-
Notifications
You must be signed in to change notification settings - Fork 2
/
highT.nb
2722 lines (2639 loc) · 120 KB
/
highT.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 12.2' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 122319, 2714]
NotebookOptionsPosition[ 116423, 2611]
NotebookOutlinePosition[ 116828, 2627]
CellTagsIndexPosition[ 116785, 2624]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell["Phase Transition under High-T Expansion", "Title",ExpressionUUID->"6cd35c81-39c0-48fd-830b-7d456a3fdc89"],
Cell[BoxData[
RowBox[{"ClearAll", "[", "\"\<Global`*\>\"", "]"}]], "Input",
CellLabel->
"In[826]:=",ExpressionUUID->"33b22c75-f5aa-47cf-a757-aba03fa7960e"],
Cell[CellGroupData[{
Cell["Analytical Calculation", "Section",ExpressionUUID->"09784b56-5c1a-48b1-ae64-9874125f0427"],
Cell[CellGroupData[{
Cell["Expression for critical temperature", "Subsection",ExpressionUUID->"eeecd131-c144-47e2-b47a-2c75fcfa74c5"],
Cell["\<\
This section calculates the formula for critical temperature.\
\>", "TextIndent",ExpressionUUID->"e6d25092-ca41-45b6-8ad4-525823e653cd"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"$Assumptions", "=",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
"Dterm", ",", "h", ",", "Eterm", ",", "T", ",", "\[Lambda]term", ",",
"T0"}], "}"}], "\[Element]", "PositiveReals"}], "}"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"Vana", "=",
RowBox[{
RowBox[{"Dterm", " ",
RowBox[{"(",
RowBox[{
SuperscriptBox["T", "2"], "-",
SuperscriptBox["T0", "2"]}], ")"}],
SuperscriptBox["h", "2"]}], "-",
RowBox[{"Eterm", " ", "T", " ",
SuperscriptBox["h", "3"]}], "+",
RowBox[{
FractionBox["1", "4"], "\[Lambda]term", " ",
SuperscriptBox["h", "4"]}]}]}], ";"}],
RowBox[{"(*",
RowBox[{
RowBox[{"General", " ", "form", " ", "of", " ", "high"}], "-",
RowBox[{"T", " ", "potential"}]}], "*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"hmin", "=",
RowBox[{
RowBox[{"h", "/.",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"Solve", "[",
RowBox[{
RowBox[{
RowBox[{"D", "[",
RowBox[{"Vana", ",", "h"}], "]"}], "\[Equal]", "0"}], ",", "h"}],
"]"}], "//", "Normal"}], ")"}], "[",
RowBox[{"[", "2", "]"}], "]"}]}], "//", "Simplify"}]}],
RowBox[{"(*",
RowBox[{"Non", "-",
RowBox[{"zero", " ", "local", " ", "minimum"}]}],
"*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Tcana", "=",
RowBox[{
RowBox[{
RowBox[{"T", "/.",
RowBox[{"Solve", "[",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"Vana", "/.",
RowBox[{"{",
RowBox[{"h", "\[Rule]", "hmin"}], "}"}]}], "//", "Simplify"}],
")"}], "\[Equal]", "0"}], ",", "T"}], "]"}]}], "//", "Normal"}], "//",
"Simplify"}]}],
RowBox[{"(*",
RowBox[{"Critical", " ", "temperature"}],
"*)"}]}], "\[IndentingNewLine]",
RowBox[{"hoverT", "=",
RowBox[{
RowBox[{
FractionBox["hmin", "Tc"], "/.",
RowBox[{"{",
RowBox[{"T", "\[Rule]", "Tc"}], "}"}]}], "//", "Simplify"}]}]}], "Input",\
CellLabel->
"In[541]:=",ExpressionUUID->"69d3d85d-3aa9-4f5b-8164-a8603914bbae"],
Cell[BoxData[
FractionBox[
RowBox[{
RowBox[{"3", " ", "Eterm", " ", "T"}], "+",
SqrtBox[
RowBox[{
RowBox[{"9", " ",
SuperscriptBox["Eterm", "2"], " ",
SuperscriptBox["T", "2"]}], "+",
RowBox[{"8", " ", "Dterm", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-",
SuperscriptBox["T", "2"]}], "+",
SuperscriptBox["T0", "2"]}], ")"}], " ", "\[Lambda]term"}]}]]}],
RowBox[{"2", " ", "\[Lambda]term"}]]], "Output",
CellLabel->
"Out[543]=",ExpressionUUID->"f615bf16-5f90-47aa-87b7-d7fadc145000"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"T0", " ",
SqrtBox[
FractionBox[
RowBox[{"Dterm", " ", "\[Lambda]term"}],
RowBox[{
RowBox[{"-",
SuperscriptBox["Eterm", "2"]}], "+",
RowBox[{"Dterm", " ", "\[Lambda]term"}]}]]]}], "}"}]], "Output",
CellLabel->
"Out[544]=",ExpressionUUID->"a238d36f-4ce5-4cef-a3e9-3239616a2953"],
Cell[BoxData[
FractionBox[
RowBox[{
RowBox[{"3", " ", "Eterm", " ", "Tc"}], "+",
SqrtBox[
RowBox[{
RowBox[{"9", " ",
SuperscriptBox["Eterm", "2"], " ",
SuperscriptBox["Tc", "2"]}], "+",
RowBox[{"8", " ", "Dterm", " ",
RowBox[{"(",
RowBox[{
SuperscriptBox["T0", "2"], "-",
SuperscriptBox["Tc", "2"]}], ")"}], " ", "\[Lambda]term"}]}]]}],
RowBox[{"2", " ", "Tc", " ", "\[Lambda]term"}]]], "Output",
CellLabel->
"Out[545]=",ExpressionUUID->"1da25cff-277e-4fbd-8bc6-8a6dec03a7e9"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[TextData[{
"Expression for eliminating ",
Cell[BoxData[
FormBox["S", TraditionalForm]], "None",ExpressionUUID->
"bfc58de3-3664-429d-a682-b5708f98020e"]
}], "Subsection",ExpressionUUID->"9c08ab25-f758-456f-83bb-d617fea16fa1"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"$Assumptions", "=",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
"Dterm", ",", "h", ",", "Eterm", ",", "T", ",", "\[Lambda]term", ",",
"T0", ",", "\[Mu]H", ",", "A", ",", "\[Mu]S", ",", "cs", ",", "S", ",",
"v"}], "}"}], "\[Element]", "PositiveReals"}], "}"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"VwithS", "=",
RowBox[{
RowBox[{"Dterm", " ",
SuperscriptBox["T", "2"],
SuperscriptBox["h", "2"]}], "-",
RowBox[{
FractionBox["1", "2"],
SuperscriptBox["\[Mu]H", "2"],
SuperscriptBox["h", "2"]}], "-",
RowBox[{"Eterm", " ", "T", " ",
SuperscriptBox["h", "3"]}], "+",
RowBox[{
FractionBox["1", "4"], "\[Lambda]term", " ",
SuperscriptBox["h", "4"]}], "+",
RowBox[{
FractionBox["1", "2"],
SuperscriptBox["\[Mu]S", "2"],
SuperscriptBox["S", "2"]}], "-",
RowBox[{
FractionBox["1", "2"], "A",
RowBox[{"(",
RowBox[{
SuperscriptBox["h", "2"], "+",
RowBox[{"cs", " ",
SuperscriptBox["T", "2"]}], "-",
RowBox[{"2",
SuperscriptBox["v", "2"]}]}], ")"}], "S"}]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{"Svev", "=",
RowBox[{
RowBox[{
RowBox[{"S", "/.",
RowBox[{"Solve", "[",
RowBox[{
RowBox[{
RowBox[{"D", "[",
RowBox[{"VwithS", ",", "S"}], "]"}], "\[Equal]", "0"}], ",", "S"}],
"]"}]}], "//", "Normal"}], "//",
"Simplify"}]}], "\[IndentingNewLine]",
RowBox[{"Dprime", "=",
RowBox[{
RowBox[{"Coefficient", "[",
RowBox[{
RowBox[{"VwithS", "/.",
RowBox[{"{",
RowBox[{"S", "->", "Svev"}], "}"}]}], ",", "h", ",", "2"}], "]"}], "//",
"Simplify"}]}], "\[IndentingNewLine]",
RowBox[{"Eprime", "=",
RowBox[{
RowBox[{"Coefficient", "[",
RowBox[{
RowBox[{"VwithS", "/.",
RowBox[{"{",
RowBox[{"S", "->", "Svev"}], "}"}]}], ",", "h", ",", "3"}], "]"}], "//",
"Simplify"}]}], "\[IndentingNewLine]",
RowBox[{"\[Lambda]prime", "=",
RowBox[{
RowBox[{"Coefficient", "[",
RowBox[{
RowBox[{"VwithS", "/.",
RowBox[{"{",
RowBox[{"S", "->", "Svev"}], "}"}]}], ",", "h", ",", "4"}], "]"}], "//",
"Simplify"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"VwithS", "/.",
RowBox[{"{",
RowBox[{"S", "->", "Svev"}], "}"}]}], "//", "FullSimplify"}]}], "Input",
CellLabel->
"In[546]:=",ExpressionUUID->"64989a1f-b188-48e1-ae1b-76b6648eea81"],
Cell[BoxData[
RowBox[{"{",
FractionBox[
RowBox[{"A", " ",
RowBox[{"(",
RowBox[{
SuperscriptBox["h", "2"], "+",
RowBox[{"cs", " ",
SuperscriptBox["T", "2"]}], "-",
RowBox[{"2", " ",
SuperscriptBox["v", "2"]}]}], ")"}]}],
RowBox[{"2", " ",
SuperscriptBox["\[Mu]S", "2"]}]], "}"}]], "Output",
CellLabel->
"Out[548]=",ExpressionUUID->"d2ce8b13-ffa6-4811-b9f0-3dea23d3a418"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"4", " ", "Dterm", " ",
SuperscriptBox["T", "2"]}], "-",
RowBox[{"2", " ",
SuperscriptBox["\[Mu]H", "2"]}], "+",
FractionBox[
RowBox[{
SuperscriptBox["A", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "cs"}], " ",
SuperscriptBox["T", "2"]}], "+",
RowBox[{"2", " ",
SuperscriptBox["v", "2"]}]}], ")"}]}],
SuperscriptBox["\[Mu]S", "2"]]}], ")"}]}], "}"}]], "Output",
CellLabel->
"Out[549]=",ExpressionUUID->"395fa0e5-48ae-4841-a4cd-91bbecadee05"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"-", "Eterm"}], " ", "T"}], "}"}]], "Output",
CellLabel->
"Out[550]=",ExpressionUUID->"38497e21-7299-4ba5-8c4b-6665c41f4c95"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
FractionBox["\[Lambda]term", "4"], "-",
FractionBox[
SuperscriptBox["A", "2"],
RowBox[{"8", " ",
SuperscriptBox["\[Mu]S", "2"]}]]}], "}"}]], "Output",
CellLabel->
"Out[551]=",ExpressionUUID->"7beb5017-34e2-405b-9181-8b6cb65c0cdc"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
SuperscriptBox["h", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "4"}], " ", "Eterm", " ", "h", " ", "T"}], "+",
RowBox[{"4", " ", "Dterm", " ",
SuperscriptBox["T", "2"]}], "+",
RowBox[{
SuperscriptBox["h", "2"], " ", "\[Lambda]term"}], "-",
RowBox[{"2", " ",
SuperscriptBox["\[Mu]H", "2"]}]}], ")"}]}], "-",
FractionBox[
RowBox[{
SuperscriptBox["A", "2"], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{
SuperscriptBox["h", "2"], "+",
RowBox[{"cs", " ",
SuperscriptBox["T", "2"]}], "-",
RowBox[{"2", " ",
SuperscriptBox["v", "2"]}]}], ")"}], "2"]}],
RowBox[{"8", " ",
SuperscriptBox["\[Mu]S", "2"]}]]}], "}"}]], "Output",
CellLabel->
"Out[552]=",ExpressionUUID->"4ab905f3-58b1-46ed-8624-8243c274cfc7"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"Dprime", " ",
SuperscriptBox["h", "2"]}], "+",
RowBox[{"Eprime", " ",
SuperscriptBox["h", "3"]}], "+",
RowBox[{"\[Lambda]prime", " ",
SuperscriptBox["h", "4"]}], "-",
RowBox[{"(",
RowBox[{"VwithS", "/.",
RowBox[{"{",
RowBox[{"S", "->", "Svev"}], "}"}]}], ")"}]}], ")"}], "//",
"FullSimplify",
RowBox[{"(*",
RowBox[{
"Check", " ", "whether", " ", "we", " ", "have", " ", "some", " ",
"remaining", " ", "terms"}], "*)"}]}]], "Input",
CellLabel->
"In[553]:=",ExpressionUUID->"6bfa97e4-7db2-4078-9334-574123f43310"],
Cell[BoxData[
RowBox[{"{",
FractionBox[
RowBox[{
SuperscriptBox["A", "2"], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"cs", " ",
SuperscriptBox["T", "2"]}], "-",
RowBox[{"2", " ",
SuperscriptBox["v", "2"]}]}], ")"}], "2"]}],
RowBox[{"8", " ",
SuperscriptBox["\[Mu]S", "2"]}]], "}"}]], "Output",
CellLabel->
"Out[553]=",ExpressionUUID->"dbbca74e-433b-4ee5-8080-dd2298de43fb"]
}, Open ]],
Cell["This is field-independent, and can be ignored.", "TextIndent",ExpressionUUID->"39cec182-a215-4bf2-81e2-baa4eb199a6e"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[TextData[{
"Define ",
Cell[BoxData[
FormBox[
SubscriptBox["V", "eff"], TraditionalForm]], "None",ExpressionUUID->
"aee47986-e905-4a97-a7c2-b2da209cc48e"],
" in high-T with physical parameters"
}], "Section",ExpressionUUID->"9661d2b9-84dc-431f-850a-75d73e467719"],
Cell[BoxData[{
RowBox[{
RowBox[{"g", "=", "0.65"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"gY", "=", "0.36"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"yt", "=", "0.9945"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"DSM", "=",
RowBox[{
FractionBox["1", "16"],
RowBox[{"(",
RowBox[{
RowBox[{"3",
SuperscriptBox["g", "2"]}], "+",
SuperscriptBox["gY", "2"], "+",
RowBox[{"4",
SuperscriptBox["yt", "2"]}]}], ")"}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"ESM", "=",
RowBox[{
FractionBox["1",
RowBox[{"48", "\[Pi]"}]],
RowBox[{"(",
RowBox[{
RowBox[{"2",
SuperscriptBox["g", "3"]}], "+",
SuperscriptBox[
RowBox[{"(",
RowBox[{
SuperscriptBox["g", "2"], "+",
SuperscriptBox["gY", "2"]}], ")"}],
RowBox[{"3", "/", "2"}]]}], ")"}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"cs", "=",
FractionBox["1", "3"]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"mh", "=", "125.13"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"GF", " ", "=", " ",
RowBox[{"1.16637", " ", "*",
SuperscriptBox["10",
RowBox[{"-", "5"}]]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"v", "=",
FractionBox["1",
SqrtBox[
RowBox[{"2",
SqrtBox["2"], "*", "GF"}]]]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"\[Mu]H2", "[",
RowBox[{"mS_", ",", "sin\[Theta]_"}], "]"}], ":=",
RowBox[{
FractionBox["1", "2"],
RowBox[{"(",
RowBox[{
RowBox[{
SuperscriptBox["mh", "2"],
RowBox[{"(",
RowBox[{"1", "-",
SuperscriptBox["sin\[Theta]", "2"]}], ")"}]}], "+",
RowBox[{
SuperscriptBox["mS", "2"],
SuperscriptBox["sin\[Theta]", "2"]}]}], ")"}]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"\[Mu]S2", "[",
RowBox[{"mS_", ",", "sin\[Theta]_"}], "]"}], ":=",
RowBox[{
RowBox[{
SuperscriptBox["sin\[Theta]", "2"],
SuperscriptBox["mh", "2"]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"1", "-",
SuperscriptBox["sin\[Theta]", "2"]}], ")"}],
SuperscriptBox["mS", "2"]}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"A", "[",
RowBox[{"mS_", ",", "sin\[Theta]_"}], "]"}], ":=",
FractionBox[
RowBox[{
RowBox[{"(",
RowBox[{
SuperscriptBox["mh", "2"], "-",
SuperscriptBox["mS", "2"]}], ")"}], "sin\[Theta]",
SqrtBox[
RowBox[{"(",
RowBox[{"1", "-",
SuperscriptBox["sin\[Theta]", "2"]}], ")"}]]}],
RowBox[{
SqrtBox["2"], "v"}]]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"\[Lambda]", "[",
RowBox[{"mS_", ",", "sin\[Theta]_"}], "]"}], ":=",
FractionBox[
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"1", "-",
SuperscriptBox["sin\[Theta]", "2"]}], ")"}],
SuperscriptBox["mh", "2"]}], "+",
RowBox[{
SuperscriptBox["sin\[Theta]", "2"],
SuperscriptBox["mS", "2"]}]}],
RowBox[{"4",
SuperscriptBox["v", "2"]}]]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Spath", "[",
RowBox[{"mS_", ",", "sin\[Theta]_", ",", "h_", ",", "T_"}], "]"}], ":=",
FractionBox[
RowBox[{
RowBox[{"A", " ", "[",
RowBox[{"mS", ",", "sin\[Theta]"}], "]"}],
RowBox[{"(",
RowBox[{
SuperscriptBox["h", "2"], "+",
RowBox[{"cs", " ",
SuperscriptBox["T", "2"]}], "-",
RowBox[{"2", " ",
SuperscriptBox["v", "2"]}]}], ")"}]}],
RowBox[{"2", " ",
RowBox[{"\[Mu]S2", "[",
RowBox[{"mS", ",", "sin\[Theta]"}], "]"}]}]]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"VhighT2d", "[",
RowBox[{"mS_", ",", "sin\[Theta]_", ",", "h_", ",", "S_", ",", "T_"}],
"]"}], "=",
RowBox[{
RowBox[{"DSM", " ",
SuperscriptBox["T", "2"],
SuperscriptBox["h", "2"]}], "-",
RowBox[{
FractionBox["1", "2"],
RowBox[{"\[Mu]H2", "[",
RowBox[{"mS", ",", "sin\[Theta]"}], "]"}],
SuperscriptBox["h", "2"]}], "-",
RowBox[{"ESM", " ", "T", " ",
SuperscriptBox["h", "3"]}], "+",
RowBox[{
FractionBox["1", "4"],
RowBox[{"\[Lambda]", "[",
RowBox[{"mS", ",", "sin\[Theta]"}], "]"}], " ",
SuperscriptBox["h", "4"]}], "+",
RowBox[{
FractionBox["1", "2"],
RowBox[{"\[Mu]S2", "[",
RowBox[{"mS", ",", "sin\[Theta]"}], "]"}],
SuperscriptBox["S", "2"]}], "-",
RowBox[{
FractionBox["1", "2"],
RowBox[{"A", "[",
RowBox[{"mS", ",", "sin\[Theta]"}], "]"}],
RowBox[{"(",
RowBox[{
SuperscriptBox["h", "2"], "+",
RowBox[{"cs", " ",
SuperscriptBox["T", "2"]}], "-",
RowBox[{"2",
SuperscriptBox["v", "2"]}]}], ")"}], "S"}]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"Deff", "[",
RowBox[{"mS_", ",", "sin\[Theta]_"}], "]"}], ":=",
RowBox[{"DSM", "-", " ",
FractionBox[
RowBox[{"cs", " ",
SuperscriptBox[
RowBox[{"A", "[",
RowBox[{"mS", ",", "sin\[Theta]"}], "]"}], "2"]}],
RowBox[{"4",
RowBox[{"\[Mu]S2", "[",
RowBox[{"mS", ",", "sin\[Theta]"}], "]"}]}]]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"\[Lambda]eff", "[",
RowBox[{"mS_", ",", "sin\[Theta]_"}], "]"}], ":=",
RowBox[{
RowBox[{"\[Lambda]", "[",
RowBox[{"mS", ",", "sin\[Theta]"}], "]"}], "-",
FractionBox[
SuperscriptBox[
RowBox[{"A", "[",
RowBox[{"mS", ",", "sin\[Theta]"}], "]"}], "2"],
RowBox[{"2", " ",
RowBox[{"\[Mu]S2", "[",
RowBox[{"mS", ",", "sin\[Theta]"}], "]"}]}]]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"T0", "[",
RowBox[{"mS_", ",", "sin\[Theta]_"}], "]"}], ":=",
SqrtBox[
FractionBox[
RowBox[{"(",
RowBox[{
RowBox[{
FractionBox["1", "2"],
RowBox[{"\[Mu]H2", "[",
RowBox[{"mS", ",", "sin\[Theta]"}], "]"}]}], "-",
FractionBox[
RowBox[{
SuperscriptBox["v", "2"],
SuperscriptBox[
RowBox[{"A", "[",
RowBox[{"mS", ",", "sin\[Theta]"}], "]"}], "2"]}],
RowBox[{"2",
RowBox[{"\[Mu]S2", "[",
RowBox[{"mS", ",", "sin\[Theta]"}], "]"}]}]]}], ")"}],
RowBox[{"(",
RowBox[{"DSM", "-", " ",
FractionBox[
RowBox[{"cs", " ",
SuperscriptBox[
RowBox[{"A", "[",
RowBox[{"mS", ",", "sin\[Theta]"}], "]"}], "2"]}],
RowBox[{"4",
RowBox[{"\[Mu]S2", "[",
RowBox[{"mS", ",", "sin\[Theta]"}], "]"}]}]]}], ")"}]]]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"Tc", "[",
RowBox[{"mS_", ",", "sin\[Theta]_"}], "]"}], "=",
RowBox[{
RowBox[{"T0", "[",
RowBox[{"mS", ",", "sin\[Theta]"}], "]"}], " ",
SqrtBox[
FractionBox[
RowBox[{
RowBox[{"Deff", "[",
RowBox[{"mS", ",", "sin\[Theta]"}], "]"}], " ",
RowBox[{"\[Lambda]eff", "[",
RowBox[{"mS", ",", "sin\[Theta]"}], "]"}]}],
RowBox[{
RowBox[{"-",
SuperscriptBox["ESM", "2"]}], "+",
RowBox[{
RowBox[{"Deff", "[",
RowBox[{"mS", ",", "sin\[Theta]"}], "]"}], " ",
RowBox[{"\[Lambda]eff", "[",
RowBox[{"mS", ",", "sin\[Theta]"}], "]"}]}]}]]]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"strength", "[",
RowBox[{"mS_", ",", "sin\[Theta]_"}], "]"}], "=",
FractionBox[
RowBox[{"2", "ESM"}],
RowBox[{"\[Lambda]eff", "[",
RowBox[{"mS", ",", "sin\[Theta]"}], "]"}]]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"VhighT", "[",
RowBox[{"mS_", ",", "sin\[Theta]_", ",", "h_", ",", "T_"}], "]"}], "=",
RowBox[{
RowBox[{
RowBox[{"Deff", "[",
RowBox[{"mS", ",", "sin\[Theta]"}], "]"}],
SuperscriptBox["T", "2"],
SuperscriptBox["h", "2"]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}],
RowBox[{"\[Mu]H2", "[",
RowBox[{"mS", ",", "sin\[Theta]"}], "]"}]}], "+",
FractionBox[
RowBox[{" ",
RowBox[{
SuperscriptBox["v", "2"],
SuperscriptBox[
RowBox[{"A", "[",
RowBox[{"mS", ",", "sin\[Theta]"}], "]"}], "2"]}]}],
RowBox[{"2",
RowBox[{"\[Mu]S2", "[",
RowBox[{"mS", ",", "sin\[Theta]"}], "]"}]}]]}], ")"}],
SuperscriptBox["h", "2"]}], "-",
RowBox[{"ESM", " ", "T", " ",
SuperscriptBox["h", "3"]}], "+",
RowBox[{
FractionBox["1", "4"],
RowBox[{"\[Lambda]eff", "[",
RowBox[{"mS", ",", "sin\[Theta]"}], "]"}],
SuperscriptBox["h", "4"]}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"Positive\[ReversePrime]factor", "[",
RowBox[{"mS_", ",", "sin\[Theta]_"}], "]"}], "=",
RowBox[{
RowBox[{"-",
SuperscriptBox["ESM", "2"]}], "+",
RowBox[{
RowBox[{"Deff", "[",
RowBox[{"mS", ",", "sin\[Theta]"}], "]"}], " ",
RowBox[{"\[Lambda]eff", "[",
RowBox[{"mS", ",", "sin\[Theta]"}], "]"}]}]}]}], ";"}]}], "Input",
CellLabel->
"In[827]:=",ExpressionUUID->"0a8b36df-21ed-4130-9d65-d0a68edb84ce"],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"sin", "[",
RowBox[{"mS_", ",", "ft_"}], "]"}], ":=",
SqrtBox[
RowBox[{
FractionBox[
SuperscriptBox["mS", "2"],
RowBox[{
SuperscriptBox["mh", "2"], "-",
SuperscriptBox["mS", "2"]}]],
RowBox[{"(",
RowBox[{
RowBox[{"1", "/", "ft"}], "-", "1"}], ")"}]}]]}], ";"}]], "Input",
CellLabel->
"In[850]:=",ExpressionUUID->"5499e233-fd83-4c7d-9b85-367412aebf6a"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Tc", "[",
RowBox[{
SuperscriptBox["10", "logms"], ",",
RowBox[{"sin", "[",
RowBox[{
SuperscriptBox["10", "logms"], ",", "0.1"}], "]"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"logms", ",",
RowBox[{"-", "1.5"}], ",", "1"}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]", "Full"}]}], "]"}]], "Input",
CellLabel->"In[32]:=",ExpressionUUID->"3db30cd6-516d-49ae-b089-bcfff54becc1"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsolutePointSize[4],
AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData["
1:eJwd13c8lV8YAHCaVhnZUVYUISEyOhRKRmlJJSVSRhlFvwZJSUV2pTKipKjM
ouEpZGRzyXbteV17VPid8/51P9/P+95znvM85znn80raXjxgv4SFhaWGlYWF
/N7oMxtfXJwBDmaph1mWvh6b0u9138tnQGX/JcoRl06Z3Hw2AzFRQpSbhF6d
PnVrBpi6fe7EEl8GvPTOz8BjnyzKyaweL1k0ZqA2zYyy4EPFj/lrZ+Aig4/y
LdH+In+WGdhwuN6N+Kiq9RDXr2m4dsGScj4IzVe+n4ZwVgHKSqY1q8PDp6HR
r8qVeLn97q0i1tPwfo0+5bOqj63e7pqGWo6/F4mLWftuastPQ9dcOuXAGP9K
65kpYPcTo7ym4adzfOgUfPOmuRBfvRxnknFlChrVvSl38l2TL7CZguErGyin
m23p71GcAu3jzs7UfM+jLS9ITkHJBR3KokMcRdP8U7C5jpPyrYCeVyv/TcKT
kCQn4gP5T89s+jUJ1641OhJHrcjfn/B1EqRMYinTjYd0xT9MQtA2O8ouVdrC
vBGTkHpg6DxxQGtL2aw1ttbIOeJvM+u2FY9NgP7F/LPEC828Spt6JoBb3Zuy
3vdlsvcbJuD+vAblgoBBAVOYAI2AJHviMpGPU5WBE3Br7Q074tULSYwtNyeg
5qEy5f2dz3pCPSbgVC/9DDHtrW/dwWMTILRVj3KLtlnWb7kJCCwcPU2cxv9X
Xl50AmbCwij7M5LirnNNwPuBrZSVY5cFSo6Nw/N1F09R+Vny1dbp8ziwLdJO
Eg+PhEVHZIzDBmYs5SPN5xu+pYyDg6cjZYVMIXOe2HGQ2b1gTcVj77E9y28c
LJskKMuVyPMsmo7DHLvFcSrf57s19xiNw4KEIGVv9pjToWgc8n82HSOuN+bN
kN46DmOZtpT9f80c3iM0Dj68LlbEPaUFz0I7xsB41tGSOKHipJyM5xhI/lx2
kNgUbtTRL46Bb03uAeLpD8/9os+PwYnTVygbhza1C1qPQdfigAUx8+CRJ+wG
Y1AoW7SfWLvRjJ3JOwZ1e8+ZE3eXOH9K5hyDryyilB9+fmB/bvkYcG4qNSPu
eFbyo2N2FPLLFCjfPWl4ldY+ChsNek2Ia7t0hnLejYIEOzKm4hP58uLQ21Fw
ecpNudB8+1Fm4ijsm2/fQ5ydo/5TJm4UWDRuUo4JVooNDhuFzZdzdxM7aksc
tPcahe4JFSNi1vClX3j0R+FT8sROql+Kfd2SdfH8a3IpT84vyhlpjYK4UQDl
3nP/Iq6pjkLBKjHKZTumLvRuGAXPdfr6xE8Ge6W+cozCViFfRHzydoRAZRIT
2IfqtYkr0PTKK/FMuH8mhjL6a/lH4jkTHJLsKUu4r213D2aC1aMJLapfbeKT
BD2ZsHKBi/JZ7VTtk7uYcLZGXZP4wnjpaUbrCCirnVSj9sOppe8514xAjOOC
AnFq5e6HNK4ReFaeTblzR+CF6BUjoDPuTtlIXEBZ+Q8Drvj0ylP90iSbeqCD
AXkJvzZR+Tu4Nz3qAwN+dfjLEYNR6Ec5UwbYR5VLEY9n1T0aNWSAyncfyjIb
RL1yEAMMXqhQDliaoGGiyoCNoRGSVP99z8y+IMoAfklLCep82N7wOat/GN6V
VIgTsyiuh113hsHUw1+Y+Lqg/sk73sPg9keO8syi7Xyh1zB83lAiRDxSk6i9
13EYrBw4KDdfUcrev28YmgMDBIg/FuimWYsMwx8eDz7q/DlxIsHr3RC4Oi1w
Uuf9g6i7yXWDwP2iYd6U7LefEimnKgch2/gc5bLF11UCJYNwK3DmH3Gux0eR
m18HoayNn3L88drkQwmD8CBl7x9iR4VVVfOug1AZFT9N/PfXTeH9XINwiZ+V
STy5jE13+YpBsDTyGyEe2RF8+vPiAKxbsZwyPT36rczEACQprmQQFzz9rDPX
OADHeVcMEQc6Tp6Kfz0AHyoYvcRiHOfeTO4cANho20Z8MrcsUEpnAFKdS1qJ
X7iruO5XH4DLolsoyzb/2ZYiNwDsaX+biZVTggrOcA2A+OcHjcQ7zTPaa+r6
ofzTQxrx+bAFgbRz/bBaQuwXcYrRmbm20/3wy+NiCRX/n6IWruP9kCGeV0zs
fiY04ZxZP3i52RcRX1eTUZHY2g8mK14WEIfUG5sG/+2D9H0sQPxRNPKWy8M+
aAzdkkH8+VbLwS93+yB0xDWdyveg9AZ23z7YF5aaRlz4Ob3opUcfMJIVU4nr
j1VxtRztA37+9e+Ip55yPt4r3QdbhNsSidXW3kqWy+6FgdKiKOL0tRdpHR09
cOvYuhvUc9pahYTmHrg6p3WdOCuw2Neurgeg9Mg14ux5SeW+4h7YtTLwPyqe
dtq94Q89wFY4fJm4NEELzdzogZxv/heIuxVWvOUS7QFhMyEb4rPd6SwVa3rg
eZfwSeK+5zaWwat6QDxSxJp4cFXOMj7WHsg1FD5OPMp0shHq74a2Qg5L4vmM
an6pj93gFJJvTiyoE+2jcaAb+Cy9dYk7LshFupl0w64gYx2qPi/S3iYbdAMj
co02Vc+VhXXrNbphWOSlJvGFmhEFNrFusCr7qEr885xeQ0NPF4jXvthEfCmy
a8vV/7qgiXGHn7hmZFPn17hO6L6xo9cEW9Rd5Ibj007YWFrRTXxmik1YOKIT
DEqsu4gn//aZedztBJtaLzqxIHtizqYLnXB4/lkT8XFpqdBH2p1w9HFCBXG3
paiea30HcEi8ziLe3MzeLF7VAQvSnJnEl0/OXS4t6YBbqS7pxCvsG5Jlv3XA
O2ulD8Qb3R8JtSZ0AHdXdBKxSyAf09itAzTPqT0jnv7OESPN1QHa99V9iANy
f88YL++AgD36N6j1fH1p4bpAh2xhk2vEOz7tWP5tlA78fUe9iP3fuTsfqaOD
xArri8QCT5u07sXQweTJchtiNY+3v0e20CFvvkSHuNDVS0VAng5WkhFaxEcv
GDzQlqbDosAJTeLr59t2BAjQYZljjyo1PsiY7ppsh0SfVnniV08m+5P820HM
47QwcefeCKlLyW2QFJ40thf73ruJNJaYNtiorMYk3sJzUD8opA10zn8bJvau
4z2VeLkNUGpxH7HoqeDoBtQGNbvzWoktLt8X1qW1QnwgKiH+Hntz9Yr5FnBw
soghjp50/vPYvBlkLu7UI9abfRTBubMZjldb6hJ3/v2u5KPeDIYhjlrEsksF
zpwVa4Zg0QA14ve830rVBpsgTjxhIzW+0qro6jtN0PDlCA/1/3PvEOe3Rrhb
G99qjH3b+Xejd2ojNLLYNBHLurJeGk9ohE1awr+JHb0OJzXeb4Rlhb5VxBN3
5nmSjjbCoZkt+cTLEsw6DSYb4KT1/GtiuVbGbW+FBvgbpXWR+ERdzfMu8QZw
nd3lRBxS/ilzD08DvPcwdiD+8823m2/qNzim7bEhrogRMHid+xt6W4X2EXue
0l1aZfEbX3tTisQFXYG+klfqodYwrH8P9lyzW5S/Yz1UhAh1EyvRjqQNnagH
Lq8n7cRPCiQ6svTrQXRZUD2x06tMvb2c9dCeqFdAzOfQsugeUwdCqhUxxKcH
FbwLCmiwMt52P3GYX3McTzYN+ouSTIjzxB7kn0imwVzUoBGx1L5BtqlQGvze
elqXuDMjKXyDDQ2+F4nIE9vd2PDGf64WDk9kLiE+y7OetkepFmLUPVN3k/xu
45Mvf1wNmU+V5o2wxTXubrR6UA13+U7MEFdp/JPt8a6G8/tvjxFrbO+Vnrev
hnucP3uIl+l8FldUq4bxPysqiGP0bXmDqqrgX2BANHG1afqsKXsVHOI+pUnM
9sx8JG2uElBbiwrxxeeaQyX0SnhPO6hArBPL1TP3vhKYUlvWEde/zGywMqkE
2bQXS4nZU5d9F7ldAbldZ8oNsV0LXz6MmioDm3U7ThD/S112N6KpDIzKjhwi
Dnhm5xMMZfC4yMGUOM5VxvXOvTLwDHDXIa4SfWnhJl4Gx23kxYiVLybwGxuW
QmGyWJMBud+E4p/ORpQA3Ye2j9j5fGyipVohsM1+ldhFnkdGZEqsLYTetMNC
xG559/IGWAtBmt6zithz7aW2a5U/IeXq8J+d2D7lewTjHH/Cj7JQGnGYyvid
/rgC2Dyp7k+cM2dg/9+qfDDck9ypT/Ihq+WxczIPjk1LNRDnHlD25WzOA2m+
0HLivGSR6OikPGB13Z9NXGY9QvuxKw/uVx4LIqb/eGzAcfUHpFk+UidexV+3
e1s5wPvkc956pD9Q8rGHjwBS/8W4Eac4+rr02gD8yyy2Izb9oRj+aDwXfDZN
7yUOvODfNi2UC/wFnwSJOUo0Ln+y/Qrj8b+SEamv99N4zdls2H2vtnQHOf/e
uGaF/MiGe/nW34iTaEbF/fezwRAa3xPvVphgPBHH7+cnhhL7N5hsn9v5CRpd
w48QL1edr8wJyoINNW9bdbGX9NvMa0mng4SmI10H+2SaiU8YIw3ej56oIv58
VYN18FMa2ErrfSd2X8W9PMo0DQ5++R1L3LU1l2vmcioIrdp7kjjgr6bm2dB3
oFii2KCNzSWXfvlISyKUc/uBFrb8vz0dLt1hMGb29agmtrlKfKSOWBhEir83
JPY4+9eY81AotH97uJXY68Vxe4u7waC6VYyL+OneDWxFhvfgsdrZXA1Sv+1u
z+zu/AeThUnriTff0Dcf8b+CNp3wpKljP0tquZ7x+hqqlJIGYg6aV/KVYm/E
//7rG+JLApa3We/cQnLlWd7EFs5BHQ8KA1D6rlw54hWr5s2qXoah2jBhTzVy
/n4+z9YjF4t4HDyWqmJrxmzR8WGJQxKLIQNbsXlsNk9yusShJMPISuLvdGm7
DUYvEO2qxTPi9d18Bkdn45Hyr0gV4rbB0aW5JxLR22oNKxVyn8+m+N3b8A7Z
/ZWPUMZOvhemH3I8C7Xn5qUrkPz12rtrPcxCv5WGw4mTdm5P6P6ehS57zV0i
Tvzbvmy77EeUqwDbiONdFIs7Rj8iFZPJbHmSP4tic1X/bLTReeTTJuz7IgvH
61O/oEJn+1g57CyamvbqpT/Qh6cyq6VJP2ased619gfySVTsl8LeGD7+L1vt
B3qazZ8nRY2Xmnvm7A8k4nn9MvHNCoWdOSU/kNS/902S2HuLpYztQvJQNfud
GAnSP194LD+LF6B+HkHOddgiz5ifgrcVILaueLo49oGrFcL2+wrQ0mz2j8Q/
NQObuH0L0I1Ou1PEb7NWnrTvLkDWV80yxLAvf1iw40n+if4eLrFYS+qbMOx+
VrMI+e9xdxXGXhd1uOHowSLko8nUId4anKtrcqEIGUlqsRNbXQth2/KyCMWI
bn8hRPJ5UC1mjrsYNe+vrxAk/bTseklgXzEaNreVECD3qz2nRMajX+hFzLFn
vNiLcvLli5PlyGjzZDc7tljLvJjM6gokfy37NbFWSLXzHrkKtGK/oSPxpdkr
XKFWFcgp79MIG/ZgcZGJVG4FeoH+TK7Epp23/2VwtxJ1phVPL8euO1zVVRBY
hdS9RCtYsbuVP3NaRlWhypj794jH2V+qDryqQrNJXw2IeXK9/FZBFfL2s//M
QvIvu176yFgVqhIviF/MxPtx2sW273A1moq+5TCP/fYxZwf7+hq0N9kBZrFl
b2g9eLu5BjH4NjsTx9ueVzfRqkG6OTHCxE8Vi+4FHq5Bh24Guc5g38+/tZU7
sAb9FQsQm8Y+z5zz45+rQTnv3thNYG/c3S+7vrYWbTIyz2Bgv9wsVA30WnS4
RvMwsQSf0bVTI7XIcKpwehhbuDWh8gU7DWlElGkSs3nYXJHRo6H9qh7Zg9h9
MfUlm97R0NmPLa/6sBOnC5zV7tYhq0q/bR3YctqbuEbC65BbtmYtHTvJJyj5
dVwdehIedpH4DduRQdHPdYherfq6HTtFtM+BlVGHBLSk+dqw03awn6k4UI+6
hZ3qm7C/+ptZnVv3Gxn93C5Iw64RrDd8ntWA1ss8OfkTu2riErtgXgMK2a/Z
XYBdXrWmPLiiAeVddTxPXHzf4pBfXwP6puPnno8NC2W2jiKNiCX0ms8PMn9v
vo/mjUbUJK18+xu2/8e0HJpBExKwKlPPwr4dvv+GuUUTiqnqScnE9nVl6hVb
NyErzdvSxNflFYu/eDahYHFz7gxsj5ik+vikJuSwmqMjFfuUf+yEK1czyssB
5xTs7UeCFFfRmlH942nJBFKPHW4ekR3NaGp19bV47NVyh3PEmc3I0Ze97gV2
94yYoRJHCzpAD70Thx0SlXJin14LmhNhtkWTerSUPghNaUF3xc3dn2BHnuEY
FLjTigxi+ISCsMdc7yau29aO3Mq2bL1E4smO64Cd7ajK+KKzB8nfYo7Y6X3t
KOX33Ct37NSHw2EJ59rRjchRQTfsCykWPhuftaOA4AOjLtjTE6s2i7DQUYb2
kZsOZL3KDcuk7elIruQtzzFs+Vq7eA8nOmL7IaVqhd3pOYYK3OiIJl996Cj2
gVyOa/bedGTkWRF5BHurme7Y68d0ZJq9bfVB7FHH+NbNv+ioQ1S0wQTbJdH5
4zblDsTrO/hLB7ulcm3k6m0d6JrexDdt7L1zvzx6dTqQUen4By3SP6abVB7t
7UCdm2tCNLHpYz3JU/YdiMV0ylAN+5CuzYvM5x0ocaHzugK2Ds0icCtHJ7rt
XScgQvpxnsWJg7cTbTr5pkcIW0Qu1bhTqBN5WllkCpL1/7d6ZdiGTmS1TMSc
n+RrfanvmF4nYoad9eDGlnYy8Er16kRlnON+y7E5lmjYKvV0oqcb92SOZujr
ffJaerB3qBMNeUbYMrHtGJW7YsY7kT0zinsEO7fh3IbVLF3ogEup/RC224en
/QzRLiT049WSXuyGEwsX3u3vQutGxOabsBM//by2+WsXUr85P5SPvcvlUKR8
eDfaWnfHLhTbPewLy8WobhTU7VcbjB3/Sco5I7Ybqa4S1n+IzbJkbKdOSjdS
D5kXekDmfxQ0avazG1mfjcq8ja35vdDEbaYb8ZaOvvbC3rxm+5Ls4z3oXnW+
ywns45pxLv9O9yDeLdMpx7DvW69s1DvXg96Fhw8exR54Xfeh5FIPYs1iP32Y
xKvjbt0c1IOMZL5omWNLnk3OXoAe9Ch0OBZhC+aIXzSU6UXthXxyktj/zrxe
y6vQiwqenFixHrtztUpxi0ovar0c2iWG/d7OQPIS6kVNmzMfC2Mb8jjVxh/r
RbLiL3u5sS85ZGuwhPaiw73HxRfS9fVqBQ6yfJnvReXtiu0N2CHuAaFbfveh
5ynH1O9iz5alZAe09qGZN2Ypt7FPyVW307v6kKPQqMQtbJUWEaXQ0T5UVKW1
9AZ2jWHyrzH2fhShlpLsjs0vUrE0Q6cfWawVu2+NHQVrPNXj+5EHM91FBTue
K/aYlssAkr7Daladpq9nnEEPd/cYQHEms4oV2KNWUuVv/xtAvHtkuEqxdV+/
Qmv9B9BAP+/3AuwG/RSZfzED6MqV+eXZ2Ku9cka+VQ0gE3rzyhjsqx21t/TV
BhE3w6XaAVsyQODrf1qDKPo/zkN22MVKllNpeoMoY9X92lPYAtebHKTMBpGp
3PoSK+xUwQ7TpWcHkVTosYcm2L0mI4I/Hw+iNSFR3krYBz6yJe/5O4hOW5Z1
jKXi9zudN7AtGUIbE8dfMbBXcVfHFrENIdWr8/YD2MUOURFGgkOorSS1kY6t
KyLvbaAyhBR+iwdXYm+8bmKh5zCEOFz8lFKwF/QfzmjUDqFEGS0pW+y35WsM
5JKH0QHl6B74gPfXG77tHmnD6An7ndbP2I53eJXg0zC63N9elYW9SZdb2LJg
GCkbt71Jxk5K4Rj2bx1G59vvyTzGTnzAGtHLzUD9TuOaLtjxxsyuV5cYyLdv
DASwb20YaRi7ykCsrxfFebBtWRnlur4MdLhxypMDWzJn8FNdEAOp6twTWXyP
v7829j5Y/pqB3kb/kujHjlnZqmrfyEBnjWJVc7Cf/vzlJ7NjBL0zYOyxxP7O
bj6mYDiCGKWwYz92j1n1SVXTESS/+YqiMfaW+t/bdx4bQTkDN6a0sAt7u5k2
niMobmCN8jrs8ZWLx5+9H0EvG1bs7HqHz7+9qmp865lIqd0p3QHb9eHHFyKy
TNQ89vSjDXZkzXZuSUUmCrD5lm6JTT+mN6iszURf5r6E7cb2dDKLM7NkojrZ
r6Oy2PGBDlz3gpnoanSQeHcKrl/V4H8hj5iINiIU3YzN4L/Q9ziaiSpiefhr
sTWjL+UlJjORQq58/w/sine+VwqKmMjLhntjLPbk2LLe0gommj0mavsIW2Rb
wMHaOiZ6y2ceHoRtl/tQqbOLiQ7qcTVfw76/hO/5wCATyffcHnPH/mAUyT42
xkTDCUsWz2PT7gt7zc4y0b8b15eexv5T8ax7cZGJvjoNLFhi/w9X/XHJ
"]]},
Annotation[#, "Charting`Private`Tag$8048#1"]& ]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 35.34643541715155},
AxesStyle->Directive[
AbsoluteThickness[1],
GrayLevel[0], FontSize -> 14],
DisplayFunction->Identity,
Frame->{{True, True}, {True, True}},
FrameLabel->{{None, None}, {None, None}},
FrameStyle->Directive[
AbsoluteThickness[1],
GrayLevel[0], FontSize -> 14],
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
FrameTicksStyle->Directive[
GrayLevel[0], FontSize -> 12],
GridLines->{None, None},
GridLinesStyle->Directive[
AbsoluteThickness[0.5],
Opacity[0.5]],
ImagePadding->All,
ImageSize->{329.79461669921875`, Automatic},
ImageSizeRaw->{{180}, {180}},
LabelStyle->Directive[
GrayLevel[0], FontSize -> 12],
Method->{"DefaultBoundaryStyle" -> Directive[
GrayLevel[0]],
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{-1.5, 1}, {35.34643541715147, 35.416426157547974`}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic},
TicksStyle->Directive[
GrayLevel[0], FontSize -> 12]]], "Output",
CellLabel->"Out[32]=",ExpressionUUID->"0295452a-14a4-4bd4-8843-cc9ab896f769"]
}, Open ]],
Cell[BoxData[
RowBox[{"(*",
RowBox[{
RowBox[{"Tc", " ", "drops", " ", "with", " ", "fixed", " ", "fine"}], "-",
RowBox[{"tuning", "."}]}], "*)"}]], "Input",ExpressionUUID->"ae3b750b-14d5-\
4e52-89d2-75e3af983480"],
Cell["\<\
Now we should fix the same Tc to scan over the mass, so that we can finish it.\
\>", "TextIndent",ExpressionUUID->"46a938ad-3f76-4d1d-ab00-60484f047b0f"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"sin", "[",
RowBox[{"6.73958", ",", "0.1"}], "]"}]], "Input",
CellLabel->
"In[849]:=",ExpressionUUID->"c6c6b4a4-95e3-4309-bdab-5f694857b383"],
Cell[BoxData[
RowBox[{"sin", "[",
RowBox[{"6.73958`", ",", "0.1`"}], "]"}]], "Output",
CellLabel->
"Out[849]=",ExpressionUUID->"11eea865-aa48-4f79-a17e-dbf42ee47b37"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Tc", "[",
RowBox[{"1", ",",
RowBox[{"sin", "[",
RowBox[{"1", ",", "0.1"}], "]"}]}], "]"}]], "Input",
CellLabel->
"In[851]:=",ExpressionUUID->"68bd2c68-b2ae-4b89-88b2-c94ef87b250b"],
Cell[BoxData["35.41572488554357`"], "Output",
CellLabel->
"Out[851]=",ExpressionUUID->"d908dacc-ed12-4cca-a23a-f186f6b5918a"]
}, Open ]],