-
Notifications
You must be signed in to change notification settings - Fork 11
/
grf_gss.m
56 lines (51 loc) · 1.36 KB
/
grf_gss.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
function [p] = grf_gss( t, s )
%GRF_GSS - First guess for the Barker model
%
% Syntax: p = grf_gss(t,s)
%
% p(1) = a = slope of Jacob straight line for late time
% p(2) = t0 = intercept with the horizontal axis for s = 0
% p(3) = n = flow dimension
%
% t = time
% s = drawdown
%
% Description:
% First guess for the parameters of Barker solution.
%
% WARNING: Before using grf_gss, use grf_pre to initialize the model
%
% See also: grf_dim, grf_dmo, grf_rpt, grf_pre
%
global GRFRADIUS GRFWELLRADIUS GRFWELLDIMENSIONLESSRADIUS
if( GRFRADIUS == [] ) % NE MARCHE PAS - TROUVER UNE SOLUTION !
disp(' ERROR: grf_gss: You must run GRF_PRE before using the grf model')
p=[];
return;
end
% L'étude des assymptotes doit être refaite avec la nouvelle normalisation.
% n=round(size(t,1)./3);
% [td,ds]=ldiffs(t(n:end),s(n:end),20); % Calculation of the log-derivative
% tmp=lin_fit(log(td),log(ds)); % A straight line derivative gives alpha and a
% v=tmp(1);
% n=2-2*v;
%
% if( (n>0) && (n<2) )
% te=td(end);
% se=interp1(t,s,te);
% B=log10(se./ds(end));
% a=1;
% t0=te*(a*2.^(1-n)./ds(end)./gamma(n./2)).^(-2./(n-2));
% p(1)=a;
% p(2)=t0;
% p(3)=n;
% else
% n=2;
% p=ths_gss(t,s);
% p(2)=p(2)*(GRFWELLRADIUS/GRFRADIUS).^2;
% p(3)=n;
% end
n=2;
p=ths_gss(t,s);
p(2)=p(2)*(GRFWELLRADIUS/GRFRADIUS).^2;
p(3)=n;