-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathdataloader.py
316 lines (277 loc) · 10.3 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
import world
import os
from os.path import join
import sys
import torch
import numpy as np
import pandas as pd
from torch.utils.data import Dataset, DataLoader
from scipy.sparse import csr_matrix
import scipy.sparse as sp
from time import time
class BasicDataset(Dataset):
def __init__(self):
print("init dataset")
@property
def n_users(self):
raise NotImplementedError
@property
def m_items(self):
raise NotImplementedError
@property
def trainDataSize(self):
raise NotImplementedError
@property
def testDict(self):
raise NotImplementedError
@property
def allPos(self):
raise NotImplementedError
def getUserItemFeedback(self, users, items):
raise NotImplementedError
def getUserPosItems(self, users):
raise NotImplementedError
def getUserNegItems(self, users):
"""
not necessary for large dataset
it's stupid to return all neg items in super large dataset
"""
raise NotImplementedError
def getSparseGraph(self):
"""
build a graph in torch.sparse.IntTensor.
Details in NGCF's matrix form
A =
|I, R|
|R^T, I|
"""
raise NotImplementedError
class Loader(BasicDataset):
"""
Dataset type for pytorch \n
Incldue graph information
gowalla dataset
"""
def __init__(self, path):
print('Loading', path)
self.split = world.config['a_split']
self.folds = world.a_n_fold
self.mode_dict = {'train & valid': 0, "test": 1}
self.mode = self.mode_dict['train & valid']
self.n_user = 0
self.m_item = 0
train_file = path + '/train.txt'
valid_file = path + '/val.txt'
test_file = path + '/test.txt'
self.path = path
trainUniqueUsers, trainItem, trainUser = [], [], []
validUniqueUsers, validItem, validUser = [], [], []
testUniqueUsers, testItem, testUser = [], [], []
self.traindataSize = 0
self.validDataSize = 0
self.testDataSize = 0
with open(train_file) as f:
for l in f.readlines():
if len(l) > 0:
l = l.strip('\n').split(' ')
items = [int(i) for i in l[1:]]
uid = int(l[0])
trainUniqueUsers.append(uid)
trainUser.extend([uid] * len(items))
trainItem.extend(items)
self.m_item = max(self.m_item, max(items))
self.n_user = max(self.n_user, uid)
self.traindataSize += len(items)
self.trainUniqueUsers = np.array(trainUniqueUsers)
self.trainUser = np.array(trainUser)
self.trainItem = np.array(trainItem)
with open(valid_file) as f:
for l in f.readlines():
if len(l) > 0:
l = l.strip('\n').split(' ')
try:
items = [int(i) for i in l[1:]]
except Exception:
continue
uid = int(l[0])
validUniqueUsers.append(uid)
validUser.extend([uid] * len(items))
validItem.extend(items)
self.m_item = max(self.m_item, max(items))
self.n_user = max(self.n_user, uid)
self.validDataSize += len(items)
self.validUniqueUsers = np.array(validUniqueUsers)
self.validUser = np.array(validUser)
self.validItem = np.array(validItem)
with open(test_file) as f:
for l in f.readlines():
if len(l) > 0:
l = l.strip('\n').split(' ')
try:
items = [int(i) for i in l[1:]]
except Exception:
continue
uid = int(l[0])
testUniqueUsers.append(uid)
testUser.extend([uid] * len(items))
testItem.extend(items)
self.m_item = max(self.m_item, max(items))
self.n_user = max(self.n_user, uid)
self.testDataSize += len(items)
self.m_item += 1
self.n_user += 1
self.testUniqueUsers = np.array(testUniqueUsers)
self.testUser = np.array(testUser)
self.testItem = np.array(testItem)
self.Graph = None
print('='*30)
print(f"{self.trainDataSize} interactions for training")
print(f"{self.validDataSize} interactions for validating")
print(f"{self.testDataSize} interactions for testing")
print(f"{world.dataset} Sparsity : {(self.traindataSize + self.validDataSize + self.testDataSize) / self.n_users / self.m_items}")
print('='*30)
# (users,items), bipartite graph (train)
self.UserItemNet = csr_matrix((np.ones(len(self.trainUser)), (self.trainUser, self.trainItem)),
shape=(self.n_user, self.m_item))
self.users_D = np.array(self.UserItemNet.sum(axis=1)).squeeze()
self.users_D[self.users_D == 0.] = 1
self.items_D = np.array(self.UserItemNet.sum(axis=0)).squeeze()
self.items_D[self.items_D == 0.] = 1.
# pre-calculate
self._allPos = self.getUserPosItems(list(range(self.n_user)))
self.__trainDict = self.__build_train()
self.__validDict = self.__build_valid()
self.__testDict = self.__build_test()
print(f"{world.dataset} is ready to go")
@property
def n_users(self):
return self.n_user
@property
def m_items(self):
return self.m_item
@property
def trainDataSize(self):
return self.traindataSize
@property
def trainDict(self):
return self.__trainDict
@property
def validDict(self):
return self.__validDict
@property
def testDict(self):
return self.__testDict
@property
def allPos(self):
return self._allPos
def _split_A_hat(self,A):
A_fold = []
fold_len = (self.n_users + self.m_items) // self.folds
for i_fold in range(self.folds):
start = i_fold*fold_len
if i_fold == self.folds - 1:
end = self.n_users + self.m_items
else:
end = (i_fold + 1) * fold_len
A_fold.append(self._convert_sp_mat_to_sp_tensor(A[start:end]).coalesce().to(world.device))
return A_fold
def _convert_sp_mat_to_sp_tensor(self, X):
coo = X.tocoo().astype(np.float32)
row = torch.Tensor(coo.row).long()
col = torch.Tensor(coo.col).long()
index = torch.stack([row, col])
data = torch.FloatTensor(coo.data)
return torch.sparse.FloatTensor(index, data, torch.Size(coo.shape))
def getSparseGraph(self):
print("loading adjacency matrix")
if self.Graph is None:
try:
pre_adj_mat = sp.load_npz(self.path + '/s_pre_adj_mat_train.npz')
print("successfully train loaded...")
norm_adj_train = pre_adj_mat
except :
print("generating adjacency matrix")
s = time()
adj_mat = sp.dok_matrix((self.n_users + self.m_items, self.n_users + self.m_items), dtype=np.float32)
adj_mat = adj_mat.tolil()
R = self.UserItemNet.tolil()
adj_mat[:self.n_users, self.n_users:] = R
adj_mat[self.n_users:, :self.n_users] = R.T
adj_mat = adj_mat.todok()
rowsum = np.array(adj_mat.sum(axis=1))
d_inv = np.power(rowsum, -0.5).flatten()
d_inv[np.isinf(d_inv)] = 0.
d_mat = sp.diags(d_inv)
norm_adj_train = d_mat.dot(adj_mat)
norm_adj_train = norm_adj_train.dot(d_mat)
norm_adj_train = norm_adj_train.tocsr()
end = time()
print(f"costing {end-s}s, saved train norm_mat...")
sp.save_npz(self.path + '/s_pre_adj_mat_train.npz', norm_adj_train)
if self.split:
self.Graph = self._split_A_hat(norm_adj_train)
print("done split matrix")
else:
self.Graph = self._convert_sp_mat_to_sp_tensor(norm_adj_train)
self.Graph = self.Graph.coalesce().to(world.device)
print("don't split the matrix")
return self.Graph
def __build_train(self):
"""
return:
dict: {user: [items]}
"""
train_data = {}
for i, item in enumerate(self.trainItem):
user = self.trainUser[i]
if train_data.get(user):
train_data[user].append(item)
else:
train_data[user] = [item]
return train_data
def __build_valid(self):
"""
return:
dict: {user: [items]}
"""
valid_data = {}
for i, item in enumerate(self.validItem):
user = self.validUser[i]
if valid_data.get(user):
valid_data[user].append(item)
else:
valid_data[user] = [item]
return valid_data
def __build_test(self):
"""
return:
dict: {user: [items]}
"""
test_data = {}
for i, item in enumerate(self.testItem):
user = self.testUser[i]
if test_data.get(user):
test_data[user].append(item)
else:
test_data[user] = [item]
return test_data
def getUserItemFeedback(self, users, items):
"""
users:
shape [-1]
items:
shape [-1]
return:
feedback [-1]
"""
return np.array(self.UserItemNet[users, items]).astype('uint8').reshape((-1,))
def getUserPosItems(self, users):
posItems = []
for user in users:
posItems.append(self.UserItemNet[user].nonzero()[1])
return posItems
# def getUserNegItems(self, users):
# negItems = []
# for user in users:
# negItems.append(self.allNeg[user])
# return negItems