-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmicromotion_data_analysis.py
182 lines (148 loc) · 7.78 KB
/
micromotion_data_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import numpy as np
import matplotlib.pyplot as plt
import os
import statistics as sts
from pseudopotential import PseudopotentialPlanarTrap
class ParameterConfig:
def __init__(self):
self.input = "data/raw_micromotion" # File or directory to be analyzed
self.file_to_print = "8-18_Trial18_data.txt" # Specific trial to print data from
self.output_data = True # Generates a text file containing analyzed data in the form "[charge-to-mass (C/kg), RF null voltage (V), RF null height (mm)]"
self.print_stats = True # Prints statistics for specific trial and charge-to-mass statistics if given folder input
self.points_taken = 12 # Number of points used to fit quadratic for RF null identification (point of least micromotion)
def get_default_config():
return ParameterConfig()
def load_data(file_path):
'''
This function loads the data from the given file path.
:param file_path: File location for data input
:return tuples_list: List object containing tuples of voltage, height, and micromotion
'''
tuples_list = []
with open(file_path, 'r') as file:
for line in file:
tuple_str = line.strip()
if tuple_str == "[NaN, NaN, NaN]":
tuples_list.append([0, 0, 0])
else:
tuple_data = eval(tuple_str)
tuples_list.append(tuple_data)
return tuples_list
def extract_data(tuples_list):
'''
This function extracts the data from the given tuples
:param tuples_list: List object containing tuples of voltage, height, and micromotion
:return: Individual voltage, height, and micromotion lists
'''
voltage, height, micromotion = [], [], []
for i in range(len(tuples_list)):
voltage.append(tuples_list[i][0])
height.append(tuples_list[i][1])
micromotion.append(tuples_list[i][2] / 2)
return voltage, height, micromotion
def analyze_data(micromotion, voltage, height, file_name, testfile, config = get_default_config()):
'''
Executes the data analysis and returns values for the RF null height, the RF null voltage, and the charge-to-mass
:param micromotion: Individual micromotion list
:param voltage: Individual voltage list
:param height: Individual height list
:param file_name: Current file being analyzed
:param testfile: Specified file name to output results from
:return RF_height: Vertical position of micromotion-minimized point (RF null)
:return minvolt_raw: Voltage at which micromotion is minimized (RF null)
:return c2mval: Calculated charge-to-mass ratio
'''
full_indices = sorted(range(len(micromotion)), key=micromotion.__getitem__)
indices = full_indices[0:config.points_taken]
smallest_voltage = [voltage[i] for i in indices]
smallest_micromotion = [micromotion[i] for i in indices]
coefficients = np.polyfit(smallest_voltage, smallest_micromotion, 2)
poly = np.poly1d(coefficients)
x_fit = np.linspace(min(smallest_voltage), max(smallest_voltage), 100)
y_fit = poly(x_fit)
minvolt_raw = np.average(x_fit[np.where(y_fit == min(y_fit))])
minvolt_int = int(minvolt_raw)
coefficients_height = np.polyfit(voltage, height, 2)
poly_height = np.poly1d(coefficients_height)
y_fit_height = poly_height(np.linspace(40, 240, 201))
index = (np.where(np.linspace(40, 240, 201) == minvolt_int))
RF_height = y_fit_height[index]
trap = PseudopotentialPlanarTrap()
trap.v_dc = minvolt_raw
c2mval = -9.80665 / trap.grad_u_dc(trap.a / 2, RF_height / 1000, trap.x1())
if file_name == testfile and config.print_stats:
print(f'Specified Trial Q/m = {c2mval[0]}')
print(f'Specified Trial RF Height = {RF_height[0]}')
return RF_height, minvolt_raw, c2mval
def output_analyzed(c2mval, minvolt_raw, RF_height, file_name):
'''
This function takes analyzed data values and places them, as a list object, into a file in the analyzed_micromotion directory
:param c2mval: Calculated charge-to-mass ratio
:param minvolt_raw: Voltage at which micromotion is minimized (RF null)
:param RF_height: Vertical position of micromotion-minimized point (RF null)
:param file_name: File name of analyzed file
'''
file_name = os.path.basename(file_name)
cut_file_name = file_name.replace('.txt', '')
with open("data/analyzed_micromotion/" + str(cut_file_name) + "_analyzed.txt", 'w') as f:
if os.stat("data/analyzed_micromotion/" + str(cut_file_name) + "_analyzed.txt").st_size != 0:
acknowledgement = ""
while acknowledgement != "continue":
acknowledgement = input('\nThe save file already contains data. Type "continue" to overwrite, otherwise use Ctrl + C to exit. ')
f.write("[" + str(c2mval) + ", " + str(minvolt_raw) + ", " + str(RF_height[0]) + "]\n")
def print_statistics(charge_to_mass, rf_height_list, config = get_default_config()):
'''
Prints statistics for charge-to-mass and RF null heights. For FOLDER_EXTRACT function.
:param charge_to_mass: List object of calculated charge-to-mass ratio. Based on RF null voltage and RF null height
:param rf_height_list: List object of RF null height values
'''
if config.print_stats:
print('Mean Q/m =', sts.mean(charge_to_mass))
print('Med. Q/m =', sts.median(charge_to_mass))
print('StDev. Q/m =', sts.stdev(charge_to_mass))
print('Mean RF Height =', sts.mean(rf_height_list))
print('Med. RF Height =', sts.median(rf_height_list))
print('StDev. Height =', sts.stdev(rf_height_list))
# -------------------------------------- Main Logic ----------------------------------------- #
def main():
config = ParameterConfig()
rf_height_vals = []
charge_to_mass = []
try:
files = os.listdir(config.input)
datatype = "folder"
except FileNotFoundError:
print("File could not be found. Check that you are searching in the right directory")
except NotADirectoryError:
datatype = "file"
pass
if datatype == "folder":
for file_name in files:
full_file_path = os.path.join(config.input, file_name)
tuples_list = load_data(full_file_path)
voltage, height, micromotion = extract_data(tuples_list)
RF_height, minvolt_raw, c2mval = analyze_data(micromotion, voltage, height, file_name, config.file_to_print)
rf_height_vals.append(RF_height)
c2mval_float = float(np.asarray(c2mval[0]))
charge_to_mass.append(c2mval_float)
if config.output_data == True:
output_analyzed(c2mval_float, minvolt_raw, RF_height, file_name)
rf_height_list = [float(val[0]) for val in rf_height_vals]
print_statistics(charge_to_mass, rf_height_list)
if datatype == "file":
config.file_to_print = config.input
with open(config.input, 'r') as file:
tuples_list = load_data(config.input)
voltage, height, micromotion = extract_data(tuples_list)
RF_height, minvolt_raw, c2mval = analyze_data(micromotion, voltage, height, config.input, config.file_to_print)
c2mval_float = float(np.asarray(c2mval[0]))
if config.print_stats:
print(f'Trial Q/m = {c2mval[0]}')
print(f'Trial RF Height = {RF_height[0]}')
if config.output_data == True:
output_analyzed(c2mval_float, minvolt_raw, RF_height, config.input)
file_name = os.path.basename(config.input)
cut_file_name = file_name.replace('.txt', '')
print('\nThe data has been saved to "' + "data/analyzed_micromotion/" + str(cut_file_name) + "_analyzed.txt" + '".')
if __name__ == "__main__":
main()