Skip to content

Latest commit

 

History

History
73 lines (56 loc) · 2.49 KB

README.md

File metadata and controls

73 lines (56 loc) · 2.49 KB

BERTwalk

Installation

$ pip install -r requirements.txt

Train BERTwalk

You can run --help option to view optional args:

$ python3 train_bert_walk.py --help
usage: train_bert_walk.py [-h] [--batch_size BATCH_SIZE] [--emsize EMSIZE] [--nhid NHID] [--nlayers NLAYERS] [--nhead NHEAD] [--dropout DROPOUT]
                          [--learning_rate LEARNING_RATE] [--epochs EPOCHS] [--K K] [--alpha ALPHA] [--mask_rate MASK_RATE] [--p P] [--q Q]
                          [--walk_length WALK_LENGTH] [--num_walks NUM_WALKS] [--input_graphs INPUT_GRAGHS]

Train the BBERTwalk model on MLM task.

optional arguments:
  -h, --help            show this help message and exit
  --batch_size BATCH_SIZE
                        Size of batch.
  --emsize EMSIZE       Dim of embbeding.
  --nhid NHID           Num of hidden dim.
  --nlayers NLAYERS     Num of transformer layers.
  --nhead NHEAD         Num of attention heads in transformer.
  --dropout DROPOUT     dropout.
  --learning_rate LEARNING_RATE
                        Learning rate.
  --epochs EPOCHS       Num of training epochs.
  --K K                 Num of propagation iterations.
  --alpha ALPHA         Reset factor RWR.
  --mask_rate MASK_RATE
                        masking rate MLM.
  --p P                 Return hyperparameter. Default is 1.
  --q Q                 Inout hyperparameter. Default is 1.
  --walk_length WALK_LENGTH
                        Length of random walk.
  --num_walks NUM_WALKS
                        Num of walks from each node.
  --input_graphs        Networks files to be integrated.

Example, training for yeast:

    python train_bert_walk.py --walk_length 10 --organism yeast --epochs 100 \
    --input_graphs inputs/yeast_networks/Costanzo-2016.txt inputs/yeast_networks/Hu-2007.txt inputs/yeast_networks/Krogan-2006.txt

Extract Embedding from Trained BERTwalk

Models are located under artifacts/.

$ python3 extract_embedding_from_trained.py --model_name <trained model name>

Train Sequence Classifier

The model uses a pre-traind BERTwalk model, and fine tune it on sequence level classification task.

$ python3 train_classifier.py --help
usage: train_classifier.py [-h] [--model_name MODEL_NAME] [--data_path DATA_PATH]

Tune the trainded BBERTwalk model on classification task.

optional arguments:
  -h, --help            show this help message and exit
  --model_name MODEL_NAME
                        Trained model name.
  --data_path DATA_PATH
                        Data file.