forked from openvinotoolkit/training_extensions
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdump_features.py
193 lines (159 loc) · 8.37 KB
/
dump_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
"""
Copyright (c) 2018 Intel Corporation
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import sys
import argparse
import os
import os.path as osp
from tqdm import tqdm
import numpy as np
import glog as log
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torchvision import transforms as t
from scripts.matio import save_mat
from model.common import models_backbones
from datasets.megaface import MegaFace
from datasets.trillion_pairs import TrillionPairs
from utils.utils import load_model_state
from utils.augmentation import ResizeNumpy, NumpyToTensor
def clean_megaface(filenames, features, noises_list_path):
"""Filters megaface from outliers"""
with open(noises_list_path, 'r') as f:
noises_list = f.readlines()
noises_list = [line.strip() for line in noises_list]
clean_features = np.zeros((features.shape[0], features.shape[1] + 1), dtype=np.float32)
for i, filename in enumerate(tqdm(filenames)):
clean_features[i, 0: features.shape[1]] = features[i, :]
for line in noises_list:
if line in filename:
clean_features[i, features.shape[1]] = 100.0
break
return clean_features
def clean_facescrub(filenames, features, noises_list_path):
"""Replaces wrong instances of identities from the Facescrub with the centroids of these identities"""
clean_feature_size = features.shape[1] + 1
with open(noises_list_path, 'r') as f:
noises_list = f.readlines()
noises_list = [osp.splitext(line.strip())[0] for line in noises_list]
clean_features = np.zeros((features.shape[0], clean_feature_size), dtype=np.float32)
centroids = {}
for i, filename in enumerate(tqdm(filenames)):
clean_features[i, 0: features.shape[1]] = features[i, :]
id_name = osp.basename(filename).split('_')[0]
if not id_name in centroids:
centroids[id_name] = np.zeros(clean_feature_size, dtype=np.float32)
centroids[id_name] += clean_features[i, :]
for i, file_path in enumerate(tqdm(filenames)):
filename = osp.basename(file_path)
for line in noises_list:
if line in filename.replace(' ', '_'):
id_name = filename.split('_')[0]
clean_features[i, :] = centroids[id_name] + np.random.uniform(-0.001, 0.001, clean_feature_size)
clean_features[i, :] /= np.linalg.norm(clean_features[i, :])
break
return clean_features
@torch.no_grad()
def main(args):
input_filenames = []
output_filenames = []
input_dir = os.path.abspath(args.input_dir)
output_dir = os.path.abspath(args.output_dir)
if not args.trillion_format:
log.info('Reading info...')
with open(os.path.join(args.input_dir, os.path.basename(args.input_list)), 'r') as f:
lines = f.readlines()
for line in tqdm(lines):
info = line.strip().split('|')
file = info[0].strip()
filename = os.path.join(input_dir, file)
path, _ = osp.split(filename)
out_folder = path.replace(input_dir, output_dir)
if not osp.isdir(out_folder):
os.makedirs(out_folder)
landmarks = None
bbox = None
if len(info) > 2:
landmarks = info[1].strip().split(' ')
landmarks = [float(x) for x in landmarks]
bbox = info[2].strip().split(' ')
bbox = [int(float(x)) for x in bbox]
outname = filename.replace(input_dir, output_dir) + args.file_ending
input_filenames.append({'path': filename, 'landmarks': landmarks, 'bbox': bbox})
output_filenames += [outname]
nrof_images = len(input_filenames)
log.info("Total number of images: ", nrof_images)
dataset = MegaFace(input_filenames)
else:
dataset = TrillionPairs(args.input_dir, osp.join(args.input_dir, 'testdata_lmk.txt'), test_mode=True)
nrof_images = len(dataset)
emb_array = np.zeros((nrof_images, args.embedding_size), dtype=np.float32)
dataset.transform = t.Compose([ResizeNumpy(models_backbones[args.model]().get_input_res()),
NumpyToTensor(switch_rb=True)])
val_loader = DataLoader(dataset, batch_size=args.batch_size, num_workers=5, shuffle=False)
model = models_backbones[args.model](embedding_size=args.embedding_size, feature=True)
assert args.snap is not None
log.info('Snapshot ' + args.snap + ' ...')
log.info('Extracting embeddings ...')
model = load_model_state(model, args.snap, args.devices[0], eval_state=True)
model = torch.nn.DataParallel(model, device_ids=args.devices, output_device=args.devices[0])
f_output_filenames = []
with torch.cuda.device(args.devices[0]):
for i, data in enumerate(tqdm(val_loader), 0):
idxs, imgs = data['idx'], data['img']
batch_embeddings = F.normalize(model(imgs), p=2, dim=1).data.cpu().numpy()
batch_embeddings = batch_embeddings.reshape(batch_embeddings.shape[0], -1)
path_indices = idxs.data.cpu().numpy()
start_index = i*args.batch_size
end_index = min((i+1)*args.batch_size, nrof_images)
assert start_index == path_indices[0]
assert end_index == path_indices[-1] + 1
assert emb_array[start_index:end_index, :].shape == batch_embeddings.shape
emb_array[start_index:end_index, :] = batch_embeddings
if not args.trillion_format:
for index in path_indices:
f_output_filenames.append(output_filenames[index])
assert len(output_filenames) == len(output_filenames)
log.info('Extracting features Done.')
if args.trillion_format:
save_mat(args.file_ending, emb_array)
else:
if 'megaface_noises.txt' in args.noises_list:
log.info('Cleaning Megaface features')
emb_array = clean_megaface(f_output_filenames, emb_array, args.noises_list)
elif 'facescrub_noises.txt' in args.noises_list:
log.info('Cleaning Facescrub features')
emb_array = clean_facescrub(f_output_filenames, emb_array, args.noises_list)
else:
log.info('Megaface features are not cleaned up.')
log.info('Saving features to files...')
for i in tqdm(range(len(f_output_filenames))):
save_mat(f_output_filenames[i], emb_array[i, :])
def parse_argument(argv):
parser = argparse.ArgumentParser(description='Save embeddings to MegaFace features files')
parser.add_argument('--model', choices=models_backbones.keys(), type=str, default='rmnet', help='Model type.')
parser.add_argument('input_dir', help='Path to MegaFace Features')
parser.add_argument('output_dir', help='Path to FaceScrub Features')
parser.add_argument('--input_list', default='list.txt', type=str, required=False)
parser.add_argument('--batch_size', type=int, default=128)
parser.add_argument('--embedding_size', type=int, default=128)
parser.add_argument('--devices', type=int, nargs='+', default=[0], help='CUDA devices to use.')
parser.add_argument('--snap', type=str, required=True, help='Snapshot to evaluate.')
parser.add_argument('--noises_list', type=str, default='', required=False, help='A list of the Megaface or Facescrub noises produced by insightface. \
See https://github.com/deepinsight/insightface/blob/master/src/megaface/README.md')
parser.add_argument('--file_ending', help='Ending appended to original photo files. i.e.\
11084833664_0.jpg_LBP_100x100.bin => _LBP_100x100.bin', default='_rmnet.bin')
parser.add_argument('--trillion_format', action='store_true')
return parser.parse_args(argv)
if __name__ == '__main__':
main(parse_argument(sys.argv[1:]))