, 9, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 52, 53, 54, 55, 56, 57, 58, 60, 61, 63, 65, 69, 70, 71, 74, 76, 80, 83, 84, 87, 93, 96, 97, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 114, 116, 118, 121, 122, 123, 124, 125, 126, 127, 133, 135, 137, 139, 141, 143, 145, 146, 147, 149, 150, 151, 152, 153, 154, 155, 157, 159, 161, 167, 170, 171, 172, 173, 174, 175, 180, 181, 183, 184, 186, 187, 188, 189, 190, 191, 192, 193, 194, 196, 197, 198, 199, 200, 201, 202, 203, 206, 207, 208, 209, 214, 215, 216, 217, 218, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 238, 239, 240, 243, 245, 246, 248, 249, 251, 252, 253, 254, 258, 260, 262, 263, 264, 265, 267, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 302, 309, 310, 320, 323, 331, 332, 333, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "multiprocess": [1, 2, 3, 18, 19, 20, 84, 85, 161, 337, 338, 343, 348], "synchron": [1, 13, 19, 21, 98, 325, 326, 337, 338], "mode": [1, 6, 13, 14, 16, 18, 19, 20, 21, 32, 83, 87, 98, 101, 107, 122, 125, 150, 155, 161, 164, 168, 169, 181, 188, 189, 192, 206, 214, 215, 216, 232, 236, 260, 307, 336, 337, 339, 342, 347, 348], "find": [1, 4, 6, 7, 18, 19, 20, 35, 37, 43, 70, 71, 190, 224, 231, 305, 309, 336, 337, 342], "dedic": [1, 2, 3, 18, 19, 20, 21, 221, 222, 223, 331, 336, 341, 342], "folder": [1, 2, 337], "sub": [1, 2, 3, 13, 14, 18, 19, 20, 21, 55, 70, 83, 87, 101, 107, 140, 237, 238, 302, 311, 331, 336, 337, 338, 341, 347, 348], "all": [1, 2, 3, 4, 8, 13, 14, 16, 17, 18, 19, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 44, 46, 47, 49, 57, 83, 84, 87, 97, 101, 102, 103, 107, 109, 110, 116, 117, 120, 121, 122, 123, 125, 128, 133, 134, 135, 139, 146, 151, 152, 154, 155, 157, 159, 161, 166, 167, 168, 169, 170, 173, 174, 175, 176, 177, 178, 179, 180, 182, 184, 185, 186, 187, 188, 190, 191, 192, 193, 194, 199, 200, 203, 204, 205, 207, 210, 211, 213, 218, 224, 225, 227, 228, 229, 231, 234, 235, 236, 238, 239, 242, 255, 260, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 306, 311, 314, 325, 326, 327, 330, 331, 332, 333, 335, 336, 337, 338, 339, 340, 341, 342, 343, 345, 347, 348], "variou": [1, 3, 13, 14, 16, 17, 188, 192, 245, 246, 247, 252, 253, 254, 255, 256, 258, 259, 260, 262, 263, 264, 265, 267, 268, 273, 325, 326, 336, 337, 338, 342, 348], "machin": [1, 7, 18, 19, 20, 32, 54, 91, 342], "One": [1, 2, 4, 8, 31, 33, 45, 117, 143, 157, 206, 224, 235, 239, 266, 270, 298, 336, 337, 345, 348], "wonder": 1, "why": [1, 3, 343, 348], "parallelenv": [1, 2, 3, 13, 14, 16, 17, 20, 83, 87, 98, 102, 103, 107, 324, 329, 336, 337, 338, 341, 347, 348], "instead": [1, 4, 7, 8, 11, 27, 32, 55, 83, 87, 101, 107, 129, 151, 155, 173, 174, 175, 176, 177, 178, 179, 180, 182, 184, 185, 186, 187, 188, 190, 191, 192, 193, 194, 199, 200, 203, 204, 205, 207, 210, 211, 213, 218, 224, 225, 227, 228, 229, 231, 234, 239, 242, 245, 247, 249, 252, 253, 258, 259, 262, 263, 264, 265, 273, 275, 279, 283, 327, 331, 343, 345, 348], "In": [1, 2, 3, 4, 5, 7, 8, 10, 11, 17, 21, 22, 32, 52, 53, 55, 56, 57, 83, 87, 101, 102, 103, 107, 121, 122, 123, 125, 139, 143, 147, 150, 151, 153, 154, 155, 157, 159, 160, 186, 189, 190, 194, 199, 211, 215, 216, 235, 238, 244, 245, 246, 248, 249, 251, 252, 258, 260, 262, 263, 264, 265, 267, 313, 325, 326, 327, 331, 332, 336, 337, 338, 339, 341, 342, 343, 344, 345, 348], "lower": [1, 2, 3, 17, 21, 25, 120, 161, 210, 211, 239, 338, 343], "io": [1, 55, 98, 190, 191], "footprint": [1, 2, 345], "need": [1, 2, 3, 4, 7, 8, 10, 11, 18, 19, 20, 21, 32, 34, 36, 72, 83, 87, 91, 96, 101, 102, 103, 107, 117, 120, 129, 139, 141, 152, 155, 159, 161, 173, 174, 175, 176, 177, 178, 179, 180, 182, 184, 185, 186, 187, 188, 190, 191, 192, 193, 194, 199, 200, 201, 203, 204, 205, 207, 210, 211, 213, 218, 224, 225, 227, 228, 229, 231, 233, 234, 235, 239, 242, 244, 252, 263, 264, 265, 267, 274, 279, 294, 311, 327, 331, 332, 336, 337, 338, 339, 342, 343, 345, 347, 348], "commun": [1, 2, 3, 330, 338, 348], "yet": [1, 344], "spec": [1, 2, 3, 15, 21, 24, 25, 26, 27, 28, 29, 30, 31, 33, 44, 46, 47, 48, 49, 50, 52, 83, 85, 87, 97, 101, 107, 109, 114, 115, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 129, 131, 132, 133, 135, 137, 139, 141, 142, 144, 145, 146, 147, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 160, 163, 167, 171, 183, 209, 211, 220, 224, 225, 226, 227, 228, 229, 231, 232, 233, 234, 235, 236, 238, 239, 245, 246, 248, 249, 251, 252, 258, 262, 263, 264, 265, 267, 273, 320, 331, 336, 337, 338, 339, 341, 342, 347], "plai": [1, 3, 102, 103, 117, 337, 338, 345, 348], "role": [1, 3, 337, 348], "opposit": 1, "direct": [1, 32, 83, 87, 101, 107, 186, 190, 260, 337], "sinc": [1, 2, 3, 4, 5, 7, 32, 35, 38, 41, 42, 57, 71, 83, 87, 101, 102, 103, 107, 170, 173, 174, 175, 176, 177, 178, 179, 180, 182, 184, 185, 186, 187, 188, 190, 191, 192, 193, 194, 199, 200, 203, 204, 205, 207, 210, 211, 213, 218, 224, 225, 226, 227, 228, 229, 231, 233, 234, 239, 242, 336, 337, 338, 339, 343, 344, 345, 347, 348], "faster": [1, 4, 24, 25, 26, 27, 28, 29, 30, 31, 33, 44, 46, 47, 56, 57, 98, 275, 276, 277, 278, 339, 342], "share": [1, 3, 6, 8, 34, 36, 39, 60, 61, 62, 72, 73, 76, 84, 101, 107, 161, 188, 192, 199, 200, 221, 222, 223, 245, 247, 248, 252, 258, 259, 262, 263, 264, 265, 267, 327, 329, 331, 338, 339, 341, 342, 347, 348], "among": [1, 3, 102, 103, 342], "achiev": [1, 3, 4, 32, 83, 87, 91, 101, 107, 150, 171, 308, 333, 336, 337, 338, 339, 342, 343, 348], "via": [1, 4, 7, 8, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 101, 139, 154, 159, 250, 260, 332, 333, 336, 337, 338, 339, 345, 348], "prohibit": [1, 3], "slow": [1, 3, 4, 34, 36, 39], "compar": [1, 3, 55, 307, 332, 336, 338, 342, 345, 348], "gpu": [1, 7, 8, 32, 60, 61, 76, 83, 87, 91, 101, 107, 336, 338, 339, 342, 348], "nativ": [1, 7, 9, 53, 83, 87, 101, 107, 117, 339, 345], "driver": [1, 7], "practic": [1, 3, 4, 5, 8, 189, 215, 216, 244, 330, 336, 337, 338, 339, 342, 344, 348], "mean": [1, 2, 3, 4, 7, 13, 14, 16, 18, 19, 20, 21, 34, 36, 39, 41, 63, 87, 135, 161, 172, 181, 184, 186, 188, 190, 192, 193, 196, 214, 224, 232, 236, 275, 276, 277, 278, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 331, 332, 336, 337, 338, 342, 343, 345, 347, 348], "keyword": [1, 3, 13, 14, 16, 18, 19, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 41, 42, 44, 46, 47, 53, 55, 56, 57, 58, 68, 70, 71, 73, 83, 87, 101, 107, 120, 121, 139, 147, 151, 153, 154, 155, 157, 159, 188, 192, 197, 198, 220, 224, 225, 226, 228, 229, 231, 232, 233, 235, 236, 239, 245, 246, 247, 248, 249, 250, 251, 252, 257, 258, 259, 261, 262, 263, 264, 265, 267, 269, 273, 275, 276, 277, 278, 279, 283, 324, 336, 337, 338, 342, 345, 348], "build": [1, 3, 7, 23, 26, 32, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 65, 83, 87, 101, 104, 107, 143, 161, 172, 188, 192, 196, 230, 232, 236, 311, 318, 319, 321, 322, 331, 333, 338, 339, 342, 343, 344, 347, 348], "given": [1, 2, 3, 13, 14, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 38, 40, 41, 42, 44, 46, 47, 48, 49, 52, 53, 54, 55, 56, 57, 65, 70, 71, 83, 87, 97, 101, 107, 121, 124, 135, 139, 151, 154, 155, 157, 159, 170, 172, 183, 184, 186, 190, 196, 209, 213, 220, 226, 227, 228, 231, 234, 235, 236, 237, 238, 240, 244, 248, 249, 251, 274, 275, 276, 277, 278, 279, 281, 303, 307, 323, 331, 333, 336, 337, 338, 342, 343, 348], "mani": [1, 3, 4, 38, 83, 245, 247, 252, 259, 262, 263, 267, 331, 336, 337, 338, 342, 343, 345, 348], "eg": [1, 2, 3, 11, 34, 36, 39, 60, 61, 62, 72, 73, 76, 83, 87, 91, 101, 107, 124, 149, 155, 199, 225], "gymnasium": [1, 3, 5, 11, 83, 87, 94, 95, 101, 107, 111, 113, 127, 147, 149, 160, 337, 338, 343, 347], "other": [1, 2, 3, 4, 7, 8, 21, 22, 32, 35, 38, 41, 42, 45, 52, 53, 55, 56, 57, 60, 61, 62, 65, 68, 69, 70, 71, 72, 73, 76, 83, 87, 97, 101, 107, 120, 123, 124, 147, 153, 157, 161, 186, 188, 192, 202, 203, 225, 227, 228, 234, 236, 245, 246, 247, 252, 253, 254, 255, 256, 258, 259, 260, 262, 263, 264, 265, 267, 273, 275, 308, 320, 325, 326, 331, 333, 336, 337, 338, 339, 342, 343, 344, 345, 347, 348], "warn": [1, 3, 224, 228, 229, 231, 337], "quickli": [1, 3, 337, 342, 348], "becom": [1, 3, 4, 21, 186, 190, 342, 348], "quit": [1, 3, 331, 336, 337, 338, 342, 348], "annoi": [1, 3], "By": [1, 2, 3, 33, 83, 87, 101, 102, 103, 107, 109, 218, 236, 260, 307, 327, 336, 344, 345, 348], "filter": [1, 3, 4, 45, 245, 246, 248, 252, 258, 262, 263, 265], "out": [1, 3, 4, 5, 9, 21, 32, 34, 36, 39, 45, 52, 55, 83, 87, 101, 102, 103, 107, 151, 163, 186, 187, 190, 197, 198, 201, 202, 220, 225, 226, 227, 231, 232, 233, 234, 235, 236, 271, 272, 333, 336, 337, 338, 339, 342, 343, 345, 347, 348], "If": [1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 16, 17, 18, 19, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 41, 42, 44, 45, 46, 47, 52, 53, 54, 55, 56, 57, 58, 60, 61, 65, 68, 69, 70, 71, 74, 76, 83, 84, 87, 91, 97, 101, 102, 103, 107, 109, 111, 117, 118, 119, 120, 122, 123, 124, 125, 127, 129, 133, 134, 135, 139, 140, 142, 143, 146, 147, 150, 151, 152, 153, 154, 155, 157, 159, 161, 170, 171, 173, 174, 186, 187, 188, 190, 191, 192, 193, 194, 197, 198, 199, 200, 218, 220, 224, 225, 226, 227, 228, 229, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 242, 244, 245, 246, 247, 248, 249, 251, 252, 253, 254, 255, 258, 259, 260, 262, 263, 264, 265, 267, 273, 274, 275, 276, 277, 278, 279, 289, 290, 291, 292, 298, 306, 308, 311, 313, 315, 320, 323, 327, 330, 336, 337, 338, 339, 341, 342, 343, 345, 347, 348], "still": [1, 2, 3, 9, 55, 224, 259, 260, 336, 337, 339, 341, 343, 345, 348], "wish": [1, 3, 55, 113, 345], "see": [1, 3, 6, 7, 8, 9, 13, 14, 16, 17, 18, 19, 20, 21, 32, 35, 38, 41, 42, 43, 52, 53, 54, 55, 56, 57, 58, 65, 70, 83, 87, 90, 98, 101, 102, 103, 107, 109, 121, 139, 151, 153, 154, 155, 157, 159, 162, 173, 174, 186, 189, 190, 194, 200, 201, 208, 216, 217, 221, 223, 235, 236, 308, 336, 337, 338, 339, 342, 343, 345, 348], "displai": [1, 3, 7, 311, 333, 336, 337, 342, 343], "filter_warnings_subprocess": [1, 3], "fals": [1, 3, 13, 14, 16, 17, 18, 19, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 52, 53, 54, 55, 56, 57, 58, 60, 61, 65, 68, 69, 70, 71, 76, 80, 81, 83, 84, 87, 93, 96, 97, 100, 101, 102, 103, 105, 106, 107, 108, 109, 114, 117, 118, 121, 122, 125, 126, 127, 129, 132, 133, 134, 135, 137, 139, 140, 141, 143, 145, 147, 149, 151, 153, 154, 155, 156, 157, 159, 161, 163, 170, 171, 172, 173, 174, 176, 183, 186, 187, 188, 189, 190, 191, 192, 194, 196, 197, 198, 199, 200, 208, 209, 215, 216, 217, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 231, 232, 233, 234, 235, 236, 238, 239, 240, 245, 246, 247, 248, 249, 251, 252, 254, 255, 256, 258, 259, 260, 261, 262, 263, 264, 265, 267, 270, 273, 275, 276, 277, 278, 284, 285, 286, 287, 289, 290, 291, 292, 304, 305, 307, 308, 309, 311, 320, 327, 331, 333, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "central": [2, 199, 336, 337, 342, 345], "part": [2, 4, 8, 32, 40, 53, 55, 56, 57, 83, 87, 101, 107, 116, 135, 143, 146, 188, 192, 240, 302, 327, 336, 338, 339, 343, 348], "algorithm": [2, 3, 8, 9, 13, 14, 97, 130, 245, 262, 263, 264, 265, 302, 316, 329, 332, 333, 336, 337, 338, 339, 342, 344, 345, 347], "implement": [2, 3, 9, 11, 16, 32, 72, 83, 87, 98, 101, 107, 121, 122, 123, 127, 133, 141, 147, 149, 154, 161, 173, 186, 187, 188, 189, 190, 191, 192, 214, 215, 216, 245, 246, 250, 251, 258, 260, 261, 262, 265, 320, 331, 333, 336, 337, 338, 339, 343, 347], "wide": [2, 3, 5], "we": [2, 3, 5, 7, 9, 11, 26, 32, 34, 36, 39, 40, 42, 52, 55, 57, 69, 71, 83, 84, 87, 91, 101, 107, 117, 133, 139, 141, 157, 160, 161, 172, 192, 193, 199, 200, 245, 246, 248, 249, 251, 252, 253, 254, 258, 260, 262, 263, 264, 265, 267, 273, 330, 331, 332, 333, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "give": [2, 3, 7, 41, 83, 87, 97, 101, 107, 117, 330, 332, 336, 337, 342, 343, 344, 347], "abil": [2, 260, 343, 345], "veri": [2, 3, 337, 343, 345, 347, 348], "influenti": 2, "sampl": [2, 4, 8, 9, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 38, 40, 41, 42, 44, 46, 47, 52, 53, 54, 55, 56, 57, 58, 60, 61, 63, 64, 65, 68, 69, 70, 71, 73, 74, 76, 83, 87, 97, 100, 101, 107, 116, 117, 140, 143, 164, 165, 168, 169, 172, 181, 189, 196, 197, 198, 206, 207, 210, 215, 216, 220, 224, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 245, 246, 247, 248, 249, 251, 259, 261, 262, 267, 302, 308, 311, 314, 331, 336, 337, 338, 339, 342, 344, 347, 348], "latenc": 2, "especi": [2, 3, 7, 8, 118], "larger": [2, 4, 258], "volum": 2, "lazymemmapstorag": [2, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 65, 70, 71, 116, 117, 329, 336, 337, 339, 344, 345], "advis": [2, 348], "due": [2, 3, 5, 344, 345, 348], "serialis": [2, 34, 36, 39], "memmaptensor": 2, "well": [2, 3, 8, 17, 21, 32, 35, 37, 38, 41, 42, 68, 72, 83, 87, 101, 107, 190, 210, 211, 260, 279, 336, 337, 339, 344, 345, 347, 348], "specifi": [2, 11, 13, 14, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 41, 42, 44, 46, 47, 52, 53, 54, 55, 56, 57, 65, 83, 87, 101, 102, 103, 107, 109, 122, 123, 125, 146, 148, 150, 156, 172, 190, 235, 236, 260, 266, 331, 336, 338, 339], "file": [2, 6, 7, 8, 34, 36, 39, 52, 53, 55, 56, 57, 293, 333, 335, 337, 345, 346], "locat": [2, 7, 34, 36, 39, 45, 57, 83, 87, 101, 107, 126, 135, 145, 189, 203, 215, 216, 302, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 336, 337, 338, 342, 345], "improv": [2, 4, 130, 245, 332, 342, 345], "failur": [2, 4], "recoveri": 2, "liststorag": [2, 35, 38, 41, 42, 329, 345], "were": [2, 7, 101, 107, 338, 345], "found": [2, 3, 6, 7, 10, 21, 26, 32, 34, 36, 39, 45, 52, 53, 55, 56, 57, 70, 71, 83, 87, 91, 101, 107, 114, 117, 143, 146, 152, 161, 171, 228, 229, 232, 236, 259, 260, 262, 336, 337, 339], "rough": 2, "benchmark": [2, 3, 9, 342], "http": [2, 5, 6, 7, 10, 18, 19, 20, 35, 43, 54, 55, 56, 57, 63, 91, 98, 102, 103, 104, 117, 139, 157, 175, 176, 177, 178, 179, 180, 183, 184, 185, 190, 196, 197, 198, 202, 204, 205, 207, 208, 210, 211, 217, 227, 231, 245, 246, 249, 250, 251, 253, 254, 255, 256, 257, 258, 261, 262, 263, 264, 265, 266, 275, 280, 288, 320, 344, 347], "github": [2, 5, 6, 7, 10, 18, 19, 20, 53, 55, 102, 103, 104, 157, 347], "com": [2, 5, 6, 7, 10, 18, 19, 20, 55, 56, 91, 102, 103, 104, 344, 347], "tree": [2, 34, 36, 39, 83, 87, 101, 107], "type": [2, 3, 14, 18, 19, 20, 21, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 57, 58, 65, 83, 87, 96, 97, 101, 102, 103, 107, 121, 122, 123, 126, 127, 133, 139, 141, 147, 149, 151, 154, 155, 157, 159, 161, 165, 169, 173, 174, 194, 199, 200, 202, 208, 217, 224, 226, 232, 235, 236, 245, 246, 248, 249, 251, 252, 253, 254, 258, 260, 262, 263, 264, 265, 267, 269, 273, 281, 320, 325, 331, 336, 337, 338, 342, 343, 345, 348], "1x": 2, "lazytensorstorag": [2, 41, 42, 74, 143, 329, 338, 342, 345], "83x": 2, "3": [2, 3, 6, 7, 10, 11, 13, 14, 15, 16, 17, 21, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 38, 39, 41, 42, 52, 53, 54, 55, 56, 57, 65, 70, 71, 83, 87, 90, 96, 98, 100, 101, 102, 103, 105, 106, 107, 114, 117, 121, 124, 126, 127, 133, 135, 137, 139, 141, 143, 146, 147, 149, 150, 151, 153, 154, 155, 157, 159, 167, 172, 173, 174, 176, 177, 180, 183, 185, 186, 187, 188, 190, 191, 192, 193, 194, 196, 199, 200, 203, 206, 208, 218, 220, 221, 222, 223, 226, 227, 232, 234, 235, 238, 239, 240, 245, 246, 248, 249, 251, 252, 253, 254, 255, 258, 260, 262, 263, 264, 265, 267, 273, 275, 276, 277, 278, 281, 284, 285, 286, 287, 289, 290, 291, 292, 294, 310, 331, 333, 336, 337, 338, 339, 342, 343, 344, 345, 347, 348], "44x": 2, "between": [2, 3, 4, 5, 13, 14, 16, 17, 21, 32, 40, 55, 69, 71, 83, 87, 101, 107, 124, 134, 144, 155, 163, 173, 174, 186, 188, 192, 194, 199, 200, 227, 232, 236, 245, 247, 248, 251, 252, 255, 256, 258, 259, 260, 262, 263, 264, 265, 267, 270, 275, 307, 311, 332, 336, 337, 339, 342, 343, 348], "long": [2, 3, 13, 14, 16, 17, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 36, 37, 39, 44, 46, 47, 124, 190, 191, 339, 345], "sharabl": 2, "featur": [2, 3, 4, 13, 14, 16, 17, 18, 19, 20, 21, 33, 45, 53, 70, 71, 83, 87, 96, 101, 102, 103, 105, 106, 107, 117, 129, 133, 137, 151, 152, 156, 161, 173, 174, 184, 185, 186, 187, 188, 190, 191, 192, 194, 201, 202, 236, 275, 276, 277, 278, 279, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 327, 331, 336, 337, 338, 339, 343, 345, 348], "allow": [2, 3, 13, 14, 16, 17, 18, 19, 20, 21, 26, 28, 29, 32, 33, 55, 65, 68, 70, 71, 83, 87, 101, 107, 141, 170, 194, 245, 246, 248, 249, 251, 252, 253, 254, 258, 260, 262, 263, 264, 265, 267, 268, 270, 273, 331, 333, 336, 338, 339, 342, 343, 345, 348], "popul": [2, 3, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 65, 132, 151, 336, 338, 339, 343, 345], "collabor": [2, 55], "rather": [2, 4, 73, 141, 336, 337, 338, 342], "incur": 2, "some": [2, 3, 4, 7, 8, 9, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 38, 44, 45, 46, 47, 52, 53, 55, 56, 57, 60, 61, 65, 74, 76, 83, 87, 101, 102, 103, 107, 109, 139, 155, 157, 163, 176, 188, 192, 213, 236, 237, 238, 302, 314, 331, 333, 336, 337, 338, 339, 342, 343, 345, 347, 348], "transmiss": 2, "overhead": [2, 101, 107], "includ": [2, 3, 4, 7, 9, 21, 32, 57, 60, 61, 62, 72, 73, 76, 83, 87, 97, 101, 107, 150, 155, 161, 260, 265, 314, 331, 333, 336, 337, 338, 339, 342, 343, 345, 348], "ani": [2, 3, 5, 8, 26, 28, 32, 34, 35, 36, 38, 39, 41, 42, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 65, 66, 69, 71, 72, 73, 74, 75, 76, 77, 78, 83, 84, 87, 101, 102, 103, 107, 109, 114, 129, 139, 140, 143, 155, 157, 161, 163, 171, 173, 174, 180, 194, 202, 225, 235, 236, 237, 238, 245, 246, 248, 249, 251, 252, 258, 260, 262, 263, 264, 265, 267, 275, 299, 311, 330, 336, 337, 338, 342, 343, 345, 347, 348], "subclass": [2, 3, 65, 83, 87, 101, 107, 154, 160, 163, 173, 174, 175, 176, 177, 178, 179, 180, 182, 184, 185, 186, 187, 188, 190, 191, 192, 193, 194, 199, 200, 203, 204, 205, 207, 210, 211, 213, 218, 224, 225, 227, 228, 229, 231, 234, 235, 236, 237, 239, 242, 260, 262, 337, 339, 343, 345], "tensorstorag": [2, 329], "instanti": [2, 3, 21, 34, 36, 39, 91, 154, 200, 336, 337, 342, 343, 345, 348], "content": [2, 8, 13, 14, 16, 26, 28, 34, 35, 36, 38, 39, 41, 42, 69, 98, 173, 174, 194, 199, 200, 232, 260, 338, 343, 347], "map": [2, 3, 8, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 41, 42, 44, 45, 46, 47, 52, 53, 54, 55, 56, 57, 58, 60, 83, 87, 96, 101, 102, 103, 105, 106, 107, 109, 110, 115, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 129, 131, 132, 133, 135, 137, 141, 142, 144, 145, 146, 147, 149, 150, 151, 152, 153, 154, 156, 157, 158, 160, 161, 167, 183, 203, 220, 221, 222, 223, 226, 232, 233, 235, 236, 238, 239, 240, 241, 265, 273, 307, 329, 331, 332, 336, 337, 338, 339, 344], "tensor": [2, 3, 8, 13, 14, 16, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 63, 65, 66, 68, 70, 71, 74, 75, 76, 77, 78, 80, 83, 84, 87, 93, 96, 97, 100, 101, 102, 103, 105, 106, 107, 108, 109, 114, 116, 117, 118, 121, 122, 124, 125, 126, 127, 129, 132, 135, 137, 139, 140, 141, 143, 145, 146, 147, 149, 150, 151, 152, 153, 154, 155, 156, 157, 159, 161, 167, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 183, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 203, 206, 207, 208, 209, 212, 213, 214, 215, 216, 217, 220, 221, 222, 223, 225, 226, 227, 228, 229, 231, 232, 233, 234, 235, 236, 238, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 255, 256, 258, 260, 262, 263, 264, 265, 267, 270, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 294, 320, 331, 333, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "writer": [2, 38, 42, 52, 53, 54, 55, 56, 57, 59, 65, 66, 74, 75, 78, 329, 338], "tensordictroundrobinwrit": [2, 65, 329], "current": [2, 3, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 40, 44, 46, 47, 71, 83, 87, 89, 98, 101, 107, 117, 140, 150, 151, 152, 154, 155, 164, 165, 170, 184, 193, 211, 231, 253, 265, 297, 333, 336, 337, 338, 339, 342, 343, 347, 348], "goe": [2, 4, 102, 103, 336, 338, 342, 348], "sampler": [2, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 64, 65, 68, 69, 70, 71, 72, 73, 74, 76, 140, 249, 253, 273, 329, 336, 338, 342, 345], "prioritizedsampl": [2, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 65, 249, 253, 273, 329, 336, 345], "extend": [2, 8, 24, 25, 26, 27, 28, 29, 30, 31, 33, 35, 38, 41, 42, 44, 46, 47, 52, 53, 54, 55, 56, 57, 59, 65, 66, 70, 71, 73, 74, 75, 77, 78, 116, 143, 308, 333, 336, 337, 338, 339, 342, 344, 345, 347], "access": [2, 3, 7, 8, 32, 35, 54, 83, 87, 101, 107, 139, 157, 327, 330, 336, 342, 343, 345], "show": [2, 32, 83, 87, 101, 107, 200, 331, 336, 338, 339, 342, 343, 345, 347], "import": [2, 3, 4, 6, 10, 11, 13, 14, 15, 16, 17, 21, 22, 35, 37, 38, 40, 41, 42, 43, 45, 52, 53, 54, 55, 56, 57, 58, 60, 61, 63, 65, 70, 71, 74, 76, 83, 84, 87, 95, 97, 101, 102, 103, 105, 106, 107, 110, 111, 113, 114, 116, 117, 120, 126, 127, 132, 133, 135, 137, 139, 141, 142, 143, 146, 147, 149, 150, 151, 152, 154, 159, 161, 167, 170, 171, 172, 183, 186, 187, 188, 190, 191, 192, 194, 196, 199, 200, 203, 208, 209, 217, 220, 221, 222, 223, 225, 226, 227, 228, 229, 231, 232, 233, 234, 235, 238, 239, 240, 245, 246, 247, 248, 249, 251, 252, 253, 254, 258, 260, 262, 263, 264, 265, 267, 273, 275, 276, 277, 278, 304, 307, 320, 323, 331, 332, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "tensordictreplaybuff": [2, 35, 38, 41, 52, 53, 54, 55, 56, 57, 65, 70, 71, 74, 116, 117, 308, 323, 329, 336, 337, 339, 345], "mp": [2, 18, 19, 20, 84, 161], "def": [2, 3, 11, 22, 32, 83, 84, 87, 97, 101, 107, 113, 114, 122, 125, 172, 183, 186, 187, 190, 191, 196, 232, 240, 246, 248, 252, 258, 260, 263, 265, 267, 333, 336, 337, 341, 342, 343, 347, 348], "rb": [2, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 65, 70, 71, 74, 117, 143, 337, 339, 342, 344, 345, 347], "updat": [2, 3, 4, 8, 12, 13, 14, 16, 17, 18, 19, 20, 21, 32, 34, 35, 36, 39, 40, 41, 63, 83, 87, 97, 101, 102, 103, 107, 114, 122, 124, 125, 149, 150, 155, 158, 161, 171, 172, 186, 188, 192, 196, 224, 228, 229, 231, 232, 233, 234, 235, 236, 245, 246, 248, 249, 251, 252, 253, 254, 257, 258, 260, 262, 263, 264, 265, 266, 267, 273, 275, 276, 277, 278, 279, 307, 311, 313, 316, 317, 322, 323, 333, 337, 338, 339, 342, 343, 345, 347, 348], "td": [2, 3, 15, 26, 34, 35, 36, 38, 39, 41, 42, 52, 53, 54, 55, 56, 57, 65, 74, 79, 80, 81, 82, 86, 88, 92, 93, 94, 95, 114, 116, 118, 122, 123, 124, 125, 132, 133, 135, 143, 146, 151, 153, 155, 161, 170, 172, 183, 188, 192, 195, 196, 208, 209, 217, 220, 221, 222, 223, 225, 226, 228, 229, 231, 232, 233, 235, 238, 240, 273, 276, 277, 278, 282, 283, 284, 285, 286, 287, 289, 290, 291, 292, 293, 302, 310, 320, 331, 332, 336, 339, 342, 343, 347, 348], "10": [2, 7, 22, 26, 35, 38, 40, 41, 42, 43, 45, 60, 61, 65, 70, 71, 74, 76, 84, 97, 102, 103, 105, 106, 108, 109, 114, 116, 117, 150, 152, 153, 172, 175, 180, 186, 187, 190, 191, 193, 196, 207, 218, 228, 229, 231, 232, 239, 246, 249, 251, 252, 262, 263, 264, 267, 273, 275, 276, 277, 278, 281, 302, 333, 336, 337, 338, 339, 342, 343, 345, 347, 348], "__name__": [2, 22, 84, 337], "__main__": [2, 22, 84], "21": [2, 55, 56, 71, 102, 103, 336, 337, 338, 341, 343, 344], "zero": [2, 3, 4, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 39, 41, 42, 44, 45, 46, 47, 52, 61, 70, 71, 76, 83, 87, 101, 107, 116, 118, 122, 124, 125, 135, 143, 167, 170, 172, 186, 187, 188, 190, 191, 192, 193, 197, 198, 200, 208, 217, 228, 229, 231, 234, 242, 245, 246, 248, 249, 251, 252, 258, 262, 263, 264, 265, 267, 273, 275, 276, 277, 278, 281, 339, 347], "proc": 2, "target": [2, 4, 8, 21, 32, 83, 84, 87, 101, 107, 150, 154, 235, 236, 245, 246, 247, 248, 249, 251, 252, 253, 256, 257, 259, 260, 261, 262, 263, 264, 265, 266, 267, 273, 274, 275, 276, 277, 278, 279, 314, 322, 323, 332, 333, 339, 343], "arg": [2, 12, 14, 26, 28, 32, 60, 61, 76, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 112, 114, 121, 139, 148, 151, 154, 155, 156, 158, 159, 172, 173, 174, 182, 188, 192, 194, 195, 196, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 258, 259, 260, 261, 262, 263, 264, 265, 267, 273, 275, 276, 277, 278, 279, 301, 304, 308, 311, 327, 337], "start": [2, 3, 4, 5, 13, 21, 45, 57, 70, 71, 84, 96, 170, 306, 336, 337, 342, 343, 345, 348], "join": [2, 84, 329, 337, 338], "now": [2, 3, 7, 35, 117, 200, 336, 337, 338, 339, 341, 342, 344, 345, 348], "length": [2, 17, 20, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 36, 37, 40, 43, 44, 45, 46, 47, 55, 58, 70, 71, 73, 83, 87, 101, 107, 140, 161, 172, 173, 174, 176, 178, 180, 182, 186, 190, 194, 196, 199, 200, 220, 235, 240, 302, 308, 336, 338, 339, 343, 345, 348], "20": [2, 45, 56, 70, 71, 74, 83, 87, 91, 101, 107, 150, 186, 187, 190, 191, 225, 302, 336, 337, 338, 339, 342, 343, 347, 348], "assert": [2, 3, 6, 16, 24, 25, 26, 27, 28, 29, 30, 31, 33, 35, 38, 41, 42, 44, 46, 47, 52, 53, 54, 55, 56, 57, 65, 87, 90, 113, 117, 120, 122, 125, 133, 141, 161, 163, 167, 200, 203, 218, 275, 276, 277, 278, 302, 310, 341, 345, 348], "len": [2, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 60, 61, 65, 76, 137, 173, 174, 194, 200, 336, 343, 344, 345, 347], "_data": [2, 343], "0": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 21, 22, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 49, 52, 53, 54, 55, 56, 57, 58, 60, 61, 63, 65, 70, 71, 76, 80, 83, 87, 90, 93, 97, 101, 104, 105, 106, 107, 114, 115, 117, 118, 120, 121, 123, 124, 133, 134, 135, 139, 143, 146, 150, 151, 152, 153, 154, 155, 157, 159, 160, 161, 163, 172, 173, 174, 176, 177, 179, 180, 184, 186, 188, 189, 190, 191, 192, 194, 196, 198, 199, 200, 201, 202, 203, 206, 210, 211, 214, 215, 216, 218, 220, 224, 225, 227, 228, 229, 231, 234, 235, 238, 239, 242, 245, 246, 247, 248, 249, 251, 252, 253, 254, 255, 256, 258, 259, 260, 261, 262, 263, 264, 265, 267, 268, 269, 273, 274, 275, 276, 277, 278, 281, 282, 283, 302, 309, 323, 327, 332, 333, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "too": [2, 7, 13, 14, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 36, 37, 39, 40, 44, 46, 47, 101, 107, 134, 151, 189, 215, 216, 245, 246, 247, 248, 249, 251, 252, 253, 254, 255, 256, 258, 259, 260, 262, 263, 264, 265, 267, 273, 275, 276, 277, 278, 337, 338, 343, 345, 348], "difficult": [2, 4], "element": [2, 13, 14, 16, 18, 19, 20, 21, 30, 31, 33, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 65, 71, 74, 76, 100, 117, 140, 150, 173, 174, 186, 187, 190, 220, 224, 226, 235, 236, 240, 302, 336, 338, 345, 348], "pai": [2, 8, 336, 339], "attent": [2, 8, 336, 339, 348], "alwai": [2, 3, 20, 26, 28, 32, 58, 83, 87, 101, 107, 133, 134, 253, 260, 331, 332, 337, 338, 339, 342, 343, 345], "lead": [2, 3, 4, 8, 10, 11, 26, 28, 32, 34, 35, 36, 38, 39, 41, 42, 52, 69, 151, 189, 208, 215, 216, 336, 339, 342, 343, 345, 347], "dimens": [2, 3, 16, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 39, 40, 44, 45, 46, 47, 52, 53, 55, 56, 57, 60, 61, 70, 71, 74, 76, 83, 87, 101, 107, 109, 116, 117, 118, 129, 135, 137, 140, 146, 148, 153, 156, 161, 173, 174, 175, 180, 188, 190, 192, 194, 197, 198, 199, 201, 202, 207, 208, 212, 213, 214, 215, 218, 226, 245, 246, 247, 252, 253, 254, 255, 256, 258, 259, 260, 262, 263, 264, 265, 267, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 327, 331, 336, 337, 338, 339, 342, 343, 345], "word": [2, 3, 40, 52, 53, 55, 56, 57, 260, 336, 343, 348], "creat": [2, 3, 4, 5, 6, 7, 10, 13, 14, 16, 17, 18, 19, 20, 21, 26, 28, 32, 34, 35, 36, 38, 39, 41, 42, 45, 55, 57, 58, 83, 84, 87, 91, 98, 101, 102, 107, 117, 139, 154, 155, 157, 160, 161, 167, 170, 173, 174, 176, 177, 178, 179, 180, 185, 188, 192, 194, 195, 199, 200, 225, 236, 249, 253, 263, 265, 273, 294, 308, 315, 316, 317, 323, 325, 326, 331, 336, 337, 338, 339, 342, 343, 344, 345, 347, 348], "1m": [2, 55, 314, 336, 338, 339, 344], "multidimension": [2, 41, 63, 345], "doe": [2, 3, 18, 34, 35, 36, 39, 41, 45, 52, 55, 63, 72, 73, 78, 180, 186, 187, 188, 190, 191, 192, 201, 218, 225, 237, 238, 245, 247, 253, 259, 262, 274, 311, 331, 333, 336, 337, 338, 339, 343, 345, 348], "howev": [2, 3, 5, 7, 32, 83, 87, 101, 107, 117, 146, 150, 155, 265, 331, 336, 337, 338, 339, 343, 345, 348], "episod": [2, 52, 55, 56, 57, 70, 71, 87, 143, 146, 150, 172, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 337, 342], "flatten": [2, 34, 36, 39, 129, 308, 339, 342], "capac": [2, 338], "desir": [2, 3, 32, 83, 87, 101, 107, 121, 135, 137, 139, 140, 151, 154, 155, 157, 159, 168, 169, 173, 174, 194, 200, 220, 226, 227, 232, 233, 234, 235, 236, 331, 336, 342, 343], "diversifi": 2, "make": [2, 3, 4, 7, 32, 34, 36, 39, 40, 52, 53, 54, 55, 56, 57, 68, 72, 73, 78, 83, 87, 88, 91, 93, 95, 98, 101, 107, 127, 135, 139, 140, 143, 149, 157, 163, 186, 187, 190, 191, 199, 200, 201, 226, 236, 262, 275, 276, 277, 278, 308, 317, 327, 331, 332, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "offer": [2, 3, 7, 331, 337, 343, 348], "distinct": [2, 3, 65, 341], "accomplish": 2, "slicesampl": [2, 329], "slice": [2, 3, 24, 25, 26, 27, 28, 29, 30, 31, 33, 44, 46, 47, 52, 55, 70, 71, 116], "anoth": [2, 3, 8, 34, 36, 39, 55, 83, 87, 91, 101, 107, 122, 123, 125, 151, 154, 194, 245, 246, 247, 252, 253, 254, 255, 256, 258, 259, 260, 262, 263, 264, 265, 267, 273, 302, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 331, 332, 336, 338, 339, 341, 342, 343, 348], "recommend": [2, 4, 7, 34, 36, 39, 91, 342], "__especially__": 2, "offlin": [2, 8, 13, 14, 16, 17, 18, 19, 20, 21, 117, 163, 246, 251, 258, 333, 344, 345, 347], "convent": [2, 3, 109, 332, 336, 339, 342, 343], "requir": [2, 3, 4, 7, 8, 16, 18, 19, 20, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 41, 42, 44, 45, 46, 47, 52, 53, 55, 83, 87, 91, 98, 101, 104, 107, 121, 139, 151, 154, 155, 157, 159, 194, 218, 235, 237, 238, 245, 246, 247, 252, 253, 254, 255, 256, 258, 259, 260, 262, 263, 264, 265, 267, 273, 331, 333, 336, 337, 338, 339, 342, 343, 345, 348], "reshap": [2, 32, 55, 70, 188, 192, 194, 338, 342], "extens": [2, 71, 333, 345], "detail": [2, 3, 5, 6, 7, 32, 83, 87, 101, 102, 103, 107, 153, 155, 183, 186, 190, 227, 245, 253, 262, 330, 337, 341, 345], "independ": [2, 13, 14, 16, 17, 18, 19, 20, 21, 154, 156, 200, 332, 333, 336, 337, 342, 345, 347], "differ": [2, 3, 4, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 39, 40, 44, 45, 46, 47, 52, 55, 68, 83, 87, 96, 101, 102, 103, 107, 117, 124, 135, 141, 155, 156, 183, 186, 187, 188, 190, 191, 192, 194, 196, 199, 200, 209, 258, 262, 270, 275, 276, 277, 281, 282, 283, 307, 311, 313, 325, 326, 331, 332, 333, 336, 337, 338, 341, 342, 343, 344, 345, 348], "congruent": 2, "shape": [2, 3, 13, 14, 16, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 52, 53, 55, 56, 57, 58, 60, 61, 65, 76, 83, 87, 96, 100, 101, 102, 103, 105, 106, 107, 108, 109, 116, 118, 122, 125, 126, 127, 133, 135, 137, 141, 143, 147, 149, 151, 153, 161, 162, 163, 167, 170, 172, 175, 180, 181, 182, 186, 187, 188, 190, 191, 192, 194, 196, 197, 198, 199, 200, 201, 203, 206, 207, 208, 209, 214, 217, 220, 221, 222, 223, 225, 226, 227, 232, 233, 234, 235, 238, 239, 240, 245, 246, 248, 249, 251, 252, 258, 262, 263, 264, 265, 267, 270, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 294, 302, 308, 311, 323, 331, 336, 337, 338, 339, 341, 342, 344, 345, 347, 348], "custom": [2, 3, 5, 32, 83, 87, 101, 107, 157, 199, 200, 239, 253, 262, 268, 327, 331, 336, 337, 338, 339, 342], "name": [2, 3, 6, 7, 11, 16, 32, 34, 36, 39, 45, 54, 57, 58, 81, 83, 87, 96, 98, 101, 102, 103, 104, 107, 109, 110, 124, 127, 141, 146, 147, 149, 155, 157, 160, 171, 188, 192, 226, 233, 245, 246, 247, 252, 253, 254, 255, 256, 258, 259, 260, 262, 263, 264, 265, 267, 273, 279, 296, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 320, 333, 336, 337, 338, 339, 342, 343, 348], "randomcroptensordict": [2, 336], "note": [2, 3, 4, 13, 14, 16, 17, 18, 19, 20, 21, 32, 34, 35, 36, 38, 39, 41, 42, 83, 87, 101, 107, 122, 125, 161, 171, 186, 188, 190, 192, 231, 232, 236, 253, 336, 337, 341, 342, 348], "unlik": [2, 69, 253, 262, 337, 347], "base": [2, 3, 4, 8, 9, 12, 13, 14, 16, 17, 18, 19, 20, 21, 35, 38, 41, 42, 45, 55, 67, 74, 75, 77, 91, 97, 98, 99, 101, 107, 143, 151, 157, 158, 199, 221, 230, 245, 246, 248, 249, 251, 252, 254, 258, 262, 263, 264, 265, 267, 311, 320, 331, 332, 333, 336, 337, 339, 342, 343, 345, 348], "here": [2, 3, 4, 7, 8, 9, 10, 56, 57, 83, 87, 91, 101, 102, 103, 107, 117, 331, 332, 336, 337, 338, 339, 342, 343, 345, 347, 348], "stop": [2, 3, 16, 21, 40, 57, 70, 71, 83, 87, 101, 107, 338, 342, 347, 348], "signal": [2, 3, 17, 52, 53, 55, 56, 57, 70, 71, 87, 117, 126, 149, 152, 171, 332, 336, 338, 342, 345, 348], "isn": [2, 3, 8, 34, 36, 39, 55, 126, 226, 235, 342], "t": [2, 3, 4, 6, 7, 8, 11, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 39, 44, 46, 47, 55, 63, 69, 74, 83, 84, 87, 98, 101, 107, 117, 122, 125, 126, 139, 142, 143, 150, 152, 159, 161, 170, 186, 190, 226, 231, 235, 266, 275, 276, 277, 278, 279, 281, 311, 313, 327, 330, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "how": [2, 3, 18, 19, 20, 32, 35, 41, 55, 63, 83, 87, 101, 102, 103, 107, 109, 245, 247, 257, 259, 262, 311, 330, 331, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "our": [2, 3, 7, 8, 18, 117, 331, 336, 337, 338, 339, 341, 342, 344, 345, 347], "enjoi": [2, 3, 55], "separ": [2, 4, 8, 13, 14, 17, 18, 20, 21, 23, 139, 159, 246, 248, 251, 252, 263, 265, 267, 336, 337, 342, 345, 348], "save": [2, 8, 32, 34, 35, 36, 38, 39, 41, 42, 52, 53, 54, 55, 56, 57, 65, 83, 87, 101, 107, 160, 293, 311, 333, 342], "disk": [2, 34, 35, 36, 38, 39, 41, 42, 52, 53, 54, 55, 56, 57, 65, 311, 333, 336, 337, 339, 345], "dump": [2, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 65, 293], "load": [2, 6, 7, 13, 14, 16, 17, 32, 34, 35, 36, 38, 39, 40, 41, 42, 45, 52, 53, 54, 55, 56, 57, 65, 82, 83, 87, 101, 107, 113, 161, 327, 333, 336, 345], "json": 2, "metadata": [2, 52, 338, 342, 348], "cannot": [2, 3, 4, 7, 22, 26, 27, 28, 31, 33, 70, 71, 83, 87, 91, 101, 107, 122, 125, 140, 146, 233, 337, 338, 339, 342, 343], "anticip": [2, 122, 125], "compli": [2, 24, 25, 26, 27, 28, 29, 30, 31, 33, 44, 46, 47, 55], "structur": [2, 3, 7, 34, 35, 36, 38, 39, 40, 41, 42, 45, 74, 83, 87, 101, 107, 122, 125, 171, 199, 231, 275, 276, 277, 278, 279, 332, 336, 338, 339, 342, 343, 344, 345], "guarante": [2, 32, 34, 36, 39, 60, 61, 62, 72, 73, 76, 83, 87, 101, 107, 161, 347], "back": [2, 24, 25, 26, 27, 28, 29, 30, 31, 33, 35, 44, 46, 47, 52, 160, 220, 226, 227, 232, 233, 234, 235, 236, 338, 342, 343, 345], "exact": [2, 3, 101, 190], "look": [2, 3, 5, 7, 8, 32, 83, 87, 96, 101, 102, 103, 107, 139, 140, 157, 232, 236, 237, 238, 332, 338, 339, 342, 343, 344, 345, 347, 348], "statu": [2, 3], "its": [2, 3, 4, 5, 7, 9, 11, 13, 14, 16, 17, 18, 19, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 39, 41, 44, 46, 47, 49, 65, 83, 87, 97, 101, 102, 103, 107, 110, 116, 117, 126, 133, 149, 150, 154, 155, 160, 161, 173, 174, 197, 198, 199, 200, 224, 226, 232, 233, 236, 239, 245, 246, 247, 252, 253, 254, 255, 256, 258, 259, 260, 261, 262, 263, 264, 265, 267, 273, 311, 323, 333, 336, 337, 338, 339, 342, 343, 344, 345, 348], "prioriti": [2, 4, 35, 41, 42, 60, 61, 62, 63, 72, 73, 76, 248, 249, 251, 252, 253, 258, 263, 265, 267, 273, 333, 336, 337, 345], "max": [2, 23, 33, 36, 41, 45, 58, 63, 124, 152, 214, 215, 216, 225, 231, 246, 247, 252, 261, 263, 265, 336, 338, 339, 342], "heap": 2, "under": [2, 3, 4, 21, 32, 40, 52, 53, 55, 56, 57, 83, 87, 101, 107, 220, 226, 227, 232, 233, 234, 235, 236, 260, 275, 276, 277, 278, 279, 332, 336, 337, 343, 348], "hood": [2, 21, 343], "just": [2, 3, 4, 11, 73, 83, 87, 96, 101, 102, 103, 107, 120, 171, 200, 302, 331, 333, 336, 337, 338, 339, 342, 343, 345, 347, 348], "public": [2, 54, 139, 159], "method": [2, 3, 4, 11, 13, 14, 15, 16, 17, 21, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 45, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 70, 71, 72, 73, 76, 83, 87, 101, 107, 117, 121, 122, 123, 126, 127, 129, 133, 135, 139, 141, 142, 143, 147, 149, 151, 154, 155, 157, 159, 172, 193, 220, 221, 222, 223, 225, 226, 227, 228, 230, 232, 233, 234, 235, 236, 237, 245, 246, 248, 249, 251, 252, 253, 254, 258, 260, 262, 263, 264, 265, 267, 273, 279, 293, 324, 332, 333, 334, 337, 338, 339, 343, 345, 348], "don": [2, 3, 4, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31, 33, 44, 46, 47, 117, 337, 338, 345, 347, 348], "assum": [2, 3, 6, 26, 33, 40, 41, 42, 52, 53, 55, 56, 57, 87, 101, 107, 116, 119, 129, 139, 140, 146, 151, 157, 159, 167, 188, 192, 193, 218, 239, 249, 253, 265, 273, 284, 285, 286, 287, 289, 290, 291, 292, 294, 336, 338, 339, 341, 343], "serializ": 2, "altern": [2, 4, 27, 98, 180, 197, 198, 199, 244, 336, 338, 342], "state_dict": [2, 13, 14, 16, 17, 21, 32, 34, 36, 39, 83, 87, 101, 107, 155, 161, 265, 327, 333, 336, 337, 348], "load_state_dict": [2, 13, 14, 16, 17, 21, 32, 34, 36, 39, 83, 87, 101, 107, 155, 161, 265, 333, 336], "drawback": 2, "struggl": 2, "big": [2, 338, 345, 348], "wrapper": [2, 3, 11, 15, 17, 34, 36, 39, 40, 41, 42, 79, 80, 81, 82, 86, 88, 89, 91, 92, 93, 94, 95, 97, 99, 102, 103, 104, 105, 106, 108, 109, 111, 160, 203, 218, 224, 225, 229, 231, 236, 241, 275, 299, 300, 301, 327, 329, 338, 339, 342, 344, 348], "around": [2, 5, 7, 15, 17, 41, 42, 97, 236, 275, 336, 337, 342, 348], "present": [2, 3, 32, 34, 35, 36, 38, 39, 41, 42, 52, 53, 54, 55, 56, 57, 63, 65, 69, 83, 87, 101, 107, 127, 143, 147, 170, 171, 175, 176, 177, 178, 179, 185, 190, 202, 207, 231, 235, 236, 237, 238, 245, 246, 247, 250, 251, 252, 253, 254, 255, 256, 258, 259, 260, 261, 262, 263, 264, 265, 267, 273, 275, 276, 277, 278, 279, 327, 333, 336, 341, 342, 345, 347], "replaybuff": [2, 41, 42, 65, 77, 117, 140, 143, 249, 253, 273, 321, 323, 329, 338, 342, 344, 345, 347], "promptli": 2, "virtual": [2, 3], "instal": [2, 3, 5, 10, 18, 19, 20, 52, 54, 102, 103, 105, 106, 311, 330, 338, 339, 342, 348], "respons": [2, 3, 8, 311, 348], "d4rl": [2, 52, 53, 55, 56, 57], "clone": [2, 4, 8, 26, 28, 133, 221, 222, 223, 235, 258, 320, 329, 336, 343, 347], "repositori": [2, 7, 53, 54, 57], "latest": [2, 3, 10, 98, 102, 103, 308, 338, 342, 343, 347], "wheel": [2, 338], "publish": 2, "pypi": [2, 347], "openml": [2, 54, 100], "scikit": [2, 54], "panda": [2, 54], "customari": [2, 331], "time": [2, 3, 4, 7, 8, 13, 14, 16, 17, 18, 20, 21, 32, 35, 38, 40, 41, 42, 55, 56, 74, 83, 84, 87, 96, 100, 101, 102, 103, 107, 113, 116, 118, 140, 146, 151, 152, 161, 170, 184, 186, 190, 192, 193, 231, 247, 252, 255, 259, 260, 262, 263, 267, 275, 276, 277, 278, 279, 280, 281, 284, 285, 286, 287, 288, 289, 290, 291, 292, 311, 331, 332, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "moreov": [2, 3], "fine": [2, 133, 344], "grain": 2, "nomenclatur": 2, "compact": 2, "togeth": [2, 3, 13, 14, 16, 17, 18, 19, 20, 21, 28, 29, 40, 83, 87, 96, 101, 102, 103, 107, 117, 140, 186, 188, 190, 192, 217, 221, 222, 223, 241, 331, 337, 338, 339], "propos": [2, 117, 126, 195, 257, 266, 320, 331, 339, 345], "replaybufferensembl": [2, 68, 73, 78], "primit": [2, 3, 4, 55, 245, 246, 248, 249, 251, 252, 258, 262, 263, 264, 265, 267], "onc": [2, 3, 7, 13, 14, 16, 17, 18, 19, 20, 21, 32, 34, 36, 39, 55, 65, 83, 87, 101, 107, 143, 155, 224, 229, 231, 309, 333, 337, 338, 339, 343, 345, 348], "individu": [2, 4, 18, 19, 20, 21, 32, 45, 65, 83, 87, 101, 107, 336, 342], "format": [2, 17, 31, 32, 33, 55, 56, 57, 68, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 235, 336, 337, 348], "dummi": [2, 320, 336, 348], "semant": [2, 28, 29, 331], "ident": [2, 3, 13, 14, 16, 32, 34, 36, 39, 101, 107, 126, 199, 200, 275, 276, 277, 278, 325, 326, 337, 342], "entri": [2, 3, 13, 14, 18, 19, 20, 21, 23, 26, 28, 32, 34, 36, 37, 39, 45, 49, 52, 53, 54, 56, 57, 70, 71, 83, 87, 101, 107, 117, 119, 120, 122, 125, 126, 129, 132, 135, 137, 139, 141, 143, 146, 149, 150, 151, 159, 161, 170, 171, 188, 197, 198, 225, 226, 233, 234, 246, 265, 275, 276, 277, 278, 331, 336, 338, 339, 342, 343, 344, 345, 348], "another_kei": [2, 65], "renam": [2, 34, 36, 39, 65, 141, 143, 170, 336], "match": [2, 3, 6, 8, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 44, 46, 47, 52, 53, 54, 55, 56, 57, 65, 73, 83, 84, 87, 101, 107, 115, 117, 118, 119, 120, 121, 122, 123, 124, 126, 127, 129, 131, 132, 133, 135, 137, 141, 142, 144, 145, 146, 147, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 160, 161, 173, 174, 181, 188, 192, 194, 199, 200, 214, 220, 225, 226, 232, 233, 235, 236, 239, 240, 246, 252, 259, 261, 263, 265, 308, 313, 331, 336, 338, 341, 342, 343, 345, 347, 348], "resiz": [2, 3, 57, 65, 117, 337, 339, 345, 348], "imag": [2, 4, 7, 55, 81, 119, 139, 153, 159, 194, 336, 337, 342, 344, 348], "comops": 2, "totensorimag": [2, 3, 57, 65, 117, 142, 337, 339, 345, 347, 348], "renametransform": [2, 65, 83, 87, 101, 107], "rb0": [2, 65], "in_kei": [2, 3, 13, 14, 16, 17, 21, 52, 65, 97, 115, 116, 117, 118, 119, 120, 122, 124, 125, 129, 131, 133, 135, 136, 137, 139, 141, 142, 143, 144, 145, 146, 150, 152, 153, 154, 155, 157, 159, 161, 172, 182, 188, 192, 196, 208, 217, 218, 220, 221, 222, 223, 225, 226, 232, 233, 235, 236, 238, 239, 240, 245, 246, 247, 248, 249, 251, 252, 258, 259, 262, 263, 264, 265, 267, 273, 275, 276, 277, 278, 293, 294, 320, 323, 331, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "pixel": [2, 3, 7, 26, 57, 65, 117, 119, 126, 129, 131, 135, 137, 139, 142, 153, 157, 159, 176, 204, 205, 294, 320, 331, 336, 337, 339, 344, 345, 347, 348], "next": [2, 3, 4, 8, 13, 14, 16, 26, 28, 32, 35, 38, 40, 41, 42, 52, 53, 54, 55, 56, 57, 58, 65, 70, 71, 74, 80, 83, 84, 87, 93, 97, 101, 105, 106, 107, 108, 109, 116, 117, 122, 125, 126, 127, 132, 133, 137, 141, 143, 146, 147, 149, 151, 160, 161, 167, 170, 172, 187, 188, 191, 192, 196, 211, 241, 245, 246, 248, 249, 251, 252, 253, 258, 262, 263, 264, 265, 267, 273, 274, 275, 276, 277, 278, 279, 305, 307, 309, 336, 337, 339, 341, 343, 344, 345, 347, 348], "32": [2, 22, 26, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 65, 71, 105, 106, 108, 109, 173, 174, 175, 176, 177, 180, 185, 194, 199, 200, 204, 205, 207, 208, 217, 273, 336, 337, 339, 343, 344, 345, 347, 348], "rb1": [2, 65], "p": [2, 4, 65, 68, 84, 105, 106], "5": [2, 3, 24, 26, 28, 35, 38, 41, 42, 65, 70, 71, 84, 93, 98, 105, 106, 108, 109, 116, 143, 149, 150, 172, 173, 174, 183, 184, 186, 189, 190, 193, 194, 196, 199, 200, 204, 209, 215, 216, 225, 226, 233, 239, 259, 262, 264, 267, 331, 335, 336, 337, 339, 342, 343, 345, 346, 347, 348], "33": [2, 26, 32, 65, 83, 87, 101, 107, 173, 174, 194, 336, 337, 339, 343], "out_kei": [2, 3, 13, 14, 16, 17, 21, 65, 97, 115, 116, 117, 118, 119, 120, 122, 125, 129, 131, 133, 135, 136, 137, 139, 141, 142, 143, 144, 145, 146, 150, 152, 153, 154, 157, 159, 161, 172, 182, 183, 188, 192, 196, 208, 209, 217, 218, 220, 221, 222, 223, 225, 227, 232, 233, 234, 235, 236, 238, 239, 240, 245, 246, 247, 252, 258, 259, 262, 263, 264, 265, 273, 275, 276, 277, 278, 294, 307, 323, 331, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "pixels33": [2, 65], "data0": [2, 65], "randint": [2, 45, 65, 153, 345], "255": [2, 65, 153, 343, 345], "244": [2, 65, 139, 159, 343], "randn": [2, 26, 34, 35, 36, 38, 39, 41, 42, 52, 53, 54, 55, 56, 57, 60, 61, 65, 70, 71, 76, 116, 135, 167, 175, 180, 183, 186, 187, 190, 191, 193, 197, 198, 199, 203, 206, 207, 209, 220, 221, 222, 223, 225, 226, 232, 233, 235, 238, 239, 240, 245, 246, 248, 249, 251, 252, 258, 262, 263, 264, 265, 267, 275, 276, 277, 278, 310, 331, 347, 348], "batch_siz": [2, 3, 8, 13, 14, 15, 16, 26, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 52, 53, 54, 55, 56, 57, 58, 60, 61, 64, 65, 70, 71, 74, 76, 80, 83, 85, 87, 90, 93, 96, 97, 100, 101, 102, 103, 105, 106, 107, 108, 109, 116, 117, 122, 125, 126, 127, 137, 141, 143, 147, 149, 151, 154, 170, 171, 172, 180, 183, 188, 192, 196, 208, 209, 217, 218, 220, 221, 222, 223, 225, 226, 227, 228, 229, 231, 232, 233, 234, 235, 238, 239, 240, 245, 246, 248, 249, 251, 252, 258, 262, 263, 264, 265, 267, 273, 302, 308, 320, 331, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "data1": [2, 65], "64": [2, 3, 34, 36, 39, 55, 65, 117, 142, 176, 177, 185, 188, 192, 200, 208, 273, 336, 337, 338, 339, 341, 343, 344, 345, 347, 348], "_": [2, 8, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 65, 84, 91, 109, 118, 122, 124, 125, 133, 135, 141, 153, 161, 220, 235, 240, 244, 245, 246, 248, 252, 258, 262, 263, 265, 267, 275, 276, 277, 278, 336, 337, 338, 339, 342, 343, 345, 347], "rang": [2, 3, 4, 8, 11, 27, 35, 38, 40, 41, 42, 52, 53, 54, 55, 56, 57, 60, 61, 65, 74, 83, 84, 87, 101, 107, 143, 153, 161, 187, 191, 259, 267, 332, 333, 336, 338, 339, 342, 343, 345, 347], "parent": [2, 3, 21, 26, 28, 44, 65, 73, 78, 83, 117, 118, 121, 123, 126, 129, 130, 135, 139, 146, 149, 150, 151, 152, 154, 156, 157, 221, 260, 262, 279, 336, 343, 347, 348], "basic": [2, 97, 331, 338, 348], "properti": [2, 3, 32, 34, 36, 39, 83, 87, 97, 101, 107, 154, 155, 181, 189, 201, 206, 214, 215, 216, 260, 265, 343, 345], "observ": [2, 3, 8, 13, 14, 16, 17, 21, 32, 44, 52, 53, 55, 56, 57, 80, 81, 82, 83, 84, 87, 93, 96, 97, 100, 101, 102, 103, 105, 106, 107, 108, 109, 116, 117, 118, 119, 120, 121, 122, 123, 126, 127, 129, 131, 132, 133, 135, 136, 137, 141, 142, 143, 146, 147, 149, 150, 151, 152, 153, 154, 155, 156, 157, 160, 161, 170, 175, 176, 177, 178, 179, 180, 183, 188, 192, 193, 199, 204, 205, 207, 209, 210, 220, 221, 222, 223, 225, 226, 228, 229, 231, 232, 233, 240, 241, 245, 246, 247, 248, 249, 251, 252, 255, 258, 259, 262, 263, 264, 265, 267, 273, 275, 276, 277, 278, 279, 294, 320, 323, 331, 333, 337, 338, 339, 341, 342, 343, 345, 347, 348], "dtype": [2, 3, 13, 14, 16, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 53, 55, 56, 57, 58, 60, 61, 63, 70, 71, 76, 80, 83, 87, 93, 96, 97, 100, 101, 102, 103, 105, 106, 107, 108, 109, 114, 121, 122, 123, 124, 125, 126, 127, 133, 135, 137, 139, 141, 143, 147, 149, 151, 153, 154, 155, 157, 159, 163, 167, 170, 171, 172, 183, 186, 187, 188, 190, 191, 192, 196, 201, 202, 208, 209, 217, 220, 221, 222, 223, 225, 226, 227, 231, 232, 233, 234, 235, 238, 240, 245, 246, 248, 249, 251, 252, 258, 262, 263, 264, 265, 267, 273, 275, 276, 277, 278, 281, 320, 331, 338, 339, 341, 342, 343, 344, 345, 347, 348], "input": [2, 3, 4, 13, 14, 16, 17, 18, 19, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 39, 40, 43, 44, 46, 47, 83, 87, 97, 100, 101, 102, 103, 104, 107, 109, 114, 116, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 135, 137, 138, 139, 140, 141, 143, 146, 147, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 163, 170, 171, 173, 174, 176, 177, 178, 179, 182, 183, 186, 187, 188, 190, 191, 192, 193, 194, 199, 200, 201, 202, 209, 210, 211, 212, 213, 218, 220, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 244, 245, 246, 247, 252, 253, 254, 255, 256, 258, 259, 260, 262, 263, 264, 265, 267, 273, 274, 275, 276, 277, 278, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 305, 309, 314, 323, 331, 332, 333, 336, 337, 338, 339, 342, 343, 347, 348], "output": [2, 3, 4, 13, 14, 16, 17, 32, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 70, 71, 83, 87, 97, 100, 101, 102, 103, 104, 107, 109, 117, 120, 121, 122, 123, 125, 127, 133, 135, 139, 141, 146, 147, 149, 152, 154, 157, 159, 160, 163, 171, 173, 174, 175, 176, 177, 180, 182, 183, 184, 186, 187, 188, 190, 191, 192, 193, 194, 199, 200, 203, 209, 218, 220, 221, 224, 225, 226, 227, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 245, 246, 247, 248, 252, 253, 254, 255, 256, 258, 259, 260, 262, 263, 264, 265, 267, 273, 275, 276, 277, 278, 279, 294, 302, 331, 332, 336, 337, 338, 339, 341, 342, 343, 344, 347, 348], "send": [2, 3, 8, 347], "receiv": [2, 3, 32, 40, 83, 87, 101, 107, 154, 194, 281, 332, 336, 338, 341, 343], "spawn": [2, 3, 4, 18, 22, 91, 98, 342], "check_env_spec": [2, 3, 329, 338, 342, 343], "saniti": [2, 3, 7, 163, 338], "utmost": 2, "techniqu": [2, 8, 337, 345], "commonli": [2, 70, 71, 348], "emploi": [2, 202], "realm": 2, "languag": [2, 40], "scarc": 2, "address": [2, 345], "subdomain": 2, "within": [2, 13, 14, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 41, 42, 44, 46, 47, 55, 83, 87, 101, 107, 117, 122, 125, 126, 149, 160, 161, 171, 173, 174, 175, 176, 177, 178, 179, 180, 182, 184, 185, 186, 187, 188, 190, 191, 192, 193, 194, 199, 200, 203, 204, 205, 207, 210, 211, 213, 218, 224, 225, 227, 228, 229, 231, 234, 239, 242, 249, 253, 273, 331, 343, 347], "facilit": [2, 3, 7, 138, 139, 157, 159, 221, 222, 223, 331, 336, 339, 343], "interact": [2, 4, 5, 7, 8, 13, 14, 16, 18, 19, 20, 21, 55, 232, 236, 336, 338, 342, 343, 348], "extern": [2, 3, 122, 125, 348], "consist": [2, 3, 32, 35, 38, 41, 42, 55, 83, 87, 101, 107, 133, 160, 174, 194, 336, 337, 338, 343, 344, 348], "token": [2, 36, 37, 40, 43, 45, 58], "manner": [2, 87, 139, 157, 331, 336, 337, 338, 341, 343, 345], "handl": [3, 21, 32, 83, 87, 101, 107, 160, 161, 192, 194, 311, 325, 326, 336, 337, 338, 342, 345], "dm": [3, 336, 348], "goal": [3, 4, 150, 336, 337, 338, 339, 342, 343], "abl": [3, 96, 102, 103, 336, 338, 339, 341, 342, 343, 345, 347], "experi": [3, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 63, 163, 296, 297, 298, 299, 300, 301, 330, 337, 338, 342, 345], "even": [3, 4, 8, 14, 18, 20, 21, 60, 61, 62, 72, 73, 76, 83, 84, 87, 91, 101, 107, 171, 336, 338, 342, 343, 348], "simul": [3, 5, 7, 8, 104, 109, 112, 172, 196, 331, 336, 338, 342], "box": [3, 24, 25, 26, 27, 28, 29, 30, 31, 33, 44, 46, 47], "lib": [3, 5, 6, 7, 9, 10, 13, 14, 16, 17, 21, 22, 83, 84, 87, 101, 102, 103, 105, 106, 107, 117, 120, 126, 132, 133, 135, 137, 141, 143, 146, 151, 154, 160, 161, 320, 323, 336, 337, 338, 339, 341, 342, 344, 345, 347, 348], "hope": 3, "imit": 3, "nn": [3, 13, 14, 16, 17, 21, 32, 40, 83, 87, 97, 101, 107, 121, 124, 126, 133, 139, 151, 154, 155, 157, 159, 172, 173, 174, 176, 177, 178, 179, 182, 183, 184, 185, 186, 187, 188, 190, 191, 192, 194, 196, 198, 199, 200, 203, 208, 209, 217, 220, 221, 222, 223, 225, 226, 228, 229, 231, 232, 233, 235, 236, 237, 238, 240, 245, 246, 248, 249, 251, 252, 253, 254, 258, 260, 262, 263, 264, 265, 267, 273, 275, 276, 277, 278, 320, 323, 331, 332, 336, 337, 338, 339, 341, 342, 343, 344, 347], "typic": [3, 4, 8, 32, 83, 87, 101, 107, 126, 150, 232, 246, 260, 262, 265, 331, 332, 333, 338, 342, 343], "organis": [3, 56, 337], "arbitrari": [3, 33, 101, 107, 331, 336, 337, 343], "nest": [3, 26, 28, 32, 34, 36, 39, 48, 60, 61, 65, 76, 83, 87, 101, 107, 117, 149, 152, 171, 275, 276, 277, 278, 279, 333, 337, 338, 342, 343, 345, 347], "attribut": [3, 4, 32, 34, 36, 39, 45, 55, 83, 87, 101, 107, 126, 139, 157, 188, 192, 236, 245, 246, 248, 249, 251, 252, 253, 254, 258, 260, 262, 263, 264, 265, 267, 273, 336, 339, 343], "expect": [3, 4, 7, 26, 32, 38, 44, 45, 69, 83, 87, 97, 100, 101, 104, 107, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 126, 127, 129, 131, 132, 133, 135, 137, 139, 141, 142, 144, 145, 146, 147, 149, 150, 151, 152, 153, 154, 156, 157, 158, 160, 163, 186, 187, 188, 190, 191, 192, 199, 200, 227, 231, 235, 238, 245, 246, 247, 248, 249, 251, 252, 258, 259, 260, 262, 263, 264, 265, 267, 273, 315, 330, 331, 332, 333, 336, 338, 339, 342, 343, 345, 348], "live": [3, 12, 13, 14, 16, 17, 19, 20, 32, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 65, 83, 87, 97, 101, 107, 126], "actual": [3, 4, 7, 17, 52, 53, 55, 56, 57, 83, 87, 101, 107, 160, 314, 332, 336, 338, 342, 343], "do": [3, 4, 7, 57, 87, 109, 140, 160, 161, 170, 200, 201, 222, 275, 333, 336, 337, 338, 339, 341, 342, 343, 345, 347, 348], "retriev": [3, 34, 35, 36, 38, 39, 41, 42, 52, 53, 54, 55, 56, 57, 65, 68, 83, 87, 101, 107, 118, 123, 126, 135, 170, 172, 173, 196, 232, 236, 239, 245, 246, 247, 249, 259, 262, 263, 265, 267, 273, 275, 276, 277, 278, 320, 327, 333, 337, 338, 343, 348], "care": [3, 8, 83, 87, 101, 107, 154, 173, 174, 175, 176, 177, 178, 179, 180, 182, 184, 185, 186, 187, 188, 190, 191, 192, 193, 194, 199, 200, 203, 204, 205, 207, 210, 211, 213, 218, 224, 225, 227, 228, 229, 231, 234, 239, 242, 336, 338, 342, 343, 345], "below": [3, 7, 13, 14, 16, 17, 18, 19, 20, 21, 32, 58, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 173, 174, 186, 189, 190, 194, 200, 216, 235, 308, 336, 337, 338, 339, 343], "parametr": [3, 202, 236, 246, 258, 265, 336, 338], "hardwar": 3, "observation_spec": [3, 83, 87, 97, 101, 107, 114, 117, 118, 119, 120, 121, 122, 123, 125, 126, 129, 131, 132, 133, 135, 137, 139, 142, 146, 149, 150, 151, 152, 153, 154, 156, 157, 160, 172, 188, 192, 196, 315, 323, 336, 338, 341, 342, 343, 348], "compositespec": [3, 28, 49, 83, 85, 87, 97, 101, 107, 114, 122, 123, 124, 125, 127, 133, 141, 147, 149, 151, 154, 167, 171, 172, 196, 220, 224, 232, 238, 239, 329, 336, 338, 339, 342, 343, 348], "pair": [3, 32, 34, 36, 39, 52, 83, 87, 101, 107, 143, 151, 188, 221, 232, 236, 260, 275, 276, 277, 278, 279, 331, 332, 336, 337, 338, 341, 343, 348], "state_spec": [3, 83, 87, 97, 101, 107, 114, 172, 196, 338, 343, 348], "empti": [3, 26, 28, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 65, 83, 87, 100, 101, 107, 139, 152, 155, 157, 159, 298, 336, 343], "action_spec": [3, 13, 14, 15, 16, 18, 19, 20, 80, 83, 87, 93, 97, 101, 102, 103, 107, 114, 117, 122, 125, 133, 143, 172, 183, 196, 209, 211, 220, 226, 232, 233, 246, 249, 251, 263, 265, 267, 323, 331, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "reward_spec": [3, 83, 87, 97, 101, 107, 114, 115, 120, 121, 122, 123, 125, 144, 145, 146, 154, 156, 172, 196, 338, 342, 343, 348], "reward": [3, 13, 14, 16, 32, 34, 39, 40, 44, 45, 53, 55, 56, 57, 58, 74, 80, 83, 87, 93, 97, 100, 101, 105, 106, 107, 108, 109, 114, 115, 120, 121, 122, 123, 125, 126, 127, 133, 137, 141, 143, 144, 145, 146, 147, 149, 150, 154, 155, 156, 158, 159, 161, 167, 170, 172, 188, 196, 225, 241, 245, 246, 248, 249, 251, 252, 255, 258, 260, 262, 263, 264, 265, 267, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 304, 305, 307, 309, 327, 332, 333, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "done_spec": [3, 83, 87, 101, 107, 122, 123, 125, 126, 154, 171, 338, 342, 343, 348], "flag": [3, 8, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 65, 109, 231, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 331, 342, 343, 344], "section": [3, 4, 186, 190, 337, 342], "termin": [3, 7, 32, 40, 52, 53, 55, 56, 57, 83, 87, 101, 102, 103, 105, 106, 107, 108, 109, 126, 171, 172, 188, 192, 196, 237, 245, 246, 248, 249, 251, 252, 258, 262, 263, 264, 265, 267, 273, 275, 276, 277, 278, 279, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "input_spec": [3, 83, 87, 97, 101, 107, 121, 122, 123, 124, 135, 137, 141, 146, 147, 149, 150, 151, 154, 155, 156, 158, 343], "full_action_spec": [3, 83, 87, 101, 107, 172, 196, 342], "full_state_spec": [3, 83, 87, 101, 107, 172, 196], "lock": [3, 26, 28, 34, 36, 39, 83, 87, 101, 107, 151, 161, 343], "modifi": [3, 7, 8, 26, 28, 32, 45, 83, 87, 101, 107, 121, 129, 133, 139, 151, 154, 155, 157, 159, 225, 231, 235, 314, 320, 336, 337, 338, 342, 343], "directli": [3, 4, 8, 65, 83, 87, 97, 101, 107, 143, 160, 260, 327, 331, 338, 342, 343, 345], "output_spec": [3, 83, 87, 101, 107, 121, 122, 123, 127, 133, 141, 147, 149, 154, 155, 343], "full_observation_spec": [3, 83, 87, 101, 107, 172, 196], "full_reward_spec": [3, 83, 87, 101, 107, 342], "full_done_spec": [3, 83, 87, 101, 107, 171, 342], "importantli": [3, 232, 236], "4": [3, 7, 24, 26, 27, 28, 33, 34, 35, 36, 38, 39, 40, 41, 42, 52, 53, 54, 55, 56, 57, 65, 70, 71, 81, 82, 83, 86, 87, 92, 94, 95, 96, 97, 101, 105, 106, 107, 114, 117, 126, 143, 149, 150, 161, 172, 173, 174, 175, 176, 177, 180, 183, 184, 185, 186, 187, 190, 191, 193, 194, 196, 199, 200, 203, 204, 205, 206, 207, 208, 209, 217, 220, 221, 222, 223, 225, 226, 227, 228, 229, 231, 232, 233, 234, 235, 238, 240, 245, 246, 248, 249, 251, 252, 253, 254, 258, 260, 262, 263, 264, 265, 267, 273, 293, 331, 336, 337, 338, 339, 342, 343, 344, 345, 347, 348], "action_s": 3, "help": [3, 4, 32, 83, 87, 101, 107, 126, 330, 332, 336, 337, 338, 339, 342], "prealloc": [3, 343], "With": [3, 96, 150, 333, 336, 337, 342, 345, 348], "necessarili": [3, 348], "0s": [3, 55, 151, 339], "stateless": [3, 154, 260, 336, 343, 348], "step_and_maybe_reset": [3, 83, 87, 101, 107], "partial": [3, 83, 87, 101, 107, 116, 117, 150, 151, 152, 311, 339], "step_mdp": [3, 188, 192, 329, 339, 343, 347, 348], "done_kei": [3, 83, 87, 101, 107, 126, 143, 149, 170, 342], "assign": [3, 4, 13, 14, 32, 34, 36, 39, 83, 87, 101, 107, 155, 248, 249, 251, 265, 338, 342, 345], "_reset": [3, 83, 87, 97, 101, 107, 114, 117, 122, 125, 171, 172, 196], "data_": [3, 83, 87, 101, 107], "i": [3, 13, 14, 16, 17, 18, 19, 20, 21, 26, 28, 32, 35, 38, 42, 43, 60, 61, 63, 71, 76, 83, 87, 101, 107, 139, 143, 146, 155, 159, 187, 191, 203, 209, 227, 232, 234, 235, 236, 275, 276, 277, 278, 302, 314, 336, 337, 338, 339, 342, 343, 345, 347, 348], "n": [3, 6, 7, 24, 27, 32, 33, 40, 83, 87, 101, 107, 117, 124, 129, 156, 186, 187, 190, 196, 231, 236, 245, 252, 260, 274, 308, 331, 333, 337, 338, 339, 342, 345, 348], "append": [3, 8, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 65, 83, 84, 87, 101, 107, 120, 143, 151, 160, 187, 188, 191, 192, 226, 233, 336, 337, 338, 339, 342, 343, 344, 345, 347], "set_se": [3, 13, 14, 16, 17, 21, 80, 83, 87, 93, 97, 101, 107, 135, 141, 146, 150, 152, 155, 343, 347, 348], "seed": [3, 13, 14, 16, 17, 21, 56, 81, 83, 87, 97, 101, 102, 103, 107, 108, 109, 114, 122, 125, 155, 163, 311], "determinist": [3, 32, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 175, 184, 204, 211, 220, 229, 235, 236, 239, 246, 331, 336, 337, 339, 343, 348], "preced": [3, 193, 339], "without": [3, 7, 9, 32, 40, 52, 55, 70, 71, 83, 87, 101, 107, 109, 114, 122, 125, 153, 186, 187, 190, 191, 222, 223, 245, 246, 248, 249, 251, 252, 258, 262, 263, 264, 265, 267, 274, 275, 276, 277, 278, 279, 323, 330, 331, 336, 337, 338, 342, 343, 345, 348], "risk": [3, 140], "overlap": [3, 41], "consecut": [3, 69, 91, 192, 231, 339, 342, 348], "reproduc": [3, 117, 163, 336, 338, 342], "maximum": [3, 4, 13, 14, 16, 17, 18, 19, 20, 21, 32, 34, 36, 37, 39, 40, 43, 45, 58, 60, 61, 62, 76, 83, 87, 101, 107, 124, 144, 149, 150, 152, 214, 215, 216, 239, 246, 252, 258, 260, 261, 265, 308, 336, 337, 338, 339, 342, 345], "max_step": [3, 13, 83, 87, 97, 101, 107, 108, 109, 149, 342, 347, 348], "tensordictmodul": [3, 13, 14, 16, 17, 20, 21, 40, 97, 116, 133, 183, 188, 192, 196, 208, 209, 217, 218, 221, 222, 223, 224, 225, 226, 229, 231, 232, 233, 234, 235, 237, 238, 239, 241, 246, 248, 252, 254, 255, 256, 258, 260, 263, 265, 267, 273, 274, 275, 276, 277, 278, 307, 323, 331, 336, 338, 339, 341, 342, 343, 344], "compat": [3, 7, 11, 18, 19, 32, 34, 36, 39, 52, 65, 68, 70, 71, 72, 83, 87, 89, 100, 101, 107, 117, 149, 157, 161, 186, 187, 188, 190, 191, 192, 233, 245, 246, 248, 249, 251, 252, 258, 260, 262, 263, 264, 265, 267, 270, 336, 339, 345, 347], "mark": [3, 16, 57, 83, 87, 101, 107, 188, 192], "trail": [3, 161], "treat": 3, "figur": [3, 336, 338, 339, 342, 343, 348], "summar": [3, 343], "brief": [3, 338], "deliveri": 3, "design": [3, 13, 14, 32, 33, 68, 73, 78, 83, 87, 101, 107, 117, 140, 155, 225, 245, 246, 247, 252, 253, 254, 255, 256, 258, 259, 260, 262, 263, 264, 265, 267, 273, 336, 337, 338, 339, 341, 342, 343, 345, 348], "metaclass": 3, "ensur": [3, 32, 35, 41, 63, 69, 83, 87, 101, 107, 117, 139, 149, 157, 161, 226, 331, 337, 338, 343, 345], "everi": [3, 8, 17, 26, 28, 32, 33, 72, 83, 87, 101, 107, 149, 150, 161, 173, 174, 175, 176, 177, 178, 179, 180, 182, 184, 185, 186, 187, 188, 190, 191, 192, 193, 194, 199, 200, 203, 204, 205, 207, 210, 211, 213, 218, 224, 225, 227, 228, 229, 231, 234, 239, 242, 311, 333, 336, 337, 338, 339, 342, 343], "flank": [3, 339], "dual": 3, "strictli": [3, 8, 32, 83, 87, 101, 107, 155, 265, 336, 338], "refer": [3, 7, 8, 9, 21, 32, 40, 83, 87, 101, 107, 155, 161, 172, 183, 184, 196, 197, 198, 199, 204, 205, 210, 211, 227, 245, 253, 254, 255, 256, 262, 265, 275, 280, 288, 335, 336, 338, 342], "union": [3, 11, 13, 15, 16, 17, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 39, 44, 46, 47, 63, 83, 87, 101, 107, 114, 124, 126, 132, 135, 139, 140, 143, 145, 157, 159, 161, 170, 173, 174, 176, 177, 178, 179, 181, 183, 185, 193, 194, 197, 198, 199, 200, 201, 202, 206, 208, 209, 214, 215, 216, 217, 235, 251, 252, 257, 263, 266, 288, 294, 305, 307, 308, 316, 317, 320, 321, 323, 324, 325, 326, 327], "interpret": [3, 337], "last": [3, 4, 11, 13, 14, 16, 17, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 37, 44, 46, 47, 52, 69, 71, 83, 87, 101, 107, 116, 129, 135, 140, 150, 152, 153, 173, 174, 186, 188, 190, 192, 193, 194, 197, 198, 204, 212, 218, 224, 225, 228, 229, 236, 337, 338, 339, 342, 343, 344, 345, 347, 348], "indic": [3, 8, 11, 13, 14, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 44, 45, 46, 47, 52, 53, 54, 55, 56, 57, 58, 59, 65, 66, 68, 69, 70, 71, 74, 75, 77, 78, 83, 87, 101, 107, 117, 118, 149, 150, 151, 152, 155, 171, 173, 174, 194, 197, 198, 200, 231, 233, 234, 242, 245, 246, 248, 249, 251, 252, 253, 254, 258, 260, 262, 263, 264, 265, 267, 273, 315, 327, 330, 333, 338, 339, 343, 345, 348], "truncat": [3, 13, 14, 16, 18, 19, 20, 21, 37, 43, 45, 52, 53, 55, 56, 57, 70, 71, 83, 87, 101, 102, 103, 107, 126, 127, 134, 143, 149, 171, 188, 192, 216, 281, 336, 338, 339, 341, 344, 345, 347, 348], "carri": [3, 21, 45, 83, 87, 101, 107, 151, 260, 337, 339, 342, 343, 345], "assess": [3, 110, 336], "split_trajectori": [3, 13, 14, 16, 17, 18, 19, 20, 21, 55, 70, 71, 329], "adjac": [3, 23, 129], "reli": [3, 186, 187, 190, 191, 245, 332, 336, 338, 343, 348], "traj_id": [3, 13, 14, 16, 23, 143, 339, 345, 347], "junction": 3, "miss": [3, 4, 6, 7, 11, 26, 32, 83, 87, 101, 107, 155, 170, 237, 238, 265, 330, 336, 339], "context": [3, 5, 8, 32, 83, 84, 87, 100, 101, 107, 151, 156, 200, 201, 225, 271, 272, 275, 276, 277, 278, 280, 288, 307, 331, 332, 336, 337, 338, 342, 343, 344, 345], "through": [3, 4, 5, 8, 11, 16, 18, 20, 21, 26, 28, 55, 91, 96, 101, 102, 103, 107, 122, 125, 140, 194, 208, 232, 236, 237, 238, 242, 275, 276, 277, 278, 331, 336, 337, 338, 341, 342, 343, 344, 345, 348], "inittrack": [3, 188, 192, 336, 339], "tutori": [3, 335, 336, 337, 339, 340, 341, 343, 344, 345, 346, 348], "inform": [3, 4, 13, 14, 16, 17, 18, 19, 20, 21, 32, 34, 36, 39, 43, 55, 83, 84, 87, 90, 101, 107, 173, 174, 194, 200, 332, 333, 336, 337, 338, 339, 342, 343, 345], "scratch": [3, 8, 337, 343], "better": [3, 8, 9, 188, 192, 332, 338, 343], "intens": [3, 8], "gym3": 3, "envpool": [3, 98, 99], "interfac": [3, 90, 100, 194, 201, 331, 336, 338, 343, 345], "simultan": [3, 20, 101, 107, 343], "often": [3, 8, 257, 311, 336, 337, 343, 345, 348], "competit": [3, 342], "advantag": [3, 8, 185, 245, 247, 259, 262, 264, 275, 276, 277, 278, 279, 280, 282, 284, 286, 288, 289, 291, 332, 333, 336, 337, 338, 339, 342, 343, 348], "scale": [3, 4, 52, 117, 133, 135, 145, 150, 153, 184, 189, 203, 210, 211, 215, 216, 221, 222, 223, 232, 236, 238, 245, 246, 258, 262, 263, 264, 265, 309, 315, 320, 327, 331, 336, 337, 338, 339, 342, 347], "varieti": 3, "own": [3, 13, 14, 17, 22, 32, 83, 87, 101, 102, 103, 107, 337, 338, 342, 343], "As": [3, 4, 83, 87, 96, 101, 102, 103, 107, 143, 236, 275, 331, 336, 337, 338, 339, 342, 343, 344, 345, 347, 348], "inherit": [3, 195, 260, 333, 338, 342], "serialenv": [3, 83, 87, 101, 151, 329, 348], "Of": [3, 7, 330, 343, 348], "cours": [3, 4, 330, 338, 343, 348], "correspond": [3, 4, 13, 14, 18, 19, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 39, 41, 44, 46, 47, 55, 57, 63, 83, 87, 97, 98, 101, 107, 139, 151, 155, 159, 161, 188, 190, 192, 197, 198, 228, 229, 231, 232, 236, 249, 252, 265, 273, 275, 276, 277, 278, 279, 336, 337, 338, 342, 343, 344], "count": [3, 84, 149, 231, 307, 311, 314, 336, 337, 338, 339, 345, 348], "make_env": [3, 109, 161, 316, 317, 336, 337, 348], "gymenv": [3, 5, 13, 14, 16, 17, 21, 22, 83, 84, 87, 89, 101, 107, 117, 120, 121, 126, 132, 133, 135, 137, 141, 142, 143, 146, 150, 151, 152, 154, 155, 161, 188, 192, 320, 323, 329, 331, 336, 337, 338, 339, 344, 345, 347, 348], "v1": [3, 13, 14, 16, 17, 21, 22, 52, 53, 83, 84, 87, 98, 101, 107, 117, 120, 127, 132, 133, 135, 141, 143, 146, 149, 150, 151, 152, 154, 188, 192, 270, 284, 285, 286, 287, 289, 290, 291, 292, 331, 337, 339, 343, 345, 347, 348], "from_pixel": [3, 81, 82, 117, 142, 320, 336, 337, 339, 344, 345, 347, 348], "9": [3, 7, 32, 35, 38, 41, 56, 57, 71, 74, 96, 102, 103, 150, 161, 245, 246, 248, 249, 251, 252, 253, 254, 258, 260, 262, 263, 264, 265, 267, 268, 273, 332, 335, 336, 337, 338, 342, 343, 344, 345, 346], "81": [3, 336, 337, 342, 343, 344], "must": [3, 7, 13, 14, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 40, 44, 45, 46, 47, 53, 55, 56, 57, 58, 60, 61, 62, 70, 71, 72, 73, 76, 83, 84, 87, 101, 102, 103, 107, 117, 120, 126, 130, 133, 135, 137, 147, 150, 151, 152, 155, 156, 161, 173, 174, 183, 188, 192, 194, 197, 198, 199, 200, 209, 220, 226, 227, 232, 233, 234, 235, 236, 239, 240, 245, 246, 248, 249, 251, 252, 253, 254, 258, 260, 262, 263, 264, 265, 266, 267, 273, 275, 276, 277, 278, 279, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 320, 336, 337, 338, 339, 341, 343, 345, 347], "print": [3, 6, 7, 13, 14, 16, 21, 22, 24, 26, 27, 28, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 45, 55, 57, 58, 65, 70, 71, 74, 79, 80, 81, 82, 83, 84, 86, 87, 88, 92, 93, 94, 95, 96, 97, 100, 101, 102, 103, 105, 106, 107, 108, 109, 111, 113, 117, 118, 122, 123, 124, 125, 132, 135, 141, 143, 146, 149, 151, 152, 153, 161, 167, 170, 171, 173, 174, 180, 183, 188, 194, 197, 198, 199, 200, 203, 206, 209, 220, 221, 222, 223, 225, 226, 228, 229, 231, 233, 235, 238, 240, 260, 320, 323, 331, 333, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "simpli": [3, 6, 34, 36, 39, 45, 73, 78, 127, 147, 160, 260, 331, 332, 336, 338, 342, 348], "b": [3, 7, 8, 23, 26, 28, 34, 36, 39, 40, 41, 42, 74, 186, 187, 190, 191, 199, 200, 201, 202, 208, 217, 239, 275, 276, 277, 278, 279, 281, 294, 331, 337, 344, 345], "c": [3, 6, 7, 26, 34, 36, 39, 41, 42, 54, 135, 153, 190, 191, 337, 345], "d": [3, 35, 54, 56, 57, 58, 63, 186, 190, 232, 236, 347], "get": [3, 4, 6, 7, 8, 9, 34, 35, 36, 38, 39, 52, 55, 60, 61, 70, 71, 72, 73, 74, 76, 84, 101, 107, 114, 116, 118, 122, 124, 125, 133, 135, 140, 150, 151, 153, 161, 220, 228, 229, 232, 233, 236, 275, 276, 277, 278, 279, 298, 331, 336, 337, 338, 339, 342, 343, 345, 347, 348], "forc": [3, 6, 7, 13, 14, 18, 20, 21, 53, 55, 56, 57, 337, 342, 343], "privat": [3, 83, 87, 101, 107, 160, 343, 348], "absenc": 3, "total": [3, 13, 14, 16, 17, 18, 19, 20, 21, 24, 30, 31, 33, 71, 247, 259, 262, 302, 304, 307, 311, 314, 315, 335, 336, 337, 338, 339, 341, 342, 343, 344, 345, 346, 347, 348], "unless": [3, 13, 14, 16, 17, 18, 19, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 44, 46, 47, 55, 69, 83, 87, 101, 107, 338], "wa": [3, 5, 7, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 65, 69, 83, 87, 101, 107, 155, 171, 190, 257, 266, 281, 332, 337, 338, 341, 345, 347], "abov": [3, 7, 32, 83, 87, 101, 107, 189, 215, 216, 244, 332, 333, 336, 338, 342, 343, 348], "deal": [3, 336, 338, 342, 345], "proper": [3, 4, 6, 7, 275, 276, 277, 278, 337, 338, 342, 345], "behav": [3, 89, 97, 186, 190, 206, 258, 344], "accord": [3, 13, 14, 16, 17, 18, 19, 20, 21, 34, 36, 39, 40, 65, 68, 135, 145, 189, 201, 210, 215, 216, 273, 331, 343, 345], "develop": [3, 4, 7, 91, 336, 347], "inner": [3, 83, 87, 101, 107, 124, 333, 337, 338, 342, 348], "logic": 3, "nevertheless": [3, 338, 345], "kept": [3, 13, 14, 16, 17, 69, 71, 124, 147, 154, 163, 170, 189, 215, 216], "mind": [3, 55, 70, 71, 342], "desig": 3, "previou": [3, 4, 10, 32, 40, 41, 151, 171, 186, 190, 211, 225, 338, 339, 343, 348], "wherev": 3, "expos": [3, 104, 122, 125, 237, 337], "modif": [3, 5, 26, 28, 32, 83, 87, 101, 107, 129, 171, 260, 338, 343], "lost": [3, 8, 160], "eras": [3, 83, 87, 101, 107, 155], "intern": [3, 334], "face": [3, 5, 8, 9, 348], "NOT": [3, 140], "outsid": [3, 16, 342, 343], "keep": [3, 4, 7, 8, 14, 42, 69, 74, 101, 107, 135, 139, 159, 161, 170, 231, 304, 311, 336, 337, 338, 339, 342, 343, 345, 347, 348], "right": [3, 6, 7, 40, 193, 337, 338, 342, 343, 348], "preliminari": 3, "warranti": 3, "affect": [3, 8, 32, 83, 87, 101, 107, 154, 155, 163, 275, 276, 277, 278], "assumpt": [3, 343, 345], "made": [3, 32, 60, 61, 62, 72, 73, 76, 83, 87, 101, 107, 231, 249, 273, 336, 337, 339, 342, 344], "preclud": 3, "presenc": 3, "annihil": 3, "effect": [3, 26, 32, 55, 65, 68, 70, 71, 83, 87, 101, 107, 117, 155, 311, 336, 345, 348], "reason": [3, 4, 8, 32, 55, 83, 87, 101, 102, 103, 107, 139, 157, 192, 332, 336, 337, 338, 343, 345], "root": [3, 26, 28, 52, 53, 54, 55, 56, 57, 117, 152, 170, 189, 215, 216, 339, 342, 343, 344, 345, 348], "known": [3, 5, 7, 8, 282, 283, 336, 337], "advanc": [3, 21, 35, 38, 41, 42, 345], "explicitli": [3, 4, 337, 339, 342, 345], "place": [3, 13, 14, 16, 17, 26, 28, 32, 34, 36, 39, 60, 61, 65, 68, 76, 83, 84, 87, 101, 107, 121, 126, 139, 151, 154, 155, 157, 159, 160, 161, 171, 225, 235, 308, 313, 314, 337, 338, 342, 343, 345], "superse": 3, "pettingzoowrapp": [3, 329], "group": [3, 24, 25, 26, 27, 28, 29, 30, 31, 33, 44, 46, 47, 83, 87, 96, 101, 102, 103, 107, 109, 110, 331, 337, 338, 342], "associ": [3, 32, 34, 36, 39, 83, 87, 101, 107, 210, 327, 336, 345], "environemtn": 3, "__not__": 3, "constrain": [3, 133, 188, 192, 262], "li": 3, "fact": [3, 7, 8, 336, 338, 342, 343, 344, 345, 348], "predict": [3, 32, 40, 184, 195, 196, 225, 241, 251, 253, 255, 256, 274, 331, 336, 337], "know": [3, 4, 9, 35, 38, 41, 42, 224, 263, 307, 336, 337, 338, 339, 342, 345], "meaning": 3, "could": [3, 4, 6, 337, 338, 342, 344, 348], "perfectli": [3, 333, 336, 343], "case": [3, 4, 5, 7, 8, 11, 13, 14, 16, 17, 18, 19, 20, 21, 22, 26, 32, 35, 41, 53, 55, 56, 57, 63, 83, 87, 101, 107, 122, 123, 125, 153, 155, 163, 192, 194, 200, 232, 235, 236, 238, 239, 244, 245, 246, 248, 249, 251, 252, 258, 262, 263, 264, 265, 267, 275, 276, 277, 278, 302, 313, 325, 326, 327, 331, 333, 336, 337, 338, 339, 342, 343, 345, 348], "meaningless": 3, "discard": [3, 45, 52, 53, 87, 157, 170, 293, 345, 348], "val": [3, 24, 25, 26, 27, 28, 29, 30, 31, 33, 44, 46, 47, 347], "agent0": 3, "agent1": 3, "overridden": [3, 53, 55, 56, 57, 83, 87, 101, 107, 173, 174, 175, 176, 177, 178, 179, 180, 182, 184, 185, 186, 187, 188, 190, 191, 192, 193, 194, 199, 200, 203, 204, 205, 207, 210, 211, 213, 218, 224, 225, 227, 228, 229, 231, 234, 239, 242, 339], "overrid": [3, 24, 25, 26, 27, 28, 29, 30, 31, 33, 38, 44, 46, 47, 83, 87, 101, 107, 327, 331], "elimin": 3, "field": [3, 13, 14, 16, 17, 26, 32, 34, 36, 37, 39, 40, 41, 42, 43, 45, 53, 55, 56, 57, 60, 61, 76, 80, 83, 87, 93, 96, 97, 100, 101, 102, 103, 105, 106, 107, 108, 109, 122, 125, 126, 127, 137, 141, 143, 147, 149, 151, 155, 170, 172, 183, 188, 192, 196, 208, 209, 217, 220, 221, 222, 223, 225, 226, 227, 231, 232, 233, 234, 235, 238, 240, 245, 246, 248, 249, 251, 252, 258, 262, 263, 264, 265, 267, 273, 315, 320, 330, 331, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "bool": [3, 13, 14, 16, 17, 18, 19, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 65, 68, 69, 70, 71, 80, 81, 82, 83, 84, 85, 87, 93, 96, 97, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 114, 117, 118, 122, 124, 125, 126, 127, 129, 133, 134, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 156, 157, 159, 161, 163, 170, 171, 172, 173, 174, 176, 177, 186, 187, 188, 189, 190, 191, 192, 194, 196, 199, 200, 201, 202, 215, 216, 220, 226, 227, 231, 232, 233, 234, 235, 236, 237, 238, 239, 245, 246, 247, 248, 249, 251, 252, 253, 254, 255, 256, 258, 259, 260, 261, 262, 263, 264, 265, 267, 270, 273, 275, 276, 277, 278, 281, 284, 285, 286, 287, 289, 290, 291, 292, 293, 294, 304, 305, 307, 308, 309, 311, 320, 327, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "500": [3, 336, 337, 343, 347, 348], "uint8": [3, 34, 36, 39, 47, 55, 126, 137, 153, 337, 344, 345, 347, 348], "none": [3, 8, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 68, 70, 71, 72, 73, 74, 76, 83, 84, 87, 96, 97, 101, 102, 103, 107, 108, 109, 111, 115, 116, 117, 118, 119, 120, 121, 122, 123, 125, 129, 131, 133, 135, 136, 137, 139, 140, 141, 142, 143, 144, 145, 146, 149, 150, 151, 152, 153, 154, 155, 157, 159, 161, 162, 164, 165, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 183, 185, 186, 187, 190, 191, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 204, 205, 206, 207, 208, 209, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 231, 232, 233, 234, 235, 236, 238, 239, 240, 245, 246, 248, 249, 251, 252, 253, 254, 258, 260, 261, 262, 263, 264, 265, 266, 267, 273, 274, 275, 276, 277, 278, 279, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 300, 305, 306, 307, 308, 309, 310, 311, 315, 316, 317, 320, 323, 325, 326, 327, 331, 333, 336, 337, 338, 339, 342, 343, 345, 347, 348], "is_shar": [3, 13, 14, 16, 26, 34, 36, 37, 39, 40, 41, 42, 43, 45, 53, 55, 56, 57, 58, 60, 61, 76, 80, 83, 87, 93, 96, 97, 100, 101, 102, 103, 105, 106, 107, 108, 109, 122, 125, 126, 127, 137, 141, 143, 147, 149, 151, 161, 170, 172, 183, 188, 192, 196, 208, 209, 217, 220, 221, 222, 223, 225, 226, 227, 231, 232, 233, 234, 235, 238, 240, 245, 246, 248, 249, 251, 252, 258, 262, 263, 264, 265, 267, 273, 320, 331, 338, 339, 341, 342, 343, 344, 345, 347, 348], "launch": [3, 13, 14, 18, 19, 20, 22, 101, 107], "bottleneck": [3, 8], "so": [3, 4, 6, 7, 10, 32, 34, 36, 39, 40, 83, 87, 101, 107, 151, 161, 237, 238, 338, 339, 342, 343, 348], "great": [3, 7, 8, 347], "speedup": [3, 8, 348], "precis": [3, 122, 125, 170, 187, 191, 336, 338], "misspecifi": 3, "caus": [3, 7, 8, 60, 61, 76, 83, 87, 91, 101, 107, 140, 348], "breakag": 3, "rais": [3, 13, 14, 16, 18, 19, 20, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 39, 44, 46, 47, 55, 83, 87, 101, 107, 110, 117, 128, 134, 143, 150, 151, 152, 155, 163, 224, 228, 229, 231, 265, 336, 338, 342, 345], "mismatch": [3, 337], "mostli": [3, 17, 332, 345, 348], "purpos": [3, 7, 117, 186, 323, 336, 338, 339, 342, 344, 348], "want": [3, 6, 7, 8, 71, 135, 245, 246, 248, 249, 251, 252, 253, 254, 258, 260, 262, 263, 264, 265, 267, 273, 331, 336, 337, 338, 339, 342, 343, 344, 345, 347, 348], "subprocess": [3, 13, 14, 84, 101, 107], "addit": [3, 4, 32, 52, 83, 87, 98, 101, 107, 121, 139, 151, 154, 155, 157, 159, 186, 224, 225, 235, 244, 260, 275, 332, 336, 337, 342, 345], "multithread": [3, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 58, 98, 99, 345], "multithreadedenv": [3, 329], "underneath": 3, "higher": [3, 4, 120, 239, 336, 337, 338, 345, 348], "restrict": [3, 337, 344, 345, 348], "flexibl": [3, 9, 98, 268, 332, 333, 345, 348], "cover": [3, 330, 338, 343, 347], "popular": [3, 331, 339, 342], "atari": [3, 4, 117, 348], "classic": [3, 97, 103, 337], "benchmark_batched_env": 3, "py": [3, 113, 208, 217, 333, 335, 336, 337, 338, 339, 341, 342, 343, 344, 345, 346, 347, 348], "pipelin": [3, 7, 331, 338], "seamlessli": [3, 343], "infrastructur": [3, 342], "view": [3, 8, 27, 32, 33, 55, 56, 83, 87, 101, 107, 114, 183, 186, 190, 194, 343, 345, 347, 348], "core": [3, 8, 320, 333, 339, 347], "decis": [3, 175, 207, 225, 250, 261, 339, 342, 345, 348], "act": [3, 4, 70, 71, 102, 103, 200, 246, 248, 258, 263, 265, 267, 339, 342], "world": [3, 5, 97, 241, 255, 342, 343, 348], "paradigm": [3, 17, 342], "decpodp": 3, "markov": [3, 348], "game": [3, 4, 5], "per": [3, 4, 13, 14, 16, 17, 18, 19, 20, 21, 91, 101, 102, 103, 120, 146, 184, 199, 200, 228, 311, 325, 326, 336, 337, 338, 339, 342, 345, 347], "accommod": [3, 13, 14, 16, 17], "thank": [3, 336], "carrier": [3, 338, 339, 345], "particular": [3, 32, 45, 52, 83, 87, 101, 107, 155, 332, 333, 337, 339, 341, 342, 345], "thu": [3, 259, 342], "hand": [3, 7, 21, 342, 343], "let": [3, 6, 7, 32, 43, 83, 87, 101, 102, 103, 107, 117, 188, 192, 199, 200, 226, 307, 332, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "understand": [3, 8, 336, 337, 342], "go": [3, 7, 96, 140, 143, 225, 281, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "vma": [3, 108, 109, 342], "robot": [3, 5, 7, 55, 139, 157, 159, 342], "what": [3, 8, 35, 44, 83, 87, 101, 107, 126, 151, 170, 233, 330, 331, 332, 337, 338, 339, 342, 343, 344, 345, 347, 348], "vmasenv": [3, 329, 342], "balanc": [3, 336, 337], "num_env": [3, 21, 90, 108, 109, 342], "n_agent": [3, 108, 109, 199, 200, 208, 217, 273, 342], "info": [3, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 65, 68, 70, 71, 83, 87, 101, 102, 103, 104, 105, 106, 107, 108, 109, 157, 160, 162, 342, 345], "ground_rew": 3, "pos_rew": [3, 342], "16": [3, 32, 56, 71, 83, 87, 101, 107, 117, 336, 337, 339, 342, 343, 345, 347], "style": [3, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57], "relat": [3, 4, 10, 35, 129, 245, 246, 248, 249, 251, 252, 258, 262, 263, 264, 265, 267, 337, 343], "vari": [3, 102, 103, 140, 342], "creation": [3, 101, 107, 336, 348], "info_spec": 3, "agent_i_action_spec": 3, "agent_i_reward_spec": 3, "agent_i_observation_spec": 3, "discretetensorspec": [3, 33, 83, 87, 101, 107, 114, 171, 249, 252, 273, 329, 338, 342, 348], "you": [3, 5, 6, 7, 8, 9, 10, 32, 43, 83, 87, 91, 96, 101, 102, 103, 105, 106, 107, 113, 161, 190, 330, 331, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "simpl": [3, 9, 32, 33, 83, 87, 101, 107, 176, 236, 249, 251, 260, 264, 275, 331, 332, 336, 337, 338, 342, 348], "composit": [3, 26, 28, 68, 73, 78, 83, 87, 101, 107, 338, 343], "prefix": [3, 23, 32, 34, 36, 39, 45, 83, 87, 101, 107, 155, 260, 265, 293, 339, 348], "exactli": [3, 32, 83, 87, 89, 101, 107, 155, 186, 190, 265, 336, 339, 342], "action_kei": [3, 15, 83, 87, 101, 107, 114, 124, 170, 172, 195, 196, 224, 228, 229, 231, 342], "reward_kei": [3, 83, 87, 101, 107, 170, 172, 196, 305, 309, 342], "automat": [3, 5, 57, 60, 61, 65, 76, 83, 87, 101, 102, 103, 107, 122, 125, 135, 160, 173, 220, 232, 331, 336, 338, 342, 343, 345, 347], "sure": [3, 4, 7, 54, 72, 91, 143, 226, 327, 331, 336, 338, 339, 342, 343, 345, 347, 348], "set_kei": [3, 126, 245, 247, 249, 252, 253, 258, 259, 260, 262, 263, 264, 265, 273, 279, 342], "awai": [3, 338, 342], "eas": [3, 342], "leaf": [3, 26, 28, 83, 87, 101, 107, 149, 236], "would": [3, 32, 40, 83, 87, 101, 107, 186, 188, 190, 192, 194, 199, 333, 337, 338, 339, 343, 345, 348], "full": [3, 83, 87, 101, 107, 188, 192, 227, 302, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "raw": [3, 4, 40, 189, 215, 216, 337, 343], "torchvis": [3, 139, 159, 347, 348], "transformedenv": [3, 13, 83, 84, 87, 101, 107, 114, 117, 120, 121, 122, 125, 126, 127, 129, 132, 133, 134, 135, 137, 141, 142, 143, 146, 147, 149, 150, 151, 152, 154, 161, 188, 192, 320, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "built": [3, 5, 7, 65, 245, 246, 248, 249, 251, 252, 253, 254, 258, 260, 262, 263, 264, 265, 267, 268, 273, 321, 323, 324, 327, 336, 337, 338, 339, 345, 348], "base_env": [3, 83, 87, 101, 107, 114, 120, 122, 124, 125, 133, 137, 142, 149, 151, 152, 336, 337, 338, 344, 347, 348], "appar": [3, 304], "bring": [3, 338, 348], "signific": [3, 5, 8, 338, 348], "kind": [3, 38, 44, 170, 345], "consult": 3, "interest": [3, 232, 236, 331, 337, 338, 342, 343, 348], "resize_par": 3, "easi": [3, 5, 54, 224, 228, 229, 231, 331, 332, 336, 337, 338, 342, 344, 345, 348], "graph": [3, 4, 8, 271, 272, 336, 343], "inv": [3, 120, 124, 137, 143, 343], "appli": [3, 4, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 38, 41, 42, 43, 44, 46, 47, 52, 53, 54, 55, 56, 57, 65, 83, 87, 101, 107, 114, 116, 117, 118, 121, 122, 123, 124, 126, 127, 128, 129, 130, 132, 133, 134, 138, 140, 141, 143, 146, 147, 149, 150, 151, 152, 154, 155, 157, 158, 160, 161, 186, 190, 215, 226, 275, 306, 333, 336, 337, 338, 343, 347, 348], "revers": [3, 190], "order": [3, 16, 32, 33, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 65, 69, 71, 83, 87, 101, 107, 122, 125, 137, 155, 220, 226, 235, 237, 238, 240, 245, 246, 248, 252, 258, 262, 263, 264, 265, 267, 337, 342], "chain": [3, 34, 35, 36, 38, 39, 41, 42, 52, 53, 54, 55, 56, 57, 121, 124, 173, 174, 238, 348], "taken": [3, 83, 87, 101, 107, 142, 197, 198, 229, 332, 336, 338, 339, 342, 343], "invers": [3, 4, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 65, 117, 122, 125, 135, 143, 243, 258, 343], "in_keys_inv": [3, 120, 122, 125, 135, 136, 137, 141, 143, 154, 336, 341, 343, 348], "append_transform": [3, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 65, 116, 139, 151, 157, 336, 339, 343, 347, 348], "doubletofloat": [3, 320, 336, 338, 341], "float32": [3, 13, 14, 16, 26, 34, 35, 36, 39, 40, 41, 42, 44, 45, 53, 55, 57, 60, 61, 63, 76, 80, 83, 87, 93, 97, 100, 101, 105, 106, 107, 108, 109, 122, 125, 126, 127, 135, 137, 141, 143, 147, 149, 151, 153, 167, 170, 172, 183, 188, 192, 196, 208, 209, 217, 220, 221, 222, 223, 225, 226, 231, 232, 233, 234, 235, 238, 240, 245, 246, 248, 249, 251, 252, 258, 262, 263, 264, 265, 267, 273, 320, 331, 338, 339, 341, 342, 343, 344, 345, 347, 348], "float64": [3, 32, 53, 55, 56, 83, 87, 101, 107, 121, 122, 125, 139, 151, 154, 155, 157, 159, 235, 341, 348], "regist": [3, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 44, 46, 47, 83, 87, 101, 107, 122, 125, 126, 155, 173, 174, 175, 176, 177, 178, 179, 180, 182, 184, 185, 186, 187, 188, 190, 191, 192, 193, 194, 199, 200, 203, 204, 205, 207, 210, 211, 213, 218, 224, 225, 227, 228, 229, 231, 234, 239, 242, 245, 246, 248, 249, 251, 252, 253, 254, 258, 260, 262, 263, 264, 265, 267, 273, 302, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 333, 336, 338, 345], "manipul": [3, 4, 8, 139, 157], "third_transform": 3, "replac": [3, 6, 7, 26, 28, 32, 55, 70, 71, 124, 126, 170, 228, 331, 345], "unexpect": [3, 32, 83, 87, 101, 107, 155, 265, 348], "behviour": 3, "fortun": [3, 339], "alreadi": [3, 8, 11, 32, 34, 36, 39, 45, 83, 87, 101, 107, 151, 171, 236, 275, 276, 277, 278, 336, 338, 342], "chang": [3, 5, 7, 32, 35, 38, 41, 42, 60, 61, 62, 69, 72, 73, 76, 83, 87, 101, 107, 121, 122, 123, 125, 127, 133, 141, 147, 149, 154, 155, 161, 190, 245, 246, 248, 249, 251, 252, 253, 254, 258, 260, 262, 263, 264, 265, 267, 273, 332, 336, 338, 339, 342, 343, 344, 345, 348], "happen": [3, 83, 87, 101, 107, 224, 337, 344, 348], "catfram": [3, 337], "hold": [3, 271, 272, 343, 345], "notic": [3, 117, 338, 343], "parenthood": 3, "henc": [3, 35, 140, 171, 199, 331, 336, 338, 342, 343], "transform1": 3, "transform2": 3, "transform3": 3, "last_two": 3, "isinst": [3, 343], "discret": [3, 24, 27, 30, 31, 33, 47, 83, 87, 101, 102, 103, 107, 109, 124, 206, 209, 251, 252, 253, 331, 337, 338, 342, 348], "might": [3, 34, 36, 37, 39, 298, 330, 336, 348], "throughout": [3, 245, 246, 247, 252, 253, 254, 255, 256, 258, 259, 260, 262, 263, 264, 265, 267, 273, 338, 348], "action_mask": [3, 102, 103, 105, 106, 114], "unavail": [3, 102, 103], "probabl": [3, 4, 8, 40, 65, 68, 181, 183, 186, 188, 190, 192, 194, 197, 198, 206, 216, 228, 232, 236, 331, 337, 347], "categor": [3, 27, 31, 33, 102, 103, 109, 114, 126, 183, 206, 209, 226, 227, 232, 233, 234, 249, 252, 273, 339], "probabilistictensordictmodul": [3, 133, 236, 237, 347], "tensordictsequenti": [3, 188, 192, 226, 228, 237, 331, 336, 339, 341, 344, 347], "maskedcategor": [3, 198, 329], "linear": [3, 13, 14, 16, 17, 21, 32, 83, 87, 97, 101, 107, 121, 133, 139, 151, 154, 155, 157, 159, 172, 173, 174, 183, 194, 196, 199, 200, 201, 202, 203, 209, 210, 211, 220, 221, 222, 223, 228, 229, 230, 231, 232, 233, 235, 238, 240, 245, 246, 248, 249, 251, 252, 253, 254, 258, 260, 262, 263, 264, 265, 267, 273, 275, 276, 277, 278, 323, 331, 337, 341, 344, 347], "in_feat": 3, "out_feat": 3, "logit": [3, 36, 40, 197, 198, 206, 227, 232, 252, 331], "dist": [3, 10, 197, 198, 206], "distribution_class": [3, 133, 221, 222, 223, 225, 232, 236, 238, 245, 246, 252, 258, 262, 263, 264, 265, 331, 336, 338, 342, 347], "wrap": [3, 5, 13, 14, 16, 17, 18, 19, 20, 21, 32, 40, 53, 83, 87, 101, 102, 103, 107, 109, 163, 188, 192, 218, 221, 222, 223, 224, 229, 231, 233, 241, 273, 331, 336, 337, 338, 339, 342, 348], "actionmask": 3, "your_base_env": 3, "mask_kei": [3, 114, 140], "add": [3, 4, 6, 21, 32, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 59, 65, 66, 74, 75, 77, 78, 83, 87, 101, 107, 117, 133, 188, 192, 201, 230, 245, 306, 338, 339, 342, 343, 345, 347], "enviorn": [3, 102, 103, 109, 342], "itself": [3, 32, 83, 87, 101, 107, 111, 260, 338], "log": [3, 4, 8, 40, 53, 56, 181, 182, 183, 197, 198, 206, 216, 226, 227, 232, 236, 245, 246, 247, 252, 253, 254, 255, 256, 258, 259, 260, 262, 263, 264, 265, 267, 273, 304, 305, 307, 311, 323, 331, 332, 333, 336, 337, 338, 342, 343, 347], "mission": 3, "irrespect": [3, 235, 236], "dmcontrol": [3, 336], "jumanji": [3, 92, 93], "natur": [3, 336, 339], "special": [3, 331, 336, 339, 348], "framework": [3, 4, 9, 22, 97, 186, 347, 348], "Its": [3, 32, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 161, 235, 279], "success": [3, 53, 117, 154, 228, 337, 343, 345, 347], "been": [3, 5, 7, 8, 17, 18, 20, 21, 40, 65, 69, 83, 87, 91, 101, 107, 133, 149, 150, 154, 186, 190, 224, 229, 231, 336, 337, 338, 339, 341, 342, 343, 345, 348], "foundat": [3, 5, 102, 103, 338, 342], "inspir": [3, 343], "gone": [3, 4, 5], "sometim": [3, 339, 348], "hard": [3, 7, 257, 337, 348], "adopt": [3, 5, 336, 348], "prefer": [3, 17, 20, 35, 38, 41, 42, 140, 147, 262, 308, 331, 338, 342, 345], "maintain": [3, 5, 9, 343], "both": [3, 7, 32, 55, 83, 84, 87, 101, 102, 103, 107, 117, 141, 155, 171, 173, 174, 188, 191, 192, 194, 199, 200, 221, 222, 223, 227, 234, 245, 247, 248, 252, 258, 259, 260, 262, 263, 264, 265, 267, 307, 331, 336, 338, 342, 343, 344, 345, 348], "concomittantli": 3, "problem": [3, 7, 8, 9, 16, 337, 338, 339, 342, 343, 345, 348], "decor": [3, 8, 11, 113, 260, 275, 276, 277, 278], "set_gym_backend": [3, 111, 329], "relev": [3, 40, 275, 276, 277, 278, 279, 343], "gym_backend": [3, 113, 329], "env1": [3, 341], "path": [3, 6, 7, 32, 34, 35, 36, 38, 39, 41, 42, 45, 52, 53, 54, 55, 56, 57, 58, 60, 65, 83, 87, 101, 107, 113, 139, 159, 196, 311, 333, 337], "venv": 3, "python3": [3, 6, 7, 10], "site": [3, 6, 7, 56, 113], "__init__": [3, 7, 97, 113, 114, 122, 125, 172, 183, 186, 190, 196, 240, 246, 248, 252, 258, 263, 265, 267, 333, 343, 348], "env2": [3, 341], "_env": [3, 6, 348], "classic_control": 3, "pendulumenv": [3, 343], "0x15147e190": 3, "0x1629916a0": 3, "further": [3, 5, 338], "tell": [3, 4, 7, 102, 103, 336, 339, 342], "mo_gymnasium": [3, 95, 111], "handi": 3, "side": [3, 4, 348], "v0": [3, 86, 87, 88, 92, 93, 94, 95, 121, 155, 161, 323], "26": [3, 335, 336, 337, 338, 341, 343, 344, 346], "fun": [3, 11, 113, 338, 342], "reveal": 4, "bug": [4, 347], "curv": 4, "won": [4, 32, 55, 83, 84, 87, 101, 107, 139, 159, 311, 327, 337, 338], "exploit": 4, "video": [4, 9, 294, 307, 327, 342], "cv": 4, "flip": 4, "correspondingli": 4, "prescript": 4, "tune": [4, 133, 342, 344], "coeffici": [4, 40, 133, 342], "bonu": [4, 245, 247, 259, 262], "beta": [4, 35, 41, 63, 258, 259, 336, 337, 345, 347], "reduc": [4, 6, 27, 150, 337, 338], "downstream": [4, 336], "formul": [4, 342], "ob": [4, 8, 26, 28, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 65, 70, 71, 74, 114, 122, 123, 125, 135, 153, 167, 170, 199, 200, 233, 240, 246, 248, 252, 258, 263, 265, 267, 275, 276, 277, 278, 337, 341, 343, 347, 348], "rate": [4, 161, 274, 337, 338, 342], "gradient": [4, 32, 83, 87, 101, 107, 155, 189, 198, 202, 206, 215, 216, 245, 247, 248, 252, 258, 259, 260, 262, 263, 264, 265, 267, 274, 275, 276, 277, 278, 311, 336, 338, 342, 343], "norm": [4, 8, 311, 336, 337, 338, 342, 343], "easier": [4, 331, 336], "behavior": [4, 32, 83, 87, 101, 107, 155, 258, 338, 339, 342, 343], "local": [4, 7, 10, 16, 21, 32, 83, 87, 101, 107, 155, 199, 200, 208, 217, 273, 299, 342], "optima": 4, "sens": [4, 343], "product": [4, 9, 186, 187, 190, 191, 325, 326], "sum": [4, 21, 31, 33, 74, 116, 146, 197, 198, 217, 255, 274, 281, 332, 336, 337, 338, 339, 342, 343, 348], "track": [4, 13, 14, 16, 17, 18, 19, 20, 21, 42, 69, 146, 161, 231, 299, 304, 337, 339, 342, 343, 345], "stat": [4, 135, 315, 327, 337, 338], "w": [4, 65, 117, 119, 142, 153, 186, 231, 294, 337, 339, 345], "r": [4, 32, 114, 120, 135, 187, 236, 244, 274, 331, 337, 343, 348], "yield": [4, 16, 21, 32, 83, 87, 101, 107, 260, 336], "insight": 4, "auxiliari": 4, "credit": 4, "futur": [4, 32, 34, 36, 39, 83, 87, 101, 107, 139, 155, 159, 194, 245, 246, 248, 249, 251, 252, 253, 254, 258, 260, 262, 263, 264, 265, 267, 273, 330, 347], "past": [4, 337, 345], "spars": [4, 339], "ineffici": 4, "ad": [4, 13, 14, 16, 32, 35, 38, 41, 42, 49, 52, 53, 54, 55, 56, 57, 63, 65, 83, 87, 101, 107, 146, 155, 201, 202, 231, 245, 247, 249, 253, 259, 262, 265, 273, 337, 339, 345, 348], "intermedi": [4, 116, 188, 192, 227, 336, 344], "instrument": 4, "greatli": 4, "soccer": 4, "kick": 4, "ball": 4, "likelihood": [4, 336], "discov": 4, "score": [4, 40], "undesir": 4, "though": [4, 83, 87, 101, 107, 194, 338, 342], "unintention": 4, "valuabl": 4, "idiosyncrat": 4, "subtask": 4, "hierarch": [4, 347], "select": [4, 15, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 65, 102, 103, 109, 114, 116, 117, 118, 121, 122, 123, 125, 126, 127, 128, 129, 130, 132, 133, 134, 138, 140, 141, 143, 146, 147, 149, 150, 151, 152, 154, 157, 158, 160, 161, 172, 188, 192, 226, 233, 310, 336, 345], "fall": [4, 52], "explicit": [4, 11, 45, 65, 193, 345], "mechan": [4, 32, 83, 87, 101, 107, 155, 337, 343], "curios": 4, "magnitudin": 4, "domin": 4, "smaller": [4, 34, 36, 39, 83, 87, 101, 107, 190, 258, 338, 342], "addition": 4, "timestep": [4, 40, 52, 143, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 342], "realli": 4, "larg": [4, 27, 34, 36, 39, 122, 125, 157, 337, 338, 342, 345], "huge": [4, 200, 339], "std": [4, 135, 161, 203, 207, 224, 336, 348], "torchrl": [4, 5, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 329, 335, 339, 340, 341, 344, 345, 346], "initi": [4, 7, 13, 14, 16, 17, 18, 19, 20, 21, 32, 34, 36, 39, 40, 83, 87, 101, 107, 116, 135, 139, 151, 154, 155, 157, 162, 172, 186, 187, 190, 191, 196, 201, 202, 224, 228, 229, 231, 245, 246, 248, 249, 251, 252, 253, 254, 258, 259, 260, 261, 262, 263, 264, 265, 267, 273, 320, 327, 337, 339, 343, 348], "estim": [4, 70, 71, 126, 133, 221, 222, 223, 245, 246, 247, 248, 249, 251, 252, 253, 254, 258, 259, 260, 261, 262, 263, 264, 265, 267, 268, 273, 275, 276, 277, 278, 279, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 332, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "encount": [4, 55, 330, 337, 343], "unseen": 4, "extrins": 4, "wrong": 4, "bonus": 4, "denser": 4, "prior": [4, 211, 255, 342], "freshli": 4, "doesn": [4, 11, 98, 122, 125], "drop": [4, 69, 71, 170], "meant": [4, 97], "encourag": [4, 336, 337, 345], "measur": [4, 338], "novelti": 4, "revisit": 4, "previous": [4, 338, 348], "diminish": 4, "decreas": 4, "ideal": [4, 135, 343], "down": [4, 13, 14, 16, 17, 339], "anyth": 4, "try": [4, 7, 8, 9, 26, 28, 34, 36, 39, 337, 338, 339, 342, 343, 347, 348], "distil": 4, "nois": [4, 162, 202, 219, 231, 263, 267, 307, 327, 336], "exploratori": [4, 245, 247, 259, 262], "misalign": 4, "trade": 4, "unavoid": 4, "schedul": [4, 7, 40, 307, 338, 343], "divers": [4, 101, 107], "bootstrap": [4, 253, 276, 282, 283, 336, 339], "noisi": [4, 201, 202, 219, 331], "unstabl": [4, 189, 215, 216], "inher": 4, "stochast": [4, 133, 184, 202, 204, 211, 246, 250, 252, 258, 261, 263, 265, 331, 338, 342], "enemi": 4, "variabl": [4, 7, 8, 24, 25, 26, 27, 28, 29, 30, 31, 33, 44, 46, 47, 53, 56, 57, 109, 186, 187, 188, 190, 191, 192, 196, 221, 222, 223, 260, 263, 333, 337], "pomdp": [4, 345], "loos": [4, 331, 337, 338], "nonexist": 4, "architectur": [4, 180, 342], "sequenc": [4, 13, 14, 16, 17, 26, 28, 30, 31, 35, 37, 38, 40, 43, 45, 55, 58, 59, 65, 66, 68, 73, 74, 75, 77, 78, 115, 116, 117, 118, 119, 122, 124, 125, 129, 131, 135, 136, 140, 141, 142, 143, 144, 145, 146, 150, 152, 153, 154, 161, 173, 174, 181, 183, 186, 190, 194, 197, 198, 199, 200, 206, 209, 213, 225, 237, 238, 250, 293, 294, 306, 307, 308, 310, 311, 320, 331, 336, 338, 339, 341, 342, 348], "lstm": [4, 191, 192, 193, 203], "rel": [4, 65, 151, 181, 214, 336, 337, 342, 345], "tend": 4, "stabl": [4, 9, 10], "compens": 4, "descent": [4, 202], "1000": [4, 38, 70, 71, 83, 87, 101, 107, 117, 161, 228, 231, 232, 236, 257, 336, 337, 338, 339, 344, 345], "minimum": [4, 101, 107, 144, 184, 203, 214, 215, 216, 239, 242, 244, 246, 252, 260, 261, 265, 302, 336, 338, 342], "manual": [4, 18, 20, 21, 336, 339, 345], "deviat": [4, 135, 161, 172, 184, 196, 201, 202, 224, 262, 267, 336, 342], "radic": 4, "begin": [4, 13, 14, 16, 18, 19, 20, 21, 186, 187, 190, 191], "stabil": [4, 130], "stage": [4, 336, 343], "never": 4, "prevent": [4, 26, 28, 189, 215, 216, 259, 262, 309, 345], "solv": [4, 9, 10, 330, 336, 337, 338, 342, 343, 345], "entir": [4, 55, 199, 338, 343, 345], "submit": [4, 330, 347], "suffici": [4, 336], "system": [4, 5, 338, 342, 343], "adequ": [4, 163, 338, 342], "infeas": 4, "allevi": [4, 331], "prune": 4, "fire": [4, 32, 83, 87, 101, 107], "certain": [4, 18, 20, 21, 32, 45, 83, 87, 101, 107, 113, 130, 149, 155, 187, 191, 228, 259, 331, 336, 337, 338, 342, 348], "illeg": 4, "move": [4, 21, 32, 57, 83, 87, 101, 107, 121, 123, 139, 151, 154, 155, 157, 159, 161, 170, 194, 235, 309, 336, 337, 339, 347, 348], "chess": 4, "combin": [4, 154, 337, 345], "grasp": 4, "releas": [4, 7, 10, 32, 83, 87, 101, 107, 155, 265, 347], "top": [4, 74, 172, 196], "wherein": 4, "cumul": [4, 146, 150, 172, 281, 338], "q": [4, 9, 83, 87, 101, 107, 176, 177, 178, 179, 182, 183, 185, 208, 209, 217, 223, 227, 233, 234, 246, 248, 249, 251, 252, 253, 257, 258, 263, 265, 267, 273, 320, 329, 336], "flow": [4, 336, 338, 342, 343, 345], "reparameter": [4, 181, 198, 206], "soft": [4, 257, 265, 266], "critic": [4, 8, 221, 230, 245, 247, 248, 252, 258, 259, 262, 263, 264, 265, 267, 336, 338], "clip": [4, 40, 120, 144, 247, 267, 311, 338, 342, 343], "oppos": [4, 45], "incorrect": 4, "thought": [4, 83, 87, 101, 107], "bound": [4, 17, 21, 25, 26, 32, 83, 87, 101, 107, 120, 134, 161, 210, 211, 220, 226, 227, 231, 232, 233, 234, 235, 236, 239, 267, 331, 336, 337, 338, 348], "region": 4, "squash": [4, 339, 347], "tanh": [4, 173, 174, 186, 187, 189, 190, 191, 194, 200, 214, 215, 216, 239, 338, 342, 343, 344, 347], "correct": [4, 34, 36, 39, 133, 314, 338, 339], "prob": [4, 197, 198, 206, 338, 342], "rememb": 4, "remap": 4, "origin": [4, 8, 13, 14, 16, 17, 34, 36, 39, 40, 91, 123, 124, 133, 139, 155, 159, 186, 232, 235, 236, 257, 260, 262, 320, 336, 341, 343, 348], "real": [5, 55, 236, 332, 339, 343], "histor": 5, "ceas": 5, "fork": 5, "farama": [5, 94, 95, 102, 103, 338, 343], "usag": [5, 7, 52, 53, 55, 56, 57, 117, 126, 188, 192, 258, 265, 268, 331, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "bc": [5, 347], "break": [5, 13, 14, 16, 21, 32, 38, 42, 53, 55, 56, 57, 58, 70, 71, 83, 87, 101, 107, 117, 143, 161, 337, 345, 347], "against": [5, 7, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 44, 46, 47, 83, 87, 101, 107, 163, 220, 226, 227, 232, 233, 234, 235, 236, 338, 342], "13": [5, 10, 11, 70, 71, 104, 160, 336, 337, 338, 342, 343, 344, 345], "construct": [5, 32, 35, 38, 41, 42, 65, 83, 87, 101, 102, 107, 122, 125, 163, 188, 192, 211, 236, 311, 331, 337, 338, 339, 343, 345, 348], "best": [5, 9, 91, 188, 192, 342, 345, 347], "gymwrapp": [5, 83, 87, 101, 107, 127, 147, 149, 160, 329, 338, 347], "feel": [5, 330, 347], "free": [5, 7, 122, 125, 245, 255, 262, 333, 338, 342, 347], "gladli": 5, "instruct": [6, 7, 10, 22, 52, 124, 126, 336, 337, 338, 339, 342, 345], "prepar": [6, 338], "conda": [6, 7, 330], "7": [6, 10, 27, 33, 35, 38, 41, 71, 150, 172, 173, 174, 193, 194, 196, 199, 281, 335, 336, 337, 342, 343, 344, 345, 346, 347], "cmake": 6, "14": [6, 11, 57, 70, 71, 135, 335, 336, 337, 338, 339, 342, 343, 344, 345, 346], "activ": [6, 7, 9, 173, 174, 180, 184, 194, 199, 200, 247, 259, 262, 331, 343, 347], "sim": 6, "bullet": 6, "physic": [6, 7, 101, 104, 333, 336, 342, 343], "headless": [6, 7], "cluster": [6, 7, 8, 18, 21, 330], "withbullet": 6, "forg": [6, 7], "aihabitat": 6, "nightli": 6, "y": [6, 7, 100, 193, 199, 218, 336, 338, 342], "git": [6, 7, 10], "facebookresearch": 6, "subdirectori": 6, "verbos": 6, "export": [6, 7], "magnum_log": 6, "quiet": 6, "habitat_sim_log": 6, "remov": [6, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 39, 44, 46, 47, 49, 83, 87, 101, 107, 148, 260, 342, 348], "command": [6, 7, 10, 338, 342, 343, 348], "readm": [6, 7], "md": [6, 7], "habitatenv": [6, 329], "_has_habitat": 6, "available_env": [6, 79, 80, 81, 82, 83, 86, 87, 88, 92, 93, 94, 95, 101, 105, 106, 107, 348], "startswith": [6, 332, 336], "oserror": 6, "libllvmlit": 6, "ionstal": 6, "pointer": [6, 84, 260, 336], "env_nam": [6, 79, 81, 86, 92, 94, 98, 104, 336, 338, 348], "llvmlite": 6, "config": [6, 7, 139, 159, 175, 180, 207, 315, 316, 317, 320, 321, 324], "var": [6, 7, 32, 83, 87, 101, 107, 155, 260, 265], "ld_preload": [6, 7], "8": [6, 7, 38, 55, 56, 63, 70, 71, 80, 83, 87, 101, 107, 150, 173, 174, 176, 177, 185, 194, 221, 222, 223, 232, 235, 238, 258, 335, 336, 337, 338, 342, 343, 344, 345, 346, 347], "bind": 6, "deactiv": [6, 7, 226], "importerror": [6, 7, 10], "usr": [6, 7, 10], "x86_64": [6, 7], "linux": [6, 7], "gnu": [6, 7], "libopengl": [6, 7], "undefin": [6, 7, 10, 32, 83, 87, 101, 107, 155, 260, 265, 345], "symbol": [6, 7, 10], "_glapi_tls_curr": [6, 7], "link": [6, 7, 337], "mujoco_env": [6, 7], "libglvnd": [6, 7], "glx": [6, 7], "cos7": [6, 7], "reinstal": [6, 7], "xvfbwrapper": [6, 7], "sysroot": [6, 7], "lib64": [6, 7], "libgldispatch": [6, 7], "offici": [7, 52], "stand": [7, 341, 343], "joint": [7, 337], "dynam": [7, 55, 57, 258, 338, 343], "contact": [7, 37], "engin": [7, 104, 343], "biomechan": 7, "graphic": 7, "anim": [7, 342], "area": 7, "demand": [7, 348], "fast": [7, 9, 80, 141, 263, 336, 337, 338], "accur": [7, 52, 53, 55, 56, 57, 337, 343, 345], "articul": 7, "recent": [7, 11, 160, 348], "acquir": [7, 338], "deepmind": [7, 8, 9, 55, 81, 82, 126, 338], "whomev": 7, "licenc": 7, "incorpor": [7, 224, 228, 229, 231, 339, 343], "relianc": 7, "obsolet": 7, "seri": [7, 8, 33, 59, 66, 74, 75, 77, 78, 107, 134, 154, 294, 331, 332, 336, 337, 338, 342, 345, 348], "legaci": 7, "pro": [7, 330], "tip": [7, 330], "glfw": 7, "osmesa": 7, "egl": 7, "advic": [7, 55, 348], "sudo": [7, 330], "enabl": [7, 8, 52, 60, 61, 69, 76, 188, 192, 231, 307, 338, 342, 343, 345], "apt": [7, 342], "libglfw3": 7, "libglew2": 7, "libgl1": 7, "mesa": 7, "libosmesa6": 7, "awar": [7, 60, 61, 62, 72, 73, 76, 337, 339], "workflow": [7, 221, 222, 223], "glew": 7, "mesalib": 7, "anaconda": 7, "libgl": 7, "cos6": 7, "menpo": 7, "glfw3": 7, "mujoco_gl": 7, "pyopengl_platform": 7, "pre": [7, 22, 32, 45, 55, 61, 83, 87, 101, 107, 139, 157, 159, 348], "binari": [7, 24, 27, 33, 115, 183, 209, 226, 227, 233, 234, 249, 252, 273], "setup": [7, 91], "mkdir": 7, "cd": 7, "tag": [7, 294, 299, 327], "earlier": [7, 336, 338, 339, 342, 345], "roboti": 7, "download": [7, 10, 52, 53, 55, 56, 57, 91, 139, 159, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 347, 348], "html": [7, 98], "wget": 7, "mujoco210": 7, "tar": 7, "gz": 7, "xf": 7, "charg": [7, 13, 14, 101, 107], "obtain": [7, 40, 83, 87, 101, 107, 116, 139, 150, 159, 172, 208, 308, 336, 338, 342], "mjkei": 7, "txt": 7, "mjlib_path": 7, "home": [7, 34, 36, 45, 58], "bin": [7, 183, 227, 331], "libmujoco210": 7, "ld_library_path": 7, "mujoco_py_mujoco_path": 7, "mujoco_py_mjkey_path": 7, "reload": 7, "later": [7, 179, 232, 236, 336, 338, 345], "nvidia": [7, 91], "older": [7, 11], "hack": [7, 336], "line": [7, 32, 83, 87, 101, 107, 337, 342], "adatp": 7, "script": [7, 163, 320, 323, 327, 331, 332, 333, 336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "unnot": [7, 140], "until": [7, 21, 152, 154, 338, 339, 342], "complet": [7, 9, 69, 87, 117, 149, 330, 332, 336, 338, 341], "mujoco_pi": 7, "trigger": 7, "cymj": 7, "linuxgpuextensionbuild": 7, "filenam": [7, 337, 345], "troubleshoot": 7, "gl": 7, "h": [7, 65, 117, 119, 142, 153, 186, 187, 188, 190, 191, 192, 196, 294, 337, 339, 345], "eglshim": 7, "fatal": 7, "No": 7, "directori": [7, 34, 36, 39, 45, 52, 53, 55, 56, 57, 60, 299, 333], "devel": 7, "ubuntu": [7, 91], "libglew": 7, "dev": 7, "cento": 7, "yum": 7, "glu": 7, "38": [7, 335, 337, 338, 339, 342, 343, 346], "disappear": [7, 337, 339, 341], "libstdc": 7, "6": [7, 13, 14, 16, 17, 38, 56, 57, 71, 93, 105, 106, 135, 137, 150, 173, 174, 181, 187, 193, 194, 199, 200, 204, 214, 232, 240, 320, 336, 337, 342, 343, 345, 347, 348], "glibcxx_3": 7, "29": [7, 337, 338, 343, 344, 345], "compil": [7, 32, 83, 87, 101, 107, 186, 187, 190, 191], "libosmesa": 7, "libgcc": 7, "Then": [7, 160, 338, 341], "filenotfounderror": 7, "errno": 7, "patchelf": 7, "fatalerror": 7, "gladloadgl": 7, "mj_env": 7, "912": 7, "glfwerror": 7, "65537": 7, "sovl": 7, "myscript": 7, "runtimeerror": [7, 8, 26, 28, 32, 83, 87, 101, 107, 134, 155, 265, 348], "job": [7, 18, 19, 20, 22], "slurm": 7, "mjrendercontext": 7, "pyx": 7, "46": [7, 336, 337, 338, 339, 343], "114": [7, 339, 343, 345], "_setup_opengl_context": 7, "opengl_context": 7, "130": [7, 343, 345], "offscreenopenglcontext": 7, "fail": [7, 22, 26, 28, 114, 163], "opengl": [7, 342], "global": [7, 32, 83, 87, 101, 102, 103, 107, 208, 217, 232, 236, 273, 333, 336, 342], "cuda_visible_devic": 7, "id": [7, 23, 40, 65, 231, 263, 297, 320], "slurm_step_gpu": 7, "enviro": [7, 10], "black": 7, "onscreen": 7, "101": [7, 343, 345], "correctli": [7, 32, 83, 87, 101, 107], "lgl": 7, "libegl": 7, "x11": [7, 342], "xlib": 7, "libx11": 7, "xorg": 7, "loop": [8, 13, 14, 16, 17, 34, 36, 39, 87, 170, 224, 228, 229, 231, 262, 311, 333, 336, 337, 341, 345], "sketch": [8, 333], "n_training_step": 8, "datapoint": [8, 45, 345], "onlin": [8, 13, 17, 117, 180, 207, 245, 250, 261, 262, 302, 327, 338, 339, 342, 345], "n_data_per_train": 8, "no_grad": [8, 32, 83, 87, 101, 107, 133, 186, 187, 190, 191, 275, 276, 277, 278, 338, 339, 342], "replay_buff": [8, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 308, 323, 336, 337, 338, 342, 345], "loss_fn": [8, 339, 347], "backward": [8, 32, 83, 87, 101, 107, 161, 186, 187, 190, 191, 245, 246, 248, 252, 258, 262, 263, 264, 265, 267, 336, 338, 339, 342, 343], "zero_grad": [8, 32, 83, 87, 101, 107, 333, 336, 338, 339, 342, 343], "backpropag": [8, 245, 246, 247, 252, 253, 254, 255, 256, 258, 259, 260, 262, 263, 264, 265, 267, 273, 342, 343], "differenti": [8, 45, 133, 275, 276, 277, 278, 339, 342, 343], "denomin": 8, "artifact": 8, "numer": [8, 38, 161, 189, 215, 216, 220, 226, 227, 232, 233, 234, 235, 236, 309, 338, 345, 348], "misconcept": 8, "freed": 8, "appear": [8, 33, 55, 70, 71, 343, 345], "compuat": 8, "twice": 8, "fix": [8, 151, 246, 261, 265, 337, 343, 348], "retain_graph": 8, "discuss": [8, 9, 342], "inplac": [8, 32, 34, 36, 39, 83, 87, 101, 107, 155, 265, 336], "accumul": 8, "onto": [8, 33, 34, 36, 39, 167, 220, 224, 226, 227, 231, 232, 233, 234, 235, 236, 339, 343], "exclud": [8, 52, 56, 117, 127, 170, 208, 342, 345], "forward": [8, 32, 83, 87, 101, 107, 114, 116, 117, 118, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 135, 138, 139, 140, 141, 143, 146, 147, 149, 150, 151, 152, 154, 157, 158, 160, 161, 173, 174, 175, 176, 177, 178, 179, 180, 182, 183, 184, 185, 186, 187, 188, 190, 191, 192, 193, 194, 195, 199, 200, 201, 203, 204, 205, 207, 208, 210, 211, 213, 217, 218, 224, 225, 227, 228, 229, 231, 232, 234, 235, 236, 239, 240, 242, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 258, 259, 260, 261, 262, 263, 264, 265, 267, 273, 275, 276, 277, 278, 279, 332, 343, 347], "submodul": [8, 32, 83, 87, 101, 107, 111, 260], "param": [8, 32, 40, 83, 87, 97, 101, 107, 121, 122, 123, 127, 133, 141, 147, 149, 154, 181, 183, 214, 225, 232, 235, 238, 240, 260, 269, 272, 275, 276, 277, 278, 279, 336, 342, 343, 344, 347], "grad": [8, 32, 83, 87, 101, 107, 336, 338], "whose": [8, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 40, 44, 46, 47, 83, 87, 101, 102, 103, 107, 121, 139, 151, 154, 155, 157, 159, 203, 208, 235], "neg": [8, 13, 14, 16, 17, 18, 19, 20, 21, 35, 41, 63, 117, 129, 140, 156, 254, 332, 338, 342, 343], "ask": [8, 55, 70, 71, 336, 338, 339, 342, 344, 348], "much": [8, 13, 14, 35, 41, 55, 63, 101, 107, 259, 262, 338, 342, 343, 345, 348], "render": [8, 307, 336, 337, 338], "upon": [8, 343], "factor": [8, 32, 143, 189, 202, 215, 216, 224, 228, 229, 231, 246, 251, 253, 254, 256, 266, 281, 336, 337, 342, 345, 348], "fit": [8, 11, 135, 332, 333, 336], "bottlneck": 8, "brax": [8, 79, 80, 141, 348], "jax": [8, 11], "improperli": 8, "item": [8, 13, 26, 28, 32, 38, 45, 58, 69, 74, 83, 87, 101, 107, 128, 155, 197, 198, 248, 249, 251, 265, 302, 332, 333, 336, 338, 339, 342, 343, 345], "underli": [8, 83, 87, 101, 107, 260, 343], "tedeiou": 8, "priorit": [8, 35, 41, 63, 248, 249, 251, 252, 258, 263, 265, 267, 336, 337], "amount": [8, 231, 337, 345], "contigu": [8, 55, 56, 83, 87, 101, 107, 167, 338, 342, 343, 345, 347, 348], "costli": [8, 343], "concaten": [8, 21, 30, 31, 55, 117, 118, 135, 154, 190, 194, 238, 336, 337, 342, 343, 345, 348], "constitut": [8, 337, 342, 343], "plain": 8, "profil": 8, "fulli": [8, 32, 83, 87, 101, 107, 187, 191, 337, 343, 345], "frequent": [8, 345], "program": [8, 258, 348], "functorch": [8, 10], "incl": 8, "suit": [8, 82, 338, 348], "mujoco_instal": 8, "valueerror": 8, "bad": 8, "fds_to_keep": 8, "expand": [8, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 36, 39, 44, 46, 47, 70, 71, 235, 238, 260, 342, 343, 347], "new_shap": 8, "permut": [8, 69, 137, 347, 348], "idea": [9, 263, 333, 339, 342], "introductori": 9, "intro": [9, 338, 339], "dai": [9, 347], "2022": [9, 10, 343, 347], "spin": 9, "deep": [9, 117, 176, 177, 178, 179, 182, 231, 245, 257, 265, 266, 336], "hug": 9, "syllabu": 9, "lectur": 9, "awesom": 9, "curat": 9, "succinct": 9, "summari": [9, 135, 161, 336, 337, 338, 339], "reddit": 9, "reagent": 9, "orient": [9, 57, 348], "baselines3": 9, "tf": 9, "bandit": [9, 100], "tensorflow": [9, 197, 198], "kera": 9, "acm": 9, "dopamin": 9, "prototyp": 9, "salina": 9, "sequenti": [9, 32, 83, 87, 101, 107, 116, 133, 237, 238, 262, 331, 338, 339, 342, 343, 344, 348], "tianshou": 9, "eleg": 9, "rlpyt": 9, "rllib": 9, "industri": [9, 347], "grade": 9, "factori": [9, 43], "throughput": [9, 336], "cherri": 9, "jaxrl": 9, "space": [9, 33, 44, 83, 87, 101, 107, 120, 124, 167, 180, 183, 199, 205, 209, 220, 224, 226, 227, 229, 231, 232, 233, 234, 235, 236, 238, 239, 240, 249, 251, 252, 267, 273, 331, 337, 338, 339, 342, 343, 347, 348], "mbrl": [9, 97, 331], "rlmeta": 9, "light": 9, "elegantrl": 9, "cloud": 9, "mtrl": 9, "baselin": 9, "689": [10, 343], "_torchrl": 10, "_zn8pybind116detail11type_casterin2at6tensoreve4loadens_6handleeb": 10, "colab": [10, 338, 339, 342], "notebook": [10, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 347, 348], "24": [10, 56, 71, 337, 339, 343, 344], "11": [10, 27, 33, 45, 60, 61, 71, 76, 84, 153, 172, 196, 335, 336, 337, 338, 339, 342, 343, 345, 346], "12": [10, 56, 60, 61, 71, 76, 105, 106, 336, 337, 338, 339, 342, 343, 345], "pip": [10, 54, 342, 347, 348], "pip3": [10, 338, 339, 342], "extra": [10, 32, 83, 87, 101, 107, 117, 161, 170, 331, 338, 339, 345], "url": 10, "org": [10, 35, 55, 57, 63, 117, 139, 157, 175, 176, 177, 178, 179, 180, 183, 184, 185, 190, 196, 197, 198, 202, 204, 205, 207, 208, 210, 211, 217, 227, 231, 245, 246, 249, 250, 251, 253, 254, 255, 256, 257, 258, 261, 262, 264, 265, 266, 275, 280, 288, 344], "whl": 10, "u": [10, 54, 186, 187, 190, 191, 343], "There": [10, 65, 188, 192, 331, 333, 338, 339, 342, 343, 345, 348], "upgrad": 10, "relas": 10, "lib_version_her": 10, "module_nam": [11, 260], "str": [11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 52, 53, 54, 55, 56, 57, 58, 60, 63, 65, 81, 83, 85, 87, 100, 101, 102, 103, 104, 107, 109, 110, 111, 114, 117, 124, 126, 132, 133, 135, 139, 140, 142, 149, 150, 155, 157, 159, 160, 161, 164, 168, 170, 171, 172, 173, 174, 176, 177, 178, 179, 182, 183, 185, 188, 192, 193, 194, 195, 196, 199, 200, 201, 202, 203, 208, 209, 217, 220, 226, 227, 232, 233, 234, 235, 236, 239, 240, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 255, 256, 258, 259, 260, 261, 262, 263, 264, 265, 267, 270, 273, 274, 275, 276, 277, 278, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 315, 320, 321, 327, 337, 338], "callabl": [11, 13, 14, 16, 17, 18, 19, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 38, 41, 42, 44, 45, 46, 47, 52, 53, 54, 55, 56, 57, 65, 83, 84, 87, 97, 101, 107, 113, 126, 244, 316, 317, 325, 326, 327, 337], "from_vers": 11, "to_vers": 11, "intersect": [11, 149], "vs": [11, 188, 192, 193, 347], "longer": [11, 337, 342, 345], "self": [11, 26, 28, 32, 34, 36, 39, 83, 87, 97, 101, 107, 114, 121, 122, 125, 139, 151, 154, 155, 157, 159, 172, 183, 196, 208, 217, 224, 228, 229, 232, 235, 240, 245, 246, 248, 249, 251, 252, 253, 254, 258, 260, 262, 263, 264, 265, 267, 273, 275, 276, 277, 278, 279, 333, 336, 343, 347], "x": [11, 23, 26, 32, 38, 40, 55, 71, 133, 153, 174, 183, 185, 186, 187, 188, 190, 191, 192, 193, 194, 196, 199, 200, 218, 226, 232, 233, 242, 244, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 294, 311, 336, 338, 343, 345, 347], "23": [11, 56, 71, 335, 336, 337, 338, 339, 343, 344, 345, 346], "lambda": [11, 13, 14, 16, 17, 21, 22, 38, 83, 84, 87, 101, 107, 113, 133, 151, 218, 226, 233, 254, 256, 275, 278, 286, 287, 291, 292, 323, 332, 336, 337, 342, 345, 347, 348], "import_modul": 11, "27": [11, 335, 336, 337, 343, 345, 346], "get_class_that_defined_method": 11, "f": [11, 87, 191, 244, 275, 276, 277, 278, 279, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 336, 337, 338, 339, 342, 343, 345, 348], "otherwis": [11, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 39, 43, 44, 45, 46, 47, 52, 58, 70, 71, 83, 87, 96, 101, 102, 103, 107, 109, 117, 124, 135, 150, 151, 152, 155, 161, 186, 189, 190, 199, 200, 215, 216, 226, 233, 239, 246, 255, 260, 261, 265, 307, 308, 333, 336, 337, 338, 339, 343, 348], "classmethod": [11, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 36, 39, 44, 46, 47, 157, 175, 207], "module_set": 11, "setters_dict": 11, "dict": [11, 13, 14, 16, 17, 18, 19, 20, 21, 22, 24, 26, 27, 28, 29, 30, 32, 34, 36, 39, 56, 83, 84, 87, 101, 102, 103, 107, 109, 110, 133, 151, 155, 160, 161, 173, 174, 175, 176, 177, 178, 179, 180, 185, 193, 194, 207, 232, 236, 265, 298, 299, 307, 316, 317, 320, 325, 326, 327, 336, 337, 338, 348], "setter": 11, "setter_dict": 11, "copi": [11, 18, 19, 20, 21, 32, 34, 36, 39, 40, 45, 55, 83, 87, 101, 107, 141, 150, 155, 170, 188, 192, 225, 260, 265, 332, 336, 337, 339, 345], "kwd": 12, "policy_weight": [12, 13, 14, 16, 17, 19, 20], "tensordictbas": [12, 13, 14, 16, 17, 18, 19, 20, 21, 23, 26, 28, 29, 32, 41, 42, 52, 53, 54, 55, 56, 57, 83, 85, 87, 101, 107, 114, 116, 117, 118, 121, 122, 123, 126, 127, 128, 129, 132, 133, 138, 140, 141, 143, 146, 147, 149, 150, 151, 152, 154, 160, 161, 170, 171, 172, 188, 192, 195, 196, 224, 225, 227, 228, 229, 231, 234, 235, 236, 245, 246, 247, 248, 249, 250, 251, 252, 253, 258, 259, 260, 261, 262, 263, 264, 265, 267, 273, 274, 275, 276, 277, 278, 279, 311, 336, 343], "udpdat": [12, 13, 14, 16, 17, 19, 20], "create_env_fn": [13, 14, 16, 17, 18, 19, 20, 21, 84, 101, 107, 336, 347], "int": [13, 14, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 74, 75, 76, 77, 81, 83, 87, 97, 101, 102, 103, 107, 109, 116, 117, 118, 119, 124, 129, 130, 134, 135, 137, 139, 140, 142, 148, 149, 152, 155, 156, 157, 159, 163, 167, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 183, 184, 185, 186, 187, 189, 190, 191, 193, 194, 196, 197, 198, 199, 200, 201, 202, 204, 205, 207, 208, 209, 210, 211, 213, 214, 215, 217, 218, 224, 225, 226, 227, 228, 229, 231, 232, 234, 235, 236, 245, 246, 247, 252, 254, 255, 259, 260, 261, 262, 263, 267, 280, 281, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 302, 303, 304, 307, 308, 311, 313, 320, 321, 325, 326, 327, 343], "200": [13, 14, 16, 17, 21, 32, 83, 87, 101, 107, 108, 109, 143, 176, 177, 184, 210, 211, 336, 339, 343], "total_fram": [13, 14, 16, 17, 18, 19, 20, 21, 117, 143, 311, 314, 323, 333, 336, 337, 338, 339, 342, 345, 347], "device_typ": [13, 16, 27, 30, 33, 173, 174, 175, 176, 177, 178, 179, 185, 194, 201, 202, 207], "create_env_kwarg": [13, 14, 16, 17, 84, 98, 101, 107, 336], "postproc": [13, 14, 16, 17, 18, 19, 20, 21, 143, 337, 345], "explorationtyp": [13, 14, 16, 20, 21, 260, 307, 336, 337, 338, 339, 347], "interactiontyp": [13, 16, 18, 19, 20, 21, 165, 169, 232, 236, 307], "exploration_mod": [13, 16, 18, 19, 20, 329, 331], "preemptive_threshold": [13, 14], "float": [13, 14, 25, 27, 32, 33, 35, 40, 41, 46, 55, 63, 65, 83, 87, 101, 107, 117, 121, 122, 125, 133, 135, 139, 143, 144, 145, 150, 151, 153, 154, 155, 157, 159, 161, 181, 184, 186, 189, 190, 194, 197, 198, 201, 202, 210, 211, 214, 216, 224, 235, 239, 242, 243, 244, 245, 246, 251, 252, 255, 256, 257, 258, 261, 263, 265, 266, 267, 274, 280, 281, 282, 283, 284, 285, 286, 287, 288, 309, 336, 337, 345, 348], "num_thread": [13, 14, 34, 36, 39, 101, 107], "num_sub_thread": [13, 14, 101, 107], "datacollector": [13, 14, 16, 17, 232, 236, 262, 338], "recept": 13, "safe": [13, 14, 24, 25, 26, 27, 28, 29, 30, 31, 33, 44, 46, 47, 220, 224, 226, 227, 231, 232, 233, 234, 235, 236, 238, 331, 347], "stepcount": [13, 83, 87, 101, 107, 154, 336, 337, 338, 339, 342, 347], "env_mak": [13, 14, 16, 21, 323, 348], "50": [13, 14, 16, 21, 37, 40, 57, 70, 71, 335, 336, 337, 338, 339, 341, 342, 343, 344, 346], "2000": [13, 14, 16, 45, 90, 338, 345], "enumer": [13, 14, 16, 21, 32, 38, 42, 71, 83, 87, 101, 107, 268, 332, 336, 337, 338, 339, 345, 347], "int64": [13, 14, 16, 24, 27, 30, 34, 36, 37, 39, 40, 41, 43, 45, 53, 55, 56, 57, 58, 83, 87, 96, 100, 101, 102, 103, 105, 106, 107, 126, 137, 143, 149, 183, 209, 226, 227, 231, 232, 233, 234, 331, 338, 339, 343, 345, 347, 348], "step_count": [13, 14, 16, 83, 87, 101, 107, 149, 338, 339, 347], "shutdown": [13, 14, 16, 17, 21, 336, 347], "del": [13, 14, 16, 336, 338, 341, 347, 348], "randompolici": [13, 14, 16, 18, 19, 20, 22, 117, 143, 329, 345], "lifespan": [13, 14, 16, 18, 19, 20, 337], "divis": [13, 14, 16, 18, 19, 20, 55, 70, 71, 342], "endless": [13, 14, 16, 18, 19, 20], "dictionari": [13, 14, 16, 17, 18, 19, 20, 21, 26, 32, 34, 36, 39, 45, 68, 70, 71, 83, 87, 101, 107, 109, 151, 155, 232, 236, 265, 307, 325, 326, 327, 333, 337, 338, 343, 348], "span": [13, 14, 16, 17, 18, 19, 20, 21, 55], "n_step": [13, 14, 16, 17, 18, 19, 20, 21, 32, 337, 338, 342], "ignor": [13, 14, 16, 17, 18, 19, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 37, 43, 44, 46, 47, 83, 87, 101, 107, 124, 127, 147, 153, 173, 174, 175, 176, 177, 178, 179, 180, 182, 184, 185, 186, 187, 188, 190, 191, 192, 193, 194, 197, 198, 199, 200, 203, 204, 205, 207, 210, 211, 213, 218, 224, 225, 227, 228, 229, 231, 234, 239, 242, 275, 345], "mainli": [13, 14, 16, 17, 18, 19, 20, 21, 40, 331, 342, 343], "round": [13, 14, 16], "closest": [13, 14, 16], "post": [13, 14, 16, 18, 19, 20, 21, 32, 53, 83, 87, 101, 107], "multistep": [13, 14, 16, 18, 19, 20, 21, 329, 337], "return_same_td": [13, 14, 16], "cautious": [13, 14, 16, 262], "whole": [13, 14, 16, 26, 28, 32, 45, 83, 87, 101, 107, 155, 232, 265, 302, 336, 338], "boolm": [13, 14], "update_policy_weight_": [13, 14], "sync": [13, 14, 18, 19, 20, 21, 313, 323, 333, 336, 347], "async": [13, 14, 18, 19, 20, 21, 160, 336, 347], "ratio": [13, 14, 40, 336, 338], "finish": [13, 14, 21, 87, 143, 348], "rest": [13, 14, 331, 338, 339, 343, 347], "earli": [13, 14, 87, 149, 347], "thread": [13, 14, 34, 36, 39, 98, 101, 107], "equal": [13, 14, 70, 71, 98, 101, 107, 134, 135, 173, 174, 182, 186, 188, 190, 192, 194, 200, 266, 270, 302, 325, 326, 336, 338, 344], "plu": [13, 14, 40, 101, 107, 343], "safeti": [13, 14, 97, 101, 107], "harm": [13, 14, 101, 107], "ordereddict": [13, 14, 16, 17, 21, 32, 83, 87, 101, 107, 155, 161, 265, 337], "form": [13, 14, 17, 32, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 83, 87, 101, 107, 161, 186, 188, 190, 192, 244, 245, 247, 259, 262, 311, 331, 342], "worker0": [13, 14, 17], "state_dict0": [13, 14, 17], "worker1": [13, 14, 17], "state_dict1": [13, 14, 17], "reset_idx": [13, 14, 17], "static_se": [13, 14, 16, 17, 21, 83, 87, 101, 107, 155], "integ": [13, 14, 16, 17, 23, 30, 31, 32, 33, 40, 47, 72, 83, 87, 101, 107, 126, 130, 135, 149, 173, 174, 194, 199, 200, 258, 265, 345], "increment": [13, 14, 16, 17, 83, 87, 101, 107, 259], "env_fn": [13, 14, 16, 17, 84, 325, 326], "env_fn_parallel": [13, 14, 16, 17], "100": [13, 14, 16, 17, 32, 35, 38, 41, 42, 43, 52, 53, 54, 55, 56, 57, 60, 61, 65, 83, 87, 101, 107, 120, 126, 135, 143, 149, 199, 227, 303, 323, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "300": [13, 14, 16, 17, 70, 71, 178, 179, 343], "out_se": [13, 14, 16, 17, 348], "shut": [13, 14, 16, 17], "irrevers": [13, 14, 17], "kwarg": [14, 16, 17, 21, 25, 26, 32, 52, 60, 61, 65, 74, 76, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 112, 114, 121, 139, 148, 151, 154, 155, 156, 158, 159, 162, 172, 173, 174, 176, 177, 178, 179, 182, 185, 188, 189, 192, 194, 195, 196, 199, 200, 206, 214, 216, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 258, 259, 260, 261, 262, 263, 264, 265, 267, 269, 273, 274, 275, 276, 277, 278, 279, 294, 298, 299, 301, 304, 311, 316, 317, 320, 324, 325, 326, 332, 338, 342], "tupl": [15, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 41, 42, 44, 46, 47, 52, 53, 54, 55, 56, 57, 65, 73, 83, 87, 101, 107, 114, 124, 126, 132, 133, 135, 140, 170, 176, 182, 183, 188, 191, 192, 193, 194, 200, 203, 207, 208, 209, 226, 227, 233, 234, 239, 245, 246, 248, 252, 254, 258, 260, 262, 263, 264, 265, 267, 275, 276, 277, 278, 294, 305, 307, 309, 318, 319, 336], "rand": [15, 24, 25, 26, 27, 28, 29, 30, 31, 33, 35, 38, 41, 42, 44, 46, 47, 52, 53, 54, 55, 56, 57, 65, 80, 93, 97, 114, 122, 125, 172, 196, 232, 245, 246, 248, 249, 251, 252, 258, 262, 263, 265, 267, 343, 347, 348], "describ": [15, 44, 118, 154, 214, 215, 249, 297, 332, 336, 338, 342, 343, 348], "tensor_spec": [15, 114, 171, 252, 262, 264], "boundedtensorspec": [15, 22, 26, 83, 87, 101, 107, 228, 229, 231, 232, 239, 245, 246, 248, 258, 262, 263, 265, 267, 329, 338, 342, 343, 347, 348], "cube": 15, "envcreat": [16, 22, 323, 324, 327, 329, 336, 337, 347, 348], "interruptor": 16, "_interruptor": 16, "start_collect": 16, "stop_collect": 16, "preeptiv": 16, "chunk": 16, "policy_state_dict": 16, "env_state_dict": 16, "close": [16, 17, 87, 98, 133, 245, 247, 259, 262, 336, 341, 343, 347], "pin_memori": [17, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 138, 336, 347], "regular": [17, 34, 36, 39, 68, 83, 87, 101, 107, 155, 209, 227, 233, 234, 235, 236, 253, 313, 329, 333, 336, 337, 345, 348], "mere": 17, "greater": [17, 70, 71, 188, 192, 336, 337, 347], "sent": [17, 60, 61, 76, 161], "server": 17, "postprocessor": 17, "collector_class": [18, 19, 20, 21], "collector_kwarg": [18, 19, 20, 21], "num_workers_per_collector": [18, 19, 20, 21], "slurm_kwarg": [18, 19, 20], "update_after_each_batch": [18, 20, 21], "max_weight_update_interv": [18, 19, 20, 21], "tcp_port": [18, 19, 20, 22], "deriv": [18, 19, 20, 21, 311], "string": [18, 19, 20, 32, 37, 45, 58, 83, 87, 101, 107, 113, 139, 149, 159, 188, 192, 226, 232, 233, 244, 293, 310, 320, 332, 336, 338, 339], "respect": [18, 19, 20, 32, 83, 87, 101, 107, 115, 121, 122, 125, 139, 140, 151, 154, 155, 157, 159, 186, 190, 199, 211, 235, 240, 306, 338, 339, 342], "subnod": [18, 19, 20, 21], "readi": [18, 20, 21, 330, 337, 338, 341, 345], "serv": [18, 20, 21, 89, 345, 348], "fashion": [18, 20, 21, 34, 36, 39, 71], "executor": [18, 19, 20], "distributed_back": [18, 19], "ucc": [18, 19], "overwritten": [18, 20, 21, 53, 55, 56, 57, 83, 87, 101, 107, 129], "seen": [18, 20, 21, 332, 336, 337, 339, 342, 345], "turn": [18, 20, 21, 34, 36, 39, 131, 156, 160, 226, 307, 332, 336, 337, 339, 343, 344], "submitit_delai": [18, 22], "former": [18, 19, 20, 35, 38, 41, 42, 52, 83, 87, 101, 107, 173, 174, 175, 176, 177, 178, 179, 180, 182, 184, 185, 186, 187, 188, 190, 191, 192, 193, 194, 199, 200, 203, 204, 205, 207, 210, 211, 213, 218, 224, 225, 227, 228, 229, 231, 234, 239, 242, 336], "whilst": [18, 19, 20], "latter": [18, 19, 20, 32, 52, 83, 87, 101, 107, 173, 174, 175, 176, 177, 178, 179, 180, 182, 184, 185, 186, 187, 188, 190, 191, 192, 193, 194, 199, 200, 203, 204, 205, 207, 210, 211, 213, 218, 224, 225, 227, 228, 229, 231, 234, 239, 242, 262, 325, 326], "homonym": [18, 19, 20, 343], "visit": [18, 19, 20], "facebookincub": [18, 19, 20], "tcp": [18, 19, 20, 22], "port": [18, 19, 20, 22], "10003": [18, 19, 20, 22], "worker_rank": [18, 19, 21], "update_interv": 19, "frequenc": [19, 336], "visible_devic": 20, "tensorpipe_opt": 20, "experiment": [20, 33, 232, 236], "tensorpiperpcbackendopt": 20, "_td": [21, 84], "ray_init_config": 21, "remote_config": 21, "num_collector": [21, 325, 326, 336, 337], "coordin": 21, "init": [21, 32, 83, 87, 101, 107, 336, 337, 338], "autodetect": 21, "similarli": [21, 32, 69, 73, 83, 87, 101, 107, 199, 237, 238, 258, 348], "num_cpu": 21, "num_gpu": 21, "1024": [21, 180, 337, 345], "equat": [21, 55, 87, 231, 244, 247, 266, 338, 343], "exce": [21, 338, 345], "indefinit": [21, 51], "raydistributedcollector": 21, "distributed_collector": 21, "10000": [21, 311, 336, 338, 339], "add_collector": 21, "local_polici": 21, "remote_collector": 21, "stop_remote_collector": 21, "num_job": 22, "tcpport": 22, "submitit_main_conf": 22, "slurm_cpus_per_task": 22, "slurm_gpus_per_nod": 22, "slurm_partit": 22, "timeout_min": 22, "submitit_collection_conf": 22, "delai": 22, "jump": 22, "host": [22, 32, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 235], "wherea": [22, 55, 124, 260, 333], "satellit": 22, "rendezv": 22, "hang": 22, "forev": 22, "default_config": [22, 175, 180, 207, 225], "default_slurm_conf_main": 22, "default_slurm_conf": 22, "rollout_tensordict": 23, "durat": [23, 342], "meta": [23, 44, 52, 85, 333, 338, 342, 345], "aren": [23, 150, 339], "assert_is_in": [24, 25, 26, 27, 28, 29, 30, 31, 33, 44, 46, 47], "belong": [24, 25, 26, 27, 28, 29, 30, 31, 33, 44, 46, 47, 55, 160, 161, 331, 336, 342], "encod": [24, 25, 26, 27, 28, 29, 30, 31, 33, 35, 38, 41, 42, 44, 46, 47, 124, 205, 206, 210, 244, 331, 337, 338, 339, 343, 345], "ndarrai": [24, 25, 26, 27, 28, 29, 30, 31, 33, 44, 46, 47, 87, 231, 239], "ignore_devic": [24, 25, 26, 27, 28, 29, 30, 31, 33, 44, 46, 47], "np": [24, 25, 26, 27, 28, 29, 30, 31, 33, 44, 46, 47, 87, 239, 343], "cast": [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 44, 46, 47, 58, 83, 87, 101, 107, 121, 122, 125, 133, 139, 151, 154, 155, 157, 159, 161, 235, 320, 348], "least": [24, 25, 26, 27, 28, 29, 30, 31, 33, 44, 46, 47, 120, 348], "complient": [24, 25, 26, 27, 28, 29, 30, 31, 33, 44, 46, 47], "singleton": [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 44, 46, 47, 173, 174, 194, 212, 213], "implements_for_spec": [24, 25, 26, 27, 28, 29, 30, 31, 33, 44, 46, 47], "torch_funct": [24, 25, 26, 27, 28, 29, 30, 31, 33, 44, 46, 47], "tensor_to_index": [24, 25, 26, 27, 28, 29, 30, 31, 33, 44, 46, 47], "is_in": [24, 25, 26, 27, 28, 29, 30, 31, 33, 44, 46, 47, 348], "project": [24, 25, 26, 27, 28, 29, 30, 31, 33, 44, 46, 47, 124, 188, 190, 220, 224, 226, 227, 231, 232, 233, 234, 235, 236, 331, 347, 348], "uniform": [24, 25, 26, 27, 28, 29, 30, 31, 33, 35, 41, 44, 46, 47, 63], "unbound": [24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 36, 39, 44, 46, 47, 151, 167, 343, 345], "squeez": [24, 25, 26, 27, 28, 29, 30, 31, 33, 44, 46, 47, 117, 148, 150, 173, 174, 212, 213, 336, 343, 345], "dim": [24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 36, 39, 44, 46, 47, 70, 117, 118, 137, 151, 156, 161, 191, 193, 213, 218, 327, 337, 338, 343, 345], "to_numpi": [24, 25, 26, 27, 28, 29, 30, 31, 33, 44, 46, 47], "transformed_in": [24, 25, 26, 27, 28, 29, 30, 31, 33, 44, 46, 47, 154, 155, 203, 214, 327], "check_spec_encod": [24, 25, 26, 27, 28, 29, 30, 31, 33, 44, 46, 47], "to_one_hot": [24, 27, 30], "hot": [24, 27, 30, 31, 33, 102, 103, 109, 114, 124, 183, 206, 209, 226, 227, 233, 234, 245, 246, 248, 249, 251, 252, 253, 254, 258, 260, 262, 263, 264, 265, 267, 273, 339], "to_one_hot_spec": [24, 27, 30], "onehotdiscretetensorspec": [24, 27, 183, 209, 226, 233, 249, 251, 252, 273, 329, 331], "convert": [24, 27, 30, 31, 32, 33, 34, 36, 39, 45, 83, 87, 101, 107, 121, 122, 125, 139, 151, 154, 155, 157, 159, 161, 235, 244, 260, 336, 337, 338, 343, 345], "type_check": [24, 25, 26, 27, 28, 29, 30, 31, 33, 44, 46, 47], "fill": [24, 25, 26, 27, 28, 29, 30, 31, 33, 44, 46, 47, 151, 160, 192, 339, 343, 344], "upper": [25, 68, 134], "unnam": 26, "pixels_spec": 26, "observation_vector_spec": 26, "composite_spec": 26, "observation_vector": [26, 118, 320, 336], "td_project": 26, "is_empti": [26, 28, 343], "include_nest": [26, 28], "leaves_onli": [26, 28], "itemsview": 26, "immedi": [26, 28, 32, 83, 87, 101, 107, 274, 342], "children": [26, 28, 32, 83, 87, 101, 107], "keysview": [26, 28], "reflect": [26, 28, 102, 103, 160, 170, 260, 314, 337, 338, 339, 342], "lock_": [26, 28], "recurs": [26, 28, 32, 48, 49, 83, 87, 101, 107, 260], "succeed": [26, 28], "selected_kei": [26, 28, 147, 336], "unlock_": [26, 28], "unlock": [26, 28, 34, 36, 39], "valuesview": 26, "onehottensorspec": 27, "action_valu": [27, 33, 182, 183, 209, 226, 227, 233, 234, 252, 260, 273, 331, 339], "arang": [27, 33, 183, 198, 226, 302, 331, 345], "argmax": [27, 183, 209, 227, 234], "chosen_action_valu": [27, 33, 208, 209, 217, 233, 234, 273, 331, 339], "outcom": [27, 33, 181, 214], "lazi": [28, 29, 49, 50, 83, 87, 101, 107, 109, 139, 157, 173, 201, 237, 238, 336, 337, 341, 345, 348], "represent": [28, 29, 32, 83, 87, 101, 107, 139, 157, 159, 336, 343, 344, 348], "drawn": [28, 29, 151, 228, 232, 236, 338, 342], "lazystackedtensordict": [28, 83, 87, 97, 101, 107, 341, 347], "heterogen": [28, 29, 96, 102, 103, 163, 199, 200, 336, 337], "thrown": [29, 32, 83, 87, 101, 107, 345], "nvec": [30, 31], "cardin": [30, 31, 183, 209, 226, 227, 234, 338], "ax": [30, 201, 202], "m": [30, 32, 83, 87, 101, 107, 124, 236, 331, 337, 343], "ts": [30, 31], "multionehotdiscretetensorspec": [30, 249, 252, 273, 329], "use_regist": [31, 33], "to_categor": [31, 33], "to_categorical_spec": [31, 33], "multidiscretetensorspec": [31, 329], "gamma": [32, 143, 196, 245, 246, 248, 249, 251, 252, 253, 254, 256, 258, 260, 262, 263, 264, 265, 267, 268, 269, 273, 274, 275, 276, 277, 278, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 323, 332, 336, 337, 338, 342, 347], "sutton": [32, 332, 342], "1988": 32, "tempor": [32, 188, 192, 196, 276, 277, 282, 283], "44": [32, 337, 343, 344], "discount": [32, 55, 84, 143, 246, 251, 253, 254, 256, 274, 275, 276, 277, 278, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 332, 337, 338, 342], "ahead": [32, 348], "add_modul": [32, 83, 87, 101, 107], "child": [32, 83, 87, 101, 107], "fn": [32, 37, 83, 87, 101, 107, 203, 325, 326], "init_weight": [32, 83, 87, 101, 107], "fill_": [32, 83, 87, 101, 107, 337, 339, 348], "net": [32, 83, 87, 101, 107, 193, 200, 245, 246, 252, 258, 262, 263, 264, 265, 320, 323, 337, 343, 344, 347], "in_featur": [32, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 173, 174, 176, 177, 178, 179, 193, 194, 200, 201, 202, 221, 235, 249, 251, 347], "out_featur": [32, 83, 87, 97, 101, 107, 121, 139, 151, 154, 155, 157, 159, 172, 173, 174, 176, 177, 178, 179, 184, 185, 188, 192, 193, 194, 196, 199, 200, 201, 202, 221, 226, 235, 249, 251, 331, 336, 339, 347], "bia": [32, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 173, 174, 184, 186, 187, 188, 190, 191, 192, 194, 200, 201, 202, 203, 228, 229, 231, 235, 242, 243, 244, 260, 265, 332, 336, 337, 338, 339, 342, 347], "requires_grad": [32, 83, 87, 101, 107, 133], "bfloat16": [32, 83, 87, 101, 107], "datatyp": [32, 83, 87, 101, 107, 345], "member": [32, 83, 87, 101, 107, 260], "xdoctest": [32, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 235, 260, 265], "skip": [32, 83, 87, 101, 107, 130, 155, 163, 232, 236, 260, 265, 275, 276, 277, 278, 293, 294, 304, 307, 336, 337, 338, 343], "buf": [32, 83, 87, 101, 107], "20l": [32, 83, 87, 101, 107, 260], "1l": [32, 83, 87, 101, 107, 260], "5l": [32, 83, 87, 101, 107, 260], "__call__": [32, 37, 83, 87, 101, 107, 236, 333], "doubl": [32, 46, 83, 87, 101, 107, 121, 122, 123, 125, 139, 151, 154, 155, 157, 159, 235, 249, 253, 257, 263, 266, 273, 336, 337, 338, 339, 348], "eval": [32, 83, 87, 101, 107, 155, 161, 336, 337, 338], "evalu": [32, 83, 87, 101, 107, 155, 181, 197, 198, 206, 216, 263, 316, 317, 337, 338], "dropout": [32, 83, 87, 101, 107, 155, 186, 188, 190, 192, 194, 339], "batchnorm": [32, 83, 87, 101, 107, 155], "disabl": [32, 83, 87, 101, 107, 155, 189, 216, 336], "comparison": [32, 83, 87, 101, 107, 155, 260, 336, 337], "similar": [32, 55, 83, 87, 101, 102, 103, 107, 121, 139, 151, 154, 155, 157, 158, 159, 161, 221, 223, 232, 235, 236, 332, 336, 337, 338, 339, 343, 348], "confus": [32, 83, 87, 101, 107, 155], "extra_repr": [32, 83, 87, 101, 107], "shift": [32, 242, 275, 276, 277, 278, 338], "nontermin": 32, "original_reward": 32, "newli": [32, 83, 87, 101, 107], "OR": 32, "get_buff": [32, 83, 87, 101, 107], "throw": [32, 34, 36, 39, 83, 87, 101, 107, 348], "docstr": [32, 83, 87, 101, 107], "get_submodul": [32, 83, 87, 101, 107], "explan": [32, 83, 87, 101, 107], "qualifi": [32, 83, 87, 101, 107], "referenc": [32, 83, 87, 101, 107], "attributeerror": [32, 83, 87, 101, 107], "invalid": [32, 83, 87, 101, 107, 110, 197, 198], "resolv": [32, 83, 87, 101, 107], "someth": [32, 83, 87, 96, 101, 107, 330, 337, 338, 343, 348], "get_extra_st": [32, 83, 87, 101, 107, 161], "set_extra_st": [32, 83, 87, 101, 107, 161], "picklabl": [32, 83, 87, 101, 107, 161], "pickl": [32, 83, 87, 101, 107, 161], "get_paramet": [32, 83, 87, 101, 107], "sai": [32, 83, 87, 101, 107, 199, 344, 348], "net_b": [32, 83, 87, 101, 107], "net_c": [32, 83, 87, 101, 107], "conv": [32, 83, 87, 101, 107, 173, 174, 337], "conv2d": [32, 83, 87, 101, 107, 174, 199, 347], "kernel_s": [32, 83, 87, 101, 107, 173, 174, 176, 177, 199, 204, 337, 347], "stride": [32, 83, 87, 101, 107, 173, 174, 176, 177, 185, 199, 337, 347], "diagram": [32, 83, 87, 101, 107], "degre": [32, 83, 87, 101, 107], "named_modul": [32, 83, 87, 101, 107], "o": [32, 83, 87, 101, 107, 191], "transit": [32, 52, 55, 71, 83, 87, 101, 107, 241, 336, 339, 343, 345], "half": [32, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 235, 336], "ipu": [32, 83, 87, 101, 107], "strict": [32, 34, 36, 39, 83, 87, 101, 107, 155, 265], "descend": [32, 83, 87, 101, 107, 155, 265], "persist": [32, 83, 87, 101, 107, 155, 170, 265], "enforc": [32, 69, 83, 87, 101, 107, 155, 237, 265, 343], "preserv": [32, 83, 87, 101, 107, 155, 265], "missing_kei": [32, 83, 87, 101, 107, 155, 265], "unexpected_kei": [32, 83, 87, 101, 107, 155, 265], "namedtupl": [32, 83, 87, 101, 107, 155, 265], "duplic": [32, 69, 83, 87, 101, 107, 249, 253, 260, 273], "l": [32, 83, 87, 101, 107, 186, 190, 274, 338, 343], "idx": [32, 83, 87, 101, 107], "named_buff": [32, 83, 87, 101, 107], "remove_dupl": [32, 83, 87, 101, 107, 260], "prepend": [32, 83, 87, 101, 107, 260], "running_var": [32, 83, 87, 101, 107], "named_children": [32, 83, 87, 101, 107], "conv4": [32, 83, 87, 101, 107], "conv5": [32, 83, 87, 101, 107], "memo": [32, 83, 87, 101, 107], "named_paramet": [32, 83, 87, 101, 107, 133, 260], "register_backward_hook": [32, 83, 87, 101, 107], "removablehandl": [32, 83, 87, 101, 107], "deprec": [32, 83, 87, 101, 107, 155, 164, 168, 182, 229, 245, 247, 249, 252, 253, 258, 259, 262, 263, 264, 265, 273, 275, 276, 277, 278, 283, 348], "favor": [32, 83, 87, 101, 107, 338], "register_full_backward_hook": [32, 83, 87, 101, 107], "register_buff": [32, 83, 87, 101, 107], "running_mean": [32, 83, 87, 101, 107], "alongsid": [32, 83, 87, 101, 107, 342], "num_featur": [32, 83, 87, 101, 107], "register_forward_hook": [32, 83, 87, 101, 107, 183, 209], "with_kwarg": [32, 83, 87, 101, 107], "always_cal": [32, 83, 87, 101, 107], "posit": [32, 35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 65, 83, 87, 101, 107, 129, 130, 148, 149, 152, 155, 156, 203, 265, 332, 338, 342, 343, 345], "signatur": [32, 73, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 235, 332, 336, 343], "register_module_forward_hook": [32, 83, 87, 101, 107], "regardless": [32, 83, 87, 101, 107, 247, 259, 262], "register_forward_pre_hook": [32, 83, 87, 101, 107], "invok": [32, 83, 87, 101, 107], "And": [32, 83, 87, 101, 107], "forward_pr": [32, 83, 87, 101, 107], "register_module_forward_pre_hook": [32, 83, 87, 101, 107], "grad_input": [32, 83, 87, 101, 107], "grad_output": [32, 83, 87, 101, 107], "subsequ": [32, 83, 87, 101, 107, 339], "technic": [32, 83, 87, 101, 107, 337, 339], "caller": [32, 83, 87, 101, 107], "register_module_full_backward_hook": [32, 83, 87, 101, 107], "register_full_backward_pre_hook": [32, 83, 87, 101, 107], "backward_pr": [32, 83, 87, 101, 107], "register_module_full_backward_pre_hook": [32, 83, 87, 101, 107], "register_load_state_dict_post_hook": [32, 83, 87, 101, 107], "incompatible_kei": [32, 83, 87, 101, 107], "clear": [32, 83, 87, 91, 101, 107, 303], "register_modul": [32, 83, 87, 101, 107, 333], "alia": [32, 83, 87, 101, 107], "register_paramet": [32, 83, 87, 101, 107], "register_state_dict_pre_hook": [32, 83, 87, 101, 107], "keep_var": [32, 34, 36, 39, 83, 87, 101, 107, 155, 265], "requires_grad_": [32, 83, 87, 101, 107], "autograd": [32, 83, 87, 101, 107, 155, 265], "freez": [32, 83, 87, 101, 107], "finetun": [32, 83, 87, 101, 107], "gan": [32, 83, 87, 101, 107], "share_memori": [32, 83, 84, 87, 101, 107, 336], "share_memory_": [32, 83, 87, 101, 107, 347], "destin": [32, 34, 36, 39, 83, 87, 101, 107, 116, 122, 123, 125, 155, 157, 161, 170, 265, 294], "averag": [32, 83, 87, 101, 107, 155, 161, 231, 254, 255, 265, 309, 336, 338], "shallow": [32, 83, 87, 101, 107, 155, 265, 339], "pleas": [32, 53, 83, 87, 101, 102, 103, 107, 117, 152, 155, 265, 330], "detach": [32, 83, 87, 101, 107, 155, 260, 265, 275, 276, 277, 278, 336], "non_block": [32, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 235, 339], "memory_format": [32, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 235], "channels_last": [32, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 235], "complex": [32, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 235, 336, 337], "integr": [32, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 179, 188, 192, 196, 235, 331, 342, 343, 344], "unchang": [32, 83, 87, 101, 107, 121, 124, 139, 151, 154, 155, 157, 159, 228, 235, 308, 336, 345], "tri": [32, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 235], "pin": [32, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 235], "4d": [32, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 235], "ignore_w": [32, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 235], "1913": [32, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 235], "3420": [32, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 235], "5113": [32, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 235], "2325": [32, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 235], "torch_doctest_cuda1": [32, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 235], "gpu1": [32, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 235], "1914": [32, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 235], "5112": [32, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 235, 343], "2324": [32, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 235], "float16": [32, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 187, 191, 235], "cdoubl": [32, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 235], "3741": [32, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 235], "j": [32, 35, 63, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 235, 333], "2382": [32, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 235], "5593": [32, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 235, 343], "4443": [32, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 235], "complex128": [32, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 235], "6122": [32, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 235], "1150": [32, 83, 87, 101, 107, 121, 139, 151, 154, 155, 157, 159, 235], "to_empti": [32, 83, 87, 101, 107], "dst_type": [32, 83, 87, 101, 107], "xpu": [32, 83, 87, 101, 107], "set_to_non": [32, 83, 87, 101, 107], "unidimension": 33, "keepdim": 33, "user_regist": 33, "priori": 33, "definit": [33, 72, 199], "uniqu": [33, 70, 71, 117, 126, 150, 151, 152, 345], "discretebox": [33, 83, 87, 101, 107, 338, 342, 348], "chosen_data": [34, 58], "rewarddata": [34, 58, 329], "rejected_data": [34, 58], "from_dataset": [34, 36, 58], "dataset_nam": [34, 36, 40, 45, 58, 100], "max_length": [34, 36, 37, 43, 45, 58], "550": [34, 36, 40, 45, 58, 70, 71, 343], "root_dir": [34, 36, 45, 58], "from_disk": [34, 36, 45, 58], "num_work": [34, 36, 45, 58, 98, 101, 107, 336, 337], "carperai": [34, 36, 40, 45], "openai_summarize_comparison": [34, 36, 45], "sequen": [34, 36], "cach": [34, 36, 45, 52, 53, 55, 56, 57, 58, 70, 83, 87, 101, 107, 122, 125, 139, 155, 159, 303, 344], "load_from_disk": [34, 36, 45, 58], "load_dataset": [34, 36, 45, 58], "attention_mask": [34, 36, 37, 39, 40, 43, 45, 58], "memorymappedtensor": [34, 36, 45, 60, 344], "92534": 34, "input_id": [34, 36, 37, 39, 40, 43, 45, 58], "end_scor": [34, 39, 40, 58], "sub_data": [34, 36], "from_dict": [34, 36, 39, 45], "batch_dim": [34, 36, 39, 45, 327], "determin": [34, 35, 36, 39, 41, 52, 63, 83, 87, 101, 107, 139, 159, 199, 231, 337, 342], "input_dict": [34, 36, 39], "exclusinv": [34, 36, 39], "__maximum__": [34, 36, 39], "toler": [34, 36, 39, 181, 214], "sie": [34, 36, 39], "input_td": [34, 36, 39], "from_tensordict": [34, 36, 39], "non_tensordict": [34, 36, 39], "_no_default_": [34, 36, 39], "getattr": [34, 36, 39], "tensorclass": [34, 36, 39, 58, 60, 61, 76], "from_flatten": [34, 36, 39], "attemptedli": [34, 36, 39], "memmap": [34, 36, 39, 60, 101, 107, 161, 308, 345], "copy_exist": [34, 36, 39], "return_earli": [34, 36, 39], "mimic": [34, 36, 39, 83, 87, 101, 107], "cross": [34, 36, 39, 172], "anymor": [34, 36, 39, 155, 235], "tensordictfutur": [34, 36, 39], "deepli": [34, 36, 39], "insid": [34, 36, 39, 348], "memmap_": [34, 36, 39, 161], "memmap_lik": [34, 36, 39], "contentless": [34, 36, 39], "1_000_000": [34, 35, 36, 38, 39, 41, 42, 52, 53, 54, 55, 56, 57, 65, 70, 336, 339], "alloc": [34, 36, 39, 61, 197, 198, 336], "setattr": [34, 36, 39], "tent": [34, 36, 39, 45], "to_tensordict": [34, 36, 39, 339], "unbind": [34, 36, 39, 188, 192], "alpha": [35, 41, 63, 173, 174, 199, 246, 252, 261, 263, 265, 336, 345, 347], "ep": [35, 41, 63, 161, 231, 247, 266, 309, 336, 337, 339], "1e": [35, 41, 63, 161, 181, 184, 203, 214, 336, 337, 338, 342], "08": [35, 41, 63, 335, 336, 337, 338, 342, 343, 346], "collate_fn": [35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 65, 345, 347], "prefetch": [35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 58, 336, 337, 339, 345], "schaul": [35, 63], "quan": [35, 63], "antonogl": [35, 63], "silver": [35, 63], "2015": [35, 63], "arxiv": [35, 55, 57, 63, 117, 139, 157, 175, 176, 177, 178, 179, 180, 183, 184, 185, 190, 196, 202, 204, 205, 207, 208, 210, 211, 217, 227, 231, 245, 246, 249, 250, 251, 253, 254, 255, 256, 257, 258, 261, 262, 265, 266, 275, 280, 288, 344], "ab": [35, 55, 57, 63, 116, 139, 157, 161, 175, 180, 184, 185, 190, 196, 202, 204, 205, 207, 208, 210, 211, 217, 245, 246, 249, 250, 251, 254, 255, 256, 257, 258, 261, 262, 265, 344], "1511": [35, 63, 185], "05952": [35, 63], "expon": [35, 41, 63], "\u03b1": [35, 41, 63], "delta": [35, 41, 63, 186, 190, 214, 232, 236, 329, 332], "null": [35, 41, 63, 115], "max_siz": [35, 38, 41, 42, 60, 61, 62, 72, 76], "1_000": [35, 38, 41, 42, 345], "merg": [35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 343], "mini": [35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 342], "decid": [35, 38, 41, 42, 347], "meth": [35, 38, 41, 42, 260, 343], "incompat": [35, 38, 41, 42, 345], "drop_last": [35, 38, 41, 42, 69, 71], "return_info": [35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 65, 345], "tensordictprioritizedreplaybuff": [35, 329, 347], "simplifi": [35, 343, 345], "manual_se": [35, 38, 41, 42, 56, 57, 70, 71, 114, 124, 135, 143, 146, 150, 152, 197, 198, 206, 220, 227, 228, 229, 231, 239, 245, 246, 248, 258, 265, 342, 343, 347, 348], "_weight": [35, 41, 345, 347], "arrai": [35, 40, 126, 186, 187, 190, 191, 336, 345], "update_prior": [35, 63, 308, 333, 337, 345, 347], "36278465": 35, "tempfil": [35, 38, 41, 42, 45, 52, 53, 54, 55, 56, 57, 65, 323, 336, 337, 345], "tqdm": [35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 65, 311, 336, 338, 339, 342, 343], "randomsampl": [35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 65, 329, 336], "td_error": [35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 65, 248, 249, 251, 252, 253, 258, 260, 263, 265, 267, 273, 336, 345, 347], "update_tensordict_prior": [35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 65, 336, 345, 347], "temporarydirectori": [35, 38, 41, 42, 45, 52, 53, 54, 55, 56, 57, 65, 336, 337, 345], "tmpdir": [35, 38, 41, 42, 45, 52, 53, 54, 55, 56, 57, 65, 336, 337], "rb_load": [35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 65], "cursor": [35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 65], "insert_transform": [35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 65], "insert": [35, 38, 41, 42, 52, 53, 54, 55, 56, 57, 59, 65, 66, 74, 75, 77, 78, 156], "prompt_rindex": [36, 37, 40], "label": [36, 37, 40, 45, 336, 345], "os": [36, 45, 58, 337], "cpu_count": [36, 45, 58], "promptdatatldr": 36, "116722": 36, "prompt": [37, 40], "return_tensordict": [37, 43], "recip": [37, 83, 87, 101, 107, 173, 174, 175, 176, 177, 178, 179, 180, 182, 184, 185, 186, 187, 188, 190, 191, 192, 193, 194, 199, 200, 203, 204, 205, 207, 210, 211, 213, 218, 224, 225, 227, 228, 229, 231, 234, 239, 242], "text": [37, 40, 43, 53, 186, 187, 190, 191, 231, 338], "tensodict": [37, 43], "orign": [37, 43], "valid_sampl": 37, "identifi": 37, "eough": 37, "toknen": 37, "meet": 37, "criterion": 37, "autotoken": [37, 43, 45], "from_pretrain": [37, 40, 43], "gpt2": [37, 40, 43, 45, 175, 180, 207], "pad_token": [37, 43], "eos_token": 37, "enough": [37, 345], "inde": [37, 124, 338, 343], "roundrobinwrit": [38, 42, 52, 53, 54, 55, 56, 57, 329], "Not": 38, "ref_model": 40, "reward_model": [40, 241], "kl_coef": 40, "max_new_token": 40, "score_clip": 40, "kl_schedul": 40, "klcontrollerbas": 40, "num_step": 40, "causal": 40, "sentenc": 40, "frozen": [40, 133], "kl": [40, 133, 255, 259], "penalti": [40, 259], "strai": 40, "far": [40, 189, 215, 216, 343, 348], "calcul": [40, 143, 186, 251], "gpt2rewardmodel": 40, "get_dataload": [40, 329], "promptdata": [40, 329], "gpt2lmheadmodel": 40, "dl": 40, "block_siz": [40, 58], "tensorclass_typ": [40, 58], "openai_summarize_tldr": 40, "config_class": 40, "model_path": 40, "rollout_from_model": 40, "rollout_from_data": 40, "600": [40, 343, 345], "reward_kl": [40, 133], "reward_raw": 40, "sample_log_prob": [40, 221, 222, 223, 232, 236, 238, 262, 320, 338, 342, 347], "create_rollout_td": 40, "log_prob": [40, 181, 197, 198, 206, 216, 236], "log_ratio": 40, "replic": 40, "rindex": 40, "multipli": [40, 186, 190, 246, 247, 252, 259, 261, 262, 263, 265, 309, 336], "term": [40, 133, 190, 191, 201, 202, 244, 245, 252, 313, 337, 338, 342], "subtract": [40, 150], "ve": [40, 336, 339], "eo": 40, "limit": [40, 97, 117, 133, 336, 337, 339, 342, 343], "generation_config": 40, "generationconfig": 40, "ti": [40, 284, 285, 286, 287, 289, 290, 291, 292, 337], "log_probs_gen": 40, "logprobs_of_label": 40, "priority_kei": [41, 42, 249, 252, 253, 258, 260, 263, 265, 267, 273, 345, 347], "reduct": [41, 63], "prioritizedreplaybuff": [41, 329, 347], "min": [41, 63, 214, 215, 216, 225, 231, 246, 247, 252, 261, 263, 265, 337, 338, 342], "median": [41, 63, 232, 236], "include_info": [41, 42, 52, 53, 54, 55, 56, 57], "kw": [42, 66, 75], "int32": [42, 55, 70, 93, 167], "huggingfac": [43, 57, 230], "co": [43, 126, 343], "doc": [43, 337, 342], "pad_trunc": 43, "am": 43, "worri": 43, "me": 43, "reassur": 43, "ok": 43, "tokenizer_fn": 45, "tensordicttoken": [45, 329], "pre_tokenization_hook": 45, "valid_s": 45, "tokenizer_class": 45, "tokenizer_model_nam": 45, "tokein": 45, "condit": [45, 150, 226, 227, 233, 234, 244, 336, 343, 345], "elementwis": 45, "vocabulari": 45, "loader": [45, 338], "185068": 45, "dataset_to_tensordict": 45, "data_dir": 45, "nestedkei": [45, 70, 71, 114, 115, 116, 117, 118, 119, 120, 122, 124, 125, 126, 127, 129, 131, 132, 135, 136, 137, 140, 141, 142, 143, 144, 145, 146, 147, 150, 151, 152, 153, 154, 157, 161, 170, 171, 224, 225, 228, 229, 231, 236, 249, 273, 294], "valid_mask_kei": 45, "conver": 45, "undergon": 45, "preprocess": [45, 337], "batch_dimens": 45, "filder": 45, "data_memmap": 45, "exclus": [48, 49, 55, 70, 71, 129, 186, 188, 190, 192, 197, 198, 226, 227, 233, 234, 266, 267, 275, 276, 277, 278, 279, 327, 331], "recurse_through_entri": 49, "recurse_through_stack": 49, "consolid": 49, "dataset_id": [52, 53, 55, 56, 57], "from_env": 52, "use_truncated_as_don": 52, "direct_download": 52, "terminate_on_end": 52, "env_kwarg": [52, 56, 57, 325, 326, 336], "reconstruct": [52, 70, 71, 255, 336, 348], "recov": [52, 53, 55, 56, 57, 70, 71, 224, 229, 231, 237, 258, 341], "regard": [52, 53, 55, 56, 57, 183, 227, 245, 253, 262, 336, 338, 343], "get_dataset": 52, "qlearning_dataset": 52, "fewer": 52, "left": [52, 55, 121, 122, 123, 127, 133, 139, 141, 147, 149, 152, 154, 157, 159, 228, 337, 338], "possess": 52, "unexpectedli": 52, "absent": [52, 83, 87, 101, 107], "traj_split": 52, "observationnorm": [52, 161, 327, 336, 337, 338, 339, 347], "maze2d": 52, "umaz": 52, "128": [52, 55, 71, 177, 180, 337, 339, 343, 344, 345], "loc": [52, 133, 135, 145, 189, 203, 215, 216, 221, 222, 223, 232, 236, 238, 245, 246, 258, 262, 263, 264, 265, 315, 320, 327, 331, 336, 337, 338, 339, 342, 347], "minari": [53, 55], "available_dataset": [53, 55, 56, 57, 70, 71], "currenrtli": 53, "minari_data": 53, "door": 53, "28": [53, 199, 337, 342, 343, 344], "39": [53, 335, 336, 337, 343, 344, 345, 346, 348], "door_body_po": 53, "qpo": 53, "30": [53, 134, 210, 211, 337, 338, 342, 343], "qvel": 53, "dua": 54, "graff": 54, "2017": 54, "uci": 54, "archiv": 54, "ic": 54, "edu": 54, "ml": 54, "sklearn": 54, "adult_num": [54, 100], "adult_onehot": [54, 100], "mushroom_num": [54, 100], "mushroom_onehot": [54, 100], "covertyp": [54, 100], "shuttl": [54, 100], "magic": [54, 100], "shuffl": [55, 69, 71, 342], "num_slic": [55, 70, 71], "slice_len": [55, 70, 71], "stream": 55, "strict_length": [55, 70, 71], "embodi": [55, 344], "22": [55, 70, 71, 160, 337, 343], "institut": 55, "demonstr": [55, 338, 342, 343, 348], "527": [55, 343], "skill": 55, "160266": 55, "websit": 55, "googl": [55, 56, 79, 80, 338, 339, 342], "open_x_embodi": 55, "2310": [55, 338], "08864": 55, "nontensordata": 55, "language_instruct": 55, "get_non_tensor": 55, "refin": [55, 245, 246, 248, 249, 251, 252, 253, 254, 258, 260, 262, 263, 264, 265, 267, 273], "neither": [55, 343], "nor": 55, "shorter": [55, 70, 71], "insuffici": 55, "chosen": [55, 150, 151, 208, 209, 217, 234, 320, 331], "__will": 55, "change__": 55, "untouch": [55, 121, 122, 123, 127, 133, 141, 147, 149, 154], "randomli": [55, 69, 134, 135, 151, 228, 232, 236, 342, 343, 345], "crop": [55, 119, 140, 294], "modal": [55, 336], "Be": [55, 70, 71], "cmu_stretch": 55, "is_init": [55, 57, 116, 132, 188, 192, 231, 339], "language_embed": 55, "512": [55, 185, 337, 343, 345], "lift": 55, "green": 55, "garbag": 55, "lid": 55, "roboset": 56, "h5": [56, 57], "mmap": [56, 57], "roboh": [56, 104], "excludetransform": [56, 147, 345], "fk1": 56, "v4": [56, 142, 284, 285, 286, 287, 289, 290, 291, 292, 336, 338, 344], "expert": 56, "fk1_microopenrandom_v2d": 56, "concis": 56, "17": [56, 71, 320, 336, 337, 338, 343, 344, 345], "18": [56, 71, 105, 106, 108, 109, 200, 336, 337, 342, 343, 348], "15": [56, 71, 83, 87, 101, 107, 225, 231, 254, 335, 336, 337, 339, 343, 345, 346], "19": [56, 70, 71, 74, 337, 338, 343, 344], "75": [56, 337, 343, 344], "totensor": 57, "image_s": 57, "v": [57, 161, 186, 187, 190, 191, 221, 258, 265, 331, 336, 337], "npz": 57, "2206": 57, "04779": [57, 246, 251], "vd4rl": 57, "detect": 57, "squar": [57, 119, 189, 215, 216, 294], "rectangular": [57, 173, 174], "internet": 57, "connect": 57, "walker_walk": 57, "64px": 57, "height": [57, 119, 142], "veloc": [57, 117, 342, 343, 348], "infinit": [58, 345], "three": [58, 331, 333, 338, 342, 343, 345, 348], "block": [58, 59, 78, 331, 339], "pairwisedataset": [58, 329], "256": [58, 180, 337, 338, 342, 343], "immut": [59, 83, 87, 101, 107, 141, 155], "piec": [59, 66, 75, 77, 78, 336, 337, 338, 342, 343, 345], "scratch_dir": [60, 336, 345], "mistak": [60, 61, 76], "myclass": [60, 61, 76], "foo": [60, 61, 76, 225, 345, 348], "bar": [60, 61, 76, 225, 304, 305, 307, 311, 333, 337], "attach": [60, 61, 62, 72, 73, 76, 337], "entiti": [60, 61, 62, 72, 73, 76], "auto": [61, 76, 160, 231, 246, 252, 261, 263, 265, 267, 332, 342], "zero_": [61, 76, 167], "max_capac": [63, 336, 345], "uniformli": [64, 260, 348], "storageensembl": [65, 68], "samplerensembl": 65, "writerensembl": [65, 73], "sample_from_al": [65, 68], "num_buffer_sampl": [65, 68], "ensembl": [65, 68, 73, 78, 235, 263], "forbidden": 65, "collat": 65, "0x13a2ef430": 65, "0x13a2f9310": 65, "interpol": [65, 142, 337, 339], "interpolationmod": [65, 339], "bilinear": [65, 142, 339], "0x13a2f9220": 65, "0x13a2f9f70": 65, "0x13a2d9b50": 65, "0x13a2f95b0": 65, "0x128648260": 65, "roundrobin": [66, 75], "buffer_id": [68, 73], "consum": [69, 71, 337, 338, 342, 345], "incomplet": [69, 71], "fresh": 69, "caution": [69, 163, 348], "haven": [69, 344], "remain": [69, 116, 123, 124, 133, 150, 202], "draw": [69, 228], "end_kei": [70, 71], "traj_kei": [70, 71], "cache_valu": 70, "truncated_kei": [70, 71, 143, 149], "slicesamplerwithoutreplac": [70, 329], "Will": [70, 294], "320": [70, 71, 337, 343, 348], "700": [70, 71], "robosetexperiencereplai": [70, 71, 329], "dataid": [70, 71], "__len__": 72, "rank_kei": 74, "rank": [74, 172], "samplerwithoutreplac": [74, 329, 338, 342, 345], "get_insert_index": 74, "ant": [79, 80, 90, 344], "get_environ": 80, "87": [80, 336, 337, 343], "acrobot": [80, 348], "fetch": [80, 133, 344, 345], "task_nam": 81, "cheetah": [81, 82, 336], "frame_skip": [81, 82, 86, 87, 92, 94, 95, 130, 304, 307, 314, 333, 336, 337, 338, 347], "dm_control": [82, 336, 341, 348], "continuousbox": [83, 87, 101, 107, 167, 338, 342, 343, 347, 348], "unboundedcontinuoustensorspec": [83, 87, 97, 101, 107, 114, 122, 125, 151, 167, 172, 196, 220, 235, 238, 240, 264, 329, 338, 339, 342, 343, 348], "sort": [83, 87, 101, 107, 231], "depth": [83, 87, 97, 101, 107, 172, 173, 174, 176, 177, 178, 179, 184, 185, 194, 196, 199, 200, 204, 205, 226, 331, 337, 341, 342], "another_act": [83, 87, 101, 107], "mutabl": [83, 87, 101, 107], "batch_lock": [83, 85, 87, 101, 107, 151, 155, 343], "done_keys_group": [83, 87, 101, 107], "outer": [83, 87, 101, 107, 333, 336, 337, 348], "another_don": [83, 87, 101, 107], "empty_cach": [83, 87, 101, 107, 155], "fake_tensordict": [83, 87, 101, 107, 337], "fake": [83, 87, 101, 107, 336, 337], "afterward": [83, 87, 101, 107, 173, 174, 175, 176, 177, 178, 179, 180, 182, 184, 185, 186, 187, 188, 190, 191, 192, 193, 194, 199, 200, 203, 204, 205, 207, 210, 211, 213, 218, 224, 225, 227, 228, 229, 231, 234, 239, 242, 348], "silent": [83, 87, 101, 107, 173, 174, 175, 176, 177, 178, 179, 180, 182, 184, 185, 186, 187, 188, 190, 191, 192, 193, 194, 199, 200, 203, 204, 205, 207, 210, 211, 213, 218, 224, 225, 227, 228, 229, 231, 234, 239, 242], "braxenv": [83, 87, 101, 107, 141, 329], "envnam": [83, 87, 101, 107], "pipeline_st": [83, 87, 101, 107], "attibut": [83, 87, 101, 107], "speak": [83, 87, 101, 107, 336], "rand_act": [83, 87, 96, 101, 102, 103, 107], "_step": [83, 87, 101, 107, 114, 122, 125, 129, 141], "reset_kei": [83, 87, 101, 107, 117, 146, 150, 151, 152], "multitask": [83, 87, 101, 107], "multiag": [83, 87, 96, 101, 102, 103, 107, 171, 200, 208, 217, 273], "another_reward": [83, 87, 101, 107], "callback": [83, 87, 101, 107, 342], "auto_reset": [83, 87, 101, 107, 343], "auto_cast_to_devic": [83, 87, 101, 107, 342], "break_when_any_don": [83, 87, 101, 107, 342], "return_contigu": [83, 87, 101, 107, 163, 341], "soon": [83, 87, 101, 102, 103, 107], "ndim": [83, 87, 101, 107], "concomitt": [83, 87, 101, 107], "workspac": [83, 87, 101, 107], "prevail": [83, 87, 101, 107, 146, 171], "cartpol": [83, 87, 101, 107, 117, 146, 150, 337, 339, 345, 348], "creator": [84, 316, 317, 325, 326, 327], "substitut": [84, 150, 161], "vecnorm": [84, 327], "env_creat": [84, 336], "test_env1": 84, "observation_count": [84, 348], "test_env2": 84, "sleep": [84, 348], "ps": 84, "p1": 84, "p2": 84, "9934": 84, "env_str": 85, "info_dict_read": 87, "set_info_dict_read": 87, "put": [87, 109, 161, 327, 331, 337, 338, 339, 343], "read_act": 87, "read_don": 87, "reader": [87, 337], "interrupt": [87, 281], "nonsens": 87, "fallback": 87, "broken": [87, 163], "read_ob": 87, "dictat": [87, 232, 236, 262, 336, 343], "read_reward": 87, "baseinfodictread": 87, "info_dict": 87, "hoc": 87, "dict_read": 87, "default_info_dict_read": 87, "my_info_kei": 87, "some_env": 87, "placehold": [89, 126, 155], "secur": 89, "isaacgym": [90, 91], "isaacgymwrapp": [90, 329], "isaacgymenv": [91, 329], "webpag": 91, "isaac": 91, "essenc": 91, "04": [91, 335, 336, 337, 343, 344, 346], "snake": [92, 93], "6x6": [92, 93], "td1": [93, 245, 246, 248, 249, 251, 252, 253, 254, 258, 260, 262, 263, 264, 265, 267, 273, 336], "12x12": 93, "tsp50": 93, "tsp100": 93, "mo": [94, 95], "minecart": [94, 95], "mo_gym": 95, "qualnam": 96, "marl": [96, 110, 117, 152, 199, 342], "leverag": [96, 102, 103, 336, 342, 348], "neural": [96, 102, 103, 173, 174, 212, 235, 331, 337, 338, 339, 342, 343, 348], "group_map": [96, 102, 103, 109, 110], "constructiuon": [96, 102, 103], "premad": [96, 102, 103, 109, 273], "all_in_one_group": [96, 110], "agent_0": [96, 102, 103, 110], "agent_1": [96, 102, 103, 110], "agent_2": [96, 102, 103, 110], "agent_3": 96, "int8": [96, 102, 103], "one_group_per_ag": [96, 102, 103], "environn": 97, "constraint": [97, 338, 342], "mymbenv": [97, 172, 196], "world_model": [97, 172, 196, 255], "super": [97, 114, 122, 125, 172, 183, 196, 240, 246, 248, 252, 258, 263, 265, 267, 336, 343, 347], "hidden_observ": [97, 172, 196], "mlp": [97, 172, 173, 174, 176, 177, 178, 179, 188, 192, 193, 196, 200, 221, 226, 249, 251, 320, 331, 337, 341, 344, 347], "worldmodelwrapp": [97, 172, 196], "activation_class": [97, 172, 173, 174, 176, 177, 178, 179, 184, 185, 194, 196, 199, 200, 337, 342, 347], "relu": [97, 172, 180, 196, 203, 244], "activate_last_lay": [97, 172, 179, 194, 196], "run_type_check": 97, "less": [98, 218, 325, 326, 332, 338, 339, 345, 347], "readthedoc": 98, "en": 98, "python_interfac": 98, "task_id": 98, "106": [100, 343], "my_env_fun": [101, 107], "custom_attribute_list": [101, 107], "custom_attribut": [101, 107], "custom_method_list": [101, 107], "custom_method": [101, 107], "deploi": [101, 107], "slight": [101, 107, 337], "share_individual_td": [101, 107], "shared_memori": [101, 107], "policy_proof": [101, 107], "ll": [101, 107, 186, 187, 190, 191, 336, 337, 338, 339, 342, 348], "hidden": [101, 107, 116, 184, 186, 187, 188, 190, 191, 192, 193, 204, 205, 210, 211, 221, 222, 223, 225, 235, 238, 247, 259, 262, 331, 339, 341, 347], "introduc": [101, 107, 186, 188, 190, 192, 231, 336], "drastic": [101, 345], "influenc": 101, "rule": [101, 122, 125, 236, 331, 338], "thumb": [101, 338], "suppos": [101, 307, 333, 348], "scenario": [101, 108, 109, 336, 342, 343], "myenv": [101, 122, 125], "update_kwarg": [101, 107], "pettingzoo": [102, 103], "pet": [102, 103], "zoo": [102, 103], "guid": [102, 103, 105, 106, 150, 330, 336, 342], "__": [102, 103], "aecenv": [102, 103], "use_mask": [102, 103], "dead": [102, 103], "compulsori": [102, 103], "adversary_0": [102, 103], "adversari": [102, 103], "marlgroupmaptyp": [102, 103, 109, 110, 329], "vectoris": [102, 103, 186, 187, 190, 191], "multiwalker_v9": 102, "return_st": [102, 103], "categorical_act": [102, 103, 105, 106, 109], "n_piston": [102, 103], "pistonball_v6": [102, 103], "piston": [102, 103], "piston_0": [102, 103], "piston_1": [102, 103], "piston_20": [102, 103], "aec": [102, 103], "tictactoe_v3": [102, 103], "player": [102, 103], "player_1": [102, 103], "player_2": [102, 103], "butterfli": 103, "parallel_env": [103, 336, 347, 348], "vikashplu": 104, "read_info": 104, "pars": [104, 345], "smacv2": [105, 106], "starcraft": [105, 106], "challeng": [105, 106, 343, 344], "v2": [105, 106, 270, 284, 285, 286, 287, 289, 290, 291, 292, 320, 339], "10gen_terran": [105, 106], "10gen_zerg": [105, 106], "10gen_protoss": [105, 106], "3m": [105, 106], "8m": [105, 106], "25m": [105, 106], "5m_vs_6m": [105, 106], "8m_vs_9m": [105, 106], "10m_vs_11m": [105, 106], "27m_vs_30m": [105, 106], "mmm": [105, 106], "mmm2": [105, 106], "2s3z": [105, 106], "3s5z": [105, 106], "3s5z_vs_3s6z": [105, 106], "3s_vs_3z": [105, 106], "3s_vs_4z": [105, 106], "3s_vs_5z": [105, 106], "1c3s5z": [105, 106], "2m_vs_1z": [105, 106], "corridor": [105, 106], "6h_vs_8z": [105, 106], "2s_vs_1sc": [105, 106], "so_many_banel": [105, 106], "bane_vs_ban": [105, 106], "2c_vs_64zg": [105, 106], "old": [105, 106, 259, 348], "smac": [105, 106], "map_nam": [105, 106], "176": [105, 106, 343], "battle_won": [105, 106], "dead_al": [105, 106], "dead_enemi": [105, 106], "episode_limit": [105, 106], "322": [105, 106, 343], "Or": [105, 106, 199], "procedur": [105, 106], "distribution_config": [105, 106], "n_unit": [105, 106], "n_enemi": [105, 106], "team_gen": [105, 106], "dist_typ": [105, 106], "weighted_team": [105, 106], "unit_typ": [105, 106], "marin": [105, 106], "maraud": [105, 106], "medivac": [105, 106], "exception_unit_typ": [105, 106], "start_posit": [105, 106], "surrounded_and_reflect": [105, 106], "map_x": [105, 106], "map_i": [105, 106], "capability_config": [105, 106], "88": [105, 106, 336, 337, 343, 344], "131": [105, 106, 343], "starcraft2env": 106, "flock": [108, 109], "continuous_act": [108, 109, 342], "agent_collision_rew": [108, 109], "agent_distance_rew": [108, 109], "agent_nam": [109, 110], "agent_names_to_indices_map": 109, "unbatched_action_spec": [109, 342], "unbatched_observation_spec": 109, "unbatched_reward_spec": 109, "het_spec": 109, "het_specs_map": 109, "ca": 110, "environment4": 110, "get_group_map": 110, "sumbodul": 111, "model_bas": [112, 172, 196], "adapt": [114, 259, 336, 343], "masker": 114, "binarydiscretetensorspec": [114, 249, 252, 273, 329], "maskedenv": 114, "ones_lik": 114, "scatter": 114, "unsqueez": [114, 117, 118, 153, 156, 193, 336, 339, 342, 343], "_set_se": [114, 122, 125, 343], "transform_reward_spec": [115, 120, 121, 122, 123, 127, 133, 141, 144, 145, 147, 149, 154, 156], "tensordictmodulebas": [116, 218, 226, 233, 339], "burn_in": 116, "burn": 116, "date": [116, 297], "retur": 116, "burnt": 116, "grumodul": 116, "gru_modul": [116, 188], "input_s": [116, 186, 187, 188, 190, 191, 192, 193, 339], "hidden_s": [116, 186, 187, 188, 190, 191, 192, 193, 339], "set_recurrent_mod": [116, 188, 192, 339], "burn_in_transform": 116, "gru": [116, 187, 188], "num_lay": [116, 186, 188, 190, 192, 204, 205], "86": [116, 337, 343, 344], "3008": [116, 337], "37": [116, 335, 337, 338, 343, 344, 345, 346], "0344": 116, "padding_valu": [117, 197, 198], "as_invers": 117, "account": [117, 197, 198, 331, 337, 339, 345, 348], "movement": 117, "pdf": [117, 175, 176, 177, 178, 179, 183, 207, 227, 231, 253, 263, 266, 275, 280, 288, 320], "1312": [117, 337], "5602": 117, "constant": [117, 135, 150, 333, 336, 338, 339, 348], "unsqueezetransform": [117, 343, 345], "consumpt": 117, "followin": 117, "pictur": 117, "pixels_trsf": [117, 345], "grayscal": [117, 337, 339, 345, 348], "data_exclud": [117, 345], "transform_observation_spec": [117, 118, 119, 120, 121, 122, 123, 126, 127, 129, 131, 132, 133, 135, 137, 141, 142, 146, 147, 149, 150, 151, 152, 153, 154, 156, 157, 160, 343], "del_kei": [118, 157, 341, 343], "unsqueeze_if_oor": 118, "observation_posit": 118, "observation_veloc": 118, "delet": 118, "key1": [118, 302, 310], "key2": [118, 302, 310], "center": [119, 294], "width": [119, 142], "out_keys_inv": [120, 122, 125, 135, 136, 137, 141, 154, 343], "scalar": [120, 144, 177, 179, 201, 202, 224, 228, 229, 231, 242, 245, 246, 247, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 273, 275, 276, 277, 278, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 331, 337, 343], "permit": [120, 129, 156], "rewardsc": [121, 155, 336, 337, 339], "rewardclip": 121, "transformed_env": [121, 154, 155], "transform_env_devic": [121, 123, 154], "transform_input_spec": [121, 122, 123, 124, 135, 137, 141, 146, 149, 150, 151, 154, 156, 158], "transform_output_spec": [121, 122, 123, 127, 133, 141, 147, 149, 154], "transformfull_done_spec": [121, 122, 123, 127, 133, 141, 147, 149, 154], "dtype_in": 122, "dtype_out": 122, "scan": [122, 125, 237, 238], "resp": [122, 125], "not_transform": [122, 125], "constructedw": [122, 125], "orig_devic": 123, "unspecifi": 123, "transform_done_spec": [123, 154], "num_actions_effect": 124, "max_act": 124, "include_forward": 124, "dimension": [124, 188, 192, 275, 280, 288, 342], "num_act": [124, 252], "action_out": 124, "_call": [124, 129, 343], "eol_kei": 126, "life": 126, "lives_kei": 126, "eol_attribut": 126, "unwrap": 126, "al": [126, 137, 172, 348], "breakout": 126, "v5": [126, 137, 348], "210": [126, 137, 343, 348], "160": [126, 137, 337, 343, 345, 348], "eol_transform": 126, "eol": 126, "dqnloss": [126, 245, 246, 248, 251, 252, 253, 254, 257, 258, 260, 262, 263, 264, 265, 266, 267, 268, 273, 318, 329, 332, 337, 339], "action_spac": [126, 183, 209, 226, 227, 233, 234, 245, 246, 248, 249, 251, 252, 253, 254, 258, 260, 262, 263, 264, 265, 267, 273, 339], "register_kei": 126, "loss_or_advantag": 126, "lossmodul": [126, 311, 322, 323, 329], "valueestimatorbas": [126, 260, 329], "excluded_kei": 127, "finit": [128, 345], "first_dim": 129, "last_dim": 129, "allow_positive_dim": [129, 156], "th": [129, 156, 186, 190, 343], "frameskip": 129, "repeatedli": [130, 338, 342], "init_kei": 132, "tracker": 132, "coef": 133, "pi_curr": 133, "pi_0": 133, "overfit": 133, "probabilist": [133, 232, 329, 338, 347], "get_dist": [133, 236, 237], "mod": [133, 188, 192, 239, 339], "normalparamextractor": [133, 331, 338, 342], "probabilisticactor": [133, 221, 222, 223, 225, 245, 246, 250, 252, 258, 261, 262, 263, 264, 265, 267, 331, 336, 338, 342], "tanhnorm": [133, 221, 222, 223, 232, 238, 245, 246, 258, 262, 263, 264, 265, 267, 329, 338, 342, 347], "n_ob": [133, 245, 246, 248, 249, 251, 252, 258, 262, 263, 264, 265, 267], "n_act": [133, 245, 246, 248, 249, 251, 252, 258, 262, 263, 264, 265, 267], "return_log_prob": [133, 221, 222, 223, 232, 236, 238, 264, 331, 338, 342, 347], "apply_": 133, "copy_": [133, 336], "formulat": 133, "diverg": [133, 188, 192, 232, 236, 255, 259], "noop": [134, 347], "trial": 134, "op": [134, 160, 224, 228, 229, 313], "standard_norm": [135, 145, 336, 337, 339], "affin": [135, 145], "layer": [135, 161, 173, 174, 176, 177, 184, 186, 187, 188, 190, 191, 192, 194, 199, 200, 201, 202, 204, 205, 212, 213, 219, 230, 239, 331, 337, 338, 339, 344], "normal": [135, 161, 173, 174, 189, 194, 197, 198, 203, 215, 216, 224, 232, 236, 247, 259, 262, 307, 309, 327, 331, 333, 339, 342, 348], "set_default_tensor_typ": 135, "doubletensor": 135, "isclos": 135, "next_ob": [135, 275, 276, 277, 278, 347], "rubric": [135, 238], "init_stat": [135, 336, 337, 338, 339], "3752e": 135, "01": [135, 231, 242, 247, 259, 262, 335, 336, 337, 339, 342, 343, 344, 346], "5087e": 135, "03": [135, 335, 336, 337, 342, 343, 344, 346], "9294e": 135, "9636": 135, "5608": 135, "6408": 135, "num_it": [135, 337, 338], "reduce_dim": [135, 336, 337, 338, 339], "cat_dim": [135, 336, 337, 338, 339], "keep_dim": [135, 337, 339], "statist": [135, 161, 264, 327, 336, 337, 338, 348], "approach": [135, 336, 338, 348], "gaussian": [135, 151, 172, 196, 201, 202, 207, 224, 338], "empir": [135, 172, 196, 232, 236, 336, 338, 342], "3d": [135, 173], "third": [135, 227, 342], "reorder": 137, "in_keys_in": 137, "pong": [137, 348], "channel": [137, 153, 199, 204, 205, 337], "r3m": [139, 344], "resnet": [139, 157, 159], "visual": [139, 157, 159, 338, 343], "embed": [139, 157, 158, 159, 208, 220, 221, 222, 223, 235, 240, 344], "ego4d": [139, 157, 159], "univers": [139, 157, 159], "suraj": [139, 157], "nair": [139, 157], "aravind": [139, 157], "rajeswaran": [139, 157], "vikash": [139, 157, 159], "kumar": [139, 157, 159], "chelsea": [139, 157], "finn": [139, 157], "abhinav": [139, 157], "gupta": [139, 157], "2203": [139, 157, 196, 344], "12601": [139, 157, 344], "_init": [139, 157, 336], "snippet": [139, 157, 336], "resnet50": [139, 159, 344], "model_nam": [139, 157, 159, 297], "resnet34": 139, "resnet18": 139, "r3m_vec": [139, 344], "feed": [139, 159, 260, 331, 336, 342, 345], "stack_imag": [139, 159], "tread": [139, 159], "separet": [139, 159], "hub": [139, 159, 344], "resnet50_weight": [139, 159], "imagenet1k_v1": [139, 159], "download_path": [139, 159], "tensor_pixels_kei": [139, 159], "dest": [139, 157, 159, 235], "sub_seq_len": 140, "sample_dim": [140, 336], "primarili": 140, "hesit": 140, "request": 140, "robust": 140, "mix": [140, 208, 217, 273, 336, 342], "improp": 140, "create_copi": 141, "stuff": 141, "newnam": 141, "84": [142, 337, 339, 343], "halfcheetah": [142, 320, 336], "r2g": 143, "99": [143, 161, 196, 256, 269, 274, 281, 323, 336, 337, 338, 343, 344, 347], "reward_to_go": 143, "bernoulli_": 143, "9010": 143, "9404": [143, 281], "9701": [143, 281], "9900": [143, 281], "0000": [143, 152, 228, 229, 239, 281, 338, 339, 343, 347], "crash": 143, "clamp_min": 144, "clamp_max": 144, "clip_min": 144, "clip_max": 144, "episode_": 146, "reward1": 146, "reward2": 146, "episode_reward": [146, 342], "keep_reward": 147, "keep_don": 147, "squeeze_dim": 148, "step_count_kei": 149, "update_don": 149, "adaptec": 149, "accordingli": [149, 150, 190, 233, 339], "completet": 149, "recognis": 149, "accompani": 149, "target_return": 150, "primer": [151, 339], "default_valu": [151, 339], "unit": [151, 172, 184, 186, 187, 204, 205, 210, 211, 338], "transfomedenv": 151, "mykei": 151, "__unless": 151, "exists__": 151, "pool": 152, "increas": [152, 231, 342], "10th": 152, "0216": 152, "1149": 152, "1990": 152, "2749": 152, "3281": 152, "9290": 152, "3702": 152, "8978": 152, "from_int": 153, "shape_toler": 153, "permuat": 153, "ri": 153, "principl": 154, "cattransform": 154, "notabl": 154, "rewardsum": [154, 342], "cache_spec": 155, "set_missing_toler": 155, "keyerror": 155, "unsqueeze_dim": [156, 343], "danger": 156, "vc1": 157, "vc1_vec": 157, "small": [157, 336, 338, 342, 348], "untrain": 157, "make_noload_model": 157, "naiv": 157, "vip": [158, 159, 344], "toward": 159, "implicit": [159, 258, 345], "jason": 159, "ma": 159, "shagun": 159, "sodhani": 159, "dinesh": 159, "jayaraman": 159, "osbert": 159, "bastani": 159, "ami": 159, "zhang": 159, "vip_vec": 159, "final_nam": 160, "sb3": 160, "terminal_obs_read": 160, "truli": [160, 347], "till": 160, "did": [160, 281, 337, 338, 345, 348], "nan": 160, "shared_td": 161, "decai": [161, 224, 228, 229, 266, 309, 336, 337, 339, 348], "9999": [161, 343], "0001": [161, 184, 203, 338, 343], "fly": [161, 259, 332, 338, 343, 345, 348], "to_observation_norm": 161, "underflow": [161, 309], "build_td_for_shared_vecnorm": 161, "memmori": 161, "queue": [161, 345], "td_share": 161, "state_dim": [162, 175, 180, 207, 210, 211, 225], "action_dim": [162, 175, 176, 178, 180, 207, 225, 336, 341], "gsde": [162, 263, 327], "func": 162, "gsdemodul": 162, "check_dtyp": 163, "short": [163, 190, 191, 337, 338, 342], "discrep": [163, 245, 247, 248, 249, 259, 262, 264, 273], "imposs": 163, "probabilistictdmodul": [168, 169, 194, 232, 236, 274, 307], "next_tensordict": 170, "keep_oth": [170, 343], "exclude_reward": 170, "exclude_don": 170, "exclude_act": 170, "next_": 170, "funtion": 170, "write_full_fals": 171, "leav": [171, 336], "_terminated_or_trunc": 171, "entropi": [172, 245, 246, 247, 252, 258, 259, 261, 262, 263, 265, 267, 342], "botev": 172, "et": 172, "2013": 172, "cem": 172, "plan": [172, 195, 196], "varianc": [172, 189, 203, 215, 216, 332, 336, 338, 342], "k": [172, 186, 187, 190, 191], "repeat": [172, 338, 342, 343], "maximis": [172, 176, 178, 196, 331, 336, 337, 338, 342], "horizon": [172, 196, 338], "modelbasedenv": [172, 196], "planning_horizon": [172, 196], "optim_step": [172, 196, 337], "mpc": [172, 195, 196], "num_candid": [172, 196], "candid": [172, 196], "top_k": [172, 196], "modelbasedenvbas": [172, 195, 196, 329], "safemodul": [172, 195, 221, 223, 236, 245, 246, 252, 258, 262, 263, 264, 265, 267, 316, 317, 323, 329, 347], "num_cel": [173, 174, 176, 177, 178, 179, 184, 185, 188, 192, 194, 199, 200, 221, 337, 338, 339, 342, 347], "elu": [173, 174, 176, 177, 178, 179, 184, 185, 199, 337, 347], "activation_kwarg": [173, 174, 194], "norm_class": [173, 174, 176, 177, 194], "norm_kwarg": [173, 174, 194], "bias_last_lay": [173, 174, 176, 177, 178, 179, 185, 194], "aggregator_class": [173, 174, 176, 177, 337, 339, 347], "squashdim": [173, 174, 176, 199, 347], "aggregator_kwarg": [173, 174, 176, 177, 337, 339], "squeeze_output": [173, 174, 176, 177, 337, 339], "convolut": [173, 174, 176, 177, 199, 212], "produc": [173, 174, 194, 200, 206, 221, 223, 225, 294, 338, 339, 345, 348], "cell": [173, 174, 186, 187, 188, 190, 191, 192, 194, 199, 200, 338], "kernel": [173, 174, 185, 193, 199], "cnet": [173, 174], "conv3d": 173, "34": [173, 174, 194, 336, 337, 343], "35": [173, 174, 194, 337, 338, 339, 343, 344], "transformer_config": [175, 207, 225], "decisiontransform": [175, 207], "dtconfig": [175, 180, 207], "2202": [175, 180, 207, 261], "05607": [175, 180, 207, 261], "return_to_go": [175, 180, 207, 225], "conv_net_kwarg": [176, 177], "mlp_net_kwarg": [176, 177, 178], "use_avg_pool": [176, 177], "WITH": [176, 177, 178, 179, 231, 266], "1509": [176, 177, 178, 179, 196, 231, 249, 257, 266, 343], "02971": [176, 177, 178, 179, 231, 266], "convnet": [176, 199, 339, 347], "ndims_in": 176, "avgpool": [176, 177], "adaptiveavgpool2d": [177, 337, 339], "400": [178, 179, 342, 343, 345], "mlp_net_kwargs_net1": 179, "mlp_net_kwargs_net2": 179, "decion": 180, "desdescrib": 180, "n_embd": 180, "n_layer": [180, 186, 190], "n_head": 180, "n_inner": 180, "n_posit": 180, "resid_pdrop": 180, "attn_pdrop": 180, "gpt2config": 180, "atol": [181, 214], "06": [181, 214, 336, 337, 343, 344], "rtol": [181, 214], "batch_shap": [181, 214], "event_shap": [181, 214], "absolut": [181, 214, 336], "densiti": [181, 197, 198, 206, 216], "mass": [181, 197, 198, 206, 216, 343], "rsampl": [181, 198, 206, 236], "sample_shap": [181, 197, 198, 206], "dqnet": 182, "atom": 182, "softmax": [182, 198, 206, 226, 227], "var_num": [183, 209, 226, 227, 234], "action_value_kei": [183, 209, 226, 227, 233, 234, 260, 273], "action_mask_kei": [183, 209, 226, 227, 228, 229, 233, 234], "perspect": [183, 227, 253, 338], "1707": [183, 227, 253, 262], "06887": [183, 227, 253], "mult": [183, 200, 209, 226, 227, 233, 234], "tensordict_modul": [183, 186, 187, 190, 191, 209, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 245, 246, 248, 252, 258, 262, 263, 264, 265, 267, 331], "nbin": [183, 226, 331], "customdistributionalqv": 183, "log_softmax": [183, 226], "from_modul": [183, 232, 235, 238, 240], "one_hot": [183, 198, 209], "qvalue_actor": [183, 209, 226, 233, 331], "to_modul": [183, 232, 235, 238, 240], "std_bia": 184, "std_min_val": 184, "belief": [184, 204, 210, 211], "1912": [184, 254, 255, 256], "01603": [184, 254, 255, 256], "softplu": [184, 203, 242, 243, 244], "out_features_valu": 185, "cnn_kwarg": [185, 337], "mlp_kwarg": [185, 193, 337], "duel": 185, "cnn": [185, 199, 337, 347], "06581": 185, "batch_first": [186, 188, 190, 192, 339], "bidirect": [186, 190, 339], "cudnn": [186, 187, 190, 191, 339], "vmap": [186, 187, 190, 191, 218, 235, 238, 347], "rnn": [186, 187, 190, 191, 339], "device_count": [186, 187, 190, 191, 336, 337, 339, 344, 348], "els": [186, 187, 190, 191, 204, 331, 333, 336, 337, 338, 339, 342, 343, 344], "n_in": [186, 187, 190, 191], "n_out": [186, 187, 190, 191], "h0": [186, 187, 190, 191], "h1": [186, 187, 190, 191], "call_gru": [186, 187], "h_out": [186, 187, 190, 191], "batched_cal": [186, 187, 190, 191], "gate": [186, 187, 190], "r_t": 186, "sigma": [186, 187, 189, 190, 191, 207, 215, 216, 224, 231, 338], "w_": [186, 187, 190, 191], "ir": [186, 187], "x_t": [186, 190], "b_": [186, 187, 190, 191], "hr": [186, 187, 190], "h_": [186, 187, 190], "z_t": 186, "iz": [186, 187], "hz": [186, 187], "n_t": 186, "odot": [186, 187, 190, 191], "hn": [186, 187, 190], "h_t": [186, 190], "sigmoid": [186, 187, 190, 191], "hadamard": [186, 187, 190, 191], "multilay": [186, 190], "_t": [186, 190, 342, 343], "ge": [186, 190], "bernoulli": [186, 190], "b_ih": [186, 187, 190, 191, 192], "b_hh": [186, 187, 190, 191, 192], "seq": [186, 188, 190, 192, 339, 341], "h_0": [186, 190, 191], "unbatch": [186, 190], "pack": [186, 190, 338, 348], "pack_padded_sequ": [186, 190], "pack_sequ": [186, 190], "num": [186, 190], "_layer": [186, 190], "_size": [186, 187, 190, 191], "h_n": [186, 190], "packedsequ": [186, 190], "weight_ih_l": [186, 190], "learnabl": [186, 187, 190, 191], "w_ir": 186, "w_iz": 186, "w_in": 186, "num_direct": [186, 190], "weight_hh_l": [186, 190], "w_hr": 186, "w_hz": 186, "w_hn": 186, "bias_ih_l": [186, 190], "b_ir": 186, "b_iz": 186, "b_in": 186, "bias_hh_l": [186, 190], "b_hr": 186, "b_hz": 186, "b_hn": 186, "bias": [186, 187, 190, 191, 242, 332, 336], "mathcal": [186, 187, 190, 191], "sqrt": [186, 187, 190, 191, 231], "frac": [186, 187, 190, 191, 338], "seq_len": [186, 190], "subtli": 186, "matrix": [186, 190, 201, 202], "contrast": [186, 257, 345], "hx": [186, 187, 190, 191], "lstmcell": [187, 192], "gru_cel": 187, "z": 187, "weight_ih": [187, 191], "weight_hh": [187, 191], "bias_ih": [187, 191], "bias_hh": [187, 191], "rocm": [187, 191], "embedd": [188, 192, 193], "grucel": [188, 235], "proj_siz": [188, 190], "python_bas": [188, 192], "recurrent_st": [188, 339], "custom_kei": [188, 192], "recurrent_mod": [188, 192], "rs": [188, 336], "gru_module_train": 188, "policy_train": [188, 192], "traj_td": [188, 192], "policy_infer": [188, 192], "td_inf": [188, 192], "assert_clos": [188, 192], "upscal": [189, 215, 216], "tanh_loc": [189, 215, 216], "event_dim": [189, 214, 215], "ultim": [189, 215, 216], "poor": [189, 215, 216], "explos": [189, 215, 216], "switch": [189, 216], "formula": [189, 215, 216, 245, 247, 259, 262, 332, 338], "c0": [190, 191], "c1": [190, 191], "call_lstm": [190, 191], "c_out": [190, 191], "i_t": 190, "ii": [190, 191], "hi": [190, 191], "f_t": 190, "hf": [190, 191], "g_t": 190, "ig": [190, 191], "hg": [190, 191], "o_t": 190, "ho": [190, 191], "c_t": 190, "c_": 190, "forget": 190, "consequ": 190, "1402": 190, "1128": 190, "c_0": [190, 191], "proj": 190, "c_n": 190, "w_ii": 190, "w_if": 190, "w_ig": 190, "w_io": 190, "w_hi": 190, "w_hf": 190, "w_hg": 190, "w_ho": 190, "b_ii": 190, "b_if": 190, "b_ig": 190, "b_io": 190, "b_hi": 190, "b_hf": 190, "b_hg": 190, "b_ho": 190, "weight_hr_l": 190, "_revers": 190, "analog": 190, "cn": 190, "lstm_cell": 191, "h_1": 191, "c_1": 191, "time_step": [191, 193], "cx": 191, "trust": 192, "correspont": 192, "recurrent_state_h": [192, 339], "recurrent_state_c": [192, 339], "triplet": [192, 233, 234], "lstm_modul": 192, "rs_h": 192, "rs_c": 192, "hidden0": 192, "hidden1": 192, "lstm_kwarg": 193, "next_observ": [193, 245, 246, 248, 249, 251, 252, 258, 262, 263, 264, 265, 267, 341], "2d": [193, 342], "hidden0_in": 193, "hidden1_in": 193, "hidden0_out": 193, "hidden1_out": 193, "single_bias_last_lay": 194, "layer_class": 194, "layer_kwarg": 194, "perceptron": 194, "seamless": 194, "lazylinear": [194, 331, 338, 343, 344, 347], "42": [194, 245, 246, 248, 258, 265, 335, 337, 343, 345, 346], "noisylinear": [194, 201, 329, 337], "noisylazylinear": [194, 329], "At": [195, 228, 337, 338, 339, 341, 343, 344], "mpcplanner": 195, "tensordict_out": [195, 348], "mppi": 196, "covari": 196, "william": [196, 264], "aldrich": 196, "theodor": 196, "01149": 196, "hansen": 196, "wang": 196, "su": 196, "04955": 196, "valueoper": [196, 221, 222, 223, 245, 246, 247, 248, 252, 258, 259, 262, 263, 264, 265, 267, 323, 331, 336, 338], "tdlambdaestim": [196, 329, 336], "value_net": [196, 249, 251, 264, 275, 276, 277, 278, 338], "adv": 196, "lmbda": [196, 269, 275, 278, 280, 286, 287, 288, 291, 292, 332, 336, 338, 342], "95": [196, 269, 337, 338, 339, 343], "value_network": [196, 248, 249, 251, 253, 258, 265, 275, 276, 277, 278, 332, 336, 338], "temperatur": [196, 246, 258], "neg_inf": [197, 198], "inf": [197, 198], "www": [197, 198], "api_doc": [197, 198], "tf_agent": [197, 198], "event": [197, 198, 206, 284, 285, 286, 287, 289, 290, 291, 292, 345], "unnorm": [197, 198, 206], "sparse_mask": [197, 198], "dens": [197, 198], "0831": [197, 198], "1203": [197, 198], "0928": [197, 198], "1972": [197, 198], "grad_method": [198, 206], "reparamgradientstrategi": [198, 206], "passthrough": [198, 206], "proxi": [198, 206, 332], "relaxedonehot": [198, 206], "zeros_lik": [198, 343], "sample_non_valid": 198, "centralis": [199, 200, 342], "share_param": [199, 200, 342], "basi": [199, 345], "homogen": [199, 200, 342], "agent_network": [199, 200], "modulelist": [199, 200, 320, 347], "lazyconv2d": [199, 347], "2592": [199, 337], "decentralis": [199, 342], "n_agent_input": [200, 342], "n_agent_output": [200, 342], "toech": 200, "centalis": 200, "shown": [200, 331, 341, 342, 345], "std_init": [201, 202], "initialize_paramet": 201, "isol": [201, 260], "1706": [202, 217], "10295v3": 202, "induc": 202, "aid": 202, "scale_map": 203, "biased_softplus_1": 203, "scale_lb": [203, 210, 211], "exp": [203, 244], "module_norm": 203, "decod": 204, "1803": [204, 205, 208], "10122": [204, 205], "rnn_hidden": 204, "latent": 205, "excacli": 206, "inres": 207, "mu": [207, 231, 338], "state_shap": [208, 273], "mixing_embed_dim": [208, 273], "qmix": [208, 342], "mixer": [208, 217, 273], "monoton": 208, "hyper": 208, "11485": 208, "qmixerloss": [208, 217], "qmix_vdn": [208, 217], "eventu": [208, 339, 343], "vdn": [208, 217], "greedi": [209, 227, 228, 229, 234, 337, 339], "hidden_dim": [210, 211], "posterior": [210, 255], "rssm": [210, 211, 255], "1811": [210, 211], "04551": [210, 211], "obs_embed": 210, "rnn_hidden_dim": 211, "dream": 211, "tanhtransform": 215, "decomposit": 217, "05296": 217, "hide": [218, 338, 342], "satisfi": [218, 331], "vmap_dim": 218, "lam": 218, "sample_in": 218, "sample_in_td": 218, "vm": 218, "translat": [220, 232], "character": [220, 226, 232, 233, 235, 345], "overflow": [220, 226, 227, 232, 233, 234, 235, 236], "td_modul": [220, 221, 222, 223, 232, 235, 236, 238, 240, 347], "3635": 220, "0340": 220, "1476": 220, "3911": [220, 343], "1664": [220, 337, 343], "5455": 220, "2247": 220, "4583": 220, "2916": 220, "2160": 220, "5337": 220, "5193": 220, "grad_fn": [220, 228, 229, 347], "addmmbackward0": 220, "actorvalueoper": [221, 331], "get_policy_oper": [221, 222, 223, 247, 259, 262, 331], "standalon": [221, 222, 223], "tdmodul": [221, 222, 223, 323], "get_critic_oper": 221, "common_oper": [221, 223], "policy_oper": [221, 222, 223], "value_oper": [221, 222, 223], "normalparamwrapp": [221, 222, 223, 232, 238, 245, 246, 252, 258, 262, 263, 264, 265, 267, 329, 347], "module_hidden": [221, 223], "td_module_hidden": [221, 223], "module_act": [221, 223], "td_module_act": [221, 222, 223], "module_valu": [221, 222, 223], "td_module_valu": [221, 222, 223], "state_action_valu": [221, 240, 246, 265, 274, 320, 323, 331, 336, 347], "td_clone": [221, 222, 223], "tensordictmodulewrapp": [221, 316, 317, 323], "get_policy_head": [221, 222, 223], "safesequenti": [221, 222, 223, 273], "head": [221, 223, 247, 259, 262], "get_value_head": [221, 222, 223], "get_value_oper": [221, 222, 223, 247, 259, 262], "action_modul": 222, "state_valu": [222, 223, 240, 247, 259, 262, 263, 265, 275, 276, 277, 278, 280, 282, 284, 286, 288, 289, 291, 331, 336, 338, 342], "qualiti": [223, 331], "actorcriticoper": [223, 247, 259, 262, 331], "embeddig": 223, "refet": 223, "actorcriticwrapp": [223, 331, 336], "po": [224, 229], "sigma_init": 224, "epsilon": [224, 228, 229, 231, 266, 309, 337, 338, 339], "sigma_end": 224, "annealing_num_step": [224, 228, 229, 231, 336, 337, 339], "captur": [224, 228, 229, 231], "omiss": [224, 228, 229, 231], "ommit": [224, 228, 229, 231, 345], "inferec": 225, "set_tensor_kei": 225, "dt_inference_wrapp": 225, "baz": 225, "inference_context": 225, "obs_dim": 225, "tanhdelta": [225, 329, 336], "dtactor": 225, "actor_modul": [225, 347], "dist_class": 225, "dist_kwarg": 225, "distribution_kwarg": [225, 232, 236, 338, 342], "inference_actor": 225, "sequence_length": 225, "mask_context": 225, "out_act": 225, "qvaluemodul": [226, 233, 273, 339], "distributionaldqnnet": 226, "make_log_softmax": 226, "my_action_valu": [227, 234], "chanc": 227, "thid": 227, "threshold": [228, 246, 247, 338], "eps_init": [228, 229, 231, 337, 339], "eps_end": [228, 229, 231, 337], "explorative_polici": [228, 229, 231], "9055": [228, 229, 343], "9277": [228, 229], "6295": [228, 229], "2532": [228, 229], "addbackward0": [228, 229], "lmheadmodel": 230, "extract": [230, 336, 338], "actor_head": [230, 247, 259, 262], "base_model": 230, "lm_head": 230, "ornstein": 231, "uhlenbeck": 231, "ou": [231, 336], "correl": 231, "noise_t": 231, "noise_": 231, "theta": [231, 338, 343], "sigma_t": 231, "sigma_": 231, "anneal": 231, "ou_prev_nois": 231, "ou_step": 231, "x0": 231, "sigma_min": 231, "n_steps_ann": 231, "is_init_kei": 231, "_ou_prev_nois": 231, "_ou_step": 231, "default_interaction_typ": [232, 236], "interaction_typ": [232, 236], "set_interaction_typ": [232, 236], "cache_dist": [232, 236], "n_empirical_estim": [232, 236], "compound": 232, "compositedistribut": 232, "categ": 232, "distribution_map": 232, "chose": 234, "functionalmodul": 235, "functionalmodulewithbuff": 235, "td_fmodul": 235, "td_function": 235, "td_state": 235, "params_repeat": 235, "td_vmap": [235, 238], "random_sampl": [235, 236], "suppli": 236, "fist": 236, "log_prob_kei": [236, 342], "probabilistictensordictsequenti": [237, 245, 247, 259, 262, 264, 316, 317, 347], "partial_toler": [237, 238, 341], "who": [237, 238], "AND": [237, 238], "tensordictsequenci": 238, "tensordictsequ": 238, "safeprobabilisticmodul": [238, 331], "spec1": 238, "net1": 238, "module1": 238, "td_module1": 238, "spec2": 238, "module2": 238, "td_module2": 238, "clamp": [239, 255, 311, 343], "boundari": [239, 338, 342], "resolut": 239, "simplest": [239, 336, 338, 339, 342, 345, 348], "9944": 239, "9991": 239, "3020": 239, "2299": [239, 343], "5418": 239, "2989": 239, "6849": 239, "3169": 239, "2690": 239, "9649": [239, 343], "5686": 239, "8602": 239, "0315": 239, "8455": [239, 343], "6027": 239, "4746": 239, "7843": 239, "7782": 239, "2111": 239, "5115": 239, "4687": 239, "5760": 239, "custommodul": 240, "cat": [240, 246, 248, 258, 263, 265, 267, 347], "imaginari": 241, "imagin": 241, "transition_model": 241, "get_reward_oper": 241, "get_transition_model_oper": 241, "min_val": [242, 244], "_bia": 242, "invert": [243, 338], "surject": 244, "expln": 244, "biased_softplu": [244, 329], "beggin": 244, "biased_softplus_": 244, "syntax": [244, 336], "met": [244, 343], "1602": 245, "01783v2": 245, "entropy_bonu": [245, 247, 259, 262, 338], "favour": [245, 247, 259, 262], "samples_mc_entropi": [245, 247, 259, 261, 262], "mont": [245, 247, 259, 262, 336], "carlo": [245, 247, 259, 262, 336], "entropy_coef": [245, 247, 259, 262, 338, 342], "critic_coef": [245, 247, 259, 262, 338], "loss_critic_typ": [245, 247, 259, 262, 264, 338], "l1": [245, 247, 248, 249, 252, 259, 262, 263, 264, 267, 270, 273, 331, 336], "l2": [245, 247, 248, 249, 250, 251, 252, 255, 256, 259, 262, 263, 264, 267, 270, 273, 336], "smooth_l1": [245, 246, 247, 248, 249, 252, 258, 259, 262, 263, 264, 265, 267, 270, 273, 338], "separate_loss": [245, 247, 248, 252, 258, 259, 262, 263, 264, 265, 267], "propag": [245, 247, 248, 252, 258, 259, 262, 263, 264, 265, 267, 275, 276, 277, 278, 338, 342], "advantage_kei": [245, 247, 259, 262, 264, 275, 276, 277, 278], "value_target_kei": [245, 247, 259, 262, 264, 275, 276, 277, 278, 338], "value_target": [245, 247, 259, 262, 264, 275, 276, 277, 278, 338, 342], "loss_crit": [245, 262, 338, 342], "loss_entropi": [245, 262, 338, 342], "loss_object": [245, 262, 338, 342], "recur": [245, 246, 248, 249, 251, 252, 258, 262, 263, 264, 265, 267, 275, 276, 277, 278, 279], "next_reward": [245, 246, 248, 249, 251, 252, 258, 262, 263, 264, 265, 267, 275, 276, 277, 278], "next_don": [245, 246, 248, 249, 251, 252, 258, 262, 263, 264, 265, 267, 275, 276, 277, 278], "next_termin": [245, 246, 248, 249, 251, 252, 258, 262, 263, 264, 265, 267, 275, 276, 277, 278], "loss_obj": 245, "sacloss": [245, 257, 266, 329], "select_out_kei": [245, 246, 248, 252, 258, 262, 263, 265, 267], "essenti": [245, 246, 247, 252, 253, 254, 255, 256, 258, 259, 260, 262, 263, 264, 265, 267, 273, 337, 343, 345], "make_value_estim": [245, 246, 248, 249, 251, 252, 253, 254, 258, 260, 262, 263, 264, 265, 267, 268, 273, 332, 336, 337, 342], "value_typ": [245, 246, 248, 249, 251, 252, 253, 254, 258, 260, 262, 263, 264, 265, 267, 269, 273, 336], "valueestim": [245, 246, 248, 249, 251, 252, 253, 254, 258, 260, 262, 263, 264, 265, 267, 269, 273, 329, 332, 336, 342], "hyperparam": [245, 246, 248, 249, 251, 252, 253, 254, 258, 260, 262, 263, 264, 265, 267, 273, 336], "enum": [245, 246, 248, 249, 251, 252, 253, 254, 258, 260, 262, 263, 264, 265, 267, 269, 273, 336], "default_value_estim": [245, 246, 248, 249, 251, 252, 253, 254, 258, 260, 262, 263, 264, 265, 267, 273, 336], "default_value_kwarg": [245, 246, 248, 249, 251, 252, 253, 254, 258, 260, 262, 263, 264, 265, 267, 273, 329, 336], "dqn_loss": [245, 246, 248, 249, 251, 252, 253, 254, 258, 260, 262, 263, 264, 265, 267, 268, 273], "conserv": [246, 251], "2006": [246, 251, 343], "actor_network": [246, 248, 250, 252, 258, 261, 263, 265, 267, 336], "qvalue_network": [246, 252, 258, 263, 265, 267], "loss_funct": [246, 248, 249, 250, 251, 252, 258, 263, 265, 267, 270, 273, 336], "alpha_init": [246, 252, 261, 263, 265], "min_alpha": [246, 252, 261, 263, 265], "max_alpha": [246, 252, 261, 263, 265], "fixed_alpha": [246, 252, 261, 263, 265], "target_entropi": [246, 252, 261, 263, 265], "prod": [246, 261, 265], "n_action": [246, 249, 251, 261, 265], "delay_actor": [246, 248, 265, 267], "delay_qvalu": [246, 252, 263, 265, 267], "min_q_weight": 246, "max_q_backup": 246, "backup": 246, "deterministic_backup": 246, "num_random": 246, "with_lagrang": 246, "lagrang": 246, "lagrange_thresh": 246, "valueclass": [246, 248, 252, 258, 263, 265, 267], "qvalu": [246, 252, 258, 263, 265, 267, 320], "loss_actor": [246, 248, 252, 258, 263, 264, 265, 267, 306, 336, 347], "loss_alpha": [246, 252, 263, 265], "loss_alpha_prim": 246, "loss_qvalu": [246, 252, 258, 263, 265, 267], "clip_epsilon": [247, 338, 342], "normalize_advantag": [247, 259, 262, 342], "value_kei": [247, 259, 262, 275, 276, 277, 278, 336], "somemodul": [247, 259, 262], "someactor": [247, 259, 262], "value_head": [247, 259, 262], "somevalu": [247, 259, 262], "loss_modul": [247, 257, 259, 260, 262, 266, 311, 322, 323, 332, 333, 336, 337, 338, 342, 345], "ppoloss": [247, 259, 329], "delay_valu": [248, 249, 251, 253, 264, 265, 273, 337, 339], "loss_valu": [248, 258, 264, 265, 336, 338, 342, 347], "pred_valu": [248, 267, 336, 347], "pred_value_max": [248, 336, 347], "target_valu": [248, 263, 267, 274, 332, 336, 347], "target_value_max": [248, 336, 347], "qvalueactor": [249, 251, 273, 331, 337, 339], "double_dqn": 249, "06461": [249, 257], "mult_one_hot": [249, 252, 273], "loss_val": [249, 251, 332, 336, 338, 339, 342, 345], "2106": 250, "01345": 250, "distanc": [251, 259, 270, 274, 275, 342], "loss_cql": 251, "dcql_loss": 251, "num_qvalue_net": [252, 258, 263, 265, 267], "target_entropy_weight": 252, "onehotcategor": [252, 329], "disctount": 253, "distributionalqvalueactor": [253, 331], "input_tensordict": [253, 336], "actor_model": 254, "value_model": [254, 256], "model_based_env": 254, "dreamerenv": [254, 329], "imagination_horizon": 254, "unrol": [254, 280, 281, 284, 285, 286, 287, 288, 289, 290, 291, 292], "discount_loss": [254, 256], "lambda_kl": 255, "lambda_reco": 255, "lambda_reward": 255, "reco_loss": 255, "reward_loss": 255, "free_nat": 255, "nat": 255, "delayed_clamp": 255, "global_averag": 255, "value_loss": 256, "fake_data": 256, "ddpgloss": [257, 266, 323, 329, 336, 347], "td3loss": [257, 266, 329], "value_network_update_interv": 257, "2110": 258, "06169": 258, "expectil": 258, "tau": [258, 266, 336, 337], "antmaz": 258, "sticht": 258, "loss_value_diff": 258, "diff": 258, "old_polici": 259, "new_polici": 259, "apart": [259, 342], "dtarg": 259, "samples_mc_kl": 259, "analyt": 259, "decrement": 259, "loss_": [260, 306, 332, 336], "equip": [260, 339], "gh": 260, "_acceptedkei": 260, "dataclass": [260, 320], "_forward_value_estimator_kei": 260, "alter": [260, 331], "value_estim": [260, 275, 276, 277, 278, 279, 332, 336, 342], "myloss": 260, "action2": 260, "convert_to_funct": [260, 336], "expand_dim": 260, "create_target_param": [260, 336], "compare_against": [260, 336], "_param": 260, "expans": 260, "resampl": 260, "_target_param": 260, "blend": 260, "upcom": [260, 284, 285, 286, 287, 289, 290, 291, 292, 336], "proxim": [262, 338, 342], "optimis": [262, 307, 338, 342], "flavour": [262, 342, 347], "clipppoloss": [262, 329, 338, 342], "klpenppoloss": [262, 329], "regularis": 262, "06347": 262, "gae": [262, 329, 332, 336, 338, 342], "ppo_loss": 262, "tdlambda": [262, 269, 332, 336], "base_lay": 262, "randn_lik": 262, "samplelogprob": 262, "openreview": [263, 320], "ay8zfzm0tdd": [263, 320], "sub_sample_len": 263, "subsampl": [263, 302, 333], "action_log_prob_actor": 263, "state_action_value_actor": [263, 267], "connectionist": 264, "1992": 264, "doi": 264, "1007": 264, "bf00992696": 264, "actor_net": [264, 336, 338], "1801": 265, "01290": 265, "applic": [265, 273, 343], "1812": 265, "05905": 265, "redqloss": [266, 329], "math": 266, "theta_t": [266, 343], "theta_": [266, 343], "polyak": 266, "policy_nois": 267, "noise_clip": 267, "next_state_valu": [267, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 329], "td0": [268, 336], "strict_shap": 270, "view_a": 270, "qmixer": [273, 329], "local_valu": 273, "visibl": [273, 342], "dafault": 273, "acceptedkei": 273, "global_valu": 273, "penultim": 273, "local_value_network": 273, "mixer_network": 273, "suggest": [273, 342], "value_modul": [273, 338, 347], "qnet": [273, 336], "next_val_kei": 274, "pred_next_v": 274, "usus": 274, "mse": 274, "q_valu": 274, "n_steps_to_next": 274, "value_next_st": 274, "1506": [275, 280, 288], "02438": [275, 280, 288], "exponenti": [275, 276, 277, 278, 280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 309], "average_ga": [275, 338], "skip_exist": [275, 276, 277, 278], "advang": 275, "gradient_mod": 275, "value_error": [275, 276, 277, 278, 279], "sign": 275, "target_param": [275, 276, 277, 278, 279, 336, 342], "98": [275, 276, 277, 278, 337, 343], "94": [275, 278, 337, 343], "unpack": [275, 276, 277, 278], "tensor_kei": [275, 276, 277, 278, 279], "next_valu": [275, 276, 277, 278, 279], "aka": [276, 337], "average_reward": [276, 277, 278], "tdestim": [276, 277, 279], "infti": 277, "valuefunctionbas": 279, "time_dim": [280, 281, 284, 285, 286, 287, 288, 289, 290, 291, 292], "old_stat": [280, 282, 284, 286, 288, 289, 291], "new_stat": [280, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292], "rolling_gamma": [284, 285, 286, 287, 289, 290, 291, 292], "g1": [284, 285, 286, 287, 289, 290, 291, 292], "g2": [284, 285, 286, 287, 289, 290, 291, 292], "g3": [284, 285, 286, 287, 289, 290, 291, 292], "g4": [284, 285, 286, 287, 289, 290, 291, 292], "v3": [284, 285, 286, 287, 289, 290, 291, 292], "out_file_bas": 293, "skip_reset": 293, "interv": [293, 294, 303, 313, 337, 343], "center_crop": 294, "make_grid": 294, "grid": 294, "exp_nam": [295, 296, 299, 300, 301, 323, 337], "log_dir": [295, 296, 298, 300, 337], "templat": 295, "csv": [296, 298, 337], "minim": [296, 345], "dependeci": 296, "experiment_nam": [297, 298], "uuid": [297, 337, 348], "logger_typ": 298, "logger_nam": 298, "tensorboard": [298, 300, 347], "wandb": [298, 301, 347], "mlflow": [298, 299], "wandb_kwarg": 298, "mlflow_kwarg": 298, "tracking_uri": 299, "uri": 299, "datastor": 299, "tb_log": 300, "tensoarboard": 300, "sub_traj_len": 302, "min_sub_traj_len": 302, "register_op": [302, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 333, 337], "process_optim_batch": [302, 308, 309, 333], "td_out": [302, 310], "_process_optim_batch_hook": [302, 333], "batch_subsampl": 302, "clear_cuda": 303, "pre_optim_step": [303, 333], "counter": [304, 333], "log_pbar": [304, 305, 307, 309, 333, 337], "progress": [304, 305, 307, 311, 333, 337, 339, 348], "count_fram": 304, "pre_steps_log": [304, 305, 333], "count_frames_log": 304, "lognam": 305, "r_train": [305, 337], "log_reward": [305, 337], "loss_compon": 306, "appl": 306, "omit": [306, 338, 343, 345], "optimizer_hook": 306, "record_interv": [307, 336, 337], "record_fram": [307, 314, 336, 337], "policy_explor": [307, 323, 336, 337], "log_kei": [307, 337], "suffix": 307, "underestim": 307, "set_exploration_typ": [307, 329, 338, 339, 347], "r_evalu": [307, 336], "flatten_tensordict": [308, 337], "max_dim": 308, "rb_trainer": 308, "batch_process": [308, 309, 310, 333], "post_loss": [308, 333], "999": [309, 337], "jitter": 309, "finfo": 309, "default_dtyp": 309, "get_default_dtyp": 309, "reward_norm": 309, "update_reward_stat": 309, "normalize_reward": 309, "make_train": [310, 329], "_process_batch_hook": [310, 333], "select_kei": [310, 333], "versatil": 311, "optim_steps_per_batch": [311, 333, 337], "epoch": [311, 338, 342], "clip_grad_norm": 311, "clip_norm": 311, "progress_bar": 311, "save_trainer_interv": 311, "log_interv": [311, 337], "save_trainer_fil": [311, 333], "datacollectorbas": [313, 316, 317, 323, 329], "update_weights_interv": [313, 337], "sit": [313, 337], "update_weight": 313, "post_step": [313, 333], "cfg": [314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 327], "dictconfig": [314, 315, 316, 317, 320, 321, 322, 323, 324, 327], "divid": [314, 331, 336, 342, 343], "unknowingli": 314, "annealing_fram": [314, 336], "init_env_step": [314, 315, 336], "proof_environ": [315, 320, 336], "sta": 315, "ot": 315, "actor_model_explor": [316, 317, 336], "make_env_kwarg": [316, 317], "targetnetupdat": [318, 319, 322, 323], "redqloss_deprec": 319, "actor_net_kwarg": 320, "qvalue_net_kwarg": 320, "observation_kei": 320, "parser_env_arg": 320, "parser_model_args_continu": 320, "cattensor": [320, 336, 341, 343, 348], "hydra": 320, "config_stor": 320, "configstor": 320, "config_field": 320, "config_cl": 320, "redqmodelconfig": 320, "envconfig": 320, "make_dataclass": 320, "cls_name": 320, "cs": 320, "config_path": 320, "config_nam": 320, "replayargsconfig": 321, "target_net_updat": [323, 336, 337], "constitu": 323, "learnt": [323, 336, 338], "tensorboardlogg": [323, 329], "egreedywrapp": [323, 337, 339], "env_proof": 323, "obs_spec": 323, "net_valu": 323, "dir": [323, 333, 337], "gettempdir": 323, "argpars": [324, 327], "namespac": [324, 327], "parser": [324, 327], "transformed_env_constructor": [324, 329], "num_env_per_collector": [325, 326], "video_tag": 327, "norm_obs_onli": 327, "use_env_cr": 327, "custom_env_mak": 327, "custom_env": 327, "return_transformed_env": 327, "action_dim_gsd": 327, "state_dim_gsd": 327, "obs_norm_state_dict": 327, "wheter": 327, "maker": 327, "asyncdatacollector": 329, "distributedsyncdatacollector": 329, "submitit_delayed_launch": 329, "raycollector": 329, "immutabledatasetwrit": 329, "tensordictmaxvaluewrit": 329, "d4rlexperiencereplai": 329, "minariexperiencereplai": 329, "openmlexperiencereplai": 329, "openxexperiencereplai": 329, "vd4rlexperiencereplai": 329, "unboundeddiscretetensorspec": [329, 348], "lazystackedtensorspec": 329, "lazystackedcompositespec": 329, "prompttensordicttoken": 329, "rolloutfrommodel": 329, "tokenizeddatasetload": 329, "create_infinite_iter": 329, "consolidate_spec": 329, "check_no_exclusive_kei": 329, "contains_lazy_spec": 329, "check_marl_group": 329, "tensordictrecord": 329, "videorecord": [329, 338], "get_available_librari": 329, "set_exploration_mod": 329, "make_composite_from_td": [329, 343], "terminated_or_trunc": 329, "braxwrapp": 329, "dmcontrolenv": [329, 336, 341, 348], "dmcontrolwrapp": [329, 348], "jumanjienv": 329, "jumanjiwrapp": 329, "mogymenv": 329, "mogymwrapp": 329, "multithreadedenvwrapp": 329, "openmlenv": 329, "pettingzooenv": 329, "robohiveenv": 329, "smacv2env": 329, "smacv2wrapp": 329, "vmaswrapp": 329, "qvaluehook": 329, "distributionalqvaluehook": 329, "reset_nois": 329, "cemplann": 329, "mpcplannerbas": 329, "mppiplann": 329, "independentnorm": 329, "truncatednorm": 329, "maskedonehotcategor": 329, "inv_softplu": 329, "vmapmodul": 329, "distributionaldqnloss": [329, 337], "discretesacloss": 329, "iqlloss": 329, "cqlloss": 329, "discretecqlloss": 329, "dtloss": 329, "onlinedtloss": 329, "a2closs": 329, "reinforceloss": 329, "dreameractorloss": 329, "dreamermodelloss": 329, "dreamervalueloss": 329, "td0estim": [329, 336], "td1estim": [329, 336], "td0_return_estim": 329, "td0_advantage_estim": 329, "td1_return_estim": 329, "vec_td1_return_estim": 329, "td1_advantage_estim": 329, "vec_td1_advantage_estim": 329, "td_lambda_return_estim": 329, "vec_td_lambda_return_estim": 329, "td_lambda_advantage_estim": 329, "vec_td_lambda_advantage_estim": 329, "generalized_advantage_estim": 329, "vec_generalized_advantage_estim": 329, "reward2go": 329, "distance_loss": [329, 336], "hold_out_net": 329, "hold_out_param": [329, 336], "softupd": [329, 336, 337, 339], "hardupd": [329, 336], "batchsubsampl": [329, 333], "clearcudacach": 329, "countframeslog": 329, "logreward": [329, 333, 337], "optimizerhook": [329, 337], "replaybuffertrain": [329, 333, 337], "rewardnorm": 329, "selectkei": [329, 333], "trainerhookbas": [329, 333, 337], "updateweight": [329, 333, 337], "make_collector_offpolici": 329, "make_collector_onpolici": 329, "make_dqn_loss": 329, "make_redq_loss": 329, "make_redq_model": 329, "make_replay_buff": [329, 336], "make_target_updat": 329, "parallel_env_constructor": [329, 336], "sync_async_collector": 329, "sync_sync_collector": 329, "correct_for_frame_skip": 329, "get_stats_random_rollout": 329, "csvlogger": [329, 337], "mlflowlogg": 329, "wandblogg": 329, "get_logg": 329, "generate_exp_nam": 329, "journei": 330, "textbook": 330, "highlight": 330, "ever": [330, 342], "bump": 330, "think": [330, 338, 342, 348], "benefit": [330, 342, 345], "pr": 330, "ground": [331, 336, 343], "categori": [331, 333], "recycl": [331, 345], "impos": 331, "violat": 331, "noisier": 331, "Their": [331, 342], "sd": 331, "prob_modul": 331, "pick": [331, 336, 337], "tabl": [331, 337], "hopefulli": [331, 337], "functional_modul": 331, "make_funct": [331, 347], "mathbb": [331, 337], "rightarrow": [331, 337], "soften": 331, "backbon": [331, 339, 341, 347], "make_actor": 331, "make_valu": 331, "shared_param": 331, "make_common": 331, "reusabl": [332, 336, 345], "swappabl": [332, 336], "characterist": [332, 336, 343], "trainabl": [332, 336, 344], "whatev": [332, 336], "smth": [332, 336], "metric": [332, 336], "nutshel": [332, 336], "barto": [332, 342], "chapter": 332, "significantli": [332, 336, 337, 342], "next_stat": 332, "value_net_loss": 332, "pow": [332, 336], "therebi": 332, "room": 332, "convers": 332, "signifi": [332, 342], "underperform": 332, "thin": 332, "intric": 332, "believ": 333, "scheme": [333, 348], "substenti": 333, "_pre_steps_log_hook": 333, "_pre_optim_hook": 333, "sub_batch": 333, "_post_loss_hook": 333, "_post_optim_hook": 333, "post_optim": [333, 337], "_post_optim_log": 333, "post_optim_log": 333, "_post_steps_hook": 333, "_post_steps_log_hook": 333, "post_steps_log": 333, "comment": [333, 337, 347], "reserv": 333, "logginghook": 333, "logging_hook": 333, "save_dict": 333, "some_valu": 333, "torchsnapshot": 333, "ckpt_backend": 333, "pt": [333, 344], "filepath": 333, "save_train": 333, "load_from_fil": 333, "58": [335, 336, 337, 343, 344, 346], "661": [335, 346], "galleri": [335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 347, 348], "mem": [335, 346], "mb": [335, 336, 337, 338, 339, 341, 342, 343, 344, 345, 346, 347, 348], "torchrl_demo": [335, 346, 347], "123": [335, 343, 346, 347], "torchrl_env": [335, 346, 348], "853": [335, 346, 348], "31": [335, 336, 337, 339, 343, 344, 346], "dqn_with_rnn": [335, 339, 346], "816": [335, 339, 346], "1604": [335, 339, 343, 346], "multiagent_ppo": [335, 342, 346], "624": [335, 342, 343, 346], "coding_dqn": [335, 337, 346], "02": [335, 336, 337, 338, 339, 342, 343, 344, 346], "372": [335, 337, 343, 346], "690": [335, 346], "rb_tutori": [335, 345, 346], "792": [335, 345, 346], "395": [335, 343, 346], "119": [335, 343, 346], "coding_ddpg": [335, 336, 346], "00": [335, 336, 337, 338, 339, 342, 343, 344, 346], "576": [335, 336, 337, 343, 346], "coding_ppo": [335, 338, 346], "867": [335, 338, 343, 346], "pretrained_model": [335, 344, 346], "55": [335, 336, 337, 342, 343, 344, 345, 346], "258": [335, 343, 344, 346], "3672": [335, 343, 346], "multi_task": [335, 341, 346], "262": [335, 341, 343, 346], "author": [336, 337, 338, 339, 342, 343, 345], "vincent": [336, 337, 338, 339, 343, 345], "moen": [336, 337, 338, 339, 343, 345], "assembl": 336, "focus": 336, "straightforward": [336, 337, 345], "overview": [336, 338, 342, 347], "transpar": [336, 339], "understood": 336, "sota": [336, 337, 347], "illustr": [336, 337, 345], "loss_dict": 336, "oblivi": [336, 338, 345], "elementari": 336, "didact": 336, "dilut": 336, "pessimist": [336, 337, 338], "target_actor_network_param": 336, "actor_in_kei": 336, "actor_crit": 336, "noth": [336, 338], "compromis": 336, "hp": 336, "hasattr": 336, "_value_estim": 336, "elif": [336, 337], "notimplementederror": 336, "unknown": 336, "_loss_actor": 336, "td_copi": 336, "actor_network_param": 336, "value_network_param": 336, "_loss_valu": 336, "pred_val": 336, "target_value_network_param": 336, "smooth": [336, 337], "loss_funt": 336, "glue": 336, "_forward": 336, "ndimens": 336, "remaind": 336, "focu": [336, 337, 338], "pixels_onli": [336, 337, 347, 348], "env_librari": 336, "env_task": 336, "env_arg": 336, "friendli": 336, "torchr": 336, "rescal": 336, "presum": 336, "make_transformed_env": 336, "reward_sc": 336, "double_to_float_list": 336, "double_to_float_inv_list": 336, "marker": 336, "env_per_collector": 336, "transform_state_dict": 336, "make_t_env": 336, "adjust": [336, 342, 343], "seem": [336, 339], "cheat": 336, "10m": 336, "cautiou": 336, "magnitud": 336, "thousand": [336, 339], "get_env_stat": 336, "proof_env": 336, "5000": [336, 337, 338], "maxim": [336, 343], "recal": [336, 338], "ddpgmlpactor": 336, "ddpgmlpqnet": 336, "materi": 336, "ornsteinuhlenbeckprocesswrapp": 336, "make_ddpg_actor": 336, "q_net": 336, "moduless": 336, "sugges": 336, "tight": 336, "10_000": [336, 338, 345], "traj_len": [336, 339], "make_record": 336, "recorder_obj": 336, "flavor": 336, "circular": 336, "buffer_s": [336, 337], "random_crop_len": 336, "prb": 336, "buffer_scratch_dir": 336, "temporari": 336, "dirrectori": 336, "trajecotri": 336, "25": [336, 337, 338, 339, 342, 343, 345], "sampel": 336, "dataflow": 336, "ceil_div": 336, "utd": [336, 339], "update_to_data": 336, "realiz": 336, "_must_": 336, "001": [336, 343], "outdat": 336, "trick": [336, 337], "despit": 336, "adam": [336, 337, 338, 339, 342, 343], "optimizer_actor": 336, "lr": [336, 337, 338, 339, 342, 343], "weight_decai": [336, 337], "optimizer_valu": 336, "total_collection_step": 336, "pretti": [336, 345], "rewards_ev": 336, "collected_fram": 336, "pbar": [336, 338, 339, 342, 343], "r0": 336, "numel": [336, 338, 339, 344, 345], "current_fram": 336, "sampled_tensordict": 336, "gn1": 336, "clip_grad_norm_": [336, 338, 342, 343], "gn2": 336, "gn": [336, 343], "td_record": 336, "rn": 336, "set_descript": [336, 338, 339, 342, 343], "2f": 336, "800": [336, 337], "2930": 336, "51it": 336, "1600": [336, 337], "07": [336, 337, 343], "1076": 336, "32it": [336, 337], "3200": [336, 337], "2219": 336, "73it": [336, 337, 343], "48": [336, 337, 343, 344], "4800": [336, 337, 343], "3161": 336, "17it": [336, 337, 343], "150": [336, 339, 343], "90": [336, 337, 338, 342, 343, 345], "349": [336, 343], "67": [336, 337, 341, 343, 344], "56": [336, 337, 343, 344], "5600": 336, "6400": [336, 347], "1330": 336, "06it": [336, 337, 343], "78": [336, 337, 343, 344, 345], "61": [336, 337, 343, 344, 345], "222": [336, 343], "74": [336, 337, 343, 344], "72": [336, 337, 342, 343, 344], "7200": 336, "838": 336, "57": [336, 337, 343, 344], "96": [336, 337, 343, 344], "68": [336, 337, 343, 344], "211": [336, 343], "80": [336, 337, 338, 342, 343, 344], "8000": [336, 338], "627": 336, "59it": [336, 337, 343], "70": [336, 337, 338, 342, 343, 344], "65": [336, 337, 343, 344], "243": [336, 343], "77": [336, 337, 343], "282": [336, 343], "54": [336, 337, 342, 343, 344], "8800": 336, "526": [336, 343], "78it": [336, 337, 343], "92": [336, 337, 342, 343, 344], "140": [336, 343], "374": [336, 343], "82": [336, 337, 343, 344], "36": [336, 337, 338, 343], "9600": 336, "398": [336, 343], "97it": [336, 337], "219": [336, 343], "10400it": 336, "388": [336, 343], "75it": [336, 337, 343], "195": [336, 343], "plot": [336, 338, 339, 342, 343], "mention": [336, 339, 345, 348], "matplotlib": [336, 338, 339, 342, 343, 345, 348], "pyplot": [336, 338, 339, 342, 343, 345, 348], "plt": [336, 338, 339, 342, 343, 345, 348], "zip": [336, 340], "legend": 336, "xlabel": [336, 339, 342, 343], "ylabel": [336, 342], "tight_layout": 336, "concret": [336, 338], "takeawai": [336, 337], "minut": [336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "jupyt": [336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 347, 348], "ipynb": [336, 337, 338, 339, 341, 342, 343, 344, 345, 347, 348], "sphinx": [336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 347, 348], "customis": [337, 342], "road": 337, "aspect": 337, "highest": 337, "prerequisit": [337, 339], "familiar": [337, 342, 348], "lookup": 337, "amort": [337, 338], "conjunct": 337, "cart": 337, "pole": 337, "un": 337, "actuat": 337, "frictionless": 337, "upright": 337, "duelingcnndqnet": 337, "is_notebook": 337, "shell": 337, "get_ipython": 337, "__class__": 337, "zmqinteractiveshel": 337, "qtconsol": 337, "terminalinteractiveshel": 337, "ipython": [337, 342, 343], "nameerror": 337, "umbrella": 337, "misplac": 337, "misus": 337, "orchestr": 337, "everyth": [337, 339], "five": [337, 338], "64x64": 337, "motion": [337, 343], "obs_norm_sd": 337, "simpler": 337, "get_norm_stat": 337, "test_env": 337, "make_model": 337, "dummy_env": 337, "output_s": [337, 339], "init_bia": 337, "actor_explor": 337, "eps_greedy_v": 337, "eps_greedy_val_env": 337, "get_replay_buff": 337, "n_optim": 337, "themselv": 337, "simplic": [337, 338, 344, 345], "get_collector": 337, "data_collector": 337, "bunch": 337, "concept": [337, 345], "power": 337, "ubiquit": 337, "get_loss_modul": 337, "target_updat": 337, "995": [337, 343], "sensit": 337, "variat": 337, "2e": [337, 343], "wd": 337, "upd": 337, "harder": [337, 347], "5_000": 337, "500000": 337, "100000": 337, "005": 337, "mandatori": [337, 338, 342, 343], "fairer": 337, "budget": [337, 338], "dqn_exp_": 337, "uuid1": [337, 348], "9895": 337, "0737": 337, "registr": 337, "cumbersom": 337, "buffer_hook": 337, "weight_updat": 337, "descript": [337, 338], "aliv": 337, "total_reward": 337, "4345": 337, "9259": 337, "51": [337, 343, 344], "29it": [337, 338], "4497": 337, "05": [337, 338, 343, 344], "28it": 337, "3499": 337, "09": [337, 343], "89it": 337, "4045": 337, "192": [337, 343], "54it": 337, "224": [337, 343], "41": [337, 342, 343, 345], "87it": [337, 343], "4948": 337, "94it": [337, 343], "288": [337, 343], "15it": 337, "3983": 337, "05it": [337, 343], "4526": 337, "352": [337, 343], "14it": [337, 343], "384": [337, 343], "60": [337, 338, 342, 343, 347], "82it": [337, 339], "416": [337, 343], "62": [337, 343, 344], "4676": 337, "448": [337, 343], "33it": 337, "480": [337, 343, 344], "39it": [337, 339], "09it": [337, 343], "544": [337, 343], "21it": 337, "608": [337, 343], "66it": 337, "640": 337, "90it": [337, 343], "672": 337, "66": [337, 343, 345], "08it": [337, 343], "704": 337, "36it": 337, "4586": 337, "736": 337, "72it": 337, "768": 337, "42it": [337, 343], "832": 337, "85it": 337, "864": 337, "4134": 337, "896": 337, "03it": [337, 343], "928": 337, "92it": 337, "960": 337, "76it": [337, 343], "992": [337, 343], "10it": [337, 343], "62it": 337, "4224": 337, "1056": 337, "59": [337, 343, 344], "1088": 337, "64it": [337, 339], "1120": 337, "49it": 337, "1152": 337, "1184": 337, "4314": 337, "1216": 337, "30it": 337, "1248": 337, "69it": [337, 338], "1280": 337, "60it": [337, 343], "1344": 337, "83it": [337, 343], "4797": 337, "1376": 337, "95it": 337, "1408": 337, "1440": 337, "53": [337, 343, 345], "1472": 337, "52": [337, 343, 344], "1504": 337, "79it": [337, 343], "1536": 337, "1568": 337, "48it": 337, "1632": 337, "70it": 337, "1696": 337, "1728": 337, "49": [337, 343, 344, 345], "63it": [337, 343], "1760": 337, "1792": 337, "84it": [337, 343], "1824": 337, "47": [337, 343, 344], "1856": 337, "25it": [337, 338], "1888": 337, "35it": 337, "1920": 337, "1952": 337, "40": [337, 338, 342, 343], "1984": 337, "45": [337, 339, 343], "68it": 337, "2016": 337, "2048": [337, 344], "55it": 337, "2080": 337, "2112": [337, 343], "43": [337, 343], "07it": [337, 343], "2144": 337, "20it": 337, "4074": [337, 343], "2176": 337, "12it": [337, 343], "2208": 337, "2240": 337, "2272": 337, "40it": [337, 338, 343], "2304": 337, "41it": 337, "2336": 337, "19it": 337, "2368": 337, "2400": 337, "00it": [337, 343], "2432": 337, "2464": 337, "77it": [337, 343], "2496": 337, "56it": 337, "2528": [337, 338, 343], "2560": 337, "2624": 337, "2656": [337, 343], "2688": 337, "80it": [337, 343], "2720": [337, 343], "37it": 337, "2752": 337, "88it": [337, 343], "2784": 337, "93it": [337, 343], "2816": 337, "13it": [337, 338, 343], "2848": 337, "2880": 337, "61it": [337, 343], "2912": 337, "2944": [337, 343], "38it": [337, 343], "2976": [337, 343], "3040": 337, "44it": 337, "3072": 337, "3104": 337, "63": [337, 343, 344], "3136": 337, "3168": 337, "3232": [337, 343], "8824": 337, "3264": 337, "3296": 337, "3328": 337, "3360": 337, "47it": 337, "3392": 337, "3424": 337, "69": [337, 342, 343, 344], "3456": [337, 343], "3488": 337, "3520": 337, "71": [337, 343, 344], "3552": 337, "3584": 337, "3616": 337, "73": [337, 342, 343, 344, 345], "3648": 337, "86it": [337, 343], "3680": 337, "3712": 337, "27it": 337, "3744": 337, "76": [337, 343, 344], "3776": 337, "3808": 337, "3840": 337, "52it": 337, "3872": 337, "18it": 337, "3904": 337, "79": [337, 343], "3936": 337, "3968": 337, "4000": [337, 338], "4032": 337, "4064": 337, "71it": 337, "4096": 337, "83": [337, 343, 344, 345], "4128": [337, 343], "4160": 337, "4192": 337, "85": [337, 343, 344, 345], "4256": [337, 343], "4288": [337, 343], "4320": 337, "4352": 337, "4384": 337, "01it": [337, 343], "4416": 337, "89": [337, 343], "4448": 337, "22it": 337, "4480": 337, "67it": 337, "4512": 337, "57it": 337, "91": [337, 343], "4544": 337, "4576": 337, "4608": 337, "93": [337, 343], "4640": 337, "4672": [337, 343], "4704": 337, "4736": 337, "34it": [337, 343], "4768": 337, "97": [337, 343, 344, 345], "4832": 337, "4864": 337, "4896": 337, "4928": 337, "65it": [337, 338], "4960": 337, "4992": 337, "5024it": 337, "print_csv_files_in_fold": 337, "folder_path": 337, "csv_file": 337, "output_str": 337, "dirpath": 337, "walk": [337, 341], "endswith": 337, "strip": 337, "tmp": [337, 345], "tmpjnnm8dfh": 337, "dqn_exp_e9830a46": 337, "b0ba": [337, 348], "11ee": [337, 348], "93fc": [337, 348], "0242ac110002": [337, 348], "4948333501815796": 337, "42241954803466797": 337, "4044681191444397": 337, "4676021933555603": 337, "45262259244918823": 337, "3725080192089081": 337, "35758721828460693": 337, "1942863017320633": 337, "30953294038772583": 337, "35583436489105225": 337, "32864367961883545": 337, "4105110764503479": 337, "43156081438064575": 337, "4364769458770752": 337, "grad_norm_0": 337, "0154895782470703": 337, "832021713256836": 337, "3052258491516113": 337, "79581880569458": 337, "8158249855041504": 337, "000941276550293": 337, "7345714569091797": 337, "6232805252075195": 337, "380890846252441": 337, "10000000894069672": 337, "882352828979492": 337, "qvaluenetwork": 337, "worst": 337, "accuraci": 337, "fanci": 337, "691": 337, "talk": 338, "repetit": 338, "six": 338, "sophist": [338, 342], "invent": 338, "theta_k": 338, "pi_": 338, "exceed": 338, "discourag": [338, 343], "indispens": 338, "analyz": 338, "lingua": 338, "franca": 338, "defaultdict": [338, 343], "has_cuda": [338, 342, 348], "3e": [338, 339, 342], "max_grad_norm": [338, 342], "ourselv": [338, 348], "benefici": 338, "errat": 338, "hamper": [338, 345], "reactiv": 338, "xy": 338, "sub_batch_s": 338, "num_epoch": [338, 342], "entropy_ep": [338, 342], "generalist": 338, "interchang": [338, 344, 345], "panel": 338, "charact": 338, "inverteddoublependulum": 338, "transmit": 338, "stai": 338, "supplementari": [338, 348], "told": 338, "stringent": [338, 342], "confid": [338, 342], "ran": 338, "f_": 338, "mu_": 338, "difficulti": [338, 348], "brought": [338, 339], "d_ob": 338, "d_action": 338, "policy_modul": [338, 342], "That": 338, "said": 338, "briefli": [338, 342], "refil": [338, 342], "conveni": [338, 342, 343], "easiest": [338, 342], "mathemat": [338, 342], "tradeoff": [338, 342], "advantage_modul": 338, "lr_schedul": [338, 343], "cosineannealinglr": [338, 343], "eval_str": 338, "tensordict_data": [338, 342], "data_view": [338, 342], "subdata": [338, 342], "cum_reward_str": 338, "4f": [338, 339, 343], "stepcount_str": 338, "param_group": 338, "lr_str": 338, "eval_rollout": 338, "nice": 338, "336": [338, 343], "120": [338, 343], "1773": 338, "0836": 338, "0003": [338, 343], "335": [338, 343], "1167": 338, "3000": 338, "337": [338, 343], "23it": 338, "1482": 338, "338": [338, 343], "1881": 338, "0002": [338, 343], "339": [338, 343], "2041": 338, "6000": 338, "340": [338, 343], "2235": [338, 343], "7000": 338, "334": [338, 343], "2414": 338, "9000": 338, "2579": 338, "cap": [338, 345], "figsiz": [338, 343], "subplot": [338, 343, 348], "titl": [338, 339, 342, 343], "bit": [338, 339, 342, 345], "lstmmodul": 339, "84x84": 339, "accessori": 339, "stamp": 339, "tensordictprim": 339, "assist": 339, "emb": 339, "n_cell": 339, "customiz": 339, "almost": 339, "wouldn": 339, "make_tensordict_prim": 339, "qval": 339, "stoch_polici": 339, "opportun": 339, "coupl": [339, 343, 345], "uniniti": 339, "again": [339, 342, 344, 345, 348], "redund": 339, "strongli": 339, "million": 339, "sake": [339, 344, 345], "20_000": [339, 343], "longest": 339, "npai": 339, "action_spread": 339, "1000000": 339, "43it": [339, 343], "0010": [339, 343], "116": [339, 343], "0009": [339, 343], "152": [339, 343], "0008": [339, 343], "169": [339, 343], "tutorials_python": 340, "tutorials_jupyt": 340, "humanoid": 341, "env1_obs_kei": 341, "observation_stand": 341, "env2_obs_kei": 341, "observation_walk": 341, "tdreset1": 341, "tdreset2": 341, "tdreset": 341, "policy_common": 341, "policy_stand": 341, "policy_walk": 341, "But": 341, "exclusive_field": [341, 347], "stack_dim": [341, 347], "env1_mak": 341, "env2_mak": 341, "_single_task": 341, "td_rollout": 341, "matteo": 342, "bettini": 342, "benchmarl": 342, "maddpg": 342, "navig": 342, "lidar": 342, "sensor": 342, "collis": 342, "tie": 342, "mappo": 342, "ippo": 342, "phase": [342, 345], "mathbf": 342, "pi": [342, 343], "fed": [342, 345], "approxim": [342, 348], "literatur": 342, "overcom": 342, "stationari": 342, "concurr": 342, "analys": 342, "gui": 342, "visualis": 342, "multiagentmlp": 342, "divic": 342, "vmas_devic": 342, "6_000": 342, "team": [342, 347], "n_iter": 342, "minibatch_s": 342, "generalis": 342, "furthermor": 342, "simd": 342, "parallelis": 342, "warp": 342, "todai": 342, "circl": 342, "surround": 342, "dot": [342, 343], "collid": 342, "drag": 342, "elast": 342, "acceler": 342, "penalis": 342, "num_vmas_env": 342, "scenario_nam": 342, "four": [342, 343], "environmnet": 342, "final_rew": 342, "agent_collis": 342, "stress": 342, "paramount": 342, "n_rollout_step": 342, "evolut": 342, "yourself": 342, "utilis": 342, "n_actions_per_ag": 342, "n_obs_per_ag": 342, "share_parameters_polici": 342, "policy_net": 342, "denot": 342, "carefulli": [342, 348], "grant": 342, "converg": 342, "cooper": 342, "share_parameters_crit": 342, "critic_net": 342, "fantast": 342, "minibatch": 342, "desc": 342, "episode_reward_mean": 342, "episode_reward_mean_list": 342, "get_item_shap": 342, "critic_param": 342, "target_critic_param": 342, "refresh": 342, "3641679584980011": 342, "4940122067928314": 342, "0600677728652954": 342, "4344534873962402": 342, "1100871562957764": 342, "304917335510254": 342, "6943857669830322": 342, "871443748474121": 342, "8500826358795166": 342, "759843587875366": 342, "xvfb": 342, "pyvirtualdisplai": 342, "1400": [342, 343], "900": 342, "pil": 342, "rendering_callback": 342, "fromarrai": 342, "rgb_arrai": [342, 343], "gif": 342, "save_al": 342, "append_imag": 342, "profici": 342, "master": 342, "freeli": 343, "codebas": 343, "touch": 343, "undertaken": 343, "broader": 343, "wider": 343, "algebra": 343, "acquaint": 343, "avenu": 343, "_apply_to_composit": 343, "default_x": 343, "default_i": 343, "torqu": 343, "upward": 343, "angular": 343, "sin": 343, "rad": 343, "sec": 343, "gravit": 343, "angl": 343, "deleg": 343, "new_th": 343, "new_thdot": 343, "thdot": 343, "g_forc": 343, "max_torqu": 343, "angle_norm": 343, "max_spe": 343, "albeit": 343, "gen_param": 343, "high_th": 343, "high_thdot": 343, "low_th": 343, "low_thdot": 343, "rng": 343, "lazili": 343, "organ": [343, 345], "trivial": 343, "shortcut": [343, 348], "irrelev": 343, "_make_spec": 343, "td_param": 343, "pseudo": 343, "render_mod": 343, "render_fp": 343, "random_": 343, "_make_step": 343, "staticmethod": 343, "complic": [343, 345, 348], "showcas": 343, "skeleton": 343, "_apply_transform": [343, 348], "_inv_apply_transform": [343, 348], "subset": [343, 344], "unitari": 343, "sine": 343, "cosin": 343, "sintransform": 343, "tensordict_reset": 343, "costransform": 343, "t_sin": 343, "t_co": 343, "cat_transform": 343, "mdp": 343, "simple_rollout": 343, "unexplor": 343, "recreat": 343, "init_td": 343, "traj_return": 343, "last_reward": 343, "is_ipython": 343, "inlin": 343, "get_backend": 343, "ion": 343, "gcf": 343, "clear_output": 343, "625": 343, "0488": 343, "0748": 343, "519": 343, "0499": 343, "4472": 343, "073": 343, "0685": 343, "0408": 343, "552": 343, "5154": 343, "9086": 343, "9385": 343, "155": 343, "2568": 343, "4981": 343, "223": 343, "8929": 343, "4491": 343, "581": 343, "11it": 343, "3233": 343, "0664": 343, "596": 343, "1021": 343, "5263": 343, "9579": 343, "5807": 343, "8075": 343, "212": 343, "2009": 343, "5525": 343, "914": 343, "2894": 343, "0115": 343, "0977": 343, "1845": 343, "1830": 343, "4858": 343, "233": 343, "2863": 343, "0297": 343, "464": 343, "4617": 343, "5997": 343, "904": 343, "1647": 343, "0777": 343, "901": 343, "4709": 343, "6813": 343, "8317": 343, "3221": 343, "5554": 343, "276": 343, "3353": 343, "701": 343, "8570": 343, "6656": 343, "463": 343, "7779": 343, "6911": 343, "875": 343, "0796": 343, "7082": 343, "308": 343, "0421": 343, "1496": 343, "5037": 343, "1755": 343, "5029": 343, "9454": 343, "665": 343, "9330": 343, "2118": 343, "444": 343, "0995": 343, "6294": 343, "3146": 343, "2909": 343, "461": 343, "9720": 343, "1298": 343, "9923": 343, "0345": 343, "3438": 343, "3688": 343, "424": 343, "6953": 343, "5233": 343, "411": 343, "8011": 343, "5329": 343, "2677": 343, "6969": 343, "7010": 343, "376": 343, "9352": 343, "7707": 343, "04it": 343, "6178": 343, "5646": 343, "348": 343, "7304": 343, "9407": 343, "942": 343, "3882": 343, "7604": 343, "3507": 343, "8928": 343, "6978": 343, "4641": 343, "549": 343, "02it": 343, "6047": 343, "5005": 343, "4136": 343, "2993": 343, "3222": 343, "4046": 343, "7314": 343, "275": 343, "6331": 343, "9318": 343, "961": 343, "8331": 343, "4099": 343, "4761": 343, "125": 343, "4262": 343, "6363": 343, "382": 343, "3593": 343, "7377": 343, "2847": 343, "3443": 343, "3592": 343, "4760": 343, "441": 343, "9950": 343, "8021": 343, "3528": 343, "1214": 343, "708": 343, "4023": 343, "3583": 343, "041": 343, "3801": 343, "0310": 343, "4244": 343, "2039": 343, "4850": 343, "8748": 343, "706": 343, "4897": 343, "9210": 343, "8964": 343, "0832": 343, "3934": 343, "456": 343, "8971": 343, "2933": 343, "3377": 343, "6996": 343, "2274": 343, "8916": 343, "098": 343, "2660": 343, "9110": 343, "4503": 343, "6956": 343, "9172": 343, "4026": 343, "946": 343, "9229": 343, "5205": 343, "294": 343, "8872": 343, "6637": 343, "019": 343, "9281": 343, "2082": 343, "724": 343, "8561": 343, "6574": 343, "357": 343, "4138": 343, "5230": 343, "385": 343, "4065": 343, "5642": 343, "921": 343, "9786": 343, "4129": 343, "5831": 343, "266": 343, "7723": 343, "4152": 343, "0898": 343, "389": 343, "5155": 343, "5376": 343, "5616": 343, "4094": 343, "283": 343, "5333": 343, "4803": 343, "895": 343, "6566": 343, "2588": 343, "662": 343, "4732": 343, "7503": 343, "068": 343, "0714": 343, "3370": 343, "059": 343, "8612": 343, "1915": 343, "3855": 343, "0349": 343, "9644": 343, "4538": 343, "445": 343, "0392": 343, "4080": 343, "1648": 343, "9599": 343, "143": [343, 345], "4284": 343, "5946": 343, "2590": 343, "9181": 343, "4621": 343, "9075": 343, "674": 343, "1772": 343, "9444": 343, "351": 343, "9391": 343, "5595": 343, "8673": 343, "6240": 343, "5919": 343, "0018": 343, "1071": 343, "9127": 343, "251": 343, "9799": 343, "3131": 343, "9612": 343, "9705": 343, "8741": 343, "2230": 343, "0972": 343, "0337": 343, "0350": 343, "0654": 343, "102": [343, 345], "2441": 343, "4596": 343, "362": 343, "103": 343, "4362": 343, "171": 343, "104": 343, "4041": 343, "6907": 343, "105": [343, 345], "4664": 343, "2760": 343, "0299": 343, "9712": 343, "107": 343, "3332": 343, "4479": 343, "772": 343, "108": 343, "4357": 343, "9591": 343, "543": 343, "109": [343, 345], "6216": 343, "1353": 343, "692": 343, "110": [343, 345], "6261": 343, "7086": 343, "496": 343, "111": 343, "7758": 343, "9818": 343, "112": 343, "7772": 343, "5055": 343, "113": 343, "5840": 343, "3180": 343, "2083": 343, "115": 343, "5275": 343, "6873": 343, "4107": 343, "1624": 343, "117": 343, "6372": 343, "2571": 343, "118": 343, "4039": 343, "4428": 343, "4728": 343, "5628": 343, "6767": 343, "2466": 343, "522": 343, "121": [343, 348], "5873": 343, "5072": 343, "122": [343, 345, 348], "6548": 343, "3766": 343, "5134": 343, "1955": 343, "124": 343, "2481": 343, "0591": 343, "4500": 343, "3368": 343, "126": [343, 345], "9708": 343, "7059": 343, "127": [343, 345], "3031": 343, "2534": 343, "843": 343, "3327": 343, "6193": 343, "129": 343, "4831": 343, "1172": 343, "2593": 343, "4219": 343, "962": 343, "8380": 343, "899": 343, "132": 343, "2721": 343, "9048": 343, "166": 343, "133": 343, "2419": 343, "5248": 343, "134": 343, "2139": 343, "4278": 343, "135": 343, "0690": 343, "5140": 343, "136": 343, "1140": 343, "7402": 343, "137": 343, "5356": 343, "1636": 343, "138": 343, "0671": 343, "8798": 343, "139": 343, "8918": 343, "3298": 343, "307": 343, "1779": 343, "141": 343, "1771": 343, "3624": 343, "936": 343, "142": 343, "1683": 343, "4810": 343, "9373": 343, "4435": 343, "144": 343, "4396": 343, "8092": 343, "145": 343, "2572": 343, "146": [343, 345], "4212": 343, "0260": 343, "147": 343, "0939": 343, "6478": 343, "605": 343, "148": 343, "6606": 343, "7289": 343, "149": 343, "9300": 343, "7193": 343, "563": 343, "1166": 343, "8514": 343, "151": 343, "9108": 343, "0672": 343, "292": 343, "8591": 343, "3768": 343, "153": 343, "9976": 343, "154": 343, "0576": 343, "0067": 343, "935": 343, "4199": 343, "1722": 343, "156": 343, "8310": 343, "3466": 343, "157": [343, 345], "8631": 343, "2492": 343, "158": 343, "8763": 343, "1277": 343, "159": 343, "5562": 343, "7446": 343, "1082": 343, "9830": 343, "161": [343, 345], "0946": 343, "5229": 343, "162": 343, "4574": 343, "6900": 343, "163": [343, 344], "2229": 343, "0318": 343, "482": 343, "164": 343, "0543": 343, "0817": 343, "761": 343, "165": 343, "2809": 343, "5118": 343, "366": 343, "1142": 343, "5635": 343, "167": 343, "1949": 343, "2327": 343, "982": 343, "168": 343, "0967": 343, "0387": 343, "457": 343, "0782": 343, "2150": 343, "170": 343, "5222": 343, "3725": 343, "31it": 343, "9288": 343, "9837": 343, "172": 343, "1416": 343, "1099": 343, "173": 343, "8620": 343, "8475": 343, "174": 343, "1807": 343, "4375": 343, "175": 343, "1148": 343, "0645": 343, "2751": 343, "8313": 343, "177": 343, "9286": 343, "9770": 343, "178": 343, "5735": 343, "2837": 343, "179": 343, "96it": 343, "2926": 343, "9489": 343, "180": 343, "1507": 343, "181": 343, "8724": [343, 348], "3567": 343, "182": 343, "3574": 343, "6140": 343, "183": 343, "7895": 343, "2518": 343, "184": 343, "6146": 343, "185": 343, "8776": 343, "7358": 343, "186": 343, "3722": 343, "8428": 343, "187": 343, "7955": 343, "188": 343, "0092": 343, "7106": 343, "829": 343, "189": 343, "2264": 343, "6919": 343, "190": 343, "1438": 343, "1362": 343, "191": 343, "0618": 343, "8217": 343, "9420": 343, "6765": 343, "193": 343, "7745": 343, "0709": 343, "194": 343, "9478": 343, "6867": 343, "6507": 343, "6225": 343, "196": 343, "2244": 343, "2195": 343, "197": 343, "5385": 343, "9263": 343, "198": 343, "1878": 343, "2374": 343, "199": 343, "8054": 343, "3504": 343, "557": 343, "0766": 343, "6825": 343, "201": 343, "2011": 343, "8393": 343, "202": 343, "0803": 343, "7815": 343, "203": 343, "8363": 343, "2460": 343, "204": 343, "8643": 343, "2191": 343, "593": 343, "205": 343, "0773": 343, "1343": 343, "206": 343, "8657": 343, "207": 343, "9304": 343, "7584": 343, "208": 343, "8752": 343, "2307": 343, "209": 343, "5250": 343, "4869": 343, "7837": 343, "5762": 343, "6661": 343, "8600": 343, "2502": 343, "1752": 343, "213": 343, "3075": 343, "8871": 343, "214": 343, "9406": 343, "8090": 343, "215": 343, "6291": 343, "8923": 343, "876": 343, "216": 343, "9504": 343, "21e": 343, "217": 343, "7431": 343, "7880": 343, "218": 343, "4463": 343, "5432": 343, "3793": 343, "3313": 343, "220": 343, "8843": 343, "0369": 343, "065": 343, "221": 343, "4828": 343, "8391": 343, "6265": 343, "2913": 343, "947": 343, "5541": 343, "1252": 343, "7342": 343, "2396": 343, "225": 343, "5936": 343, "1924": 343, "226": 343, "9975": 343, "2045": 343, "227": 343, "8367": 343, "9540": 343, "228": 343, "7259": 343, "6743": 343, "229": 343, "4827": 343, "7528": 343, "230": 343, "7361": 343, "8756": 343, "231": 343, "7646": 343, "1116": 343, "232": 343, "5426": 343, "8385": 343, "5662": 343, "8585": 343, "234": 343, "8234": 343, "7930": 343, "235": 343, "2648": 343, "9309": 343, "236": 343, "6817": 343, "237": 343, "0943": 343, "1533": 343, "238": 343, "3045": 343, "0483": 343, "239": 343, "240": [343, 347, 348], "6415": 343, "0201": 343, "241": 343, "4437": 343, "4365": 343, "242": 343, "0358": 343, "4943": 343, "1272": 343, "5003": 343, "1180": 343, "2637": 343, "245": 343, "7197": 343, "0873": 343, "246": 343, "2917": 343, "247": 343, "0160": 343, "0738": 343, "248": 343, "3689": 343, "0120": 343, "249": 343, "5570": 343, "0475": 343, "250": 343, "4423": 343, "2220": 343, "6803": 343, "252": 343, "1465": 343, "7214": 343, "253": 343, "8801": 343, "7034": 343, "254": 343, "9136": 343, "4076": 343, "7589": 343, "5013": 343, "8150": 343, "2241": 343, "257": 343, "0753": 343, "8081": 343, "1951": 343, "8314": 343, "259": 343, "0038": 343, "260": 343, "0889": 343, "4616": 343, "261": 343, "0655": 343, "8333": 343, "9476": 343, "263": 343, "7554": 343, "3798": 343, "264": 343, "3717": 343, "3947": 343, "529": 343, "265": 343, "3060": 343, "6495": 343, "7467": 343, "8889": 343, "267": 343, "8457": 343, "591": 343, "268": 343, "7137": 343, "0536": 343, "771": 343, "269": 343, "1651": 343, "270": 343, "8246": 343, "5709": 343, "281": 343, "271": 343, "7502": 343, "0521": 343, "032": 343, "272": 343, "5475": 343, "7253": 343, "273": 343, "2856": 343, "7130": 343, "274": 343, "2778": 343, "4122": 343, "8368": 343, "1841": 343, "9622": 343, "1603": 343, "003e": 343, "277": 343, "0247": 343, "346": 343, "278": 343, "2238": 343, "6418": 343, "279": 343, "0626": 343, "2538": 343, "280": 343, "0149": 343, "7380": 343, "2167": 343, "8911": 343, "8725": 343, "1983": 343, "8142": 343, "3709": 343, "284": 343, "4989": 343, "285": 343, "6464": 343, "6210": 343, "286": 343, "9726": 343, "0820": 343, "287": 343, "6975": 343, "9091": 343, "4926": 343, "4791": 343, "289": 343, "0905": 343, "3500": 343, "290": 343, "2287": 343, "291": 343, "9918": 343, "5543": 343, "9245": 343, "6444": 343, "631": 343, "293": 343, "0448": 343, "4769": 343, "8566": 343, "7208": 343, "295": 343, "0966": 343, "296": 343, "5303": 343, "1537": 343, "023": 343, "297": 343, "2682": 343, "564": 343, "298": 343, "4318": 343, "5063": 343, "299": 343, "7475": 343, "4190": 343, "8186": 343, "5077": 343, "301": 343, "1883": 343, "5291": 343, "472": 343, "302": 343, "1256": 343, "3998": 343, "303": 343, "3622": 343, "0930": 343, "626": 343, "304": 343, "9500": 343, "0075": 343, "5664": 343, "305": 343, "5697": 343, "3024": 343, "306": 343, "3117": 343, "0052": 343, "006": 343, "0981": 343, "9312": 343, "3873": 343, "309": 343, "0411": 343, "2650": 343, "310": 343, "1656": 343, "0228": 343, "004": 343, "311": 343, "1196": 343, "2478": 343, "312": 343, "7353": 343, "0812": 343, "313": 343, "3022": 343, "758": 343, "314": 343, "1406": 343, "4626": 343, "315": 343, "2156": 343, "851": 343, "316": 343, "1953": 343, "3774": 343, "317": 343, "6385": 343, "9917": 343, "318": 343, "2764": 343, "905": 343, "319": 343, "6391": 343, "9317": 343, "9748": 343, "2679": 343, "321": 343, "8495": 343, "5125": 343, "8177": 343, "6602": 343, "323": 343, "0704": 343, "5776": 343, "324": 343, "9833": [343, 347], "1339": 343, "402": 343, "325": 343, "1238": 343, "326": 343, "9299": 343, "0227": 343, "327": 343, "7727": 343, "1607": 343, "328": 343, "3958": 343, "3223": 343, "763": 343, "329": 343, "4742": 343, "1797": 343, "330": 343, "0144": 343, "0085": 343, "791": 343, "331": 343, "8284": 343, "0428": 343, "332": 343, "0098": 343, "7365": 343, "333": 343, "4566": 343, "0781": 343, "086": 343, "3355": 343, "0230": 343, "9346": 343, "0423": 343, "076": 343, "3711": 343, "1335": 343, "6855": 343, "0304": 343, "0023": 343, "8459": 343, "9998": 343, "4399": 343, "2303": 343, "1346": 343, "2915": 343, "7116": 343, "341": 343, "5560": 343, "0487": 343, "342": 343, "5119": 343, "061": 343, "343": 343, "3305": 343, "3705": 343, "957": 343, "344": 343, "6068": 343, "345": 343, "5731": 343, "3897": 343, "0376": 343, "347": 343, "0434": 343, "012": 343, "1300": 343, "1215": 343, "0968": 343, "0885": 343, "350": 343, "1348": 343, "0073": 343, "5052": 343, "4184": 343, "2817": 343, "8887": 343, "353": 343, "4779": 343, "1009": 343, "354": 343, "0604": 343, "599": 343, "355": 343, "4486": 343, "1176": 343, "656": 343, "356": 343, "2436": 343, "0668": 343, "8849": 343, "0012": 343, "358": 343, "7511": 343, "8804": 343, "359": 343, "8870": 343, "6728": 343, "360": 343, "8841": 343, "5508": 343, "361": 343, "5242": 343, "0268": 343, "0013": 343, "6185": 343, "363": 343, "1378": 343, "0204": 343, "364": 343, "0355": 343, "685": 343, "365": 343, "4884": 343, "0231": 343, "0770": 343, "0014": 343, "6793": 343, "367": 343, "9834": 343, "863": 343, "368": 343, "6709": 343, "462": 343, "369": 343, "5199": 343, "9790": 343, "370": 343, "9401": 343, "7802": 343, "371": 343, "6723": 343, "2678": 343, "6201": 343, "373": 343, "2184": 343, "7385": 343, "6344": 343, "617": 343, "375": 343, "9945": 343, "0772": 343, "567": 343, "7576": 343, "0398": 343, "377": 343, "3396": 343, "0022": 343, "094": 343, "378": 343, "3073": 343, "4018": 343, "379": 343, "1869": 343, "380": 343, "0481": 343, "1117": 343, "381": 343, "6823": 343, "981": 343, "8305": 343, "0210": 343, "383": 343, "4908": 343, "0272": 343, "538": 343, "3267": 343, "0111": 343, "7965": 343, "1796": 343, "0039": 343, "5396": 343, "386": 343, "3757": 343, "0490": 343, "387": 343, "1394": 343, "4187": 343, "2986": 343, "7954": 343, "1274": 343, "0063": 343, "813": 343, "390": 343, "8706": 343, "0114": 343, "391": 343, "6922": 343, "0004": 343, "2423": 343, "392": 343, "9115": 343, "2602": 343, "393": 343, "2449": 343, "0783": 343, "394": 343, "0631": 343, "0057": 343, "7444": 343, "3339": 343, "0167": 343, "396": [343, 345], "4806": 343, "397": 343, "4171": 343, "067": 343, "2618": 343, "5809": 343, "399": 343, "0054": 343, "3364": 343, "8733": 343, "0184": 343, "401": 343, "9137": 343, "0113": 343, "025": 343, "0386": 343, "0625": 343, "403": 343, "1332": 343, "0582": 343, "7816": 343, "404": 343, "8341": 343, "0941": 343, "854": 343, "405": 343, "8615": 343, "588": 343, "406": 343, "3849": 343, "008": 343, "407": 343, "9395": 343, "0765": 343, "055": 343, "408": 343, "2685": 343, "688": 343, "409": 343, "3052": 343, "4249": 343, "410": 343, "6806": 343, "6383": 343, "3721": 343, "9981": 343, "412": 343, "1862": 343, "822": 343, "413": 343, "9811": 343, "0171": 343, "013": 343, "414": 343, "0252": 343, "0049": 343, "6205": 343, "415": 343, "1108": 343, "4921": 343, "9142": 343, "8130": 343, "417": 343, "1725": 343, "0036": 343, "3196": 343, "418": 343, "7795": 343, "0242": 343, "799": 343, "419": 343, "7737": 343, "0138": 343, "420": 343, "1462": 343, "0053": 343, "421": 343, "9226": 343, "6139": 343, "422": 343, "9889": 343, "0403": 343, "423": 343, "6194": 343, "0032": 343, "3989": 343, "0104": 343, "425": 343, "9960": 343, "6009": 343, "426": 343, "2697": 343, "0914": 343, "427": 343, "1114": 343, "428": 343, "9862": 343, "1932": 343, "429": 343, "0637": 343, "0623": 343, "082": 343, "430": 343, "9906": 343, "2031": 343, "431": 343, "9948": 343, "0895": 343, "432": 343, "1970": 343, "0256": 343, "433": 343, "4231": 343, "0449": 343, "644": 343, "434": 343, "1039": 343, "1973": 343, "435": 343, "4561": 343, "1225": 343, "436": 343, "0211": 343, "2125": 343, "437": 343, "3866": 343, "0050": 343, "7202": 343, "438": 343, "6388": 343, "0072": 343, "439": 343, "1187": 343, "0015": 343, "5116": 343, "440": 343, "0432": 343, "0025": 343, "7809": 343, "1925": 343, "0103": 343, "442": 343, "9570": 343, "443": 343, "0871": 343, "5601": 343, "0165": 343, "0047": 343, "6061": 343, "2746": 343, "0027": 343, "7887": 343, "446": 343, "1835": 343, "0035": 343, "855": 343, "447": 343, "8420": 343, "548": 343, "2653": 343, "0126": 343, "9736": 343, "449": 343, "0594": 343, "0119": 343, "6196": 343, "450": 343, "4509": 343, "0373": 343, "451": 343, "0620": 343, "452": 343, "6898": 343, "3235": 343, "687": 343, "453": 343, "5879": 343, "454": 343, "8406": 343, "0694": 343, "455": 343, "8259": 343, "0235": 343, "8500": 343, "0024": 343, "4054": 343, "458": 343, "2027": 343, "0894": 343, "459": 343, "5966": 343, "460": 343, "6942": 343, "0016": 343, "4254": 343, "6703": 343, "0145": 343, "8124": 343, "0218": 343, "9196": 343, "0188": 343, "8986": 343, "0884": 343, "0084": 343, "5624": 343, "465": 343, "8862": 343, "0006": 343, "5384": 343, "466": 343, "5837": 343, "467": 343, "8954": 343, "0101": 343, "6751": 343, "468": 343, "8063": 343, "0122": 343, "9635": 343, "469": 343, "0692": 343, "4216": 343, "470": 343, "1227": 343, "0586": 343, "162e": 343, "471": 343, "99it": 343, "9690": 343, "0074": 343, "4166": 343, "6324": 343, "473": 343, "0778": 343, "474": 343, "8548": 343, "0017": 343, "4408": 343, "475": 343, "8125": 343, "1515": 343, "476": 343, "2733": 343, "0044": 343, "2836": 343, "477": 343, "7497": 343, "7681": 343, "478": 343, "8547": 343, "0105": 343, "7212": 343, "479": 343, "9848": 343, "0019": 343, "6498": 343, "1987": 343, "0011": 343, "5473": 343, "481": 343, "8991": 343, "0033": 343, "6091": 343, "9189": 343, "5771": 343, "483": 343, "6781": 343, "7542": 343, "484": 343, "5959": 343, "0064": 343, "4295": 343, "485": 343, "2547": 343, "486": 343, "0636": 343, "547": 343, "487": 343, "0065": 343, "488": 343, "1694": 343, "0083": 343, "5759": 343, "489": 343, "0493": 343, "0021": 343, "7805": 343, "490": 343, "0950": 343, "497": 343, "491": 343, "9717": 343, "492": 343, "0207": 343, "493": 343, "8266": 343, "0069": 343, "5365": 343, "494": 343, "2623": 343, "5078": 343, "495": 343, "4545": 343, "09636": 343, "8754": 343, "498": 343, "0031": 343, "8269": 343, "499": 343, "4082": 343, "6642": 343, "2284": 343, "501": 343, "9130": 343, "502": 343, "503": 343, "7624": 343, "0056": 343, "3858": 343, "504": 343, "0890": 343, "0042": 343, "505": 343, "7505": 343, "2157": 343, "506": 343, "8394": 343, "3413": 343, "507": 343, "9609": 343, "0041": 343, "6905": 343, "508": 343, "8467": 343, "4409": 343, "509": 343, "510": 343, "8128": 343, "3559": 343, "511": 343, "1479": 343, "0264": 343, "1589": 343, "566": 343, "513": 343, "2756": 343, "0046": 343, "5266": 343, "514": 343, "9873": 343, "0112": 343, "9314": 343, "515": 343, "3791": 343, "0721": 343, "516": 343, "4580": 343, "0758": 343, "6114": 343, "517": 343, "2431": 343, "518": 343, "1958": 343, "5553": 343, "8924": 343, "0097": 343, "520": 343, "3737": 343, "0234": 343, "521": 343, "9125": 343, "4623": 343, "3230": 343, "0589": 343, "3784": 343, "523": 343, "9482": 343, "0051": 343, "524": 343, "1979": 343, "0045": 343, "6401": 343, "525": 343, "1588": 343, "0048": 343, "6255": 343, "6084": 343, "3477": 343, "81it": 343, "1475": 343, "0209": 343, "528": 343, "7611": 343, "1040": 343, "0099": 343, "0173": 343, "643": 343, "530": 343, "8189": 343, "4358": 343, "531": 343, "9897": 343, "532": 343, "1548": 343, "9751": 343, "533": 343, "6362": 343, "7495": 343, "534": 343, "1749": 343, "9513": 343, "535": 343, "91it": 343, "7708": 343, "0371": 343, "536": 343, "2649": 343, "0437": 343, "537": 343, "5491": 343, "0276": 343, "6426": 343, "7294": 343, "078e": 343, "539": 343, "9928": 343, "540": 343, "7937": 343, "0124": 343, "9664": 343, "541": 343, "3342": 343, "542": 343, "2046": 343, "5496": 343, "0956": 343, "0059": 343, "545": 343, "9028": 343, "5843": 343, "546": 343, "0674": 343, "0178": 343, "797": 343, "2815": 343, "0599": 343, "1587": 343, "9276": 343, "8228": 343, "6164": 343, "551": 343, "6850": 343, "9167": 343, "3092": 343, "0670": 343, "9177": 343, "553": 343, "1599": 343, "0043": 343, "554": 343, "6367": 343, "555": 343, "3657": 343, "556": 343, "6694": 343, "2622": 343, "0372": 343, "4841": 343, "558": 343, "2707": 343, "0058": 343, "757": 343, "559": 343, "2267": 343, "5415": 343, "560": 343, "4556": 343, "0163": 343, "561": 343, "1839": 343, "0809": 343, "6262": 343, "562": 343, "0278": 343, "1112": 343, "6155": 343, "565": 343, "1427": 343, "3582": 343, "7870": 343, "9490": 343, "0439": 343, "8796": 343, "568": 343, "8026": 343, "612": 343, "569": 343, "3147": 343, "8486": 343, "570": 343, "7917": 343, "0129": 343, "571": 343, "9553": 343, "0020": 343, "6871": 343, "572": 343, "3132": 343, "0159": 343, "8646": 343, "573": 343, "5320": 343, "0269": 343, "574": 343, "2955": 343, "0245": 343, "575": 343, "3347": 343, "0179": 343, "9718": 343, "1629": 343, "804": 343, "577": 343, "4164": 343, "0070": 343, "4335": 343, "578": 343, "579": 343, "3049": 343, "9063": 343, "580": 343, "8785": 343, "3295": 343, "5184": 343, "0546": 343, "582": 343, "4589": 343, "583": 343, "4697": 343, "2476": 343, "584": 343, "2397": 343, "585": 343, "4953": 343, "1775": 343, "586": 343, "2258": 343, "0110": 343, "7671": 343, "587": 343, "3981": 343, "8590": 343, "0007": 343, "589": 343, "9820": 343, "4221": 343, "590": 343, "1293": 343, "0116": 343, "868": 343, "1675": 343, "5931": 343, "592": 343, "2910": 343, "5219": 343, "2124": 343, "1730": 343, "737": 343, "594": 343, "2914": 343, "0206": 343, "595": 343, "0172": 343, "3982": 343, "0945": 343, "0121": 343, "4789": 343, "597": 343, "3805": 343, "598": 343, "3310": 343, "5065": 343, "6028": 343, "6316": 343, "6724": 343, "6523": 343, "601": 343, "0136": 343, "4298": 343, "602": 343, "3524": 343, "2629": 343, "603": 343, "2635": 343, "7839": 343, "604": 343, "6041": 343, "8027": 343, "4170": 343, "4675": 343, "606": 343, "3153": 343, "9316": 343, "607": 343, "0649": 343, "9722": 343, "7989": 343, "0329": 343, "609": 343, "1976": 343, "6852": 343, "610": 343, "4793": 343, "1255": 343, "611": 343, "4581": 343, "0394": 343, "2047": 343, "0326": 343, "613": 343, "8967": 343, "8619": 343, "614": 343, "5906": 343, "6491": 343, "615": 343, "6634": 343, "4394": 343, "616": 343, "0624": 343, "0061": 343, "5676": 343, "3259": 343, "0131": 343, "7733": 343, "618": 343, "7515": 343, "0189": 343, "5575": 343, "619": 343, "9313": 343, "6286": 343, "620": 343, "4325": 343, "7832": 343, "621": 343, "1134": 343, "622": 343, "4572": 343, "0500": 343, "5838": 343, "623": 343, "3818": 343, "8623": 343, "1253": 343, "6622": 343, "subject": 343, "saw": [343, 345], "explain": 344, "semat": 344, "r3mtransform": 344, "ai": 344, "env_transform": [344, 348], "s3": 344, "amazonaw": 344, "r3m_50": 344, "374m": 344, "9m": 344, "3mb": 344, "4m": 344, "7mb": 344, "0mb": 344, "2m": 344, "8mb": 344, "0m": 344, "9mb": 344, "2mb": 344, "6mb": 344, "6m": 344, "105m": 344, "115m": 344, "131m": 344, "148m": 344, "164m": 344, "179m": 344, "187m": 344, "195m": 344, "202m": 344, "4mb": 344, "212m": 344, "219m": 344, "1mb": 344, "229m": 344, "244m": 344, "252m": 344, "262m": 344, "268m": 344, "277m": 344, "281m": 344, "293m": 344, "5mb": 344, "298m": 344, "311m": 344, "328m": 344, "344m": 344, "360m": 344, "wiser": 344, "conclud": 344, "_storag": [344, 345], "3673": 344, "supervis": [345, 348], "pull": 345, "temporarili": 345, "ram": [345, 348], "batteri": 345, "dataliststorag": 345, "datalazytensorstorag": 345, "tensordidct": 345, "datalazymemmapstorag": 345, "buffer_list": 345, "lowest": 345, "medium": 345, "buffer_lazytensor": 345, "buffer_lazymemmap": 345, "tempdir": 345, "tmpsyxtbk6t": 345, "fullest": 345, "convini": 345, "mydata": 345, "background": 345, "question": [345, 347], "_i": 345, "artifici": 345, "0892946e": 345, "she": 345, "augment": 345, "proport": 345, "hist": 345, "barcontain": 345, "artist": 345, "revert": 345, "expens": 345, "reappear": 345, "unfold": 345, "problemat": 345, "window": 345, "4th": 345, "demo": 347, "icml": 347, "vmoen": 347, "fb": 347, "invest": 347, "platform": 347, "media": 347, "predominantli": 347, "tensordict1": 347, "tensordict2": 347, "tensordict_sampl": 347, "_sampler": 347, "_sum_tre": 347, "modulenotfounderror": 347, "28791671991348267": 347, "gym_env": 347, "noopresetenv": [347, 348], "backbone_modul": 347, "params_expand": 347, "tensordict_exp": 347, "base_modul": 347, "0137": 347, "1524": 347, "0641": 347, "viewbackward0": 347, "asstridedbackward0": 347, "8728": 347, "1334": 347, "3494": 347, "6887": 347, "6402": 347, "_safetanhbackward": 347, "1132": 347, "1762": 347, "3430": 347, "2668": 347, "2918": 347, "6239": 347, "roughli": 347, "tensordicts_prealloc": 347, "tensordicts_stack": 347, "tensordict_rollout": [347, 348], "disclaim": 347, "concatmodul": 347, "loss_td": 347, "year": 347, "roadmap": 347, "compris": 347, "contributor": 347, "curiou": 347, "nascent": 347, "unsupervis": 348, "rom": 348, "licens": 348, "pygam": 348, "unifi": 348, "_build_env": 348, "adventur": 348, "airraid": 348, "alien": 348, "amidar": 348, "assault": 348, "2821": 348, "deserv": 348, "__episode__": 348, "__trajectory__": 348, "void": 348, "reproduct": 348, "tensordict_tprim": 348, "imshow": 348, "axesimag": 348, "0x7f485999f460": 348, "inconsist": 348, "0x7f495e571510": 348, "swingup": 348, "wrapper1": 348, "wrapper2": 348, "obviou": 348, "truth": 348, "env0": 348, "env_transformed_bi": 348, "stanc": 348, "transformeddistribut": 348, "base_dist": 348, "concat": 348, "mofidi": 348, "transformedenviron": 348, "moderet": 348, "computation": 348, "legitim": 348, "incom": 348, "amongst": 348, "wor": 348, "convention": 348, "scope": 348, "markovian": 348, "3288080526": 348, "constain": 348, "bar_": 348, "get_someth": 348, "bar_fd05f084": 348, "b0b9": 348, "aargh": 348, "foo_list": 348, "batched_env": 348, "_dispatch_caller_parallel": 348, "0x7f3a600d9cd0": 348, "bar_049b803": 348, "b9c4": 348, "bar_04947b04": 348, "b819": 348, "bar_049ac6f8": 348, "b83e": 348, "parallen": 348, "particularili": 348, "evolv": 348, "steadi": 348, "approx": 348, "4376": 348, "2574": 348, "1634": 348, "9739": 348, "9880": 348, "_extra_st": 348, "observation_ssq": 348, "observation_sum": 348, "2300": 348, "0828": 348, "1549": 348, "1793": 348, "0830": 348, "2611": 348, "dispach": 348, "absor": 348}, "objects": {"torchrl._utils": [[11, 0, 1, "", "implement_for"]], "torchrl._utils.implement_for": [[11, 1, 1, "", "get_class_that_defined_method"], [11, 1, 1, "", "import_module"], [11, 1, 1, "", "module_set"], [11, 1, 1, "", "reset"]], "torchrl.collectors.collectors": [[12, 0, 1, "", "DataCollectorBase"], [13, 0, 1, "", "MultiSyncDataCollector"], [14, 0, 1, "", "MultiaSyncDataCollector"], [15, 0, 1, "", "RandomPolicy"], [16, 0, 1, "", "SyncDataCollector"], [17, 0, 1, "", "aSyncDataCollector"]], "torchrl.collectors.collectors.DataCollectorBase": [[12, 1, 1, "", "update_policy_weights_"]], "torchrl.collectors.collectors.MultiSyncDataCollector": [[13, 1, 1, "", "load_state_dict"], [13, 1, 1, "", "reset"], [13, 1, 1, "", "set_seed"], [13, 1, 1, "", "shutdown"], [13, 1, 1, "", "state_dict"], [13, 1, 1, "", "update_policy_weights_"]], "torchrl.collectors.collectors.MultiaSyncDataCollector": [[14, 1, 1, "", "load_state_dict"], [14, 1, 1, "", "reset"], [14, 1, 1, "", "set_seed"], [14, 1, 1, "", "shutdown"], [14, 1, 1, "", "state_dict"], [14, 1, 1, "", "update_policy_weights_"]], "torchrl.collectors.collectors.SyncDataCollector": [[16, 1, 1, "", "iterator"], [16, 1, 1, "", "load_state_dict"], [16, 1, 1, "", "reset"], [16, 1, 1, "", "rollout"], [16, 1, 1, "", "set_seed"], [16, 1, 1, "", "shutdown"], [16, 1, 1, "", "state_dict"], [16, 1, 1, "", "update_policy_weights_"]], "torchrl.collectors.collectors.aSyncDataCollector": [[17, 1, 1, "", "load_state_dict"], [17, 1, 1, "", "reset"], [17, 1, 1, "", "set_seed"], [17, 1, 1, "", "shutdown"], [17, 1, 1, "", "state_dict"], [17, 1, 1, "", "update_policy_weights_"]], "torchrl.collectors.distributed": [[18, 0, 1, "", "DistributedDataCollector"], [19, 0, 1, "", "DistributedSyncDataCollector"], [20, 0, 1, "", "RPCDataCollector"], [21, 0, 1, "", "RayCollector"], [22, 0, 1, "", "submitit_delayed_launcher"]], "torchrl.collectors.distributed.DistributedDataCollector": [[18, 1, 1, "", "update_policy_weights_"]], "torchrl.collectors.distributed.DistributedSyncDataCollector": [[19, 1, 1, "", "update_policy_weights_"]], "torchrl.collectors.distributed.RPCDataCollector": [[20, 1, 1, "", "update_policy_weights_"]], "torchrl.collectors.distributed.RayCollector": [[21, 1, 1, "", "add_collectors"], [21, 1, 1, "", "load_state_dict"], [21, 1, 1, "", "local_policy"], [21, 1, 1, "", "remote_collectors"], [21, 1, 1, "", "set_seed"], [21, 1, 1, "", "shutdown"], [21, 1, 1, "", "state_dict"], [21, 1, 1, "", "stop_remote_collectors"], [21, 1, 1, "", "update_policy_weights_"]], "torchrl.collectors.utils": [[23, 2, 1, "", "split_trajectories"]], "torchrl.data": [[24, 0, 1, "", "BinaryDiscreteTensorSpec"], [25, 0, 1, "", "BoundedTensorSpec"], [26, 0, 1, "", "CompositeSpec"], [27, 0, 1, "", "DiscreteTensorSpec"], [28, 0, 1, "", "LazyStackedCompositeSpec"], [29, 0, 1, "", "LazyStackedTensorSpec"], [30, 0, 1, "", "MultiDiscreteTensorSpec"], [31, 0, 1, "", "MultiOneHotDiscreteTensorSpec"], [32, 0, 1, "", "MultiStep"], [33, 0, 1, "", "OneHotDiscreteTensorSpec"], [34, 0, 1, "", "PairwiseDataset"], [35, 0, 1, "", "PrioritizedReplayBuffer"], [36, 0, 1, "", "PromptData"], [37, 0, 1, "", "PromptTensorDictTokenizer"], [38, 0, 1, "", "ReplayBuffer"], [39, 0, 1, "", "RewardData"], [40, 0, 1, "", "RolloutFromModel"], [41, 0, 1, "", "TensorDictPrioritizedReplayBuffer"], [42, 0, 1, "", "TensorDictReplayBuffer"], [43, 0, 1, "", "TensorDictTokenizer"], [44, 0, 1, "", "TensorSpec"], [45, 0, 1, "", "TokenizedDatasetLoader"], [46, 0, 1, "", "UnboundedContinuousTensorSpec"], [47, 0, 1, "", "UnboundedDiscreteTensorSpec"], [48, 0, 1, "", "check_no_exclusive_keys"], [49, 0, 1, "", "consolidate_spec"], [50, 0, 1, "", "contains_lazy_spec"], [51, 0, 1, "", "create_infinite_iterator"], [58, 0, 1, "", "get_dataloader"]], "torchrl.data.BinaryDiscreteTensorSpec": [[24, 1, 1, "", "assert_is_in"], [24, 1, 1, "", "encode"], [24, 1, 1, "", "expand"], [24, 1, 1, "", "implements_for_spec"], [24, 1, 1, "", "index"], [24, 1, 1, "", "is_in"], [24, 1, 1, "", "project"], [24, 1, 1, "", "rand"], [24, 1, 1, "", "squeeze"], [24, 1, 1, "", "to_numpy"], [24, 1, 1, "", "to_one_hot"], [24, 1, 1, "", "to_one_hot_spec"], [24, 1, 1, "", "type_check"], [24, 1, 1, "", "zero"]], "torchrl.data.BoundedTensorSpec": [[25, 1, 1, "", "assert_is_in"], [25, 1, 1, "", "encode"], [25, 1, 1, "", "expand"], [25, 1, 1, "", "implements_for_spec"], [25, 1, 1, "", "index"], [25, 1, 1, "", "is_in"], [25, 1, 1, "", "project"], [25, 1, 1, "", "rand"], [25, 1, 1, "", "squeeze"], [25, 1, 1, "", "to_numpy"], [25, 1, 1, "", "type_check"], [25, 1, 1, "", "zero"]], "torchrl.data.CompositeSpec": [[26, 1, 1, "", "assert_is_in"], [26, 1, 1, "", "empty"], [26, 1, 1, "", "encode"], [26, 1, 1, "", "expand"], [26, 1, 1, "", "implements_for_spec"], [26, 1, 1, "", "index"], [26, 1, 1, "", "is_empty"], [26, 1, 1, "", "is_in"], [26, 1, 1, "", "items"], [26, 1, 1, "", "keys"], [26, 1, 1, "", "lock_"], [26, 1, 1, "", "project"], [26, 1, 1, "", "rand"], [26, 1, 1, "", "squeeze"], [26, 1, 1, "", "to_numpy"], [26, 1, 1, "", "type_check"], [26, 1, 1, "", "unlock_"], [26, 1, 1, "", "values"], [26, 1, 1, "", "zero"]], "torchrl.data.DiscreteTensorSpec": [[27, 1, 1, "", "assert_is_in"], [27, 1, 1, "", "encode"], [27, 1, 1, "", "expand"], [27, 1, 1, "", "implements_for_spec"], [27, 1, 1, "", "index"], [27, 1, 1, "", "is_in"], [27, 1, 1, "", "project"], [27, 1, 1, "", "rand"], [27, 1, 1, "", "squeeze"], [27, 1, 1, "", "to_numpy"], [27, 1, 1, "", "to_one_hot"], [27, 1, 1, "", "to_one_hot_spec"], [27, 1, 1, "", "type_check"], [27, 1, 1, "", "zero"]], "torchrl.data.LazyStackedCompositeSpec": [[28, 1, 1, "", "assert_is_in"], [28, 1, 1, "", "empty"], [28, 1, 1, "", "encode"], [28, 1, 1, "", "expand"], [28, 1, 1, "", "implements_for_spec"], [28, 1, 1, "", "index"], [28, 1, 1, "", "is_empty"], [28, 1, 1, "", "is_in"], [28, 1, 1, "", "items"], [28, 1, 1, "", "keys"], [28, 1, 1, "", "lock_"], [28, 1, 1, "", "project"], [28, 1, 1, "", "rand"], [28, 1, 1, "", "squeeze"], [28, 1, 1, "", "to_numpy"], [28, 1, 1, "", "type_check"], [28, 1, 1, "", "unlock_"], [28, 1, 1, "", "values"], [28, 1, 1, "", "zero"]], "torchrl.data.LazyStackedTensorSpec": [[29, 1, 1, "", "assert_is_in"], [29, 1, 1, "", "encode"], [29, 1, 1, "", "expand"], [29, 1, 1, "", "implements_for_spec"], [29, 1, 1, "", "index"], [29, 1, 1, "", "is_in"], [29, 1, 1, "", "project"], [29, 1, 1, "", "rand"], [29, 1, 1, "", "squeeze"], [29, 1, 1, "", "to_numpy"], [29, 1, 1, "", "type_check"], [29, 1, 1, "", "zero"]], "torchrl.data.MultiDiscreteTensorSpec": [[30, 1, 1, "", "assert_is_in"], [30, 1, 1, "", "encode"], [30, 1, 1, "", "expand"], [30, 1, 1, "", "implements_for_spec"], [30, 1, 1, "", "index"], [30, 1, 1, "", "is_in"], [30, 1, 1, "", "project"], [30, 1, 1, "", "rand"], [30, 1, 1, "", "squeeze"], [30, 1, 1, "", "to_numpy"], [30, 1, 1, "", "to_one_hot"], [30, 1, 1, "", "to_one_hot_spec"], [30, 1, 1, "", "type_check"], [30, 1, 1, "", "zero"]], "torchrl.data.MultiOneHotDiscreteTensorSpec": [[31, 1, 1, "", "assert_is_in"], [31, 1, 1, "", "encode"], [31, 1, 1, "", "expand"], [31, 1, 1, "", "implements_for_spec"], [31, 1, 1, "", "index"], [31, 1, 1, "", "is_in"], [31, 1, 1, "", "project"], [31, 1, 1, "", "rand"], [31, 1, 1, "", "squeeze"], [31, 1, 1, "", "to_categorical"], [31, 1, 1, "", "to_categorical_spec"], [31, 1, 1, "", "to_numpy"], [31, 1, 1, "", "type_check"], [31, 1, 1, "", "zero"]], "torchrl.data.MultiStep": [[32, 1, 1, "", "add_module"], [32, 1, 1, "", "apply"], [32, 1, 1, "", "bfloat16"], [32, 1, 1, "", "buffers"], [32, 1, 1, "", "children"], [32, 1, 1, "", "compile"], [32, 1, 1, "", "cpu"], [32, 1, 1, "", "cuda"], [32, 1, 1, "", "double"], [32, 1, 1, "", "eval"], [32, 1, 1, "", "extra_repr"], [32, 1, 1, "", "float"], [32, 1, 1, "", "forward"], [32, 1, 1, "", "get_buffer"], [32, 1, 1, "", "get_extra_state"], [32, 1, 1, "", "get_parameter"], [32, 1, 1, "", "get_submodule"], [32, 1, 1, "", "half"], [32, 1, 1, "", "ipu"], [32, 1, 1, "", "load_state_dict"], [32, 1, 1, "", "modules"], [32, 1, 1, "", "named_buffers"], [32, 1, 1, "", "named_children"], [32, 1, 1, "", "named_modules"], [32, 1, 1, "", "named_parameters"], [32, 1, 1, "", "parameters"], [32, 1, 1, "", "register_backward_hook"], [32, 1, 1, "", "register_buffer"], [32, 1, 1, "", "register_forward_hook"], [32, 1, 1, "", "register_forward_pre_hook"], [32, 1, 1, "", "register_full_backward_hook"], [32, 1, 1, "", "register_full_backward_pre_hook"], [32, 1, 1, "", "register_load_state_dict_post_hook"], [32, 1, 1, "", "register_module"], [32, 1, 1, "", "register_parameter"], [32, 1, 1, "", "register_state_dict_pre_hook"], [32, 1, 1, "", "requires_grad_"], [32, 1, 1, "", "set_extra_state"], [32, 1, 1, "", "share_memory"], [32, 1, 1, "", "state_dict"], [32, 1, 1, "", "to"], [32, 1, 1, "", "to_empty"], [32, 1, 1, "", "train"], [32, 1, 1, "", "type"], [32, 1, 1, "", "xpu"], [32, 1, 1, "", "zero_grad"]], "torchrl.data.OneHotDiscreteTensorSpec": [[33, 1, 1, "", "assert_is_in"], [33, 1, 1, "", "encode"], [33, 1, 1, "", "expand"], [33, 1, 1, "", "implements_for_spec"], [33, 1, 1, "", "index"], [33, 1, 1, "", "is_in"], [33, 1, 1, "", "project"], [33, 1, 1, "", "rand"], [33, 1, 1, "", "squeeze"], [33, 1, 1, "", "to_categorical"], [33, 1, 1, "", "to_categorical_spec"], [33, 1, 1, "", "to_numpy"], [33, 1, 1, "", "type_check"], [33, 1, 1, "", "zero"]], "torchrl.data.PairwiseDataset": [[34, 3, 1, "", "batch_size"], [34, 3, 1, "", "device"], [34, 1, 1, "", "from_dataset"], [34, 1, 1, "", "from_dict"], [34, 1, 1, "", "from_tensordict"], [34, 1, 1, "", "get"], [34, 1, 1, "", "load_state_dict"], [34, 1, 1, "", "memmap"], [34, 1, 1, "", "memmap_"], [34, 1, 1, "", "memmap_like"], [34, 1, 1, "", "set"], [34, 1, 1, "", "state_dict"], [34, 1, 1, "", "to_tensordict"], [34, 1, 1, "", "unbind"]], "torchrl.data.PrioritizedReplayBuffer": [[35, 1, 1, "", "add"], [35, 1, 1, "", "append_transform"], [35, 1, 1, "", "dumps"], [35, 1, 1, "", "empty"], [35, 1, 1, "", "extend"], [35, 1, 1, "", "insert_transform"], [35, 1, 1, "", "loads"], [35, 1, 1, "", "sample"]], "torchrl.data.PromptData": [[36, 3, 1, "", "batch_size"], [36, 3, 1, "", "device"], [36, 1, 1, "", "from_dataset"], [36, 1, 1, "", "from_dict"], [36, 1, 1, "", "from_tensordict"], [36, 1, 1, "", "get"], [36, 1, 1, "", "load_state_dict"], [36, 1, 1, "", "memmap"], [36, 1, 1, "", "memmap_"], [36, 1, 1, "", "memmap_like"], [36, 1, 1, "", "set"], [36, 1, 1, "", "state_dict"], [36, 1, 1, "", "to_tensordict"], [36, 1, 1, "", "unbind"]], "torchrl.data.ReplayBuffer": [[38, 1, 1, "", "add"], [38, 1, 1, "", "append_transform"], [38, 1, 1, "", "dumps"], [38, 1, 1, "", "empty"], [38, 1, 1, "", "extend"], [38, 1, 1, "", "insert_transform"], [38, 1, 1, "", "loads"], [38, 1, 1, "", "sample"]], "torchrl.data.RewardData": [[39, 3, 1, "", "batch_size"], [39, 3, 1, "", "device"], [39, 1, 1, "", "from_dict"], [39, 1, 1, "", "from_tensordict"], [39, 1, 1, "", "get"], [39, 1, 1, "", "load_state_dict"], [39, 1, 1, "", "memmap"], [39, 1, 1, "", "memmap_"], [39, 1, 1, "", "memmap_like"], [39, 1, 1, "", "set"], [39, 1, 1, "", "state_dict"], [39, 1, 1, "", "to_tensordict"], [39, 1, 1, "", "unbind"]], "torchrl.data.RolloutFromModel": [[40, 1, 1, "", "create_rollout_td"], [40, 1, 1, "", "generate"], [40, 1, 1, "", "logprobs_of_labels"]], "torchrl.data.TensorDictPrioritizedReplayBuffer": [[41, 1, 1, "", "add"], [41, 1, 1, "", "append_transform"], [41, 1, 1, "", "dumps"], [41, 1, 1, "", "empty"], [41, 1, 1, "", "extend"], [41, 1, 1, "", "insert_transform"], [41, 1, 1, "", "loads"], [41, 1, 1, "", "sample"]], "torchrl.data.TensorDictReplayBuffer": [[42, 1, 1, "", "add"], [42, 1, 1, "", "append_transform"], [42, 1, 1, "", "dumps"], [42, 1, 1, "", "empty"], [42, 1, 1, "", "extend"], [42, 1, 1, "", "insert_transform"], [42, 1, 1, "", "loads"], [42, 1, 1, "", "sample"]], "torchrl.data.TensorSpec": [[44, 1, 1, "", "assert_is_in"], [44, 1, 1, "", "encode"], [44, 1, 1, "", "expand"], [44, 1, 1, "", "implements_for_spec"], [44, 1, 1, "", "index"], [44, 1, 1, "", "is_in"], [44, 1, 1, "", "project"], [44, 1, 1, "", "rand"], [44, 1, 1, "", "squeeze"], [44, 1, 1, "", "to_numpy"], [44, 1, 1, "", "type_check"], [44, 1, 1, "", "zero"]], "torchrl.data.TokenizedDatasetLoader": [[45, 1, 1, "", "dataset_to_tensordict"], [45, 1, 1, "", "load"]], "torchrl.data.UnboundedContinuousTensorSpec": [[46, 1, 1, "", "assert_is_in"], [46, 1, 1, "", "encode"], [46, 1, 1, "", "expand"], [46, 1, 1, "", "implements_for_spec"], [46, 1, 1, "", "index"], [46, 1, 1, "", "is_in"], [46, 1, 1, "", "project"], [46, 1, 1, "", "rand"], [46, 1, 1, "", "squeeze"], [46, 1, 1, "", "to_numpy"], [46, 1, 1, "", "type_check"], [46, 1, 1, "", "zero"]], "torchrl.data.UnboundedDiscreteTensorSpec": [[47, 1, 1, "", "assert_is_in"], [47, 1, 1, "", "encode"], [47, 1, 1, "", "expand"], [47, 1, 1, "", "implements_for_spec"], [47, 1, 1, "", "index"], [47, 1, 1, "", "is_in"], [47, 1, 1, "", "project"], [47, 1, 1, "", "rand"], [47, 1, 1, "", "squeeze"], [47, 1, 1, "", "to_numpy"], [47, 1, 1, "", "type_check"], [47, 1, 1, "", "zero"]], "torchrl.data.datasets": [[52, 0, 1, "", "D4RLExperienceReplay"], [53, 0, 1, "", "MinariExperienceReplay"], [54, 0, 1, "", "OpenMLExperienceReplay"], [55, 0, 1, "", "OpenXExperienceReplay"], [56, 0, 1, "", "RobosetExperienceReplay"], [57, 0, 1, "", "VD4RLExperienceReplay"]], "torchrl.data.datasets.D4RLExperienceReplay": [[52, 1, 1, "", "add"], [52, 1, 1, "", "append_transform"], [52, 1, 1, "", "dumps"], [52, 1, 1, "", "empty"], [52, 1, 1, "", "extend"], [52, 1, 1, "", "insert_transform"], [52, 1, 1, "", "loads"], [52, 1, 1, "", "sample"]], "torchrl.data.datasets.MinariExperienceReplay": [[53, 1, 1, "", "add"], [53, 1, 1, "", "append_transform"], [53, 1, 1, "", "dumps"], [53, 1, 1, "", "empty"], [53, 1, 1, "", "extend"], [53, 1, 1, "", "insert_transform"], [53, 1, 1, "", "loads"], [53, 1, 1, "", "sample"]], "torchrl.data.datasets.OpenMLExperienceReplay": [[54, 1, 1, "", "add"], [54, 1, 1, "", "append_transform"], [54, 1, 1, "", "dumps"], [54, 1, 1, "", "empty"], [54, 1, 1, "", "extend"], [54, 1, 1, "", "insert_transform"], [54, 1, 1, "", "loads"], [54, 1, 1, "", "sample"]], "torchrl.data.datasets.OpenXExperienceReplay": [[55, 1, 1, "", "add"], [55, 1, 1, "", "append_transform"], [55, 1, 1, "", "dumps"], [55, 1, 1, "", "empty"], [55, 1, 1, "", "extend"], [55, 1, 1, "", "insert_transform"], [55, 1, 1, "", "loads"], [55, 1, 1, "", "sample"]], "torchrl.data.datasets.RobosetExperienceReplay": [[56, 1, 1, "", "add"], [56, 1, 1, "", "append_transform"], [56, 1, 1, "", "dumps"], [56, 1, 1, "", "empty"], [56, 1, 1, "", "extend"], [56, 1, 1, "", "insert_transform"], [56, 1, 1, "", "loads"], [56, 1, 1, "", "sample"]], "torchrl.data.datasets.VD4RLExperienceReplay": [[57, 1, 1, "", "add"], [57, 1, 1, "", "append_transform"], [57, 1, 1, "", "dumps"], [57, 1, 1, "", "empty"], [57, 1, 1, "", "extend"], [57, 1, 1, "", "insert_transform"], [57, 1, 1, "", "loads"], [57, 1, 1, "", "sample"]], "torchrl.data.replay_buffers": [[59, 0, 1, "", "ImmutableDatasetWriter"], [60, 0, 1, "", "LazyMemmapStorage"], [61, 0, 1, "", "LazyTensorStorage"], [62, 0, 1, "", "ListStorage"], [63, 0, 1, "", "PrioritizedSampler"], [64, 0, 1, "", "RandomSampler"], [65, 0, 1, "", "ReplayBufferEnsemble"], [66, 0, 1, "", "RoundRobinWriter"], [67, 0, 1, "", "Sampler"], [68, 0, 1, "", "SamplerEnsemble"], [69, 0, 1, "", "SamplerWithoutReplacement"], [70, 0, 1, "", "SliceSampler"], [71, 0, 1, "", "SliceSamplerWithoutReplacement"], [72, 0, 1, "", "Storage"], [73, 0, 1, "", "StorageEnsemble"], [74, 0, 1, "", "TensorDictMaxValueWriter"], [75, 0, 1, "", "TensorDictRoundRobinWriter"], [76, 0, 1, "", "TensorStorage"], [77, 0, 1, "", "Writer"], [78, 0, 1, "", "WriterEnsemble"]], "torchrl.data.replay_buffers.ImmutableDatasetWriter": [[59, 1, 1, "", "add"], [59, 1, 1, "", "extend"]], "torchrl.data.replay_buffers.LazyMemmapStorage": [[60, 1, 1, "", "attach"]], "torchrl.data.replay_buffers.LazyTensorStorage": [[61, 1, 1, "", "attach"]], "torchrl.data.replay_buffers.ListStorage": [[62, 1, 1, "", "attach"]], "torchrl.data.replay_buffers.PrioritizedSampler": [[63, 1, 1, "", "update_priority"]], "torchrl.data.replay_buffers.ReplayBufferEnsemble": [[65, 1, 1, "", "add"], [65, 1, 1, "", "append_transform"], [65, 1, 1, "", "dumps"], [65, 1, 1, "", "empty"], [65, 1, 1, "", "extend"], [65, 1, 1, "", "insert_transform"], [65, 1, 1, "", "loads"], [65, 1, 1, "", "sample"]], "torchrl.data.replay_buffers.RoundRobinWriter": [[66, 1, 1, "", "add"], [66, 1, 1, "", "extend"]], "torchrl.data.replay_buffers.Storage": [[72, 1, 1, "", "attach"]], "torchrl.data.replay_buffers.StorageEnsemble": [[73, 1, 1, "", "attach"]], "torchrl.data.replay_buffers.TensorDictMaxValueWriter": [[74, 1, 1, "", "add"], [74, 1, 1, "", "extend"], [74, 1, 1, "", "get_insert_index"]], "torchrl.data.replay_buffers.TensorDictRoundRobinWriter": [[75, 1, 1, "", "add"], [75, 1, 1, "", "extend"]], "torchrl.data.replay_buffers.TensorStorage": [[76, 1, 1, "", "attach"]], "torchrl.data.replay_buffers.Writer": [[77, 1, 1, "", "add"], [77, 1, 1, "", "extend"]], "torchrl.data.replay_buffers.WriterEnsemble": [[78, 1, 1, "", "add"], [78, 1, 1, "", "extend"]], "torchrl.envs": [[79, 2, 1, "", "BraxEnv"], [80, 2, 1, "", "BraxWrapper"], [81, 2, 1, "", "DMControlEnv"], [82, 2, 1, "", "DMControlWrapper"], [83, 0, 1, "", "EnvBase"], [84, 0, 1, "", "EnvCreator"], [85, 0, 1, "", "EnvMetaData"], [86, 2, 1, "", "GymEnv"], [87, 0, 1, "", "GymLikeEnv"], [88, 2, 1, "", "GymWrapper"], [89, 2, 1, "", "HabitatEnv"], [90, 2, 1, "", "IsaacGymEnv"], [91, 2, 1, "", "IsaacGymWrapper"], [92, 2, 1, "", "JumanjiEnv"], [93, 2, 1, "", "JumanjiWrapper"], [94, 2, 1, "", "MOGymEnv"], [95, 2, 1, "", "MOGymWrapper"], [96, 2, 1, "", "MarlGroupMapType"], [97, 2, 1, "", "ModelBasedEnvBase"], [98, 2, 1, "", "MultiThreadedEnv"], [99, 2, 1, "", "MultiThreadedEnvWrapper"], [100, 2, 1, "", "OpenMLEnv"], [101, 0, 1, "", "ParallelEnv"], [102, 2, 1, "", "PettingZooEnv"], [103, 2, 1, "", "PettingZooWrapper"], [104, 2, 1, "", "RoboHiveEnv"], [105, 2, 1, "", "SMACv2Env"], [106, 2, 1, "", "SMACv2Wrapper"], [107, 0, 1, "", "SerialEnv"], [108, 2, 1, "", "VmasEnv"], [109, 2, 1, "", "VmasWrapper"], [110, 2, 1, "", "check_marl_grouping"], [111, 2, 1, "", "gym_backend"], [97, 1, 1, "", "rand_step"], [97, 1, 1, "", "reset"], [97, 1, 1, "", "rollout"], [113, 2, 1, "", "set_gym_backend"], [97, 1, 1, "", "set_seed"], [97, 1, 1, "", "step"]], "torchrl.envs.EnvBase": [[83, 3, 1, "", "action_key"], [83, 3, 1, "", "action_keys"], [83, 3, 1, "", "action_spec"], [83, 1, 1, "", "add_module"], [83, 1, 1, "", "apply"], [83, 3, 1, "", "batch_locked"], [83, 1, 1, "", "bfloat16"], [83, 1, 1, "", "buffers"], [83, 1, 1, "", "children"], [83, 1, 1, "", "compile"], [83, 1, 1, "", "cpu"], [83, 1, 1, "", "cuda"], [83, 3, 1, "", "done_key"], [83, 3, 1, "", "done_keys"], [83, 3, 1, "", "done_keys_groups"], [83, 3, 1, "", "done_spec"], [83, 1, 1, "", "double"], [83, 1, 1, "", "empty_cache"], [83, 1, 1, "", "eval"], [83, 1, 1, "", "extra_repr"], [83, 1, 1, "", "fake_tensordict"], [83, 1, 1, "", "float"], [83, 1, 1, "", "forward"], [83, 3, 1, "", "full_action_spec"], [83, 3, 1, "", "full_done_spec"], [83, 3, 1, "", "full_reward_spec"], [83, 3, 1, "", "full_state_spec"], [83, 1, 1, "", "get_buffer"], [83, 1, 1, "", "get_extra_state"], [83, 1, 1, "", "get_parameter"], [83, 1, 1, "", "get_submodule"], [83, 1, 1, "", "half"], [83, 3, 1, "", "input_spec"], [83, 1, 1, "", "ipu"], [83, 1, 1, "", "load_state_dict"], [83, 1, 1, "", "modules"], [83, 1, 1, "", "named_buffers"], [83, 1, 1, "", "named_children"], [83, 1, 1, "", "named_modules"], [83, 1, 1, "", "named_parameters"], [83, 3, 1, "", "observation_spec"], [83, 3, 1, "", "output_spec"], [83, 1, 1, "", "parameters"], [83, 1, 1, "", "rand_action"], [83, 1, 1, "id0", "rand_step"], [83, 1, 1, "", "register_backward_hook"], [83, 1, 1, "", "register_buffer"], [83, 1, 1, "", "register_forward_hook"], [83, 1, 1, "", "register_forward_pre_hook"], [83, 1, 1, "", "register_full_backward_hook"], [83, 1, 1, "", "register_full_backward_pre_hook"], [83, 1, 1, "", "register_load_state_dict_post_hook"], [83, 1, 1, "", "register_module"], [83, 1, 1, "", "register_parameter"], [83, 1, 1, "", "register_state_dict_pre_hook"], [83, 1, 1, "", "requires_grad_"], [83, 1, 1, "id1", "reset"], [83, 3, 1, "", "reset_keys"], [83, 3, 1, "", "reward_key"], [83, 3, 1, "", "reward_keys"], [83, 3, 1, "", "reward_spec"], [83, 1, 1, "id2", "rollout"], [83, 1, 1, "", "set_extra_state"], [83, 1, 1, "id3", "set_seed"], [83, 1, 1, "", "share_memory"], [83, 3, 1, "", "specs"], [83, 1, 1, "", "state_dict"], [83, 3, 1, "", "state_spec"], [83, 1, 1, "id4", "step"], [83, 1, 1, "", "step_and_maybe_reset"], [83, 1, 1, "", "to"], [83, 1, 1, "", "to_empty"], [83, 1, 1, "", "train"], [83, 1, 1, "", "type"], [83, 1, 1, "", "xpu"], [83, 1, 1, "", "zero_grad"]], "torchrl.envs.GymLikeEnv": [[87, 3, 1, "", "action_key"], [87, 3, 1, "", "action_keys"], [87, 3, 1, "", "action_spec"], [87, 1, 1, "", "add_module"], [87, 1, 1, "", "apply"], [87, 3, 1, "", "batch_locked"], [87, 1, 1, "", "bfloat16"], [87, 1, 1, "", "buffers"], [87, 1, 1, "", "children"], [87, 1, 1, "", "close"], [87, 1, 1, "", "compile"], [87, 1, 1, "", "cpu"], [87, 1, 1, "", "cuda"], [87, 3, 1, "", "done_key"], [87, 3, 1, "", "done_keys"], [87, 3, 1, "", "done_keys_groups"], [87, 3, 1, "", "done_spec"], [87, 1, 1, "", "double"], [87, 1, 1, "", "empty_cache"], [87, 1, 1, "", "eval"], [87, 1, 1, "", "extra_repr"], [87, 1, 1, "", "fake_tensordict"], [87, 1, 1, "", "float"], [87, 1, 1, "", "forward"], [87, 3, 1, "", "full_action_spec"], [87, 3, 1, "", "full_done_spec"], [87, 3, 1, "", "full_reward_spec"], [87, 3, 1, "", "full_state_spec"], [87, 1, 1, "", "get_buffer"], [87, 1, 1, "", "get_extra_state"], [87, 1, 1, "", "get_parameter"], [87, 1, 1, "", "get_submodule"], [87, 1, 1, "", "half"], [87, 3, 1, "", "input_spec"], [87, 1, 1, "", "ipu"], [87, 1, 1, "", "load_state_dict"], [87, 1, 1, "", "modules"], [87, 1, 1, "", "named_buffers"], [87, 1, 1, "", "named_children"], [87, 1, 1, "", "named_modules"], [87, 1, 1, "", "named_parameters"], [87, 3, 1, "", "observation_spec"], [87, 3, 1, "", "output_spec"], [87, 1, 1, "", "parameters"], [87, 1, 1, "", "rand_action"], [87, 1, 1, "", "rand_step"], [87, 1, 1, "", "read_action"], [87, 1, 1, "", "read_done"], [87, 1, 1, "", "read_obs"], [87, 1, 1, "", "read_reward"], [87, 1, 1, "", "register_backward_hook"], [87, 1, 1, "", "register_buffer"], [87, 1, 1, "", "register_forward_hook"], [87, 1, 1, "", "register_forward_pre_hook"], [87, 1, 1, "", "register_full_backward_hook"], [87, 1, 1, "", "register_full_backward_pre_hook"], [87, 1, 1, "", "register_load_state_dict_post_hook"], [87, 1, 1, "", "register_module"], [87, 1, 1, "", "register_parameter"], [87, 1, 1, "", "register_state_dict_pre_hook"], [87, 1, 1, "", "requires_grad_"], [87, 1, 1, "", "reset"], [87, 3, 1, "", "reset_keys"], [87, 3, 1, "", "reward_key"], [87, 3, 1, "", "reward_keys"], [87, 3, 1, "", "reward_spec"], [87, 1, 1, "", "rollout"], [87, 1, 1, "", "set_extra_state"], [87, 1, 1, "", "set_info_dict_reader"], [87, 1, 1, "", "set_seed"], [87, 1, 1, "", "share_memory"], [87, 3, 1, "", "specs"], [87, 1, 1, "", "state_dict"], [87, 3, 1, "", "state_spec"], [87, 1, 1, "", "step"], [87, 1, 1, "", "step_and_maybe_reset"], [87, 1, 1, "", "to"], [87, 1, 1, "", "to_empty"], [87, 1, 1, "", "train"], [87, 1, 1, "", "type"], [87, 1, 1, "", "xpu"], [87, 1, 1, "", "zero_grad"]], "torchrl.envs.ParallelEnv": [[101, 3, 1, "", "action_key"], [101, 3, 1, "", "action_keys"], [101, 3, 1, "", "action_spec"], [101, 1, 1, "", "add_module"], [101, 1, 1, "", "apply"], [101, 3, 1, "", "batch_locked"], [101, 1, 1, "", "bfloat16"], [101, 1, 1, "", "buffers"], [101, 1, 1, "", "children"], [101, 1, 1, "", "compile"], [101, 1, 1, "", "cpu"], [101, 1, 1, "", "cuda"], [101, 3, 1, "", "done_key"], [101, 3, 1, "", "done_keys"], [101, 3, 1, "", "done_keys_groups"], [101, 3, 1, "", "done_spec"], [101, 1, 1, "", "double"], [101, 1, 1, "", "empty_cache"], [101, 1, 1, "", "eval"], [101, 1, 1, "", "extra_repr"], [101, 1, 1, "", "fake_tensordict"], [101, 1, 1, "", "float"], [101, 1, 1, "", "forward"], [101, 3, 1, "", "full_action_spec"], [101, 3, 1, "", "full_done_spec"], [101, 3, 1, "", "full_reward_spec"], [101, 3, 1, "", "full_state_spec"], [101, 1, 1, "", "get_buffer"], [101, 1, 1, "", "get_extra_state"], [101, 1, 1, "", "get_parameter"], [101, 1, 1, "", "get_submodule"], [101, 1, 1, "", "half"], [101, 3, 1, "", "input_spec"], [101, 1, 1, "", "ipu"], [101, 1, 1, "", "load_state_dict"], [101, 1, 1, "", "modules"], [101, 1, 1, "", "named_buffers"], [101, 1, 1, "", "named_children"], [101, 1, 1, "", "named_modules"], [101, 1, 1, "", "named_parameters"], [101, 3, 1, "", "observation_spec"], [101, 3, 1, "", "output_spec"], [101, 1, 1, "", "parameters"], [101, 1, 1, "", "rand_action"], [101, 1, 1, "", "rand_step"], [101, 1, 1, "", "register_backward_hook"], [101, 1, 1, "", "register_buffer"], [101, 1, 1, "", "register_forward_hook"], [101, 1, 1, "", "register_forward_pre_hook"], [101, 1, 1, "", "register_full_backward_hook"], [101, 1, 1, "", "register_full_backward_pre_hook"], [101, 1, 1, "", "register_load_state_dict_post_hook"], [101, 1, 1, "", "register_module"], [101, 1, 1, "", "register_parameter"], [101, 1, 1, "", "register_state_dict_pre_hook"], [101, 1, 1, "", "requires_grad_"], [101, 1, 1, "", "reset"], [101, 3, 1, "", "reset_keys"], [101, 3, 1, "", "reward_key"], [101, 3, 1, "", "reward_keys"], [101, 3, 1, "", "reward_spec"], [101, 1, 1, "", "rollout"], [101, 1, 1, "", "set_extra_state"], [101, 1, 1, "", "set_seed"], [101, 1, 1, "", "share_memory"], [101, 3, 1, "", "specs"], [101, 1, 1, "", "state_dict"], [101, 3, 1, "", "state_spec"], [101, 1, 1, "", "step"], [101, 1, 1, "", "step_and_maybe_reset"], [101, 1, 1, "", "to"], [101, 1, 1, "", "to_empty"], [101, 1, 1, "", "train"], [101, 1, 1, "", "type"], [101, 1, 1, "", "update_kwargs"], [101, 1, 1, "", "xpu"], [101, 1, 1, "", "zero_grad"]], "torchrl.envs.SerialEnv": [[107, 3, 1, "", "action_key"], [107, 3, 1, "", "action_keys"], [107, 3, 1, "", "action_spec"], [107, 1, 1, "", "add_module"], [107, 1, 1, "", "apply"], [107, 3, 1, "", "batch_locked"], [107, 1, 1, "", "bfloat16"], [107, 1, 1, "", "buffers"], [107, 1, 1, "", "children"], [107, 1, 1, "", "compile"], [107, 1, 1, "", "cpu"], [107, 1, 1, "", "cuda"], [107, 3, 1, "", "done_key"], [107, 3, 1, "", "done_keys"], [107, 3, 1, "", "done_keys_groups"], [107, 3, 1, "", "done_spec"], [107, 1, 1, "", "double"], [107, 1, 1, "", "empty_cache"], [107, 1, 1, "", "eval"], [107, 1, 1, "", "extra_repr"], [107, 1, 1, "", "fake_tensordict"], [107, 1, 1, "", "float"], [107, 1, 1, "", "forward"], [107, 3, 1, "", "full_action_spec"], [107, 3, 1, "", "full_done_spec"], [107, 3, 1, "", "full_reward_spec"], [107, 3, 1, "", "full_state_spec"], [107, 1, 1, "", "get_buffer"], [107, 1, 1, "", "get_extra_state"], [107, 1, 1, "", "get_parameter"], [107, 1, 1, "", "get_submodule"], [107, 1, 1, "", "half"], [107, 3, 1, "", "input_spec"], [107, 1, 1, "", "ipu"], [107, 1, 1, "", "load_state_dict"], [107, 1, 1, "", "modules"], [107, 1, 1, "", "named_buffers"], [107, 1, 1, "", "named_children"], [107, 1, 1, "", "named_modules"], [107, 1, 1, "", "named_parameters"], [107, 3, 1, "", "observation_spec"], [107, 3, 1, "", "output_spec"], [107, 1, 1, "", "parameters"], [107, 1, 1, "", "rand_action"], [107, 1, 1, "", "rand_step"], [107, 1, 1, "", "register_backward_hook"], [107, 1, 1, "", "register_buffer"], [107, 1, 1, "", "register_forward_hook"], [107, 1, 1, "", "register_forward_pre_hook"], [107, 1, 1, "", "register_full_backward_hook"], [107, 1, 1, "", "register_full_backward_pre_hook"], [107, 1, 1, "", "register_load_state_dict_post_hook"], [107, 1, 1, "", "register_module"], [107, 1, 1, "", "register_parameter"], [107, 1, 1, "", "register_state_dict_pre_hook"], [107, 1, 1, "", "requires_grad_"], [107, 1, 1, "", "reset"], [107, 3, 1, "", "reset_keys"], [107, 3, 1, "", "reward_key"], [107, 3, 1, "", "reward_keys"], [107, 3, 1, "", "reward_spec"], [107, 1, 1, "", "rollout"], [107, 1, 1, "", "set_extra_state"], [107, 1, 1, "", "set_seed"], [107, 1, 1, "", "share_memory"], [107, 3, 1, "", "specs"], [107, 1, 1, "", "state_dict"], [107, 3, 1, "", "state_spec"], [107, 1, 1, "", "step"], [107, 1, 1, "", "step_and_maybe_reset"], [107, 1, 1, "", "to"], [107, 1, 1, "", "to_empty"], [107, 1, 1, "", "train"], [107, 1, 1, "", "type"], [107, 1, 1, "", "update_kwargs"], [107, 1, 1, "", "xpu"], [107, 1, 1, "", "zero_grad"]], "torchrl.envs.model_based.dreamer": [[112, 2, 1, "", "DreamerEnv"]], "torchrl.envs.transforms": [[114, 0, 1, "", "ActionMask"], [115, 0, 1, "", "BinarizeReward"], [116, 0, 1, "", "BurnInTransform"], [117, 0, 1, "", "CatFrames"], [118, 0, 1, "", "CatTensors"], [119, 0, 1, "", "CenterCrop"], [120, 0, 1, "", "ClipTransform"], [121, 0, 1, "", "Compose"], [122, 0, 1, "", "DTypeCastTransform"], [123, 0, 1, "", "DeviceCastTransform"], [124, 0, 1, "", "DiscreteActionProjection"], [125, 0, 1, "", "DoubleToFloat"], [126, 0, 1, "", "EndOfLifeTransform"], [127, 0, 1, "", "ExcludeTransform"], [128, 0, 1, "", "FiniteTensorDictCheck"], [129, 0, 1, "", "FlattenObservation"], [130, 0, 1, "", "FrameSkipTransform"], [131, 0, 1, "", "GrayScale"], [132, 0, 1, "", "InitTracker"], [133, 0, 1, "", "KLRewardTransform"], [134, 0, 1, "", "NoopResetEnv"], [135, 0, 1, "", "ObservationNorm"], [136, 0, 1, "", "ObservationTransform"], [137, 0, 1, "", "PermuteTransform"], [138, 0, 1, "", "PinMemoryTransform"], [139, 0, 1, "", "R3MTransform"], [140, 0, 1, "", "RandomCropTensorDict"], [141, 0, 1, "", "RenameTransform"], [142, 0, 1, "", "Resize"], [143, 0, 1, "", "Reward2GoTransform"], [144, 0, 1, "", "RewardClipping"], [145, 0, 1, "", "RewardScaling"], [146, 0, 1, "", "RewardSum"], [147, 0, 1, "", "SelectTransform"], [148, 0, 1, "", "SqueezeTransform"], [149, 0, 1, "", "StepCounter"], [150, 0, 1, "", "TargetReturn"], [151, 0, 1, "", "TensorDictPrimer"], [152, 0, 1, "", "TimeMaxPool"], [153, 0, 1, "", "ToTensorImage"], [154, 0, 1, "", "Transform"], [155, 0, 1, "", "TransformedEnv"], [156, 0, 1, "", "UnsqueezeTransform"], [157, 0, 1, "", "VC1Transform"], [158, 0, 1, "", "VIPRewardTransform"], [159, 0, 1, "", "VIPTransform"], [160, 0, 1, "", "VecGymEnvTransform"], [161, 0, 1, "", "VecNorm"], [162, 0, 1, "", "gSDENoise"]], "torchrl.envs.transforms.ActionMask": [[114, 1, 1, "", "forward"]], "torchrl.envs.transforms.BinarizeReward": [[115, 1, 1, "", "transform_reward_spec"]], "torchrl.envs.transforms.BurnInTransform": [[116, 1, 1, "", "forward"]], "torchrl.envs.transforms.CatFrames": [[117, 1, 1, "", "forward"], [117, 1, 1, "", "transform_observation_spec"]], "torchrl.envs.transforms.CatTensors": [[118, 1, 1, "", "forward"], [118, 1, 1, "", "transform_observation_spec"]], "torchrl.envs.transforms.CenterCrop": [[119, 1, 1, "", "transform_observation_spec"]], "torchrl.envs.transforms.ClipTransform": [[120, 1, 1, "", "transform_observation_spec"], [120, 1, 1, "", "transform_reward_spec"]], "torchrl.envs.transforms.Compose": [[121, 1, 1, "", "forward"], [121, 1, 1, "", "to"], [121, 1, 1, "", "transform_env_device"], [121, 1, 1, "", "transform_input_spec"], [121, 1, 1, "", "transform_observation_spec"], [121, 1, 1, "", "transform_output_spec"], [121, 1, 1, "", "transform_reward_spec"]], "torchrl.envs.transforms.DTypeCastTransform": [[122, 1, 1, "", "forward"], [122, 1, 1, "", "transform_input_spec"], [122, 1, 1, "", "transform_observation_spec"], [122, 1, 1, "", "transform_output_spec"]], "torchrl.envs.transforms.DeviceCastTransform": [[123, 1, 1, "", "forward"], [123, 1, 1, "", "transform_done_spec"], [123, 1, 1, "", "transform_env_device"], [123, 1, 1, "", "transform_input_spec"], [123, 1, 1, "", "transform_observation_spec"], [123, 1, 1, "", "transform_output_spec"], [123, 1, 1, "", "transform_reward_spec"]], "torchrl.envs.transforms.DiscreteActionProjection": [[124, 1, 1, "", "transform_input_spec"]], "torchrl.envs.transforms.EndOfLifeTransform": [[126, 1, 1, "", "forward"], [126, 1, 1, "", "register_keys"], [126, 1, 1, "", "transform_observation_spec"]], "torchrl.envs.transforms.ExcludeTransform": [[127, 1, 1, "", "forward"], [127, 1, 1, "", "transform_output_spec"]], "torchrl.envs.transforms.FiniteTensorDictCheck": [[128, 1, 1, "", "forward"]], "torchrl.envs.transforms.FlattenObservation": [[129, 1, 1, "", "forward"], [129, 1, 1, "", "transform_observation_spec"]], "torchrl.envs.transforms.FrameSkipTransform": [[130, 1, 1, "", "forward"]], "torchrl.envs.transforms.GrayScale": [[131, 1, 1, "", "transform_observation_spec"]], "torchrl.envs.transforms.InitTracker": [[132, 1, 1, "", "forward"], [132, 1, 1, "", "transform_observation_spec"]], "torchrl.envs.transforms.KLRewardTransform": [[133, 1, 1, "", "forward"], [133, 1, 1, "", "transform_output_spec"]], "torchrl.envs.transforms.ObservationNorm": [[135, 1, 1, "", "init_stats"], [135, 1, 1, "", "transform_input_spec"], [135, 1, 1, "", "transform_observation_spec"]], "torchrl.envs.transforms.PermuteTransform": [[137, 1, 1, "", "transform_input_spec"], [137, 1, 1, "", "transform_observation_spec"]], "torchrl.envs.transforms.PinMemoryTransform": [[138, 1, 1, "", "forward"]], "torchrl.envs.transforms.R3MTransform": [[139, 1, 1, "", "to"]], "torchrl.envs.transforms.RandomCropTensorDict": [[140, 1, 1, "", "forward"]], "torchrl.envs.transforms.RenameTransform": [[141, 1, 1, "", "forward"], [141, 1, 1, "", "transform_input_spec"], [141, 1, 1, "", "transform_output_spec"]], "torchrl.envs.transforms.Resize": [[142, 1, 1, "", "transform_observation_spec"]], "torchrl.envs.transforms.Reward2GoTransform": [[143, 1, 1, "", "forward"]], "torchrl.envs.transforms.RewardClipping": [[144, 1, 1, "", "transform_reward_spec"]], "torchrl.envs.transforms.RewardScaling": [[145, 1, 1, "", "transform_reward_spec"]], "torchrl.envs.transforms.RewardSum": [[146, 1, 1, "", "forward"], [146, 1, 1, "", "transform_input_spec"], [146, 1, 1, "", "transform_observation_spec"]], "torchrl.envs.transforms.SelectTransform": [[147, 1, 1, "", "forward"], [147, 1, 1, "", "transform_output_spec"]], "torchrl.envs.transforms.StepCounter": [[149, 1, 1, "", "forward"], [149, 1, 1, "", "transform_input_spec"], [149, 1, 1, "", "transform_observation_spec"], [149, 1, 1, "", "transform_output_spec"]], "torchrl.envs.transforms.TargetReturn": [[150, 1, 1, "", "forward"], [150, 1, 1, "", "transform_input_spec"], [150, 1, 1, "", "transform_observation_spec"]], "torchrl.envs.transforms.TensorDictPrimer": [[151, 1, 1, "", "forward"], [151, 1, 1, "", "to"], [151, 1, 1, "", "transform_input_spec"], [151, 1, 1, "", "transform_observation_spec"]], "torchrl.envs.transforms.TimeMaxPool": [[152, 1, 1, "", "forward"], [152, 1, 1, "", "transform_observation_spec"]], "torchrl.envs.transforms.ToTensorImage": [[153, 1, 1, "", "transform_observation_spec"]], "torchrl.envs.transforms.Transform": [[154, 3, 1, "", "container"], [154, 1, 1, "", "forward"], [154, 3, 1, "", "parent"], [154, 1, 1, "", "to"], [154, 1, 1, "", "transform_done_spec"], [154, 1, 1, "", "transform_env_device"], [154, 1, 1, "", "transform_input_spec"], [154, 1, 1, "", "transform_observation_spec"], [154, 1, 1, "", "transform_output_spec"], [154, 1, 1, "", "transform_reward_spec"]], "torchrl.envs.transforms.TransformedEnv": [[155, 3, 1, "", "batch_locked"], [155, 1, 1, "", "empty_cache"], [155, 1, 1, "", "eval"], [155, 3, 1, "", "input_spec"], [155, 1, 1, "", "load_state_dict"], [155, 3, 1, "", "output_spec"], [155, 1, 1, "", "set_missing_tolerance"], [155, 1, 1, "", "set_seed"], [155, 1, 1, "", "state_dict"], [155, 1, 1, "", "to"], [155, 1, 1, "", "train"]], "torchrl.envs.transforms.UnsqueezeTransform": [[156, 1, 1, "", "transform_input_spec"], [156, 1, 1, "", "transform_observation_spec"], [156, 1, 1, "", "transform_reward_spec"]], "torchrl.envs.transforms.VC1Transform": [[157, 1, 1, "", "forward"], [157, 1, 1, "", "make_noload_model"], [157, 1, 1, "", "to"], [157, 1, 1, "", "transform_observation_spec"]], "torchrl.envs.transforms.VIPRewardTransform": [[158, 1, 1, "", "forward"], [158, 1, 1, "", "transform_input_spec"]], "torchrl.envs.transforms.VIPTransform": [[159, 1, 1, "", "to"]], "torchrl.envs.transforms.VecGymEnvTransform": [[160, 1, 1, "", "forward"], [160, 1, 1, "", "transform_observation_spec"]], "torchrl.envs.transforms.VecNorm": [[161, 1, 1, "", "build_td_for_shared_vecnorm"], [161, 1, 1, "", "forward"], [161, 1, 1, "", "get_extra_state"], [161, 1, 1, "", "set_extra_state"], [161, 1, 1, "", "to_observation_norm"]], "torchrl.envs.utils": [[163, 2, 1, "", "check_env_specs"], [164, 2, 1, "", "exploration_mode"], [165, 2, 1, "", "exploration_type"], [166, 2, 1, "", "get_available_libraries"], [167, 2, 1, "", "make_composite_from_td"], [168, 2, 1, "", "set_exploration_mode"], [169, 2, 1, "", "set_exploration_type"], [170, 2, 1, "", "step_mdp"], [171, 2, 1, "", "terminated_or_truncated"]], "torchrl.modules": [[172, 0, 1, "", "CEMPlanner"], [173, 0, 1, "", "Conv3dNet"], [174, 0, 1, "", "ConvNet"], [175, 0, 1, "", "DTActor"], [176, 0, 1, "", "DdpgCnnActor"], [177, 0, 1, "", "DdpgCnnQNet"], [178, 0, 1, "", "DdpgMlpActor"], [179, 0, 1, "", "DdpgMlpQNet"], [180, 0, 1, "", "DecisionTransformer"], [181, 0, 1, "", "Delta"], [182, 0, 1, "", "DistributionalDQNnet"], [183, 0, 1, "", "DistributionalQValueHook"], [184, 0, 1, "", "DreamerActor"], [185, 0, 1, "", "DuelingCnnDQNet"], [186, 0, 1, "", "GRU"], [187, 0, 1, "", "GRUCell"], [188, 0, 1, "", "GRUModule"], [189, 0, 1, "", "IndependentNormal"], [190, 0, 1, "", "LSTM"], [191, 0, 1, "", "LSTMCell"], [192, 0, 1, "", "LSTMModule"], [193, 0, 1, "", "LSTMNet"], [194, 0, 1, "", "MLP"], [195, 0, 1, "", "MPCPlannerBase"], [196, 0, 1, "", "MPPIPlanner"], [197, 0, 1, "", "MaskedCategorical"], [198, 0, 1, "", "MaskedOneHotCategorical"], [199, 0, 1, "", "MultiAgentConvNet"], [200, 0, 1, "", "MultiAgentMLP"], [201, 0, 1, "", "NoisyLazyLinear"], [202, 0, 1, "", "NoisyLinear"], [203, 0, 1, "", "NormalParamWrapper"], [204, 0, 1, "", "ObsDecoder"], [205, 0, 1, "", "ObsEncoder"], [206, 0, 1, "", "OneHotCategorical"], [207, 0, 1, "", "OnlineDTActor"], [208, 0, 1, "", "QMixer"], [209, 0, 1, "", "QValueHook"], [210, 0, 1, "", "RSSMPosterior"], [211, 0, 1, "", "RSSMPrior"], [212, 0, 1, "", "Squeeze2dLayer"], [213, 0, 1, "", "SqueezeLayer"], [214, 0, 1, "", "TanhDelta"], [215, 0, 1, "", "TanhNormal"], [216, 0, 1, "", "TruncatedNormal"], [217, 0, 1, "", "VDNMixer"], [218, 0, 1, "", "VmapModule"], [219, 0, 1, "", "reset_noise"]], "torchrl.modules.CEMPlanner": [[172, 1, 1, "", "planning"]], "torchrl.modules.Conv3dNet": [[173, 1, 1, "", "forward"]], "torchrl.modules.ConvNet": [[174, 1, 1, "", "forward"]], "torchrl.modules.DTActor": [[175, 1, 1, "", "default_config"], [175, 1, 1, "", "forward"]], "torchrl.modules.DdpgCnnActor": [[176, 1, 1, "", "forward"]], "torchrl.modules.DdpgCnnQNet": [[177, 1, 1, "", "forward"]], "torchrl.modules.DdpgMlpActor": [[178, 1, 1, "", "forward"]], "torchrl.modules.DdpgMlpQNet": [[179, 1, 1, "", "forward"]], "torchrl.modules.DecisionTransformer": [[180, 0, 1, "", "DTConfig"], [180, 1, 1, "", "forward"]], "torchrl.modules.Delta": [[181, 1, 1, "", "log_prob"], [181, 3, 1, "", "mean"], [181, 3, 1, "", "mode"], [181, 1, 1, "", "rsample"], [181, 1, 1, "", "sample"]], "torchrl.modules.DistributionalDQNnet": [[182, 1, 1, "", "forward"]], "torchrl.modules.DreamerActor": [[184, 1, 1, "", "forward"]], "torchrl.modules.DuelingCnnDQNet": [[185, 1, 1, "", "forward"]], "torchrl.modules.GRU": [[186, 1, 1, "", "forward"]], "torchrl.modules.GRUCell": [[187, 1, 1, "", "forward"]], "torchrl.modules.GRUModule": [[188, 1, 1, "", "forward"], [188, 1, 1, "id0", "set_recurrent_mode"]], "torchrl.modules.IndependentNormal": [[189, 3, 1, "", "mode"]], "torchrl.modules.LSTM": [[190, 1, 1, "", "forward"]], "torchrl.modules.LSTMCell": [[191, 1, 1, "", "forward"]], "torchrl.modules.LSTMModule": [[192, 1, 1, "", "forward"], [192, 1, 1, "id0", "set_recurrent_mode"]], "torchrl.modules.LSTMNet": [[193, 1, 1, "", "forward"]], "torchrl.modules.MLP": [[194, 1, 1, "", "forward"]], "torchrl.modules.MPCPlannerBase": [[195, 1, 1, "", "forward"], [195, 1, 1, "", "planning"]], "torchrl.modules.MPPIPlanner": [[196, 1, 1, "", "planning"]], "torchrl.modules.MaskedCategorical": [[197, 1, 1, "", "log_prob"], [197, 1, 1, "", "sample"]], "torchrl.modules.MaskedOneHotCategorical": [[198, 1, 1, "", "log_prob"], [198, 1, 1, "", "rsample"], [198, 1, 1, "", "sample"]], "torchrl.modules.MultiAgentConvNet": [[199, 1, 1, "", "forward"]], "torchrl.modules.MultiAgentMLP": [[200, 1, 1, "", "forward"]], "torchrl.modules.NoisyLazyLinear": [[201, 1, 1, "", "initialize_parameters"]], "torchrl.modules.NormalParamWrapper": [[203, 1, 1, "", "forward"]], "torchrl.modules.ObsDecoder": [[204, 1, 1, "", "forward"]], "torchrl.modules.ObsEncoder": [[205, 1, 1, "", "forward"]], "torchrl.modules.OneHotCategorical": [[206, 1, 1, "", "log_prob"], [206, 3, 1, "", "mode"], [206, 1, 1, "", "rsample"], [206, 1, 1, "", "sample"]], "torchrl.modules.OnlineDTActor": [[207, 1, 1, "", "default_config"], [207, 1, 1, "", "forward"]], "torchrl.modules.QMixer": [[208, 1, 1, "", "mix"]], "torchrl.modules.RSSMPosterior": [[210, 1, 1, "", "forward"]], "torchrl.modules.RSSMPrior": [[211, 1, 1, "", "forward"]], "torchrl.modules.SqueezeLayer": [[213, 1, 1, "", "forward"]], "torchrl.modules.TanhDelta": [[214, 3, 1, "", "mean"], [214, 3, 1, "", "mode"]], "torchrl.modules.TanhNormal": [[215, 3, 1, "", "mode"]], "torchrl.modules.TruncatedNormal": [[216, 1, 1, "", "log_prob"], [216, 3, 1, "", "mode"]], "torchrl.modules.VDNMixer": [[217, 1, 1, "", "mix"]], "torchrl.modules.VmapModule": [[218, 1, 1, "", "forward"]], "torchrl.modules.tensordict_module": [[220, 0, 1, "", "Actor"], [221, 0, 1, "", "ActorCriticOperator"], [222, 0, 1, "", "ActorCriticWrapper"], [223, 0, 1, "", "ActorValueOperator"], [224, 0, 1, "", "AdditiveGaussianWrapper"], [225, 0, 1, "", "DecisionTransformerInferenceWrapper"], [226, 0, 1, "", "DistributionalQValueActor"], [227, 0, 1, "", "DistributionalQValueModule"], [228, 0, 1, "", "EGreedyModule"], [229, 0, 1, "", "EGreedyWrapper"], [230, 0, 1, "", "LMHeadActorValueOperator"], [231, 0, 1, "", "OrnsteinUhlenbeckProcessWrapper"], [232, 0, 1, "", "ProbabilisticActor"], [233, 0, 1, "", "QValueActor"], [234, 0, 1, "", "QValueModule"], [235, 0, 1, "", "SafeModule"], [236, 0, 1, "", "SafeProbabilisticModule"], [237, 0, 1, "", "SafeProbabilisticTensorDictSequential"], [238, 0, 1, "", "SafeSequential"], [239, 0, 1, "", "TanhModule"], [240, 0, 1, "", "ValueOperator"], [241, 0, 1, "", "WorldModelWrapper"]], "torchrl.modules.tensordict_module.ActorCriticOperator": [[221, 1, 1, "", "get_critic_operator"], [221, 1, 1, "", "get_policy_head"], [221, 1, 1, "", "get_value_head"], [221, 1, 1, "", "get_value_operator"]], "torchrl.modules.tensordict_module.ActorCriticWrapper": [[222, 1, 1, "", "get_policy_head"], [222, 1, 1, "", "get_policy_operator"], [222, 1, 1, "", "get_value_head"], [222, 1, 1, "", "get_value_operator"]], "torchrl.modules.tensordict_module.ActorValueOperator": [[223, 1, 1, "", "get_policy_head"], [223, 1, 1, "", "get_policy_operator"], [223, 1, 1, "", "get_value_head"], [223, 1, 1, "", "get_value_operator"]], "torchrl.modules.tensordict_module.AdditiveGaussianWrapper": [[224, 1, 1, "", "forward"], [224, 1, 1, "", "step"]], "torchrl.modules.tensordict_module.DecisionTransformerInferenceWrapper": [[225, 1, 1, "", "forward"], [225, 1, 1, "", "mask_context"], [225, 1, 1, "", "set_tensor_keys"]], "torchrl.modules.tensordict_module.DistributionalQValueModule": [[227, 1, 1, "", "forward"]], "torchrl.modules.tensordict_module.EGreedyModule": [[228, 1, 1, "", "forward"], [228, 1, 1, "", "step"]], "torchrl.modules.tensordict_module.EGreedyWrapper": [[229, 1, 1, "", "forward"], [229, 1, 1, "", "step"]], "torchrl.modules.tensordict_module.OrnsteinUhlenbeckProcessWrapper": [[231, 1, 1, "", "forward"], [231, 1, 1, "", "step"]], "torchrl.modules.tensordict_module.QValueModule": [[234, 1, 1, "", "forward"]], "torchrl.modules.tensordict_module.SafeModule": [[235, 1, 1, "", "random"], [235, 1, 1, "", "random_sample"], [235, 1, 1, "", "to"]], "torchrl.modules.tensordict_module.SafeProbabilisticModule": [[236, 1, 1, "", "random"], [236, 1, 1, "", "random_sample"]], "torchrl.modules.tensordict_module.TanhModule": [[239, 1, 1, "", "forward"]], "torchrl.modules.tensordict_module.WorldModelWrapper": [[241, 1, 1, "", "get_reward_operator"], [241, 1, 1, "", "get_transition_model_operator"]], "torchrl.modules.utils": [[242, 0, 1, "", "biased_softplus"], [243, 0, 1, "", "inv_softplus"], [244, 0, 1, "", "mappings"]], "torchrl.modules.utils.biased_softplus": [[242, 1, 1, "", "forward"]], "torchrl.objectives": [[245, 0, 1, "", "A2CLoss"], [246, 0, 1, "", "CQLLoss"], [247, 0, 1, "", "ClipPPOLoss"], [248, 0, 1, "", "DDPGLoss"], [249, 0, 1, "", "DQNLoss"], [250, 0, 1, "", "DTLoss"], [251, 0, 1, "", "DiscreteCQLLoss"], [252, 0, 1, "", "DiscreteSACLoss"], [253, 0, 1, "", "DistributionalDQNLoss"], [254, 0, 1, "", "DreamerActorLoss"], [255, 0, 1, "", "DreamerModelLoss"], [256, 0, 1, "", "DreamerValueLoss"], [257, 0, 1, "", "HardUpdate"], [258, 0, 1, "", "IQLLoss"], [259, 0, 1, "", "KLPENPPOLoss"], [260, 0, 1, "", "LossModule"], [261, 0, 1, "", "OnlineDTLoss"], [262, 0, 1, "", "PPOLoss"], [263, 0, 1, "", "REDQLoss"], [264, 0, 1, "", "ReinforceLoss"], [265, 0, 1, "", "SACLoss"], [266, 0, 1, "", "SoftUpdate"], [267, 0, 1, "", "TD3Loss"], [268, 0, 1, "", "ValueEstimators"], [269, 0, 1, "", "default_value_kwargs"], [270, 0, 1, "", "distance_loss"], [271, 0, 1, "", "hold_out_net"], [272, 0, 1, "", "hold_out_params"], [274, 0, 1, "", "next_state_value"]], "torchrl.objectives.A2CLoss": [[245, 1, 1, "", "forward"], [245, 1, 1, "", "make_value_estimator"]], "torchrl.objectives.CQLLoss": [[246, 1, 1, "", "forward"], [246, 1, 1, "", "make_value_estimator"]], "torchrl.objectives.ClipPPOLoss": [[247, 1, 1, "", "forward"]], "torchrl.objectives.DDPGLoss": [[248, 1, 1, "", "forward"], [248, 1, 1, "", "make_value_estimator"]], "torchrl.objectives.DQNLoss": [[249, 1, 1, "", "forward"], [249, 1, 1, "", "make_value_estimator"]], "torchrl.objectives.DTLoss": [[250, 1, 1, "", "forward"]], "torchrl.objectives.DiscreteCQLLoss": [[251, 1, 1, "", "forward"], [251, 1, 1, "", "make_value_estimator"]], "torchrl.objectives.DiscreteSACLoss": [[252, 1, 1, "", "forward"], [252, 1, 1, "", "make_value_estimator"]], "torchrl.objectives.DistributionalDQNLoss": [[253, 1, 1, "", "forward"], [253, 1, 1, "", "make_value_estimator"]], "torchrl.objectives.DreamerActorLoss": [[254, 1, 1, "", "forward"], [254, 1, 1, "", "make_value_estimator"]], "torchrl.objectives.DreamerModelLoss": [[255, 1, 1, "", "forward"]], "torchrl.objectives.DreamerValueLoss": [[256, 1, 1, "", "forward"]], "torchrl.objectives.IQLLoss": [[258, 1, 1, "", "forward"], [258, 1, 1, "", "loss_value_diff"], [258, 1, 1, "", "make_value_estimator"]], "torchrl.objectives.KLPENPPOLoss": [[259, 1, 1, "", "forward"]], "torchrl.objectives.LossModule": [[260, 1, 1, "", "convert_to_functional"], [260, 1, 1, "", "forward"], [260, 1, 1, "", "make_value_estimator"], [260, 1, 1, "", "named_parameters"], [260, 1, 1, "", "parameters"], [260, 1, 1, "", "set_keys"], [260, 3, 1, "", "value_estimator"]], "torchrl.objectives.OnlineDTLoss": [[261, 1, 1, "", "forward"]], "torchrl.objectives.PPOLoss": [[262, 1, 1, "", "forward"], [262, 1, 1, "", "make_value_estimator"]], "torchrl.objectives.REDQLoss": [[263, 1, 1, "", "forward"], [263, 1, 1, "", "make_value_estimator"]], "torchrl.objectives.ReinforceLoss": [[264, 1, 1, "", "forward"], [264, 1, 1, "", "make_value_estimator"]], "torchrl.objectives.SACLoss": [[265, 1, 1, "", "forward"], [265, 1, 1, "", "load_state_dict"], [265, 1, 1, "", "make_value_estimator"], [265, 1, 1, "", "state_dict"]], "torchrl.objectives.TD3Loss": [[267, 1, 1, "", "forward"], [267, 1, 1, "", "make_value_estimator"]], "torchrl.objectives.multiagent": [[273, 0, 1, "", "QMixerLoss"]], "torchrl.objectives.multiagent.QMixerLoss": [[273, 1, 1, "", "forward"], [273, 1, 1, "", "make_value_estimator"]], "torchrl.objectives.value": [[275, 0, 1, "", "GAE"], [276, 0, 1, "", "TD0Estimator"], [277, 0, 1, "", "TD1Estimator"], [278, 0, 1, "", "TDLambdaEstimator"], [279, 0, 1, "", "ValueEstimatorBase"]], "torchrl.objectives.value.GAE": [[275, 1, 1, "", "forward"], [275, 1, 1, "", "value_estimate"]], "torchrl.objectives.value.TD0Estimator": [[276, 1, 1, "", "forward"], [276, 1, 1, "", "value_estimate"]], "torchrl.objectives.value.TD1Estimator": [[277, 1, 1, "", "forward"], [277, 1, 1, "", "value_estimate"]], "torchrl.objectives.value.TDLambdaEstimator": [[278, 1, 1, "", "forward"], [278, 1, 1, "", "value_estimate"]], "torchrl.objectives.value.ValueEstimatorBase": [[279, 1, 1, "", "forward"], [279, 1, 1, "", "set_keys"], [279, 1, 1, "", "value_estimate"]], "torchrl.objectives.value.functional": [[280, 0, 1, "", "generalized_advantage_estimate"], [281, 0, 1, "", "reward2go"], [282, 0, 1, "", "td0_advantage_estimate"], [283, 0, 1, "", "td0_return_estimate"], [284, 0, 1, "", "td1_advantage_estimate"], [285, 0, 1, "", "td1_return_estimate"], [286, 0, 1, "", "td_lambda_advantage_estimate"], [287, 0, 1, "", "td_lambda_return_estimate"], [288, 0, 1, "", "vec_generalized_advantage_estimate"], [289, 0, 1, "", "vec_td1_advantage_estimate"], [290, 0, 1, "", "vec_td1_return_estimate"], [291, 0, 1, "", "vec_td_lambda_advantage_estimate"], [292, 0, 1, "", "vec_td_lambda_return_estimate"]], "torchrl.record": [[293, 2, 1, "", "TensorDictRecorder"], [294, 2, 1, "", "VideoRecorder"]], "torchrl.record.loggers": [[295, 2, 1, "", "Logger"], [297, 2, 1, "", "generate_exp_name"], [298, 2, 1, "", "get_logger"]], "torchrl.record.loggers.csv": [[296, 2, 1, "", "CSVLogger"]], "torchrl.record.loggers.mlflow": [[299, 2, 1, "", "MLFlowLogger"]], "torchrl.record.loggers.tensorboard": [[300, 2, 1, "", "TensorboardLogger"]], "torchrl.record.loggers.wandb": [[301, 2, 1, "", "WandbLogger"]], "torchrl.trainers": [[302, 0, 1, "", "BatchSubSampler"], [303, 0, 1, "", "ClearCudaCache"], [304, 0, 1, "", "CountFramesLog"], [305, 0, 1, "", "LogReward"], [306, 0, 1, "", "OptimizerHook"], [307, 0, 1, "", "Recorder"], [308, 0, 1, "", "ReplayBufferTrainer"], [309, 0, 1, "", "RewardNormalizer"], [310, 0, 1, "", "SelectKeys"], [311, 0, 1, "", "Trainer"], [312, 0, 1, "", "TrainerHookBase"], [313, 0, 1, "", "UpdateWeights"]], "torchrl.trainers.BatchSubSampler": [[302, 1, 1, "", "register"]], "torchrl.trainers.ClearCudaCache": [[303, 1, 1, "", "register"]], "torchrl.trainers.CountFramesLog": [[304, 1, 1, "", "register"]], "torchrl.trainers.LogReward": [[305, 1, 1, "", "register"]], "torchrl.trainers.OptimizerHook": [[306, 1, 1, "", "register"]], "torchrl.trainers.Recorder": [[307, 1, 1, "", "register"]], "torchrl.trainers.ReplayBufferTrainer": [[308, 1, 1, "", "register"]], "torchrl.trainers.RewardNormalizer": [[309, 1, 1, "", "register"]], "torchrl.trainers.SelectKeys": [[310, 1, 1, "", "register"]], "torchrl.trainers.TrainerHookBase": [[312, 1, 1, "", "register"]], "torchrl.trainers.UpdateWeights": [[313, 1, 1, "", "register"]], "torchrl.trainers.helpers": [[314, 2, 1, "", "correct_for_frame_skip"], [315, 2, 1, "", "get_stats_random_rollout"], [316, 2, 1, "", "make_collector_offpolicy"], [317, 2, 1, "", "make_collector_onpolicy"], [318, 2, 1, "", "make_dqn_loss"], [319, 2, 1, "", "make_redq_loss"], [320, 2, 1, "", "make_redq_model"], [321, 2, 1, "", "make_replay_buffer"], [322, 2, 1, "", "make_target_updater"], [323, 2, 1, "", "make_trainer"], [324, 2, 1, "", "parallel_env_constructor"], [325, 2, 1, "", "sync_async_collector"], [326, 2, 1, "", "sync_sync_collector"], [327, 2, 1, "", "transformed_env_constructor"]]}, "objtypes": {"0": "py:class", "1": "py:method", "2": "py:function", "3": "py:property"}, "objnames": {"0": ["py", "class", "Python class"], "1": ["py", "method", "Python method"], "2": ["py", "function", "Python function"], "3": ["py", "property", "Python property"]}, "titleterms": {"torchrl": [0, 1, 2, 3, 6, 9, 331, 332, 333, 334, 336, 337, 338, 342, 343, 347, 348], "tutori": [0, 338, 342], "basic": [0, 345], "intermedi": [0, 8], "advanc": 0, "refer": [0, 329], "knowledg": [0, 330], "base": [0, 7, 330], "indic": 0, "tabl": 0, "collector": [1, 336, 337, 338, 339, 342, 347], "packag": [1, 2, 3, 331, 332, 333, 334], "singl": [1, 4], "node": 1, "data": [1, 2, 4, 336, 337, 338, 342, 347], "distribut": [1, 331], "helper": [1, 3], "function": [1, 4, 332, 337, 338, 342, 347], "replai": [2, 336, 337, 338, 339, 342, 345, 347], "buffer": [2, 336, 337, 338, 339, 342, 345, 347], "compos": [2, 121], "share": 2, "across": 2, "process": 2, "store": [2, 337], "trajectori": 2, "checkpoint": [2, 333], "dataset": 2, "tensorspec": [2, 44], "reinforc": [2, 332, 338, 342], "learn": [2, 4, 338, 342], "from": [2, 6, 7], "human": 2, "feedback": 2, "rlhf": 2, "util": [2, 331, 332, 333], "env": [3, 343, 347, 348], "vector": [3, 347], "multi": [3, 331, 332, 341, 342], "agent": [3, 4, 331, 332, 342], "environ": [3, 4, 6, 7, 336, 337, 338, 339, 341, 342, 343, 347, 348], "transform": [3, 154, 336, 338, 342, 343, 345, 347, 348], "clone": [3, 7], "mask": 3, "action": [3, 4, 339, 343], "record": [3, 307, 333, 336], "domain": [3, 331], "specif": [3, 331, 341], "librari": [3, 347], "thing": [4, 336, 343], "consid": 4, "when": [4, 7], "debug": 4, "rl": [4, 9, 347], "gener": [4, 331], "have": 4, "you": 4, "valid": 4, "your": [4, 6, 336, 343], "algorithm": [4, 331], "implement": 4, "few": 4, "small": 4, "toi": 4, "problem": 4, "known": 4, "optim": [4, 336, 337], "return": [4, 332], "e": 4, "g": 4, "gridworld": 4, "mountaincar": 4, "visual": 4, "Be": 4, "veri": 4, "care": 4, "ani": 4, "augment": 4, "polici": [4, 336, 338, 339, 341, 342, 343], "doe": 4, "entropi": 4, "converg": 4, "too": [4, 8], "quickli": 4, "slowli": 4, "chang": [4, 347], "drastic": 4, "reward": 4, "beyond": 4, "go": 4, "up": [4, 6], "Is": 4, "favor": 4, "compon": 4, "i": 4, "veloc": 4, "vs": 4, "l2": 4, "magnitud": 4, "task": [4, 341], "horizon": 4, "extrem": 4, "long": 4, "ar": 4, "normal": [4, 336, 337, 338], "standard": 4, "explor": [4, 331, 336, 337], "valu": [4, 331, 332, 336, 338, 339], "loss": [4, 336, 337, 338, 339, 342], "earli": 4, "train": [4, 8, 332, 336, 338, 339, 342, 343], "roughli": 4, "uniformli": 4, "random": [4, 342], "intrins": 4, "decai": 4, "progress": 4, "singleton": 4, "episod": 4, "remain": 4, "constant": [4, 337], "increas": 4, "an": [4, 338, 339, 343], "dynam": [4, 345], "can": 4, "low": 4, "forward": [4, 336], "model": [4, 331, 336, 337, 339, 344, 347], "also": 4, "us": [4, 6, 9, 339, 344, 345, 347], "offlin": 4, "observ": [4, 336], "space": 4, "effect": [4, 343], "dramat": 4, "dure": [4, 7], "high": 4, "dimension": 4, "work": [5, 6, 7], "gym": [5, 348], "what": 5, "openai": 5, "version": [5, 7, 10], "habitat": 6, "lab": 6, "set": 6, "instal": [6, 7, 347], "pip": [6, 7], "common": [6, 7, 8], "issu": [6, 7, 10], "mujoco": 7, "prerequisit": 7, "render": [7, 342, 348], "all": 7, "new": 7, "bindindg": 7, "2": 7, "1": 7, "old": 7, "bind": 7, "py": 7, "option": 7, "repo": [7, 9], "import": [7, 336], "pytorch": [8, 9, 10], "error": 8, "solut": 8, "gradient": 8, "relat": 8, "newcom": 8, "my": 8, "slow": 8, "bug": 8, "resourc": 9, "paper": 9, "document": 9, "functorch": 9, "blog": 9, "websit": 9, "educ": 9, "forum": 9, "how": 10, "reproduc": [10, 343], "workaround": 10, "implement_for": 11, "datacollectorbas": 12, "multisyncdatacollector": 13, "multiasyncdatacollector": 14, "randompolici": 15, "syncdatacollector": 16, "asyncdatacollector": 17, "distributeddatacollector": 18, "distributedsyncdatacollector": 19, "rpcdatacollector": 20, "raycollector": 21, "submitit_delayed_launch": 22, "split_trajectori": 23, "binarydiscretetensorspec": 24, "boundedtensorspec": 25, "compositespec": 26, "discretetensorspec": 27, "lazystackedcompositespec": 28, "lazystackedtensorspec": 29, "multidiscretetensorspec": 30, "multionehotdiscretetensorspec": 31, "multistep": 32, "onehotdiscretetensorspec": 33, "pairwisedataset": 34, "prioritizedreplaybuff": 35, "promptdata": 36, "prompttensordicttoken": 37, "replaybuff": 38, "rewarddata": 39, "rolloutfrommodel": 40, "tensordictprioritizedreplaybuff": 41, "tensordictreplaybuff": 42, "tensordicttoken": 43, "tokenizeddatasetload": 45, "unboundedcontinuoustensorspec": 46, "unboundeddiscretetensorspec": 47, "check_no_exclusive_kei": 48, "consolidate_spec": 49, "contains_lazy_spec": 50, "create_infinite_iter": 51, "d4rlexperiencereplai": 52, "minariexperiencereplai": 53, "openmlexperiencereplai": 54, "openxexperiencereplai": 55, "robosetexperiencereplai": 56, "vd4rlexperiencereplai": 57, "get_dataload": 58, "immutabledatasetwrit": 59, "lazymemmapstorag": 60, "lazytensorstorag": 61, "liststorag": 62, "prioritizedsampl": 63, "randomsampl": 64, "replaybufferensembl": 65, "roundrobinwrit": 66, "sampler": 67, "samplerensembl": 68, "samplerwithoutreplac": 69, "slicesampl": 70, "slicesamplerwithoutreplac": 71, "storag": [72, 336, 345], "storageensembl": 73, "tensordictmaxvaluewrit": 74, "tensordictroundrobinwrit": 75, "tensorstorag": 76, "writer": 77, "writerensembl": 78, "braxenv": 79, "braxwrapp": 80, "dmcontrolenv": 81, "dmcontrolwrapp": 82, "envbas": [83, 343], "envcreat": 84, "envmetadata": 85, "gymenv": 86, "gymlikeenv": 87, "gymwrapp": 88, "habitatenv": 89, "isaacgymenv": 90, "isaacgymwrapp": 91, "jumanjienv": 92, "jumanjiwrapp": 93, "mogymenv": 94, "mogymwrapp": 95, "marlgroupmaptyp": 96, "modelbasedenvbas": 97, "multithreadedenv": 98, "multithreadedenvwrapp": 99, "openmlenv": 100, "parallelenv": 101, "pettingzooenv": 102, "pettingzoowrapp": 103, "robohiveenv": 104, "smacv2env": 105, "smacv2wrapp": 106, "serialenv": 107, "vmasenv": 108, "vmaswrapp": 109, "check_marl_group": 110, "gym_backend": 111, "dreamerenv": 112, "set_gym_backend": 113, "actionmask": 114, "binarizereward": 115, "burnintransform": 116, "catfram": [117, 345], "cattensor": 118, "centercrop": 119, "cliptransform": 120, "dtypecasttransform": 122, "devicecasttransform": 123, "discreteactionproject": 124, "doubletofloat": 125, "endoflifetransform": 126, "excludetransform": 127, "finitetensordictcheck": 128, "flattenobserv": 129, "frameskiptransform": 130, "grayscal": 131, "inittrack": 132, "klrewardtransform": 133, "noopresetenv": 134, "observationnorm": 135, "observationtransform": 136, "permutetransform": 137, "pinmemorytransform": 138, "r3mtransform": 139, "randomcroptensordict": 140, "renametransform": 141, "resiz": 142, "reward2gotransform": 143, "rewardclip": 144, "rewardsc": 145, "rewardsum": 146, "selecttransform": 147, "squeezetransform": 148, "stepcount": 149, "targetreturn": 150, "tensordictprim": 151, "timemaxpool": 152, "totensorimag": 153, "transformedenv": 155, "unsqueezetransform": 156, "vc1transform": 157, "viprewardtransform": 158, "viptransform": 159, "vecgymenvtransform": 160, "vecnorm": [161, 348], "gsdenois": 162, "check_env_spec": 163, "exploration_mod": 164, "exploration_typ": 165, "get_available_librari": 166, "make_composite_from_td": 167, "set_exploration_mod": 168, "set_exploration_typ": 169, "step_mdp": 170, "terminated_or_trunc": 171, "cemplann": 172, "conv3dnet": 173, "convnet": 174, "dtactor": 175, "ddpgcnnactor": 176, "ddpgcnnqnet": 177, "ddpgmlpactor": 178, "ddpgmlpqnet": 179, "decisiontransform": 180, "delta": 181, "distributionaldqnnet": 182, "distributionalqvaluehook": 183, "dreameractor": 184, "duelingcnndqnet": 185, "gru": 186, "grucel": 187, "grumodul": 188, "independentnorm": 189, "lstm": [190, 339], "lstmcell": 191, "lstmmodul": 192, "lstmnet": 193, "mlp": [194, 339], "mpcplannerbas": 195, "mppiplann": 196, "maskedcategor": 197, "maskedonehotcategor": 198, "multiagentconvnet": 199, "multiagentmlp": 200, "noisylazylinear": 201, "noisylinear": 202, "normalparamwrapp": 203, "obsdecod": 204, "obsencod": 205, "onehotcategor": 206, "onlinedtactor": 207, "qmixer": [208, 332], "qvaluehook": 209, "rssmposterior": 210, "rssmprior": 211, "squeeze2dlay": 212, "squeezelay": 213, "tanhdelta": 214, "tanhnorm": 215, "truncatednorm": 216, "vdnmixer": 217, "vmapmodul": 218, "reset_nois": 219, "actor": [220, 331, 336], "actorcriticoper": 221, "actorcriticwrapp": 222, "actorvalueoper": 223, "additivegaussianwrapp": 224, "decisiontransformerinferencewrapp": 225, "distributionalqvalueactor": 226, "distributionalqvaluemodul": 227, "egreedymodul": 228, "egreedywrapp": 229, "lmheadactorvalueoper": 230, "ornsteinuhlenbeckprocesswrapp": 231, "probabilisticactor": 232, "qvalueactor": 233, "qvaluemodul": 234, "safemodul": [235, 331], "safeprobabilisticmodul": 236, "safeprobabilistictensordictsequenti": 237, "safesequenti": 238, "tanhmodul": 239, "valueoper": 240, "worldmodelwrapp": 241, "biased_softplu": 242, "inv_softplu": 243, "map": 244, "a2closs": 245, "cqlloss": 246, "clipppoloss": 247, "ddpgloss": 248, "dqnloss": 249, "dtloss": 250, "discretecqlloss": 251, "discretesacloss": 252, "distributionaldqnloss": 253, "dreameractorloss": 254, "dreamermodelloss": 255, "dreamervalueloss": 256, "hardupd": 257, "iqlloss": 258, "klpenppoloss": 259, "lossmodul": [260, 336], "onlinedtloss": 261, "ppoloss": 262, "redqloss": 263, "reinforceloss": 264, "sacloss": 265, "softupd": 266, "td3loss": 267, "valueestim": 268, "default_value_kwarg": 269, "distance_loss": 270, "hold_out_net": 271, "hold_out_param": 272, "qmixerloss": 273, "next_state_valu": 274, "gae": 275, "td0estim": 276, "td1estim": 277, "tdlambdaestim": 278, "valueestimatorbas": 279, "generalized_advantage_estim": 280, "reward2go": 281, "td0_advantage_estim": 282, "td0_return_estim": 283, "td1_advantage_estim": 284, "td1_return_estim": 285, "td_lambda_advantage_estim": 286, "td_lambda_return_estim": 287, "vec_generalized_advantage_estim": 288, "vec_td1_advantage_estim": 289, "vec_td1_return_estim": 290, "vec_td_lambda_advantage_estim": 291, "vec_td_lambda_return_estim": 292, "tensordictrecord": 293, "videorecord": 294, "logger": [295, 333], "csvlogger": 296, "generate_exp_nam": 297, "get_logg": 298, "mlflowlogg": 299, "tensorboardlogg": 300, "wandblogg": 301, "batchsubsampl": 302, "clearcudacach": 303, "countframeslog": 304, "logreward": 305, "optimizerhook": 306, "replaybuffertrain": 308, "rewardnorm": 309, "selectkei": 310, "trainer": [311, 333, 337], "trainerhookbas": 312, "updateweight": 313, "correct_for_frame_skip": 314, "get_stats_random_rollout": 315, "make_collector_offpolici": 316, "make_collector_onpolici": 317, "make_dqn_loss": 318, "make_redq_loss": 319, "make_redq_model": 320, "make_replay_buff": 321, "make_target_updat": 322, "make_train": 323, "parallel_env_constructor": 324, "sync_async_collector": 325, "sync_sync_collector": 326, "transformed_env_constructor": 327, "readm": [328, 340], "tuto": [328, 340], "api": 329, "contribut": [330, 347], "content": 330, "modul": [331, 336, 339, 347], "tensordict": [331, 345, 347], "wrapper": 331, "probabilist": 331, "q": [331, 337, 339], "oper": 331, "join": 331, "hook": [331, 333, 337], "regular": 331, "planner": 331, "object": [332, 336, 347], "dqn": [332, 337, 339], "ddpg": [332, 336], "sac": 332, "redq": 332, "iql": 332, "cql": 332, "dt": 332, "td3": 332, "ppo": [332, 338, 342], "a2c": 332, "dreamer": 332, "builder": 333, "_util": 334, "comput": [335, 337, 343, 346], "time": [335, 336, 346], "code": [336, 343], "setup": [336, 339], "The": 336, "__init__": 336, "method": 336, "estim": 336, "put": 336, "togeth": [336, 343], "call": 336, "parallel": [336, 341, 348], "execut": [336, 341, 343], "stat": 336, "build": [336, 337, 345], "evalu": 336, "batch": [336, 343, 345], "size": [336, 345], "construct": 336, "target": [336, 337], "network": [336, 337, 338, 339, 342], "updat": 336, "experi": [336, 343], "result": [336, 338, 342], "conclus": [336, 337, 338, 339, 342, 343, 345], "A": [337, 345], "exampl": [337, 345], "deep": 337, "collect": [337, 338], "paramet": [337, 338], "hyperparamet": [337, 338, 342], "regist": 337, "possibl": 337, "improv": 337, "defin": [338, 342], "loop": [338, 339, 342, 343], "next": [338, 342], "step": [338, 342, 348], "recurr": 339, "overview": 339, "convolut": 339, "select": 339, "further": 339, "read": 339, "divers": 341, "rollout": [341, 342, 343, 348], "critic": 342, "pendulum": 343, "write": 343, "_step": 343, "reset": [343, 348], "simul": 343, "_reset": 343, "metadata": 343, "_spec": 343, "spec": [343, 348], "shape": 343, "seed": [343, 348], "wrap": 343, "class": [343, 347], "test": 343, "our": 343, "custom": [343, 345], "simpl": 343, "pretrain": 344, "vanilla": 345, "integr": 345, "tensorclass": 345, "sampl": 345, "iter": 345, "over": 345, "fix": 345, "priorit": 345, "save": 345, "raw": 345, "imag": 345, "more": 345, "complex": 345, "introduct": 347, "config": 347, "tensordictmodul": 347, "sequenc": 347, "program": 347, "ensembl": 347, "meta": 347, "special": 347, "state": 347, "frame_skip": 348, "deepmind": 348, "control": 348, "devic": 348, "run": 348, "close": 348, "access": 348, "attribut": 348, "kwarg": 348}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 6, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.viewcode": 1, "sphinx.ext.intersphinx": 1, "sphinx": 56}}) \ No newline at end of file diff --git a/sg_execution_times.html b/sg_execution_times.html index 1ad8ec201da..12a4cb1e7ab 100644 --- a/sg_execution_times.html +++ b/sg_execution_times.html @@ -373,7 +373,7 @@

Computation times

-

27:22.388 total execution time for 11 files from all galleries:

+

27:58.661 total execution time for 11 files from all galleries: