Skip to content

Latest commit

 

History

History
565 lines (420 loc) · 16.6 KB

README.md

File metadata and controls

565 lines (420 loc) · 16.6 KB

SPIRVSmith

GitHub Workflow Status GitHub Test Coverage Maintainability FOSSA Status Code style: black DOI

SPIRVSmith

SPIRVSmith is a differential testing tool that leverages structured fuzzing techniques to find bugs in producers and consumers of SPIRV shaders.

SPIRVSmith attempts to find bugs in the following projects:

Table of Contents

Installation

SPIRVSmith uses poetry to manage Python dependencies and ships with scripts to install external dependencies.

  1. Follow the poetry installation instructions for your platform.

  2. Grab a local copy of SPIRVSmith:

$ git clone https://github.com/rayanht/SPIRVSmith.git && cd SPIRVSmith
  1. Install Python dependencies using poetry and start a poetry shell:
$ poetry install && poetry shell
  1. Install the external dependencies:
$ mkdir bin
$ sh scripts/get_spirv_tools.sh <platform>

Replace <platform> by either linux or macos (No support for Windows 😭)

Usage

The first step is to run SPIRVSmith is to head to config.py. That file contains the various parameters that are used to dictate the behaviour of the fuzzer.

SPIRVSmith is highly parametrizable, you can choose to disable certain features of the SPIR-V language (e.g. do not emit any control flow operation), limit the number of global constants generated, favour the generation of certain kinds of instructions etc.

Once you are happy with your parametrization, make sure you are in a poetry virtual environment ($ poetry shell) and run SPIRVSmith:

$ sh scripts/run.sh

SPIR-V assembly files will be saved as they are generated to the out/ directory and the fuzzer can be stopped at any time by pressing Ctrl+C.

How does it work?

Differential Testing

The bread and butter of SPIRVSmith is differential testing (sometimes called differential fuzzing), in which we provide the same SPIRV shader to similar consumers (say three different SPIRV compilers for example), execute the three resulting programs and compare the values contained inside all buffers at the end of exeuction.

In a fully deterministic program (== synchronous && free of undefined behaviour), we expect all these buffers to be exactly the same at the end of execution, regardless of what compiler was used to generate said program. If one program ends up with different buffers than the other two, we have a strong reason to believe that the compiler that generated it has a bug.

This concept can be extended further by varying the platform that executes the shader. If we get different results by running the same shader on an Nvidia GPU, an AMD GPU, and an Intel integrated graphics chip then there is a good chance that either the underlying Vulkan engine or the GPU driver has a bug (possibly both).

The constraint on determinism creates an interesting problem, how can we ensure that the randomly generated programs are free of undefined behaviour? Unlike existing differential testing tools, SPIRVSmith does not perform any static analysis or backtracking at generation-time to enforce this constraint, we rather implement the idea of program reconditioning by Donaldson et al.

Program Reconditioning

Donaldson et al. introduce the idea of program reconditioning as "a method for leveraging off-the-shelf test case reducers to simplify programs that expose miscompilation bugs during randomised differential testing".

This approach solves the issues raised by Yang et al. in the case of CSmith where test case reducers couldn't be used to provide concise, actionable bug reports since they would themselves often introduce undefined behaviour.

Program reconditioning works by decoupling the process of generating a program and the process of ensuring that said program is free of undefined behaviour. This is in contrast to Livinskii et al. in YARPGen where code generation steps and static analysis steps are interleaved.

Donaldson et al. describe a rule-based reconditioning approach where transforms are applied to constructs that could exhibit undefined behaviour. Transforms are applied to all eligible construct in a blanket manner, no static analysis is performed to determine which constructs are in fact worth reconditioning. Here is example of reconditioning a GLSL shader:

Original

float A [3]; // Not initialised
void main () {
    int i = int (A[0]);
    float f = 2000000.0;
    while (i != -42) { // Might not terminate
        A[i] = f; // Out of  bounds ?
        f = f + f; // Roundoff
        int j = i ++ + ( i / ( i - 1)); // Order of side effects, divide by zero?
        i = j;
    }
}

Reconditioned

// [ Declarations of SAFE_ABS , MAKE_IN_RANGE and SAFE_DIV ]
uint _loop_count = 0u;
const uint _loop_limit = 100u;
float A [3] = float [3](1.0 , 1.0 , 1.0);
void main () {
    int i = int (A[0]);
    float f = 2000000.0;
    while (i != -42) {
        if (_loop_count >= _loop_limit) break;
        _loop_count ++;
        A[SAFE_ABS(i) % 3] = f ;
        f = MAKE_IN_RANGE(f + f);
        int _t = SAFE_DIV(i , i - 1);
        int j = i ++ + _t;
        i = j;
    }
}

SPIRV Language Coverage

Expand

Instructions

Miscellanous

Expand
OpCode Status
OpNop 🔴
OpUndef 🔴
OpSizeOf 🔴

Debug

Expand
OpCode Status
OpSourceContinued 🔴
OpSource 🔴
OpSourceExtension 🔴
OpName 🔴
OpMemberName 🔴
OpString 🔴
OpLine 🔴
OpNoLine 🔴
OpModuleProcessed 🔴

Annotation

Expand
OpCode Status
OpDecorate
OpMemberDecorate
OpDecorationGroup 🔴
OpGroupDecorate 🔴
OpGroupMemberDecorate 🔴
OpDecorateId 🔴
OpDecorateString 🔴
OpMemberDecorateString 🔴

Extension

Expand
OpCode Status
OpExtension
OpExtInstImport
OpExtInst

Mode-Setting

Expand
OpCode Status
OpMemoryModel
OpEntryPoint
OpExecutionMode
OpCapability
OpExecutionModeId 🔴

Type-Declaration

Expand
OpCode Status
OpTypeVoid
OpTypeBool
OpTypeInt
OpTypeFloat
OpTypeVector
OpTypeMatrix
OpTypeImage 🔴
OpTypeSampler 🔴
OpTypeSampledImage 🔴
OpTypeArray
OpTypeRuntimeArray 🔴
OpTypeStruct
OpTypeOpaque 🔴
OpTypePointer
OpTypeFunction

Constant-Creation

Expand
OpCode Status
OpConstantTrue
OpConstantFalse
OpConstant
OpConstantComposite
OpConstantSampler 🔴
OpConstantNull 🔴
OpSpecConstantTrue 🔴
OpSpecConstantFalse 🔴
OpSpecConstant 🔴
OpSpecConstantComposite 🔴
OpSpecConstantOp 🔴

Memory

Expand
OpCode Status
OpVariable
OpImageTexelPointer 🔴
OpLoad
OpStore
OpCopyMemory 🔴
OpCopyMemorySized 🔴
OpAccessChain
OpInBoundsAccessChain 🔴
OpPtrAccessChain 🔴
OpPtrEqual 🔴
OpPtrNotEqual 🔴
OpPtrDiff 🔴

Function

Expand
OpCode Status
OpFunction
OpFunctionParameter
OpFunctionEnd
OpFunctionCall 🔴

Image

Expand
OpCode Status
OpSampledImage 🔴
OpImageSampleImplicitLod 🔴
OpImageSampleExplicitLod 🔴
OpImageSampleDrefImplicitLod 🔴
OpImageSampleDrefExplicitLod 🔴
OpImageSampleProjImplicitLod 🔴
OpImageSampleProjExplicitLod 🔴
OpImageSampleProjDrefImplicitLod 🔴
OpImageSampleProjDrefExplicitLod 🔴
OpImageFetch 🔴
OpImageGather 🔴
OpImageDrefGather 🔴
OpImageRead 🔴
OpImageWrite 🔴
OpImage 🔴
OpImageQueryFormat 🔴
OpImageQueryOrder 🔴
OpImageQuerySizeLod 🔴
OpImageQuerySize 🔴
OpImageQueryLod 🔴
OpImageQueryLevels 🔴
OpImageQuerySamples 🔴
OpImageSparseSampleImplicitLod 🔴
OpImageSparseSampleExplicitLod 🔴
OpImageSparseSampleDrefImplicitLod 🔴
OpImageSparseSampleDrefExplicitLod 🔴
OpImageSparseFetch 🔴
OpImageSparseGather 🔴
OpImageSparseDrefGather 🔴
OpImageSparseTexelsResident 🔴
OpImageSparseRead 🔴

Conversion

Expand
OpCode Status
OpConvertFToU
OpConvertFToS
OpConvertSToF
OpConvertUToF
OpUConvert 🔴
OpSConvert 🔴
OpFConvert 🔴
OpQuantizeToF16 🔴
OpConvertPtrToU 🔴
OpSatConvertSToU 🔴
OpSatConvertUToS 🔴
OpConvertUToPtr 🔴
OpPtrCastToGeneric 🔴
OpGenericCastToPtr 🔴
OpGenericCastToPtrExplicit 🔴
OpBitcast 🔴

Composite

Expand
OpCode Status
OpVectorExtractDynamic
OpVectorInsertDynamic
OpVectorShuffle
OpCompositeConstruct 🔴
OpCompositeExtract
OpCompositeInsert
OpCopyObject
OpTranspose
OpCopyLogical 🔴

Arithmetic

Expand
OpCode Status
OpSNegate
OpFNegate
OpIAdd
OpFAdd
OpISub
OpFSub
OpIMul
OpFMul
OpUDiv
OpSDiv
OpFDiv
OpUMod
OpSRem
OpSMod
OpFRem
OpFMod
OpVectorTimesScalar
OpMatrixTimesScalar
OpVectorTimesMatrix
OpMatrixTimesVector
OpMatrixTimesMatrix
OpOuterProduct
OpDot
OpIAddCarry 🔴
OpISubBorrow 🔴
OpUMulExtended 🔴
OpSMulExtended 🔴

Bit

Expand
OpCode Status
OpShiftRightLogical
OpShiftRightArithmetic
OpShiftLeftLogical
OpBitwiseOr
OpBitwiseXor
OpBitwiseAnd
OpNot
OpBitFieldInsert
OpBitFieldSExtract
OpBitFieldUExtract
OpBitReverse
OpBitCount

Relational and Logical

Expand
OpCode Status
OpAny
OpAll
OpIsNan
OpIsInf
OpIsFinite 🔴
OpIsNormal 🔴
OpSignBitSet 🔴
OpOrdered 🔴
OpUnordered 🔴
OpLogicalEqual
OpLogicalNotEqual
OpLogicalOr
OpLogicalAnd
OpLogicalNot
OpSelect
OpIEqual
OpINotEqual
OpUGreaterThan
OpSGreaterThan
OpUGreaterThanEqual
OpSGreaterThanEqual
OpULessThan
OpSLessThan
OpULessThanEqual
OpSLessThanEqual
OpFOrdEqual
OpFUnordEqual
OpFOrdNotEqual
OpFUnordNotEqual
OpFOrdLessThan
OpFUnordLessThan
OpFOrdGreaterThan
OpFUnordGreaterThan
OpFOrdLessThanEqual
OpFUnordLessThanEqual
OpFOrdGreaterThanEqual
OpFUnordGreaterThanEqual

Control Flow

Expand
OpCode Status
OpPhi 🔴
OpLoopMerge
OpSelectionMerge
OpLabel
OpBranch
OpBranchConditional
OpSwitch 🔴
OpReturn 🔴
OpReturnValue 🔴

Contributing

Encountered a bug? Have an idea for a new feature? This project is open to all sorts of contribution! Feel free to head to the Issues tab and describe your request!

Authors

License

This project is licensed under the Apache 2.0 license.

FOSSA Status