-
Notifications
You must be signed in to change notification settings - Fork 16
/
line_seperate.py
executable file
·220 lines (183 loc) · 7.69 KB
/
line_seperate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
# /usr/bin/env python3
#*-* coding: utf-8 *-*
'''
Detects lines in a binary text image.
'''
import numpy as np
from scipy import ndimage as nd
from PIL import Image as im
from PIL import ImageDraw as id
from scipy.ndimage import interpolation as inter
if False:
log = print
else:
log = lambda *_, **__: None
class Page():
def __init__(self, path):
self.path = path
self.orig = im.open(path)
self.wd, self.ht = self.orig.size
self.imgarr = np.asarray(self.orig.getdata()).reshape((self.ht, self.wd))
self.imgarr //= 255
self.imgarr = 1 - self.imgarr
self.angle = None
self.fft, self.best_harmonic, self.closed = [None] * 3
self.hist, self.gauss_hist, self.d_gauss_hist = [None] * 3
self.base_lines, self.top_lines, self.line_sep = [None] * 3
self.num_lines = None
def process(self):
self.filter_noise()
self.skew_correct()
self.calc_hist()
self.find_baselines()
self.separate_lines()
def filter_noise(self, ):
self.imgarr = nd.median_filter(self.imgarr, size=3)
def skew_correct(self, ):
best_score = -1
for a in np.linspace(-2, 2, 21):
data = inter.rotate(self.imgarr, a, reshape=0, order=0)
hist = np.sum(data, axis=1)
score = np.sum((hist[1:] - hist[:-1]) ** 2)
if score > best_score:
self.angle = float(a)
self.imgarr = data
best_score = score
print("Angle: ", self.angle)
self.ht, self.wd = self.imgarr.shape
self.img = im.fromarray(255 * (1 - self.imgarr).astype("uint8")).convert("RGB")
def calc_hist(self, ):
hist_ = np.sum(self.imgarr, axis=1).astype('float')
hist_mean = np.mean(hist_)
self.fft = abs(np.fft.rfft(hist_ - hist_mean))
max_harm = int(np.argmax(self.fft))
self.best_harmonic = self.ht // (1 + max_harm)
assert max_harm > 0
self.closed = nd.binary_closing(self.imgarr, structure=np.ones((1, self.best_harmonic // 4)))
self.hist = np.sum(self.closed, axis=1).astype("float")
self.gauss_hist = nd.filters.gaussian_filter1d(
self.hist,
self.best_harmonic / 16, mode='constant',
cval=0,
truncate=2.0)
self.d_gauss_hist = nd.filters.convolve(self.gauss_hist, [-1, 0, 1])
def find_baselines(self, ):
d_hist = self.d_gauss_hist
gmaxval = np.max(d_hist)
maxloc = np.argmax(d_hist)
peakthresh = gmaxval / 10.0
zerothresh = gmaxval / 50.0
inpeak = False
min_dist_in_peak = self.best_harmonic / 2.0
self.base_lines = []
log("Max Hist: {:.2f} Peakthresh: {:.2f} Zerothresh: {:.2f} Min Dist in Peak: {:.2f}"
"".format(gmaxval, peakthresh, zerothresh, min_dist_in_peak))
for irow, val in enumerate(d_hist):
if not inpeak:
if val > peakthresh:
inpeak = True
maxval = val
maxloc = irow
mintosearch = irow + min_dist_in_peak
log('\ntransition to in-peak: mintosearch : ', mintosearch, end='')
# accept no zeros between i and i+mintosearch
else: # in peak, look for max
if val > maxval:
maxval = val
maxloc = irow
mintosearch = irow + min_dist_in_peak
log('\nMoved mintosearch to', mintosearch, end='')
elif irow > mintosearch and val <= zerothresh:
# leave peak and save the last baseline found
inpeak = False
log('\nFound baseline #', maxloc, end='')
self.base_lines.append(maxloc)
log(' @{}'.format(irow), end='')
if inpeak:
self.base_lines.append(maxloc)
log('\nFound baseline #', maxloc, end='')
self.num_lines = len(self.base_lines)
def separate_lines(self, ):
self.top_lines = []
self.line_sep = [np.where(self.gauss_hist[0:self.base_lines[0]] == 0)[0][-1]]
log(self.base_lines)
for ibase, base in enumerate(self.base_lines):
# Find top lines
frm = 0 if ibase == 0 else self.line_sep[ibase]
log(" Searching for top line in range : ", frm, base)
top_at = np.argmin(self.d_gauss_hist[frm:base])
self.top_lines.append(frm + top_at)
log(" Top at: ", top_at, frm + top_at)
# Find line separation
to = self.base_lines[ibase + 1] if ibase + 1 < self.num_lines else self.ht
sep_at = np.argmin(self.gauss_hist[base + 1:to])
self.line_sep.append(base + 1 + sep_at)
log(" Line Sep at ", sep_at, base + 1 + sep_at)
def get_line(self, iline):
return self.imgarr[self.line_sep[iline]:self.line_sep[iline + 1]]
def get_info(self):
ret = (
"\nImage: {} "
"\nHeight, Width: {}, {}"
"\nShapes: Image Array:{} closed:{}"
"\nRotated by angle: {:.2f}"
"\nBest Harmonic: {}"
"\nLengths: hist:{} gauss_hist:{} d_gauss_hist:{} FFT:{}"
"\nNumber of lines:{} "
"".format(
self.path,
self.ht, self.wd,
self.imgarr.shape, self.closed.shape,
self.angle, self.best_harmonic,
len(self.hist), len(self.gauss_hist), len(self.d_gauss_hist),
len(self.fft),
self.num_lines))
ret += "\nLine From Top Base Till"
for line in range(self.num_lines):
ret += "\n{:3d}: {:4d} {:4d} {:4d} {:4d}".format(line,
self.line_sep[line], self.top_lines[line],
self.base_lines[line], self.line_sep[line+1])
return ret
def get_hists_info(self):
return "Line Hist GHist DGHist" + \
"\n".join(
["{:4d} {:7.2f} {:7.2f} {:7.2f}".format(l, i, j, k)
for l, i, j, k in zip(
range(self.ht), self.hist, self.gauss_hist, self.d_gauss_hist)])
def get_image_with_hist(self, width):
hist = width * self.gauss_hist / np.max(self.gauss_hist)
appendage = np.full((self.ht, width), 255, dtype='uint8')
for row, count in enumerate(hist.astype('int')):
appendage[row, :count] = 0
appendage = im.fromarray(appendage)
appended_img = im.new('RGB', (self.wd + width, self.ht))
appended_img.paste(self.img, (0, 0))
appended_img.paste(appendage, (self.wd, 0))
return appended_img
def draw_lines(self, target):
width = target.size[0]
draw = id.Draw(target)
def draw_lines(locations, col):
for loc in locations:
draw.line((0, loc, width, loc), fill=col, width=1)
draw_lines(self.top_lines, (200, 200, 0))
draw_lines(self.base_lines, (0, 255, 0))
draw_lines(self.line_sep, (0, 0, 255))
return target
def get_image_with_hist_and_lines(self, width):
appended_img = self.get_image_with_hist(width)
return self.draw_lines(appended_img)
def save_image_with_hist_and_lines(self, width):
target_name = self.path[:-4] + ".png"
appended_img = self.get_image_with_hist(width)
self.draw_lines(appended_img).save(target_name)
print("Saving:", target_name)
################################ UNIT TEST ################################
def main(image_name):
page = Page(image_name)
page.process()
print(page.get_info())
page.save_image_with_hist_and_lines(100)
if __name__ == '__main__':
import sys
main(sys.argv[1])