-
Notifications
You must be signed in to change notification settings - Fork 0
/
cosface_loss.py
45 lines (37 loc) · 1.55 KB
/
cosface_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
# Based on https://github.com/MuggleWang/CosFace_pytorch/blob/master/layer.py
import torch
import torch.nn as nn
from torch.nn import Parameter
def cosine_sim(x1: torch.Tensor, x2: torch.Tensor, dim: int = 1, eps: float = 1e-8) -> torch.Tensor:
ip = torch.mm(x1, x2.t())
w1 = torch.norm(x1, 2, dim)
w2 = torch.norm(x2, 2, dim)
return ip / torch.ger(w1, w2).clamp(min=eps)
class MarginCosineProduct(nn.Module):
"""Implement of large margin cosine distance:
Args:
in_features: size of each input sample
out_features: size of each output sample
s: norm of input feature
m: margin
"""
def __init__(self, in_features: int, out_features: int, s: float = 30.0, m: float = 0.40):
super().__init__()
self.in_features = in_features
self.out_features = out_features
self.s = s
self.m = m
self.weight = Parameter(torch.Tensor(out_features, in_features))
nn.init.xavier_uniform_(self.weight)
def forward(self, inputs: torch.Tensor, label: torch.Tensor) -> torch.Tensor:
cosine = cosine_sim(inputs, self.weight)
one_hot = torch.zeros_like(cosine)
one_hot.scatter_(1, label.view(-1, 1), 1.0)
output = self.s * (cosine - one_hot * self.m)
return output
def __repr__(self):
return self.__class__.__name__ + '(' \
+ 'in_features=' + str(self.in_features) \
+ ', out_features=' + str(self.out_features) \
+ ', s=' + str(self.s) \
+ ', m=' + str(self.m) + ')'