-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpreprocess_mimic.py
81 lines (67 loc) · 3.21 KB
/
preprocess_mimic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
#!/usr/bin/env python
# coding: utf-8
import gzip
import os
import pandas as pd
import json
import argparse
from tqdm import tqdm
def main(args):
impressions_train_df = pd.read_csv(args.impressions_train_path)
impressions_test_df = pd.read_csv(args.impressions_test_path)
impressions_dfs = {"train" : impressions_train_df, "validate" : impressions_train_df, "test" : impressions_test_df}
mimic_cxr_jpg_split_path = os.path.join(args.data_dir, 'raw_jpg', 'mimic-cxr-2.0.0-split.csv.gz')
train_json = []
val_json = []
test_json = []
# directory structure is p10 / p<subject id> / s<study id> / images
with gzip.open(mimic_cxr_jpg_split_path, "rb") as f:
skip_header = True
for sample_raw in tqdm(f):
if skip_header:
skip_header = False
continue
sample = sample_raw.decode("ascii")[:-1] # Remove newline.
dicom_id, study_id, subject_id, split = sample.split(",") # extract one item
# construct the path to the image
patient_folder2 = ''.join(['p', subject_id])
patient_folder1 = patient_folder2[:3]
study_folder = ''.join(['s', study_id])
file_name = ''.join([dicom_id, '.jpg'])
img_path = os.path.join(args.data_dir, "files", patient_folder1, patient_folder2, study_folder, file_name)
# access the impression part of the report
impressions_df = impressions_dfs[split]
single_df = impressions_df[impressions_df['dicom_id']==dicom_id]['report']
if len(single_df) == 0: # error, dicom_id not found, then skip
continue
impression_str = single_df.iat[0]
if pd.isna(impression_str): # no impression found
continue
json_item = {"caption": impression_str,
"image": img_path,
"dicom_id": dicom_id,
"study_id": study_id}
if split == "train":
train_json.append(json_item)
elif split == "validate":
val_json.append(json_item)
elif split == "test":
test_json.append(json_item)
else:
raise Exception(f"Unknown split label {split}.")
jsons = {"train" : train_json, "val" : val_json, "test" : test_json}
splits_options = ["train", "val", "test"]
for split_op in splits_options:
json_str = json.dumps(jsons[split_op])
fname = ''.join([args.out_dir, 'mimic_', split_op, '.json'])
with open(fname, 'w') as outfile:
outfile.write(json_str)
print(split_op, len(jsons[split_op]), flush=True)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--data_dir', help = 'path to MIMIC-CXR')
parser.add_argument('--impressions_train_path', help='path to mimic_train_impressions.csv created by CXR-RePaiR')
parser.add_argument('--impressions_test_path', help='path to mimic_test_impressions.csv created by CXR-RePaiR')
parser.add_argument('--out_dir', help='directory to store the outputs')
args = parser.parse_args()
main(args)