This repository has been archived by the owner on Aug 7, 2023. It is now read-only.
forked from dmlc/xgboost
-
Notifications
You must be signed in to change notification settings - Fork 11
/
agaricus-lepiota.names
148 lines (120 loc) · 6.66 KB
/
agaricus-lepiota.names
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
1. Title: Mushroom Database
2. Sources:
(a) Mushroom records drawn from The Audubon Society Field Guide to North
American Mushrooms (1981). G. H. Lincoff (Pres.), New York: Alfred
A. Knopf
(b) Donor: Jeff Schlimmer ([email protected])
(c) Date: 27 April 1987
3. Past Usage:
1. Schlimmer,J.S. (1987). Concept Acquisition Through Representational
Adjustment (Technical Report 87-19). Doctoral disseration, Department
of Information and Computer Science, University of California, Irvine.
--- STAGGER: asymptoted to 95% classification accuracy after reviewing
1000 instances.
2. Iba,W., Wogulis,J., & Langley,P. (1988). Trading off Simplicity
and Coverage in Incremental Concept Learning. In Proceedings of
the 5th International Conference on Machine Learning, 73-79.
Ann Arbor, Michigan: Morgan Kaufmann.
-- approximately the same results with their HILLARY algorithm
3. In the following references a set of rules (given below) were
learned for this data set which may serve as a point of
comparison for other researchers.
Duch W, Adamczak R, Grabczewski K (1996) Extraction of logical rules
from training data using backpropagation networks, in: Proc. of the
The 1st Online Workshop on Soft Computing, 19-30.Aug.1996, pp. 25-30,
available on-line at: http://www.bioele.nuee.nagoya-u.ac.jp/wsc1/
Duch W, Adamczak R, Grabczewski K, Ishikawa M, Ueda H, Extraction of
crisp logical rules using constrained backpropagation networks -
comparison of two new approaches, in: Proc. of the European Symposium
on Artificial Neural Networks (ESANN'97), Bruge, Belgium 16-18.4.1997,
pp. xx-xx
Wlodzislaw Duch, Department of Computer Methods, Nicholas Copernicus
University, 87-100 Torun, Grudziadzka 5, Poland
e-mail: [email protected]
WWW http://www.phys.uni.torun.pl/kmk/
Date: Mon, 17 Feb 1997 13:47:40 +0100
From: Wlodzislaw Duch <[email protected]>
Organization: Dept. of Computer Methods, UMK
I have attached a file containing logical rules for mushrooms.
It should be helpful for other people since only in the last year I
have seen about 10 papers analyzing this dataset and obtaining quite
complex rules. We will try to contribute other results later.
With best regards, Wlodek Duch
________________________________________________________________
Logical rules for the mushroom data sets.
Logical rules given below seem to be the simplest possible for the
mushroom dataset and therefore should be treated as benchmark results.
Disjunctive rules for poisonous mushrooms, from most general
to most specific:
P_1) odor=NOT(almond.OR.anise.OR.none)
120 poisonous cases missed, 98.52% accuracy
P_2) spore-print-color=green
48 cases missed, 99.41% accuracy
P_3) odor=none.AND.stalk-surface-below-ring=scaly.AND.
(stalk-color-above-ring=NOT.brown)
8 cases missed, 99.90% accuracy
P_4) habitat=leaves.AND.cap-color=white
100% accuracy
Rule P_4) may also be
P_4') population=clustered.AND.cap_color=white
These rule involve 6 attributes (out of 22). Rules for edible
mushrooms are obtained as negation of the rules given above, for
example the rule:
odor=(almond.OR.anise.OR.none).AND.spore-print-color=NOT.green
gives 48 errors, or 99.41% accuracy on the whole dataset.
Several slightly more complex variations on these rules exist,
involving other attributes, such as gill_size, gill_spacing,
stalk_surface_above_ring, but the rules given above are the simplest
we have found.
4. Relevant Information:
This data set includes descriptions of hypothetical samples
corresponding to 23 species of gilled mushrooms in the Agaricus and
Lepiota Family (pp. 500-525). Each species is identified as
definitely edible, definitely poisonous, or of unknown edibility and
not recommended. This latter class was combined with the poisonous
one. The Guide clearly states that there is no simple rule for
determining the edibility of a mushroom; no rule like ``leaflets
three, let it be'' for Poisonous Oak and Ivy.
5. Number of Instances: 8124
6. Number of Attributes: 22 (all nominally valued)
7. Attribute Information: (classes: edible=e, poisonous=p)
1. cap-shape: bell=b,conical=c,convex=x,flat=f,
knobbed=k,sunken=s
2. cap-surface: fibrous=f,grooves=g,scaly=y,smooth=s
3. cap-color: brown=n,buff=b,cinnamon=c,gray=g,green=r,
pink=p,purple=u,red=e,white=w,yellow=y
4. bruises?: bruises=t,no=f
5. odor: almond=a,anise=l,creosote=c,fishy=y,foul=f,
musty=m,none=n,pungent=p,spicy=s
6. gill-attachment: attached=a,descending=d,free=f,notched=n
7. gill-spacing: close=c,crowded=w,distant=d
8. gill-size: broad=b,narrow=n
9. gill-color: black=k,brown=n,buff=b,chocolate=h,gray=g,
green=r,orange=o,pink=p,purple=u,red=e,
white=w,yellow=y
10. stalk-shape: enlarging=e,tapering=t
11. stalk-root: bulbous=b,club=c,cup=u,equal=e,
rhizomorphs=z,rooted=r,missing=?
12. stalk-surface-above-ring: fibrous=f,scaly=y,silky=k,smooth=s
13. stalk-surface-below-ring: fibrous=f,scaly=y,silky=k,smooth=s
14. stalk-color-above-ring: brown=n,buff=b,cinnamon=c,gray=g,orange=o,
pink=p,red=e,white=w,yellow=y
15. stalk-color-below-ring: brown=n,buff=b,cinnamon=c,gray=g,orange=o,
pink=p,red=e,white=w,yellow=y
16. veil-type: partial=p,universal=u
17. veil-color: brown=n,orange=o,white=w,yellow=y
18. ring-number: none=n,one=o,two=t
19. ring-type: cobwebby=c,evanescent=e,flaring=f,large=l,
none=n,pendant=p,sheathing=s,zone=z
20. spore-print-color: black=k,brown=n,buff=b,chocolate=h,green=r,
orange=o,purple=u,white=w,yellow=y
21. population: abundant=a,clustered=c,numerous=n,
scattered=s,several=v,solitary=y
22. habitat: grasses=g,leaves=l,meadows=m,paths=p,
urban=u,waste=w,woods=d
8. Missing Attribute Values: 2480 of them (denoted by "?"), all for
attribute #11.
9. Class Distribution:
-- edible: 4208 (51.8%)
-- poisonous: 3916 (48.2%)
-- total: 8124 instances