-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfigures.R
278 lines (233 loc) · 14.5 KB
/
figures.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
# Read, Q. D., et al. 2019. Assessing the environmental impacts of halving food loss and waste along the food supply chain. Science of the Total Environment. #
# #
# Code to reproduce all data figures in manuscript (Figures 2, 3, and 4), beginning with output generated by analysis.R #
# Last modified by QDR on 07 January 2020 #
# Tested with R version 3.6.2 on Windows and Linux #
# Contact: [email protected] #
#################################################################################################################################################################
# ===========================================================
# Load all packaages and data to create Figures 2, 3, and 4 =
# ===========================================================
library(tidyverse)
library(units)
library(gridExtra)
library(ggrepel)
library(cowplot)
grid_result <- read.csv('output/sixstage_scenario_grid_lcia_results.csv', stringsAsFactors = FALSE)
base_and_nowaste <- grid_result %>%
filter(rowSums(.[,1:6]) %in% c(0, 6))
grid_uncertainty_CIs <- read.csv('output/uncertainty_grid_CIs.csv', stringsAsFactors = FALSE)
results_by_commodity_df <- read.csv('output/bestpathway_bycommodity.csv', stringsAsFactors = FALSE)
############
# Figure 2 #
############
category_labels_expression <- list("Eutrophication potential (kg N eq.)",
expression(paste("GHG emissions (kg ", CO[2], " eq.)")),
"Energy use (GJ)",
expression(paste("Land used (", m^2, ")")),
expression(paste("Water used ", (m^3))))
waste_impacts <- base_and_nowaste %>%
mutate(scenario = if_else(rowSums(.[,1:6]) == 0, 'baseline', 'zero_waste')) %>%
select(scenario, impact_category, value) %>%
spread(scenario, value) %>%
mutate(waste_impact = baseline - zero_waste,
proportion_impact = waste_impact / baseline)
# US population in 2012 was 314 million
pop <- 314e6
waste_impacts <- mutate(waste_impacts, percapita_waste_impact = waste_impact / pop)
# Hardcoded literature values for comparison.
energy_litvalues <- c(1740, 2030, 2559)
energy_mj <- set_units(set_units(energy_litvalues*1e12, 'BTU'), 'MJ') / 314e6
values <- c(405,498,1117,2.7,42,53,54,352,energy_mj,329)
lit_df <- data.frame(impact_category = c('land','land','land','eutrophication','water','water','water','water','energy','energy','energy','GHG'),
source = 'literature',
percapita_waste_impact = values)
waste_impacts <- waste_impacts %>%
filter(grepl('land|watr|enrg|eutr|co2', impact_category)) %>%
mutate(impact_category = c('eutrophication','GHG','energy','land','water'),
source = 'this study') %>%
select(impact_category, source, percapita_waste_impact) %>%
rbind(lit_df) %>%
mutate(percapita_waste_impact = if_else(impact_category=='energy',percapita_waste_impact/1000, percapita_waste_impact))
plotargs <- tibble(impact_category = unique(waste_impacts$impact_category),
maxy = c(3, 600, 10, 2000, 80),
labelexpr = category_labels_expression)
waste_plots <- waste_impacts %>%
left_join(plotargs) %>%
group_by(impact_category) %>%
do(p = ggplot(., aes(x = 1, y = percapita_waste_impact, fill = source, alpha = source, size = source)) +
geom_point(pch = 21) +
geom_hline(yintercept = 0, color = 'white') +
scale_x_continuous(limits=c(0.95,1.05), expand=c(0,0)) +
scale_y_continuous(limits=c(0,.$maxy[1]), expand=c(0,0), name = .$labelexpr[[1]]) +
scale_alpha_manual(values = c(0.3, 1)) +
scale_size_manual(values = c(3, 5)) +
scale_fill_manual(values = c('black', 'red')) +
theme_classic() +
theme(axis.ticks.x = element_blank(), axis.text.x = element_blank(), axis.title.x = element_blank(), axis.line.x = element_blank(), legend.position = 'none'))
# Change ticks on plot 1
waste_plots$p[[1]] <- waste_plots$p[[1]] + scale_y_continuous(limits=c(0, 10), expand=c(0,0), name = 'Energy use (GJ)', breaks = c(0,5,10))
# Draw figure 2
grid.arrange(grobs = waste_plots$p, nrow = 1)
############
# Figure 3 #
############
stage_full_names <- c('production', 'processing', 'retail', 'consumption: foodservice', 'consumption: institutional', 'consumption: household')
stage_full_names_lookup <- c(none = '', L1 = 'production', L2 = 'processing', L3 = 'retail', L4a = 'consumption:\nfoodservice', L4b = 'consumption:\ninstitutional', L5 = 'consumption:\nhousehold')
# Calculate sequences for each iteration of uncertainty analysis.
create_sequence <- function(dat, value_id, proportion) {
value_id <- enquo(value_id)
dat %>%
ungroup %>%
mutate(nbypct = rowSums(.[,1:6] == proportion)) %>%
filter(rowSums(.[,1:6] > 0) == nbypct) %>%
group_by(nbypct) %>%
filter(!!value_id == min(!!value_id)) %>%
arrange(nbypct) %>%
ungroup %>%
mutate(stage_reduced = c('none', names(sort(apply(.[,1:6],2,function(x) which(diff(x) > 0))))))
}
# Find the sequence for the actual parameter values.
trueseq <- grid_result %>%
filter(grepl('co2|watr|land|enrg|eutr', impact_category)) %>%
group_by(impact_category) %>%
do(create_sequence(., value, 0.5))
# Match the true sequence values with the error bar values.
trueseq_withcis <- trueseq %>% left_join(grid_uncertainty_CIs)
# Function to create reduction plot with error bars
reduction_plot_with_errorbars <- function(sequence, yval, yminval, ymaxval, plot_title, plot_subtitle) {
yval <- enquo(yval)
yminval <- enquo(yminval)
ymaxval <- enquo(ymaxval)
sequence %>%
mutate(norm = max(!!yval)) %>%
mutate(!!yval := !!yval/norm,
!!yminval := !!yminval/norm,
!!ymaxval := !!ymaxval/norm) %>%
mutate(stage_reduced = stage_full_names_lookup[stage_reduced]) %>%
ggplot(aes(x = nbypct, y = !!yval, ymin = !!yminval, ymax = !!ymaxval)) +
geom_line(size = 1) +
geom_errorbar(width = 0.2, color = 'gray60') +
geom_point(size = 3, color = 'white', fill = 'black', shape = 21, stroke = 2) +
geom_text(aes(label = stage_reduced), angle = 45, hjust = 1.25) +
scale_x_continuous(name = 'Number of stages where waste is reduced', breaks = 0:6) +
scale_y_continuous(name = 'Impact relative to baseline', labels = scales::percent_format(accuracy=1)) +
coord_cartesian(ylim = c(0.77, 1.02), expand = TRUE) +
ggtitle(plot_title, plot_subtitle) +
theme_bw() +
theme(panel.grid.minor.x = element_blank(),
panel.grid.minor.y = element_blank(),
panel.grid.major.x = element_blank(),
plot.subtitle = element_text(size = 10))
}
# Create data frame with data to draw faceted plot.
facetplotdat <- trueseq_withcis %>%
filter(grepl('co2|eutr|land|watr|enrg', impact_category)) %>%
group_by(impact_category) %>%
mutate(value_norm = value/max(value),
q025_norm = q025/max(value),
q975_norm = q975/max(value)) %>%
ungroup %>%
mutate(stage_reduced = stage_full_names_lookup[stage_reduced],
impact_category = factor(impact_category, labels = c('energy use','eutrophication potential', 'greenhouse warming potential', 'land use', 'water use'))) %>%
mutate(impact_category = factor(impact_category, levels = levels(impact_category)[c(3,1,2,4,5)]))
# Draw Figure 3.
ggplot(facetplotdat %>% mutate(letter = letters[1:5][impact_category]), aes(x = nbypct, y = value_norm, ymin = q025_norm, ymax = q975_norm)) +
geom_line(size = 1) +
geom_errorbar(width = 0.2, color = 'gray60') +
geom_point(size = 3, color = 'white', fill = 'black', shape = 21, stroke = 2) +
geom_text(aes(label = stage_reduced), angle = 45, hjust = 1.25, size = 2.4) +
geom_text(aes(label = letter), x = 0, y = 0.79, size = 10) +
scale_x_continuous(name = 'Number of stages where waste is reduced', breaks = 0:6) +
scale_y_continuous(name = 'Impact relative to baseline', labels = scales::percent_format(accuracy = 1L)) +
facet_wrap(~ impact_category, nrow = 3) +
coord_cartesian(ylim = c(0.77, 1.02), expand = TRUE) +
theme_bw() +
theme(panel.grid.minor.x = element_blank(),
panel.grid.minor.y = element_blank(),
panel.grid.major.x = element_blank(),
plot.subtitle = element_text(size = 10),
strip.background = element_blank())
############
# Figure 4 #
############
# Map stage, category, and food commodity group labels to more descriptive labels
stage_full_names_lookup <- c(none = '', L1 = 'production', L2 = 'processing', L3 = 'retail', L4a = 'foodservice', L4b = 'institutions', L5 = 'households')
categories <- c("impact potential/gcc/kg co2 eq", "resource use/land/m2*yr", "resource use/watr/m3", "resource use/enrg/mj", "impact potential/eutr/kg n eq")
category_short <- c('GHG', 'land', 'water', 'energy', 'eutrophication')
food_categories <- c("cereals", "roots_tubers_fresh", "roots_tubers_processed",
"oilseeds_pulses", "fruit_veg_fresh", "fruit_veg_processed",
"meat", "fish_fresh", "fish_processed", "milk", "eggs", "sugar",
"beverages")
food_categories_labels <- c('cereals', 'roots and tubers (fresh)', 'roots and tubers (processed)', 'oilseeds and pulses', 'fruits and vegetables (fresh)', 'fruits and vegetables (processed)', 'meat', 'fish (fresh)', 'fish (processed)', 'milk', 'eggs', 'sugar', 'beverages')
results_by_commodity_df <- results_by_commodity_df %>%
mutate(category = category_short[match(category, categories)],
stage_reduced = stage_full_names_lookup[stage_reduced],
commodity = food_categories_labels[match(commodity, food_categories)])
# Add baseline case for plotting
baseline_df <- data.frame(category = 'all', commodity = unique(results_by_commodity_df$commodity), n_stages_reduced = 0, stage_reduced = 'none', impact = 1, baseline_impact = 1, impact_norm = 1, stringsAsFactors = FALSE)
results_by_commodity_df <- rbind(results_by_commodity_df, baseline_df)
# Function to pull the top 5 food commodity groups
get_top_n <- function(data, the_category, n_comm = 5) {
data %>%
filter(category %in% the_category) %>%
group_by(commodity) %>%
filter(n_stages_reduced == max(n_stages_reduced)) %>%
ungroup %>%
arrange(impact_norm) %>%
slice(1:n_comm) %>%
pull(commodity)
}
# Figures showing top 5 as impact averted ---------------------------------
results_by_commodity_df <- results_by_commodity_df %>%
mutate(impact_averted = baseline_impact - impact)
# Convert axis values to a more legible unit by dividing by the 2012 USA population to get per capita impact
pop2012 <- 314e6
percapita_results <- results_by_commodity_df %>%
mutate_at(vars(impact, baseline_impact, impact_averted), ~ if_else(category%in% 'all', ., .x/pop2012))
# Get all top 5 names to assign colors to them
alltop5 <- map(category_short, ~ get_top_n(results_by_commodity_df, .x, 5)) %>% reduce(c) %>% unique
alltop5_colormap <- setNames(RColorBrewer::brewer.pal(length(alltop5), 'Dark2'), alltop5)
plot_impactaverted <- function(dat, the_category, unit_name, n = 5) {
dat <- dat %>%
filter(commodity %in% get_top_n(., the_category, n), category %in% c('all', the_category))
ggplot(dat, aes(x = n_stages_reduced, y = impact_averted, group = commodity)) +
geom_line(size = 1, alpha = 0.33) +
geom_point(aes(color = commodity), size = 3) +
geom_text_repel(data = dat %>% filter(n_stages_reduced > 0), aes(label = stage_reduced), size = 2) + # Label to see which stages are being averted
scale_x_continuous(name = 'Number of stages where waste is reduced', breaks = 0:6) +
scale_y_continuous(name = parse(text = paste('Per~capita~reduction', unit_name, sep = '~')),
limits = c(0, max(dat$impact_averted) * 1.05), expand = c(0, 0),
sec.axis = sec_axis(trans = ~ ./dat$baseline_impact[1], name = 'relative to baseline', labels = scales::percent)) +
scale_color_manual(name = 'Food group', values = alltop5_colormap, guide = guide_legend(nrow = 2)) +
theme_bw() +
theme(panel.grid.minor.x = element_blank(),
panel.grid.minor.y = element_blank(),
panel.grid.major.x = element_blank(),
legend.position = 'bottom')
}
lsize = 10
p_ghg <- plot_impactaverted(percapita_results, 'GHG', '(kg~CO^2~eq.~y^-1)') + annotate('text',x=-Inf,y=Inf,hjust=-0.2,vjust=1.2,label='c', size = lsize) + ggtitle('greenhouse warming potential')
p_land <- plot_impactaverted(percapita_results, 'land', '(m^2~y^-1)') + annotate('text',x=-Inf,y=Inf,hjust=-0.2,vjust=1.2,label='d', size = lsize) + ggtitle('land use')
p_water <- plot_impactaverted(percapita_results, 'water', '(m^3~y^-1)') + annotate('text',x=-Inf,y=Inf,hjust=-0.2,vjust=1.2,label='e', size = lsize) + ggtitle('water use')
p_energy <- plot_impactaverted(percapita_results, 'energy', '(MJ~y^-1)') + annotate('text',x=-Inf,y=Inf,hjust=-0.2,vjust=1.2,label='a', size = lsize) + ggtitle('energy use')
p_eutr <- plot_impactaverted(percapita_results, 'eutrophication', '(kg~N~eq.~y^-1)') + annotate('text',x=-Inf,y=Inf,hjust=-0.2,vjust=1.2,label='b', size = lsize) + ggtitle('eutrophication potential')
# Make a legend for all the plots.
leg_plot <- ggplot(percapita_results %>% filter(commodity %in% alltop5), aes(x=1, y=1, color=commodity)) +
geom_point() +
theme_bw() +
scale_color_manual(name = 'Food group', values = alltop5_colormap, guide = guide_legend(nrow = 4))
leg <- get_legend(leg_plot)
# Lay out the 5 plots plus legend as a 3 x 2 grid.
th_top <- theme(legend.position = 'none',
axis.text.x = element_blank(),
axis.title.x = element_blank(),
axis.ticks.x = element_blank(),
plot.title = element_text(hjust = 0.5))
th_bottom <- theme(legend.position = 'none',
plot.title = element_text(hjust = 0.5))
top_row <- plot_grid(p_energy + th_top, p_eutr + th_top, nrow = 1)
middle_row <- plot_grid(p_ghg + th_top, p_land + th_bottom, nrow = 1, align = 'h')
bottom_row <- plot_grid(p_water + th_bottom, leg, nrow = 1)
# Draw Figure 4
plot_grid(top_row, middle_row, bottom_row, nrow = 3)