-
Notifications
You must be signed in to change notification settings - Fork 5
/
recap_lab08.qmd
496 lines (371 loc) · 11.7 KB
/
recap_lab08.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
---
title: "Recap Lab 8"
author: "Leon Eyrich Jessen"
format:
revealjs:
embed-resources: true
theme: moon
slide-number: c/t
width: 1600
height: 900
mainfont: avenir
logo: images/r4bds_logo_small.png
footer: "R for Bio Data Science"
---
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
# Tidy PCA Assignment
```{r}
#| echo: false
#| eval: true
#| message: false
library("tidyverse")
library("broom")
library("ggrepel")
```
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## About Data - I Choose
### The BLOSUM (BLOcks SUbstitution Matrix)
- A substitution matrix used extensively in protein science e.g. sequence alignment
- Contains log-odds scores indicating how likely a substitution is
- Derived from very conserved regions of protein families in the BLOCKS database
- Using blocks of aligned sequence segments
- Blocks are chosen such that they have less than x% similarity
- E.g. BLOSUM62 is derived from blocks with less than 62% similarity
**Note, only numbers computed from observed substitutions here! No information on physico-chemical features of amino acids!**
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## Get Data
### Download
```{r}
#| echo: true
#| eval: true
#| message: false
#| warning: false
base_url <- "https://raw.githubusercontent.com/"
file_url <- "rdpstaff/AlignmentTools/master/src/data/blosum62.txt"
bl62 <- read_table(
file = str_c(base_url, file_url),
comment = "#")
bl62
```
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## Wrangle Data
### Adjust Column Names
```{r}
#| echo: true
#| eval: true
#| message: false
#| warning: false
colnames(bl62) <- c("aa", colnames(bl62))
```
### Subset to Data on the 20 Proteinogenic AA
```{r}
#| echo: true
#| eval: true
#| message: false
#| warning: false
std_aa = c("A", "R", "N", "D", "C", "Q", "E", "G", "H", "I",
"L", "K", "M", "F", "P", "S", "T", "W", "Y", "V")
bl62 <- bl62 |>
filter(aa %in% std_aa) |> # Work on rows
select(aa, std_aa) # Work on columns
bl62
```
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## Wrangle Data
### Save to File
```{r}
#| echo: true
#| eval: true
#| message: false
#| warning: false
write_tsv(x = bl62,
file = "data/blosum62.tsv") # Very small file, so skipping gz
```
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## Visualise Data
:::: {.columns}
::: {.column width="40%"}
```{r}
#| echo: true
#| eval: true
#| message: false
#| warning: false
pl <- bl62 |>
pivot_longer(
cols = -aa,
names_to = "aa2",
values_to = "log_odds_score") |>
ggplot(aes(
x = factor(aa,
levels = std_aa),
y = factor(aa2,
levels = rev(std_aa)),
fill = log_odds_score,
label = log_odds_score)) +
geom_tile() +
geom_text(colour = "darkgrey",
size = 7) +
scale_fill_gradient2(low = "blue",
mid = "white",
high = "red",
midpoint = 0) +
scale_x_discrete(position = "top") +
coord_fixed() +
theme_minimal(base_size = 22,
base_family = "Avenir") +
theme(legend.position = "none",
plot.title = element_text(
hjust = 0.5,
vjust = -4)) +
labs(
x = "",
y = "",
title = str_c(
"The BLOSUM62 Visualised ",
"as a Heatmap"))
```
:::
::: {.column width="60%"}
```{r}
#| echo: false
#| eval: true
#| message: false
#| warning: false
#| fig-width: 8
#| fig-height: 8
#| fig-align: center
pl
```
:::
::::
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## Create a PCA object
```{r}
#| echo: true
#| eval: true
#| message: false
#| warning: false
bl62_pca <- bl62 |>
select_if(is.numeric) |>
prcomp(center = TRUE,
scale. = TRUE)
bl62_pca |>
str()
```
- "Complicated" model object $\rightarrow$ `broom` to the rescue!
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## Make a scree plot using broom to tidy
:::: {.columns}
::: {.column width="40%"}
```{r}
#| echo: true
#| eval: true
#| message: false
#| warning: false
bl62_pca |>
tidy("pcs")
```
:::
::: {.column width="60%"}
```{r}
#| echo: true
#| eval: true
#| message: false
#| warning: false
bl62_pca |>
tidy("pcs") |>
mutate(percent = percent * 100) |>
ggplot(aes(x = PC,
y = percent)) +
geom_hline(yintercept = 0) +
geom_col(colour = "black",
alpha = 0.5) +
theme_bw(base_size = 20) +
theme(panel.grid.minor.x = element_blank(),
panel.grid.major.x = element_blank()) +
labs(title = "Scree Plot of PCA of BLOSUM62")
```
:::
::::
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## Augment using broom
```{r}
#| echo: true
#| eval: true
#| message: false
#| warning: false
bl62_pca_aug <- bl62_pca |>
augment(bl62)
bl62_pca_aug
```
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## Add some chemical classes
:::: {.columns}
::: {.column width="40%"}
```{r}
#| echo: true
#| eval: true
#| message: false
#| warning: false
get_chem_class <- function(x){
chem_cols <- c(
"A" = "Hydrophobic",
"R" = "Basic",
"N" = "Neutral",
"D" = "Acidic",
"C" = "Sulphur",
"Q" = "Neutral",
"E" = "Acidic",
"G" = "Polar",
"H" = "Basic",
"I" = "Hydrophobic",
"L" = "Hydrophobic",
"K" = "Basic",
"M" = "Sulphur",
"F" = "Hydrophobic",
"P" = "Hydrophobic",
"S" = "Polar",
"T" = "Polar",
"W" = "Hydrophobic",
"Y" = "Polar",
"V" = "Hydrophobic")
return( chem_cols[x] ) # Example of avoiding dependencies => shareable!
}
```
- This is a named vector, think dictionary (Yes `R` can do that too!)
:::
::: {.column width="60%"}
![](images/chemistry_beaker.gif){width="50%" fig-align="center"}
:::
::::
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## Add some chemical classes
- Note how we are using our own custom function inside a `dplyr` pipeline here
```{r}
#| echo: true
#| eval: true
#| message: false
#| warning: false
get_chem_class(x = c("A", "R", "D"))
```
```{r}
#| echo: true
#| eval: true
#| message: false
#| warning: false
bl62_pca_aug <- bl62_pca_aug |>
mutate(chem_class = get_chem_class(aa))
bl62_pca_aug |>
select(aa, chem_class)
```
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## Plot the PCA Plot
```{r}
#| echo: true
#| eval: true
#| message: false
#| warning: false
pca_plot_axes_labels <- bl62_pca |>
tidy("eigenvalues") |>
mutate(lbl = str_c("PC", PC, ", VE = ", round(percent*100,2), "%")) |>
pull("lbl")
pca_plot_axes_labels
```
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## Plot the PCA Plot
:::: {.columns}
::: {.column width="40%"}
```{r}
#| echo: true
#| eval: true
#| message: false
#| warning: false
pca_plot <- bl62_pca_aug |>
ggplot(aes(x = .fittedPC1,
y = .fittedPC2,
label = aa,
colour = chem_class,
fill = chem_class)) +
geom_vline(xintercept = 0) +
geom_hline(yintercept = 0) +
geom_point(shape = 21,
size = 6,
alpha = 0.5) +
geom_text(colour = "black") +
scale_fill_manual(
values = c("red", "blue", "black",
"purple", "green", "yellow")) +
scale_colour_manual(
values = c("red", "blue", "black",
"purple", "green", "yellow")) +
coord_fixed() +
theme_bw(base_size = 20,
base_family = "avenir") +
labs(
title = "PCA: Scores Plot of BLOSUM62",
x = pluck(pca_plot_axes_labels, 1),
y = pluck(pca_plot_axes_labels, 2),
fill = "Chemistry",
colour = "Chemistry",
caption = "Up: Aromatic, down: Aliphatic, Left: Charged, Right: Hydrophobic")
```
:::
::: {.column width="60%"}
```{r}
#| echo: false
#| eval: true
#| message: false
#| warning: false
#| #| fig-align: center
#| fig-width: 10
#| fig-height: 8
pca_plot
```
:::
::::
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## That's about it for tidyverse
- We have been over a ton of materials - Well done!
- Now we will have two great labs on R-packages and Shiny
- And then the mini-symposium, with talks on how R for Bio Data Science is being applied in industry
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## That's about it for tidyverse
Lastly, a quick case story:
- *A well seasoned Professor was curious about the tidyverse, but reluctant! Over perhaps 6 months, I would answer the occasional over-the-coffee questions and point to some materials, still feeling some push-back. Then suddenly, one day said colleague came into my office and proclaimed: "I get it now! The penny has dropped! Once you get your head around it, this thing is a complete game changer!*
- It was easy to for me to utter: "Could not agree more!"
- So, get your "head around it" and you WILL HAVE...
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## That's about it for tidyverse
![](images/palpatine_unlimited_power.gif){width="60%" fig-align="center"}