-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
30 lines (23 loc) · 1.24 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
import tensorflow as tf
from relative_transformer_module import relative_multi_head_attention, feedforward
def adapting_transformer_layer(self, batch_input, num_heads=6, attn_blocks_num=3):
"""
(Temporary abandoning)
This is a adapting transformer structure
For NER, it only needs transformer encoder
Original paper: https://arxiv.org/abs/1706.03762
NER version (TENER) paper: https://arxiv.org/abs/1911.04474
input shape: [batch_size, seq_length, num_heads*dim_heads]
output shape: [batch_size, seq_length, num_heads*dim_heads]
:param num_heads: The number of parallel headers in multi head attention
:param attn_blocks_num: The number of multi head attentions and FNNs in serial
"""
attention_size = batch_input.get_shape().as_list()[-1]
attn_outs = batch_input
for block_id in range(attn_blocks_num):
with tf.variable_scope("num_blocks_{}".format(block_id)):
attn_outs = relative_multi_head_attention(
attn_outs, num_heads, self.nc.dropout_keep_rate, reuse=False)
attn_outs = feedforward(attn_outs, [int(attention_size * 1.5), attention_size],
self.nc.dropout_keep_rate, reuse=False)
return attn_outs, attention_size