-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathdataset.py
814 lines (709 loc) · 40.3 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
import os
import cv2
import math
import parse
import numpy as np
import pandas as pd
from PIL import Image
from tqdm import tqdm
from torch.utils.data import Dataset, IterableDataset
from utils.general import get_rally_dirs, get_match_median, HEIGHT, WIDTH, SIGMA, IMG_FORMAT
data_dir = 'data'
class Shuttlecock_Trajectory_Dataset(Dataset):
""" Shuttlecock_Trajectory_Dataset
Dataset description: https://hackmd.io/Nf8Rh1NrSrqNUzmO0sQKZw
"""
def __init__(self,
root_dir=data_dir,
split='train',
seq_len=8,
sliding_step=1,
data_mode='heatmap',
bg_mode='',
frame_alpha=-1,
rally_dir=None,
frame_arr=None,
pred_dict=None,
padding=False,
debug=False,
HEIGHT=HEIGHT,
WIDTH=WIDTH,
SIGMA=SIGMA,
median=None
):
""" Initialize the dataset
Args:
root_dir (str): File path of root directory of the dataset
split (str): Split of the dataset, 'train', 'test' or 'val'
seq_len (int): Length of the input sequence
sliding_step (int): Sliding step of the sliding window during the generation of input sequences
data_mode (str): Data mode
Choices:
- 'heatmap':Return TrackNet input data
- 'coordinate': Return InpaintNet input data
bg_mode (str): Background mode
Choices:
- '': Return original frame sequence
- 'subtract': Return the difference frame sequence
- 'subtract_concat': Return the frame sequence with RGB and difference frame channels
- 'concat': Return the frame sequence with background as the first frame
frame_alpha (float): Frame mixup alpha
rally_dir (str): Rally directory
frame_arr (numpy.ndarray): Frame sequence for TrackNet inference
pred_dict (Dict): Prediction dictionary for InpaintNet inference
Format: {'X': x_pred (List[int]),
'Y': y_pred (List[int]),
'Visibility': vis_pred (List[int]),
'Inpaint_Mask': inpaint_mask (List[int]),
'Img_scaler': img_scaler (Tuple[int]),
'Img_shape': img_shape (Tuple[int])}
padding (bool): Padding the last frame if the frame sequence is shorter than the input sequence
debug (bool): Debug mode
HEIGHT (int): Height of the image for input.
WIDTH (int): Width of the image for input.
SIGMA (int): Sigma of the Gaussian heatmap which control the label size.
median (numpy.ndarray): Median image
"""
assert split in ['train', 'test', 'val'], f'Invalid split: {split}, should be train, test or val'
assert data_mode in ['heatmap', 'coordinate'], f'Invalid data_mode: {data_mode}, should be heatmap or coordinate'
assert bg_mode in ['', 'subtract', 'subtract_concat', 'concat'], f'Invalid bg_mode: {bg_mode}, should be "", subtract, subtract_concat or concat'
# Image size
self.HEIGHT = HEIGHT
self.WIDTH = WIDTH
# Gaussian heatmap parameters
self.mag = 1
self.sigma = SIGMA
self.root_dir = root_dir
self.split = split if rally_dir is None else self._get_split(rally_dir)
self.seq_len = seq_len
self.sliding_step = sliding_step
self.data_mode = data_mode
self.bg_mode = bg_mode
self.frame_alpha = frame_alpha
# Data for inference
self.frame_arr = frame_arr
self.pred_dict = pred_dict
self.padding = padding and self.sliding_step == self.seq_len
# Initialize the input data
if self.frame_arr is not None:
# For TrackNet inference
assert self.data_mode == 'heatmap', f'Invalid data_mode: {self.data_mode}, frame_arr only for heatmap mode'
self.data_dict, self.img_config = self._gen_input_from_frame_arr()
if self.bg_mode:
if median is None:
median = np.median(self.frame_arr, 0)
if self.bg_mode == 'concat':
median = Image.fromarray(median.astype('uint8'))
median = np.array(median.resize(size=(self.WIDTH, self.HEIGHT)))
self.median = np.moveaxis(median, -1, 0)
else:
self.median = median
elif self.pred_dict is not None:
# For InpaintNet inference
assert self.data_mode == 'coordinate', f'Invalid data_mode: {self.data_mode}, pred_dict only for coordinate mode'
self.data_dict, self.img_config = self._gen_input_from_pred_dict()
else:
# Generate rally image configuration file
self.rally_dict = self._get_rally_dict()
img_config_file = os.path.join(self.root_dir, f'img_config_{self.HEIGHT}x{self.WIDTH}_{self.split}.npz')
if not os.path.exists(img_config_file):
self._gen_rally_img_congif_file(img_config_file)
img_config = np.load(img_config_file)
self.img_config = {key: img_config[key] for key in img_config.keys()}
# For training and evaluation
if rally_dir is not None:
# Rally based
self.data_dict = self._gen_input_from_rally_dir(rally_dir)
else:
# Split based
# Generate and load input file
input_file = os.path.join(self.root_dir, f'data_l{self.seq_len}_s{self.sliding_step}_{self.data_mode}_{self.split}.npz')
if not os.path.exists(input_file):
self._gen_input_file(file_name=input_file)
data_dict = np.load(input_file)
self.data_dict = {key: data_dict[key] for key in data_dict.keys()}
if debug:
num_data = 256
for key in self.data_dict.keys():
self.data_dict[key] = self.data_dict[key][:num_data]
def _get_rally_dict(self):
""" Return the rally index-path mapping dictionary. """
rally_dirs = get_rally_dirs(self.root_dir, self.split)
rally_dict = {'i2p':{i: os.path.join(self.root_dir, rally_dir) for i, rally_dir in enumerate(rally_dirs)},
'p2i':{os.path.join(self.root_dir, rally_dir): i for i, rally_dir in enumerate(rally_dirs)}}
return rally_dict
def _get_rally_i(self, rally_dir):
""" Return the corresponding rally index of the rally directory. """
if rally_dir not in self.rally_dict['p2i'].keys():
return None
else:
return self.rally_dict['p2i'][rally_dir]
def _get_split(self, rally_dir):
""" Parse the split from the rally directory. """
file_format_str = os.path.join(self.root_dir, '{}', 'match{}')
split, _ = parse.parse(file_format_str, rally_dir)
return split
def _gen_rally_img_congif_file(self, file_name):
""" Generate rally image configuration file. """
img_scaler = [] # (num_rally, 2)
img_shape = [] # (num_rally, 2)
for rally_i, rally_dir in tqdm(self.rally_dict['i2p'].items()):
w, h = Image.open(os.path.join(rally_dir, f'0.{IMG_FORMAT}')).size
w_scaler, h_scaler = w / self.WIDTH, h / self.HEIGHT
img_scaler.append((w_scaler, h_scaler))
img_shape.append((w, h))
np.savez(file_name, img_scaler=img_scaler, img_shape=img_shape)
def _gen_input_file(self, file_name):
""" Generate input file for training and evaluation. """
print('Generate input file...')
if self.data_mode == 'heatmap':
id = np.array([], dtype=np.int32).reshape(0, self.seq_len, 2)
frame_file = np.array([]).reshape(0, self.seq_len)
coor = np.array([], dtype=np.float32).reshape(0, self.seq_len, 2)
vis = np.array([], dtype=np.float32).reshape(0, self.seq_len)
# Generate input sequences from each rally
for rally_i, rally_dir in tqdm(self.rally_dict['i2p'].items()):
data_dict = self._gen_input_from_rally_dir(rally_dir)
id = np.concatenate((id, data_dict['id']), axis=0)
frame_file = np.concatenate((frame_file, data_dict['frame_file']), axis=0)
coor = np.concatenate((coor, data_dict['coor']), axis=0)
vis = np.concatenate((vis, data_dict['vis']), axis=0)
np.savez(file_name, id=id, frame_file=frame_file, coor=coor, vis=vis)
else:
id = np.array([], dtype=np.int32).reshape(0, self.seq_len, 2)
coor = np.array([], dtype=np.float32).reshape(0, self.seq_len, 2)
coor_pred = np.array([], dtype=np.float32).reshape(0, self.seq_len, 2)
vis = np.array([], dtype=np.float32).reshape(0, self.seq_len)
pred_vis = np.array([], dtype=np.float32).reshape(0, self.seq_len)
inpaint_mask = np.array([], dtype=np.float32).reshape(0, self.seq_len)
# Generate input sequences from each rally
for rally_i, rally_dir in tqdm(self.rally_dict['i2p'].items()):
data_dict = self._gen_input_from_rally_dir(rally_dir)
id = np.concatenate((id, data_dict['id']), axis=0)
coor = np.concatenate((coor, data_dict['coor']), axis=0)
coor_pred = np.concatenate((coor_pred, data_dict['coor_pred']), axis=0)
vis = np.concatenate((vis, data_dict['vis']), axis=0)
pred_vis = np.concatenate((pred_vis, data_dict['pred_vis']), axis=0)
inpaint_mask = np.concatenate((inpaint_mask, data_dict['inpaint_mask']), axis=0)
np.savez(file_name, id=id, coor=coor, coor_pred=coor_pred,
vis=vis, pred_vis=pred_vis, inpaint_mask=inpaint_mask)
def _gen_input_from_rally_dir(self, rally_dir):
""" Generate input sequences from a rally directory. """
rally_i = self._get_rally_i(rally_dir)
file_format_str = os.path.join('{}', 'frame', '{}')
match_dir, rally_id = parse.parse(file_format_str, rally_dir)
if self.data_mode == 'heatmap':
# Read label csv file
if 'test' in rally_dir:
csv_file = os.path.join(match_dir, 'corrected_csv', f'{rally_id}_ball.csv')
else:
csv_file = os.path.join(match_dir, 'csv', f'{rally_id}_ball.csv')
assert os.path.exists(csv_file), f'{csv_file} does not exist.'
label_df = pd.read_csv(csv_file, encoding='utf8').sort_values(by='Frame').fillna(0)
f_file = np.array([os.path.join(rally_dir, f'{f_id}.{IMG_FORMAT}') for f_id in label_df['Frame']])
x, y, v = np.array(label_df['X']), np.array(label_df['Y']), np.array(label_df['Visibility'])
id = np.array([], dtype=np.int32).reshape(0, self.seq_len, 2)
frame_file = np.array([]).reshape(0, self.seq_len)
coor = np.array([], dtype=np.float32).reshape(0, self.seq_len, 2)
vis = np.array([], dtype=np.float32).reshape(0, self.seq_len)
# Sliding on the frame sequence
last_idx = -1
for i in range(0, len(f_file), self.sliding_step):
tmp_idx, tmp_frames, tmp_coor, tmp_vis = [], [], [], []
# Construct a single input sequence
for f in range(self.seq_len):
if i+f < len(f_file):
tmp_idx.append((rally_i, i+f))
tmp_frames.append(f_file[i+f])
tmp_coor.append((x[i+f], y[i+f]))
tmp_vis.append(v[i+f])
last_idx = i+f
else:
# Padding the last sequence if imcompleted
if self.padding:
tmp_idx.append((rally_i, last_idx))
tmp_frames.append(f_file[last_idx])
tmp_coor.append((x[last_idx], y[last_idx]))
tmp_vis.append(v[last_idx])
else:
break
# Append the input sequence
if len(tmp_frames) == self.seq_len:
assert len(tmp_frames) == len(tmp_coor) == len(tmp_vis),\
f'Length of frames, coordinates and visibilities are not equal.'
id = np.concatenate((id, [tmp_idx]), axis=0)
frame_file = np.concatenate((frame_file, [tmp_frames]), axis=0)
coor = np.concatenate((coor, [tmp_coor]), axis=0)
vis = np.concatenate((vis, [tmp_vis]), axis=0)
return dict(id=id, frame_file=frame_file, coor=coor, vis=vis)
else:
# Read predicted csv file
pred_csv_file = os.path.join(match_dir, 'predicted_csv', f'{rally_id}_ball.csv')
assert os.path.exists(pred_csv_file), f'{pred_csv_file} does not exist.'
pred_df = pd.read_csv(pred_csv_file, encoding='utf8').sort_values(by='Frame').fillna(0)
f_file = np.array([os.path.join(rally_dir, f'{f_id}.{IMG_FORMAT}') for f_id in pred_df['Frame']])
x, y, v = np.array(pred_df['X_GT']), np.array(pred_df['Y_GT']), np.array(pred_df['Visibility_GT'])
x_pred, y_pred, v_pred = np.array(pred_df['X']), np.array(pred_df['Y']), np.array(pred_df['Visibility'])
inpaint = np.array(pred_df['Inpaint_Mask'])
id = np.array([], dtype=np.int32).reshape(0, self.seq_len, 2)
coor = np.array([], dtype=np.float32).reshape(0, self.seq_len, 2)
coor_pred = np.array([], dtype=np.float32).reshape(0, self.seq_len, 2)
vis = np.array([], dtype=np.float32).reshape(0, self.seq_len)
pred_vis = np.array([], dtype=np.float32).reshape(0, self.seq_len)
inpaint_mask = np.array([], dtype=np.float32).reshape(0, self.seq_len)
# Sliding on the frame sequence
last_idx = -1
for i in range(0, len(f_file), self.sliding_step):
tmp_idx, tmp_coor, tmp_coor_pred, tmp_vis, tmp_vis_pred, tmp_inpaint = [], [], [], [], [], []
# Construct a single input sequence
for f in range(self.seq_len):
if i+f < len(f_file):
tmp_idx.append((rally_i, i+f))
tmp_coor.append((x[i+f], y[i+f]))
tmp_coor_pred.append((x_pred[i+f], y_pred[i+f]))
tmp_vis.append(v[i+f])
tmp_vis_pred.append(v_pred[i+f])
tmp_inpaint.append(inpaint[i+f])
else:
# Padding the last sequence if imcompleted
if self.padding:
tmp_idx.append((rally_i, last_idx))
tmp_coor.append((x[last_idx], y[last_idx]))
tmp_coor_pred.append((x_pred[last_idx], y_pred[last_idx]))
tmp_vis.append(v[last_idx])
tmp_vis_pred.append(v_pred[last_idx])
tmp_inpaint.append(inpaint[last_idx])
else:
break
# Append the input sequence
if len(tmp_idx) == self.seq_len:
assert len(tmp_idx) == len(tmp_coor) == len(tmp_coor_pred) == \
len(tmp_vis) == len(tmp_vis_pred) == len(tmp_inpaint), \
f'Length of frames, coordinates, predicted coordinates,\
visibilities, predicted visibilities and inpaint masks are not equal.'
id = np.concatenate((id, [tmp_idx]), axis=0)
coor = np.concatenate((coor, [tmp_coor]), axis=0)
coor_pred = np.concatenate((coor_pred, [tmp_coor_pred]), axis=0)
vis = np.concatenate((vis, [tmp_vis]), axis=0)
pred_vis = np.concatenate((pred_vis, [tmp_vis_pred]), axis=0)
inpaint_mask = np.concatenate((inpaint_mask, [tmp_inpaint]), axis=0)
return dict(id=id, coor=coor, coor_pred=coor_pred, vis=vis, pred_vis=pred_vis, inpaint_mask=inpaint_mask)
def _gen_input_from_frame_arr(self):
""" Generate input sequences from a frame array. """
# Calculate the image scaler
h, w, _ = self.frame_arr[0].shape
h_scaler, w_scaler = h / self.HEIGHT, w / self.WIDTH
id = np.array([], dtype=np.int32).reshape(0, self.seq_len, 2)
last_idx = -1
for i in range(0, len(self.frame_arr), self.sliding_step):
tmp_idx = []
# Construct a single input sequence
for f in range(self.seq_len):
if i+f < len(self.frame_arr):
tmp_idx.append((0, i+f))
last_idx = i+f
else:
# Padding the last sequence if imcompleted
if self.padding:
tmp_idx.append((0, last_idx))
else:
break
if len(tmp_idx) == self.seq_len:
# Append the input sequence
id = np.concatenate((id, [tmp_idx]), axis=0)
return dict(id=id), dict(img_scaler=(w_scaler, h_scaler), img_shape=(w, h))
def _gen_input_from_pred_dict(self):
""" Generate input sequences from a prediction dictionary. """
id = np.array([], dtype=np.int32).reshape(0, self.seq_len, 2)
coor_pred = np.array([], dtype=np.float32).reshape(0, self.seq_len, 2)
pred_vis = np.array([], dtype=np.float32).reshape(0, self.seq_len)
inpaint_mask = np.array([], dtype=np.float32).reshape(0, self.seq_len)
x_pred, y_pred, vis_pred = self.pred_dict['X'], self.pred_dict['Y'], self.pred_dict['Visibility']
inpaint = self.pred_dict['Inpaint_Mask']
assert len(x_pred) == len(y_pred) == len(vis_pred) == len(inpaint), \
f'Length of x_pred, y_pred, vis_pred and inpaint are not equal.'
# Sliding on the frame sequence
last_idx = -1
for i in range(0, len(inpaint), self.sliding_step):
tmp_idx, tmp_coor_pred, tmp_vis_pred, tmp_inpaint = [], [], [], []
# Construct a single input sequence
for f in range(self.seq_len):
if i+f < len(inpaint):
tmp_idx.append((0, i+f))
tmp_coor_pred.append((x_pred[i+f], y_pred[i+f]))
tmp_vis_pred.append(vis_pred[i+f])
tmp_inpaint.append(inpaint[i+f])
last_idx = i+f
else:
# Padding the last sequence if imcompleted
if self.padding:
tmp_idx.append((0, last_idx))
tmp_coor_pred.append((x_pred[last_idx], y_pred[last_idx]))
tmp_vis_pred.append(vis_pred[last_idx])
tmp_inpaint.append(inpaint[last_idx])
else:
break
if len(tmp_idx) == self.seq_len:
assert len(tmp_coor_pred) == len(tmp_inpaint), \
f'Length of predicted coordinates and inpaint masks are not equal.'
id = np.concatenate((id, [tmp_idx]), axis=0)
coor_pred = np.concatenate((coor_pred, [tmp_coor_pred]), axis=0)
pred_vis = np.concatenate((pred_vis, [tmp_vis_pred]), axis=0)
inpaint_mask = np.concatenate((inpaint_mask, [tmp_inpaint]), axis=0)
return dict(id=id, coor_pred=coor_pred, pred_vis=pred_vis, inpaint_mask=inpaint_mask),\
dict(img_scaler=self.pred_dict['Img_scaler'], img_shape=self.pred_dict['Img_shape'])
def _get_heatmap(self, cx, cy):
""" Generate a Gaussian heatmap centered at (cx, cy). """
if cx == cy == 0:
return np.zeros((1, self.HEIGHT, self.WIDTH))
x, y = np.meshgrid(np.linspace(1, self.WIDTH, self.WIDTH), np.linspace(1, self.HEIGHT, self.HEIGHT))
heatmap = ((y - (cy + 1))**2) + ((x - (cx + 1))**2)
heatmap[heatmap <= self.sigma**2] = 1.
heatmap[heatmap > self.sigma**2] = 0.
heatmap = heatmap * self.mag
return heatmap.reshape(1, self.HEIGHT, self.WIDTH)
def __len__(self):
""" Return the number of data in the dataset. """
return len(self.data_dict['id'])
def __getitem__(self, idx):
""" Return the data of the given index.
For training and evaluation:
'heatmap': Return data_idx, frames, heatmaps, tmp_coor, tmp_vis
'coordinate': Return data_idx, coor_pred, inpaint
For inference:
'heatmap': Return data_idx, frames
'coordinate': Return data_idx, coor_pred, inpaint
"""
if self.frame_arr is not None:
data_idx = self.data_dict['id'][idx] # (L,)
imgs = self.frame_arr[data_idx[:, 1], ...] # (L, H, W, 3)
if self.bg_mode:
median_img = self.median
# Process the frame sequence
frames = np.array([]).reshape(0, self.HEIGHT, self.WIDTH)
for i in range(self.seq_len):
img = Image.fromarray(imgs[i])
if self.bg_mode == 'subtract':
img = Image.fromarray(np.sum(np.absolute(img - median_img), 2).astype('uint8'))
img = np.array(img.resize(size=(self.WIDTH, self.HEIGHT)))
img = img.reshape(1, self.HEIGHT, self.WIDTH)
elif self.bg_mode == 'subtract_concat':
diff_img = Image.fromarray(np.sum(np.absolute(img - median_img), 2).astype('uint8'))
diff_img = np.array(diff_img.resize(size=(self.WIDTH, self.HEIGHT)))
diff_img = diff_img.reshape(1, self.HEIGHT, self.WIDTH)
img = np.array(img.resize(size=(self.WIDTH, self.HEIGHT)))
img = np.moveaxis(img, -1, 0)
img = np.concatenate((img, diff_img), axis=0)
else:
img = np.array(img.resize(size=(self.WIDTH, self.HEIGHT)))
img = np.moveaxis(img, -1, 0)
frames = np.concatenate((frames, img), axis=0)
if self.bg_mode == 'concat':
frames = np.concatenate((median_img, frames), axis=0)
# Normalization
frames /= 255.
return data_idx, frames
elif self.pred_dict is not None:
data_idx = self.data_dict['id'][idx] # (L,)
coor_pred = self.data_dict['coor_pred'][idx] # (L, 2)
inpaint = self.data_dict['inpaint_mask'][idx].reshape(-1, 1) # (L, 1)
w, h = self.img_config['img_shape']
# Normalization
coor_pred[:, 0] = coor_pred[:, 0] / w
coor_pred[:, 1] = coor_pred[:, 1] / h
return data_idx, coor_pred, inpaint
elif self.data_mode == 'heatmap':
if self.frame_alpha > 0:
data_idx = self.data_dict['id'][idx] # (L,)
frame_file = self.data_dict['frame_file'][idx] # (L,)
coor = self.data_dict['coor'][idx] # (L, 2)
vis = self.data_dict['vis'][idx] # (L,)
w, h = self.img_config['img_shape'][data_idx[0][0]]
w_scaler, h_scaler = self.img_config['img_scaler'][data_idx[0][0]]
if self.bg_mode:
file_format_str = os.path.join('{}', 'frame', '{}','{}.'+IMG_FORMAT)
match_dir, rally_id, _ = parse.parse(file_format_str, frame_file[0])#'{}/frame/{}/{}.png', frame_file[0])
median_file = os.path.join(match_dir, 'median.npz') if os.path.exists(os.path.join(match_dir, 'median.npz')) else os.path.join(match_dir, 'frame', rally_id, 'median.npz')
assert os.path.exists(median_file), f'{median_file} does not exist.'
median_img = np.load(median_file)['median']
# Frame mixup
# Sample the mixing ratio
lamb = np.random.beta(self.frame_alpha, self.frame_alpha)
# Initialize the previous frame data
prev_img = Image.open(frame_file[0])
if self.bg_mode == 'subtract':
prev_img = Image.fromarray(np.sum(np.absolute(prev_img - median_img), 2).astype('uint8'))
prev_img = np.array(prev_img.resize(size=(self.WIDTH, self.HEIGHT)))
prev_img = prev_img.reshape(1, self.HEIGHT, self.WIDTH)
elif self.bg_mode == 'subtract_concat':
diff_img = Image.fromarray(np.sum(np.absolute(prev_img - median_img), 2).astype('uint8'))
diff_img = np.array(diff_img.resize(size=(self.WIDTH, self.HEIGHT)))
diff_img = diff_img.reshape(1, self.HEIGHT, self.WIDTH)
prev_img = np.array(prev_img.resize(size=(self.WIDTH, self.HEIGHT)))
prev_img = np.moveaxis(prev_img, -1, 0)
prev_img = np.concatenate((prev_img, diff_img), axis=0)
else:
prev_img = np.array(prev_img.resize(size=(self.WIDTH, self.HEIGHT)))
prev_img = np.moveaxis(prev_img, -1, 0)
prev_coor = coor[0]
prev_vis = vis[0]
prev_heatmap = self._get_heatmap(int(coor[0][0]/ w_scaler), int(coor[0][1]/ h_scaler))
# Keep first dimension as timestamp for resample
if self.bg_mode == 'subtract':
frames = prev_img.reshape(1, 1, self.HEIGHT, self.WIDTH)
elif self.bg_mode == 'subtract_concat':
frames = prev_img.reshape(1, 4, self.HEIGHT, self.WIDTH)
else:
frames = prev_img.reshape(1, 3, self.HEIGHT, self.WIDTH)
tmp_coor = prev_coor.reshape(1, -1)
tmp_vis = prev_vis.reshape(1, -1)
heatmaps = prev_heatmap
# Read image and generate heatmap
for i in range(1, self.seq_len):
cur_img = Image.open(frame_file[i])
if self.bg_mode == 'subtract':
cur_img = Image.fromarray(np.sum(np.absolute(cur_img - median_img), 2).astype('uint8'))
cur_img = np.array(cur_img.resize(size=(self.WIDTH, self.HEIGHT)))
cur_img = cur_img.reshape(1, self.HEIGHT, self.WIDTH)
elif self.bg_mode == 'subtract_concat':
diff_img = Image.fromarray(np.sum(np.absolute(cur_img - median_img), 2).astype('uint8'))
diff_img = np.array(diff_img.resize(size=(self.WIDTH, self.HEIGHT)))
diff_img = diff_img.reshape(1, self.HEIGHT, self.WIDTH)
cur_img = np.array(cur_img.resize(size=(self.WIDTH, self.HEIGHT)))
cur_img = np.moveaxis(cur_img, -1, 0)
cur_img = np.concatenate((cur_img, diff_img), axis=0)
else:
cur_img = np.array(cur_img.resize(size=(self.WIDTH, self.HEIGHT)))
cur_img = np.moveaxis(cur_img, -1, 0)
inter_img = prev_img * lamb + cur_img * (1 - lamb)
# Linear interpolation
if vis[i] == 0:
inter_coor = prev_coor
inter_vis = prev_vis
cur_heatmap = prev_heatmap
inter_heatmap = cur_heatmap
elif prev_vis == 0 or math.sqrt(pow(prev_coor[0]-coor[i][0], 2)+pow(prev_coor[1]-coor[i][1], 2)) < 10:
inter_coor = coor[i]
inter_vis = vis[i]
cur_heatmap = self._get_heatmap(int(inter_coor[0]/ w_scaler), int(inter_coor[1]/ h_scaler))
inter_heatmap = cur_heatmap
else:
inter_coor = coor[i]
inter_vis = vis[i]
cur_heatmap = self._get_heatmap(int(coor[i][0]/ w_scaler), int(coor[i][1]/ h_scaler))
inter_heatmap = prev_heatmap * lamb + cur_heatmap * (1 - lamb)
tmp_coor = np.concatenate((tmp_coor, inter_coor.reshape(1, -1), coor[i].reshape(1, -1)), axis=0)
tmp_vis = np.concatenate((tmp_vis, np.array([inter_vis]).reshape(1, -1), np.array([vis[i]]).reshape(1, -1)), axis=0)
frames = np.concatenate((frames, inter_img[None,:,:,:], cur_img[None,:,:,:]), axis=0)
heatmaps = np.concatenate((heatmaps, inter_heatmap, cur_heatmap), axis=0)
prev_img, prev_heatmap, prev_coor, prev_vis = cur_img, cur_heatmap, coor[i], vis[i]
# Resample input sequence
rand_id = np.random.choice(len(frames), self.seq_len, replace=False)
rand_id = np.sort(rand_id)
tmp_coor = tmp_coor[rand_id]
tmp_vis = tmp_vis[rand_id]
frames = frames[rand_id]
heatmaps = heatmaps[rand_id]
if self.bg_mode == 'concat':
median_img = Image.fromarray(median_img.astype('uint8'))
median_img = np.array(median_img.resize(size=(self.WIDTH, self.HEIGHT)))
median_img = np.moveaxis(median_img, -1, 0)
frames = np.concatenate((median_img.reshape(1, 3, self.HEIGHT, self.WIDTH), frames), axis=0)
# Reshape to model input format
frames = frames.reshape(-1, self.HEIGHT, self.WIDTH)
# Normalization
frames /= 255.
tmp_coor[:, 0] = tmp_coor[:, 0] / w
tmp_coor[:, 1] = tmp_coor[:, 1] / h
return data_idx, frames, heatmaps, tmp_coor, tmp_vis
else:
data_idx = self.data_dict['id'][idx]
frame_file = self.data_dict['frame_file'][idx]
coor = self.data_dict['coor'][idx]
vis = self.data_dict['vis'][idx]
w, h = self.img_config['img_shape'][data_idx[0][0]]
w_scaler, h_scaler = self.img_config['img_scaler'][data_idx[0][0]]
# Read median image
if self.bg_mode:
file_format_str = os.path.join('{}', 'frame', '{}','{}.'+IMG_FORMAT)
match_dir, rally_id, _ = parse.parse(file_format_str, frame_file[0])#'{}/frame/{}/{}.png', frame_file[0])
median_file = os.path.join(match_dir, 'median.npz') if os.path.exists(os.path.join(match_dir, 'median.npz')) else os.path.join(match_dir, 'frame', rally_id, 'median.npz')
assert os.path.exists(median_file), f'{median_file} does not exist.'
median_img = np.load(median_file)['median']
frames = np.array([]).reshape(0, self.HEIGHT, self.WIDTH)
heatmaps = np.array([]).reshape(0, self.HEIGHT, self.WIDTH)
# Read image and generate heatmap
for i in range(self.seq_len):
img = Image.open(frame_file[i])
if self.bg_mode == 'subtract':
img = Image.fromarray(np.sum(np.absolute(img - median_img), 2).astype('uint8'))
img = np.array(img.resize(size=(self.WIDTH, self.HEIGHT)))
img = img.reshape(1, self.HEIGHT, self.WIDTH)
elif self.bg_mode == 'subtract_concat':
diff_img = Image.fromarray(np.sum(np.absolute(img - median_img), 2).astype('uint8'))
diff_img = np.array(diff_img.resize(size=(self.WIDTH, self.HEIGHT)))
diff_img = diff_img.reshape(1, self.HEIGHT, self.WIDTH)
img = np.array(img.resize(size=(self.WIDTH, self.HEIGHT)))
img = np.moveaxis(img, -1, 0)
img = np.concatenate((img, diff_img), axis=0)
else:
img = np.array(img.resize(size=(self.WIDTH, self.HEIGHT)))
img = np.moveaxis(img, -1, 0)
heatmap = self._get_heatmap(int(coor[i][0]/w_scaler), int(coor[i][1]/h_scaler))
frames = np.concatenate((frames, img), axis=0)
heatmaps = np.concatenate((heatmaps, heatmap), axis=0)
if self.bg_mode == 'concat':
median_img = Image.fromarray(median_img.astype('uint8'))
median_img = np.array(median_img.resize(size=(self.WIDTH, self.HEIGHT)))
median_img = np.moveaxis(median_img, -1, 0)
frames = np.concatenate((median_img, frames), axis=0)
# Normalization
frames /= 255.
coor[:, 0] = coor[:, 0] / w
coor[:, 1] = coor[:, 1] / h
return data_idx, frames, heatmaps, coor, vis
elif self.data_mode == 'coordinate':
data_idx = self.data_dict['id'][idx] # (L,)
coor = self.data_dict['coor'][idx] # (L, 2)
coor_pred = self.data_dict['coor_pred'][idx] # (L, 2)
vis = self.data_dict['vis'][idx] # (L,)
vis_pred = self.data_dict['pred_vis'][idx] # (L,)
inpaint = self.data_dict['inpaint_mask'][idx] # (L,)
w, h = self.img_config['img_shape'][data_idx[0][0]]
# Normalization
coor[:, 0] = coor[:, 0] / self.WIDTH
coor[:, 1] = coor[:, 1] / self.HEIGHT
coor_pred[:, 0] = coor_pred[:, 0] / self.WIDTH
coor_pred[:, 1] = coor_pred[:, 1] / self.HEIGHT
return data_idx, coor_pred, coor, vis_pred.reshape(-1, 1), vis.reshape(-1, 1), inpaint.reshape(-1, 1)
else:
raise NotImplementedError
class Video_IterableDataset(IterableDataset):
""" Dataset for inference especially for large video. """
def __init__(self,
video_file,
seq_len=8,
sliding_step=1,
bg_mode='',
HEIGHT=HEIGHT,
WIDTH=WIDTH,
max_sample_num=1800,
video_range=None,
median=None
):
""" Initialize the dataset
Args:
video_file (str}: File path of the video.
seq_len (int): Length of the input sequence.
sliding_step (int): Sliding step of the sliding window.
bg_mode (str): Background mode
Choices:
- '': Return original frame sequence
- 'subtract': Return the difference frame sequence
- 'subtract_concat': Return the frame sequence with RGB and difference frame channels
- 'concat': Return the frame sequence with background as the first frame
HEIGHT (int): Height of the image for input.
WIDTH (int): Width of the image for input.
max_sample_num (int): Maximum number of frames to sample for generating median image.
video_range (Tuple[int]): Range of start second and end second of the video for generating median image.
median (np.ndarray): Median image.
"""
# Image size
self.HEIGHT = HEIGHT
self.WIDTH = WIDTH
self.video_file = video_file
self.cap = cv2.VideoCapture(self.video_file)
self.video_len = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT))
self.fps = int(self.cap.get(cv2.CAP_PROP_FPS))
self.w, self.h = int(self.cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(self.cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
self.w_scaler, self.h_scaler = self.w / self.WIDTH, self.h / self.HEIGHT
self.seq_len = seq_len
self.sliding_step = sliding_step
self.bg_mode = bg_mode
if self.bg_mode:
self.median = median if median is not None else self.__gen_median__(max_sample_num, video_range)
def __iter__(self):
""" Return the data squentially. """
self.cap.set(cv2.CAP_PROP_POS_FRAMES, 0)
success = True
start_f_id, end_f_id = 0, 0
frame_list = []
while success:
# Sample frames
while len(frame_list) < self.seq_len:
success, frame = self.cap.read()
if not success:
break
frame_list.append(frame)
end_f_id += 1
# Form a sequence
data_idx = [(0, i) for i in range(start_f_id, end_f_id)]
if len(data_idx) < self.seq_len:
# Padding the last sequence if imcompleted
data_idx.extend([(0, end_f_id-1)]*(self.seq_len - len(data_idx)))
frame_list.extend([frame_list[-1]]*(self.seq_len - len(frame_list)))
data_idx = np.array(data_idx)
frames = self.__process__(np.array(frame_list)[..., ::-1])
yield data_idx, frames
# Update the sliding window
frame_list = frame_list[self.sliding_step:]
start_f_id = start_f_id + self.sliding_step
self.cap.release()
def __gen_median__(self, max_sample_num, video_range):
""" Generate the median image.
Args:
max_sample_num (int): Maximum number of frames to sample for generating median image.
video_range (Tuple[int]): Range of start second and end second of the video for generating median image.
"""
print('Generate median image...')
if video_range is None:
start_frame, end_frame = 0, self.video_len
else:
start_frame = max(0, video_range[0] * self.fps)
end_frame = min(video_range[1] * self.fps, self.video_len)
video_seg_len = end_frame - start_frame
if video_seg_len > max_sample_num:
sample_step = video_seg_len // max_sample_num
else:
sample_step = 1
frame_list = []
for i in range(start_frame, end_frame, sample_step):
self.cap.set(cv2.CAP_PROP_POS_FRAMES, i)
success, frame = self.cap.read()
if not success:
break
frame_list.append(frame)
median = np.median(frame_list, 0)[..., ::-1] # BGR to RGB
if self.bg_mode == 'concat':
median = Image.fromarray(median.astype('uint8'))
median = np.array(median.resize(size=(self.WIDTH, self.HEIGHT)))
median = np.moveaxis(median, -1, 0)
print('Median image generated.')
return median
def __process__(self, imgs):
""" Process the frame sequence. """
if self.bg_mode:
median_img = self.median
frames = np.array([]).reshape(0, self.HEIGHT, self.WIDTH)
for i in range(self.seq_len):
img = Image.fromarray(imgs[i])
if self.bg_mode == 'subtract':
img = Image.fromarray(np.sum(np.absolute(img - median_img), 2).astype('uint8'))
img = np.array(img.resize(size=(self.WIDTH, self.HEIGHT)))
img = img.reshape(1, self.HEIGHT, self.WIDTH)
elif self.bg_mode == 'subtract_concat':
diff_img = Image.fromarray(np.sum(np.absolute(img - median_img), 2).astype('uint8'))
diff_img = np.array(diff_img.resize(size=(self.WIDTH, self.HEIGHT)))
diff_img = diff_img.reshape(1, self.HEIGHT, self.WIDTH)
img = np.array(img.resize(size=(self.WIDTH, self.HEIGHT)))
img = np.moveaxis(img, -1, 0)
img = np.concatenate((img, diff_img), axis=0)
else:
img = np.array(img.resize(size=(self.WIDTH, self.HEIGHT)))
img = np.moveaxis(img, -1, 0)
frames = np.concatenate((frames, img), axis=0)
if self.bg_mode == 'concat':
frames = np.concatenate((median_img, frames), axis=0)
# Normalization
frames /= 255.
return frames