We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
你好,请问一下,在你构建序列特征attention 部分时,看到你写了个din_feature_column.py, 你是想用feature_column 的方法构建序列特征么?但是我看你实现的时候确是下面的代码。 last_click_creativeid = tf.string_to_hash_bucket_fast(features["user_click_creatives_att"], 200000) creativeid_embeddings = tf.get_variable(name="attention_creativeid_embeddings", dtype=tf.float32, shape=[200000, 20]) last_click_creativeid_emb = tf.nn.embedding_lookup(creativeid_embeddings, last_click_creativeid) att_creativeid = tf.string_to_hash_bucket_fast(features["creative_id_att"], 200000) creativeid_emb = tf.nn.embedding_lookup(creativeid_embeddings, att_creativeid)
The text was updated successfully, but these errors were encountered:
这个特征没用feature_column
Sorry, something went wrong.
你好,你开始的想法是想使用feature_column 去统一实现特征构建方式么?我这边也是想用feature_column 去构建attention部分的,但是实现起来有难度,想看看你这边是否有好从想法?
feature_column用起来是比较方便,但是它只提供了那么几种函数,有些自定义较强的功能就不太好用feature_column实现,另外还有一个可以考量的是feature_column离线/在线的速度
No branches or pull requests
你好,请问一下,在你构建序列特征attention 部分时,看到你写了个din_feature_column.py, 你是想用feature_column 的方法构建序列特征么?但是我看你实现的时候确是下面的代码。
last_click_creativeid = tf.string_to_hash_bucket_fast(features["user_click_creatives_att"], 200000)
creativeid_embeddings = tf.get_variable(name="attention_creativeid_embeddings", dtype=tf.float32,
shape=[200000, 20])
last_click_creativeid_emb = tf.nn.embedding_lookup(creativeid_embeddings, last_click_creativeid)
att_creativeid = tf.string_to_hash_bucket_fast(features["creative_id_att"], 200000)
creativeid_emb = tf.nn.embedding_lookup(creativeid_embeddings, att_creativeid)
The text was updated successfully, but these errors were encountered: