-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.R
378 lines (347 loc) · 18.9 KB
/
app.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
#
# This is a Shiny web application. You can run the application by clicking
# the 'Run App' button above.
#
# Find out more about building applications with Shiny here:
#
# http://shiny.rstudio.com/
#
# to do:
# hard numbers for SMD
# more plot annotations
# bigger font for left side
# more concise paragraphcs
# name to bottom
# 'other considerations' section: credible/confidence intervals. other DVs etc.
check = NULL
library(shiny)
library(scrollytell)
library(shinyjs)
library(waiter)
library(dplyr)
library(readr)
source('functions.R')
source('text.R')
options(gganimate.dev_args = list(bg = 'transparent'))
# Define UI for application that draws a histogram
loading_function <- function(){
library(curl)
library(ggplot2)
library(see)
library(RColorBrewer)
library(ggrepel)
library(latex2exp)
library(grid)
}
######################################################################################################
############################################## ui ################################################
######################################################################################################
ui <- fluidPage(
use_waiter(),
waiter_preloader(color = "white", html = spin_hexdots()),
mobileDetect('isMobile'),
shinyjs::useShinyjs(),
includeScript('www/scrolldown.js'),
tags$head(
tags$link(rel = "stylesheet", href = "style.css"),
tags$link(rel="stylesheet", media="screen and (max-device-width: 767px)", href="style_mobile2.css"),
includeHTML("www/analytics.html")
),
withMathJax(),
div(class="demo_wrap",
h1("Effect Sizes in Aphasia Single-Case Designs"),
h2("Rob Cavanaugh"),
h5("Ph.D Student, University of Pittsburgh"),
h5(htmlOutput('isItMobile')),
img(src = "outfile2.gif"),
),
br(),
br(),
div(img(id = "scrll", src="chevron.png", heigth = "10%", width = "10%", style="cursor:pointer;"),
style = "text-align:center; opacity:60%; padding:10%",
type = "button"
),
longdiv(
h3("Introduction: (note: currently under revision)", style = "text-align: center; padding-bottom: 3%"),
p(ls$text1a), #style = 'text-align: center;'),
p(ls$text1a2), #style = 'text-align: center;'),
p(ls$text1b) #style = 'text-align: center;')
),
########################################### scrolly sections ###########################################################
fluidRow(scrolly_container(width = 4,
"scr",
scrolly_graph(imageOutput("distPlot")),
scrolly_sections(
scrolly_section(id = "1", h3("Challenges in effect size measurement"),
p(ls$text2a),
p(ls$text2b)),
scrolly_section(id = "2", h3("Comparing effect sizes in aphasiology"),
p(ls$text3a),
p(ls$text3b)),
scrolly_section(id = "3", h3("Standardized Mean Difference"),
p(ls$SMD1),
p(ls$SMD1a),
h4(ls$SMD_eq),
p(ls$SMD1b)),
scrolly_section(id = "4", h3("Standardized Mean Difference"),
p(ls$SMD2),
p(ls$SMD2a)),
scrolly_section(id = "5", h3("Standardized Mean Difference"),
p(ls$SMD3),
h4(ls$SMD_eq2),
p(ls$SMD3a)),
scrolly_section(id = "6", h3("Standardized Mean Difference"),
p(ls$SMD4a),
h4(ls$SMD_eq3),
p(ls$SMD4b)),
scrolly_section(id = "7", h3("Non-overlap of All Pairs"),
p(ls$NAP1),
p(ls$NAP2),
p(ls$NAP3)),
scrolly_section(id = "8", h3("Non-overlap of All Pairs"),
p(ls$NAP4)),
scrolly_section(id = "9", h3("Tau-U"),
p(ls$TAU),
p(ls$TAUa)),
scrolly_section(id = "10", h3("Tau-U"),
p(ls$TAU1),
p(ls$TAU2)),
scrolly_section(id = "11", h3("Proportion of Potential Maximal Gain"),
p(ls$PMG1),
h4(ls$PMG_eq)),
scrolly_section(id = "12", h3("Proportion of Potential Maximal Gain"),
p(ls$PMG2),
p(ls$PMG3)),
scrolly_section(id = "13", h3("Generalized linear mixed-effects models"),
p(ls$GLMM1)),
scrolly_section(id = "14", h3("Generalized linear mixed-effects models"),
p(ls$GLMM2),
p(ls$GLMM3)),
scrolly_section(id = "15", h3("Generalized linear mixed-effects models"),
p(ls$GLMM4)),
scrolly_section(id = "16", h3("Bayesian GLMMs"),
p(ls$BMEM1),
p(ls$BMEM_eq),
p(ls$BMEM1a)),
scrolly_section(id = "17", h3("Bayesian GLMMs"),
p(ls$BMEM2),
br(),
br()),
)),
########################################### summary ###########################################################
),
div(h3("Correspondance between effect size measures"),
p(sum1),
p(sum2),style="text-align: left; padding-left:10%; padding-right:10%; padding-top:15%"),
div(img(src="fig2.png", heigth = "70%", width = "70%"), style="text-align: center;padding:5%"),
div(
h3("Trends worth point out:"),
p(sum3),
p(sum4),
p(sum5),
p(sum6),
style="text-align: left; padding-left:10%; padding-right:10%; padding-top:2%;"
),
div(h2(
style = "text-align:center;",
tags$a(href = "https://osf.io/6x5pd/", "Interest piqued? Skeptical? Explore the methods and data here")),
class = "container",
style = "padding:5%"),
########################################### methods ###########################################################
# div(h3("The nitty gritty"),
# p("A Systematic Apprasial of Individual Effect Sizes in Aphasia Rehabilitation", style = "font-weight: bold;"),
# p("Robert Cavanaugh, Lauren Terhorst, Alexander M. Swiderski, William D. Hula, William S. Evans"),
# p("Poster: Academy of Aphasia 2020"),
# br(),
# p(methods1),
# p(methods2),
# style = "text-align:left; padding-left:10%; padding-right:10%"),
########################################### references ###########################################################
div(h3("Selected References"),
p("Antonucci, S., & Gilmore, N. (2019). Do aphasia core outcome sets require core analysis sets: Where do we go from here in single subject design research? 49th Clinical Aphasiology Conference."),
p("Beeson, P. M., & Robey, R. R. (2006). Evaluating single-subject treatment research: Lessons learned from the aphasia literature. Neuropsychology Review, 16(4), 161–169. https://doi.org/10.1007/s11065-006-9013-7"),
p("Bürkner, P. C. (2018). Advanced Bayesian multilevel modeling with the R package brms. R Journal. https://doi.org/10.32614/rj-2018-017"),
p("Creet, E., Morris, J., Howard, D., & Nickels, L. (2019). Name it again! Investigating the effects of repeated naming attempts in aphasia. Aphasiology, 33(10), 1202–1226. https://doi.org/10.1080/02687038.2019.1622352"),
p("Evans, W. S., Cavanaugh, R., Quique, Y., Boss, E., Dickey, M. W., Doyle, P. J., Starns, J. J., & Hula, W. D. (2020). BEARS - Balancing Effort, Accuracy, and Response Speed in semantic feature verification anomia treatment. Abstract for Platform Presentation, Annual Clinical Aphasiology Conference (Conference Cancelled)."),
p("Goldfeld, K. (2019). simstudy: Simulation of Study Data (R package). https://cran.r-project.org/package=simstudy"),
p("Jaeger, T. F. (2008). Categorical data analysis: Away from ANOVAs (transformation or not) and towards logit mixed models. Journal of Memory and Language, 59(4), 434–446. https://doi.org/10.1016/j.jml.2007.11.007"),
p("King, T. S., & Chinchilli, V. M. (2001). A generalized concordance correlation coefficient for continuous and categorical data. Statistics in Medicine, 20(14), 2131–2147. https://doi.org/10.1002/sim.845"),
p("Lambon Ralph, M. A., Snell, C., Fillingham, J. K., Conroy, P., & Sage, K. (2010). Predicting the outcome of anomia therapy for people with aphasia post CVA: both language and cognitive status are key predictors. Neuropsychological Rehabilitation, 20(2), 289–305. https://doi.org/10.1080/09602010903237875"),
p("Landis, J. R., & Koch, G. G. (1977). An Application of Hierarchical Kappa-type Statistics in the Assessment of Majority Agreement among Multiple Observers. Biometrics, 33(2), 363–374. JSTOR. https://doi.org/10.2307/2529786"),
p("Lee, J. B., & Cherney, L. R. (2018). Tau-U: A Quantitative Approach for Analysis of Single-Case Experimental Data in Aphasia. American Journal of Speech-Language Pathology, 27(1S), 495–503. https://doi.org/10.1044/2017_AJSLP-16-0197"),
p("Lin, L. I.-K. (1989). A Concordance Correlation Coefficient to Evaluate Reproducibility. Biometrics, 45(1), 255–268. JSTOR. https://doi.org/10.2307/2532051"),
p("Manolov, R., & Solanas, A. (2008). Comparing N = 1 Effect Size Indices in Presence of Autocorrelation. Behavior Modification, 32(6), 860–875. https://doi.org/10.1177/0145445508318866"),
p("Parker, R. I., & Vannest, K. (2009). An improved effect size for single-case research: Nonoverlap of all pairs. Behavior Therapy, 40(4), 357–367. https://doi.org/10.1016/j.beth.2008.10.006"),
p("Parker, R. I., Vannest, K. J., Davis, J. L., & Sauber, S. B. (2011). Combining nonoverlap and trend for single-case research: Tau-U. Behavior Therapy, 42(2), 284–299. https://doi.org/10.1016/j.beth.2010.08.006"),
p("R Core Team. (2020). R: A language and environment for statistical computing (4.0.2). R Foundation for Statistical Computing. https://www.r-project.org/"),
p("Wiley, R. W., & Rapp, B. (2018). Statistical analysis in Small-N Designs: Using linear mixed-effects modeling for evaluating intervention effectiveness. Aphasiology, 33(1), 1–30. https://doi.org/10.1080/02687038.2018.1454884"),
style = "text-align:left; padding-left:10%; padding-right:10%"),
br(),
div(p("This work was inspired by the 2019 CAC roundtable led by Natalie Gilmore and Sharon Antonucci. Thanks to Natalie and Sam Harvey (La Trobe University) for their extremely helpful feedback on this vignette.", style = "text-align:center; padding-left:10%; padding-right:10%"),
p("Did I goof somewhere? Do you have recommendations or questions? Contact me here:", style = "text-align:center;"),
h2(tags$a(href = "https://github.com/rbcavanaugh/effect-sizes-scrollytelling/",
icon("github")),
tags$a(href = "https://robcavanaugh.com",
icon("globe-americas")),
tags$a(href = "https://twitter.com/Littlejohnsband",
icon("twitter")),
tags$a(href = "mailto:[email protected]",
icon("envelope")),
style = "padding-left:20%; padding-right:20%"),
p(icon('copyright'), "2021 Robert Cavanaugh"),
h6("last updated: 1-9-21"),style = "text-align:center; padding:2.5%")
)
######################################################################################################
############################################## server ################################################
######################################################################################################
server <- function(input, output) {
loading_function()
output$isItMobile <- renderText({
ifelse(input$isMobile, "Not optimized for mobile: Recommend viewing in landscape", "")
})
############# This is for the plots.... ########################
output$distPlot <- renderImage({
# defines what plot we want....(based on what section we're on)
t = as.numeric(input$scr)
# defintes how subs are selected
ls2 <- list(
t1 = c(31, 34, 12, 15, 51, 56, 57, 84, 93, 99),
t2 = c(31, 34, 12, 15, 51, 56, 57, 84, 93, 99),
t3 = c(51),#SMD
t4 = c(12, 51),#SMD
t5 = c(12, 51),#SMD
t6 = c(12, 51),#SMD
t7 = c(15), #NAP
t8 = c(51, 84, 93), #NAP
t9 = c(84), #TAU
t10 = c(56, 57, 84), #TAU
t11 = c(34), # PMG
t12 = c(31, 34), #PMG
t13 = c(99), #GLMM
t14 = c(84, 99), #GLMMM
t15 = c(84, 99), #GLMMM
t16 = c(12),
t17 = c(84, 99) #GLMMM#BMEM
)
# create variable sel for alpha
if(!is.na(t) && t>0 && t<18){sel = ls2[[t]]}else{sel<-NA}
p <- if(isTruthy(t==1)) df %>% # plots all 100
ggplot(aes(x = session, y = mean_correct, shape = phase, color = sub_id,
alpha = ifelse(sub_id %in% sel, 0.975, 0.01))) +
theme_scrolly()
else if(isTruthy(t==2)) df %>% # plots all 9
filter(sub_id %in% ls2[[1]]) %>%
ggplot(aes(x = session, y = mean_correct, shape = phase,
color = sub_id)) +
theme_scrolly()
else if(isTruthy(t==3)) df %>%
filter(sub_id %in% ls2[[1]]) %>%
ggplot(aes(x = session, y = mean_correct, shape = phase,
color = sub_id, alpha = ifelse(sub_id %in% sel, .85, 0.05))) +
theme_scrolly() +
theme_smd1()
else if(isTruthy(t==4)) df %>% #SMD 2
filter(sub_id %in% ls2[[1]]) %>%
ggplot(aes(x = session, y = mean_correct, shape = phase,
color = sub_id, alpha = ifelse(sub_id %in% sel, .85, 0.05))) +
theme_scrolly() +
theme_smd2()
else if(isTruthy(t==5)) df %>% # SMD 3
filter(sub_id %in% ls2[[1]]) %>%
ggplot(aes(x = session, y = mean_correct, shape = phase,
color = sub_id, alpha = ifelse(sub_id %in% sel, .85, 0.05))) +
theme_scrolly() +
theme_smd3()
else if(isTruthy(t==6)) df %>% #SMD 5.1
filter(sub_id %in% ls2[[1]]) %>%
ggplot(aes(x = session, y = mean_correct, shape = phase,
color = sub_id, alpha = ifelse(sub_id %in% sel, .85, 0.05))) +
theme_scrolly() +
theme_smd4()
else if(isTruthy(t==7)) df %>% # NAP 1
filter(sub_id %in% ls2[[1]]) %>%
ggplot(aes(x = session, y = mean_correct, shape = phase,
color = sub_id, alpha = ifelse(sub_id %in% sel, .85, 0.05))) +
theme_scrolly() +
theme_nap()
else if(isTruthy(t==8)) df %>% # NAP 2
filter(sub_id %in% ls2[[1]]) %>%
ggplot(aes(x = session, y = mean_correct, shape = phase,
color = sub_id, alpha = ifelse(sub_id %in% sel, .85, 0.05))) +
theme_scrolly() +
theme_nap2()
else if(isTruthy(t==9)) df %>% # tau 1
filter(sub_id %in% ls2[[1]]) %>%
ggplot(aes(x = session, y = mean_correct, shape = phase,
color = sub_id, alpha = ifelse(sub_id %in% sel, .85, 0.05))) +
theme_scrolly() +
theme_tau1()
else if(isTruthy(t==10)) df %>% # tau 2
filter(sub_id %in% ls2[[1]]) %>%
ggplot(aes(x = session, y = mean_correct, shape = phase,
color = sub_id, alpha = ifelse(sub_id %in% sel, .85, 0.05))) +
theme_scrolly() +
theme_tau2()
else if(isTruthy(t==11)) df %>% # pmg 1
filter(sub_id %in% ls2[[1]]) %>%
ggplot(aes(x = session, y = mean_correct, shape = phase,
color = sub_id, alpha = ifelse(sub_id %in% sel, .85, 0.05))) +
theme_scrolly() +
theme_pmg1()
else if(isTruthy(t==12)) df %>% # pmg 2
filter(sub_id %in% ls2[[1]]) %>%
ggplot(aes(x = session, y = mean_correct, shape = phase,
color = sub_id, alpha = ifelse(sub_id %in% sel, .85, 0.05))) +
theme_scrolly() +
theme_pmg2()
else if(isTruthy(t==13)) df %>% # glmm 1
filter(sub_id %in% ls2[[1]]) %>%
ggplot(aes(x = session, y = mean_correct, #shape = phase,
color = sub_id, alpha = ifelse(sub_id %in% sel, .85, 0.05))) +
theme_scrolly() +
theme_glmm1()
else if(isTruthy(t==14)) df %>% # glmm 2
filter(sub_id %in% ls2[[1]]) %>%
ggplot(aes(x = session, y = mean_correct, #shape = phase,
color = sub_id, alpha = ifelse(sub_id %in% sel, .85, 0.05))) +
theme_scrolly() +
theme_glmm2()
else if(isTruthy(t==15)) df %>% # glmm 2
filter(sub_id %in% ls2[[1]]) %>%
ggplot(aes(x = session, y = mean_correct, #shape = phase,
color = sub_id, alpha = ifelse(sub_id %in% sel, .85, 0.05))) +
theme_scrolly() +
theme_glmm3()
else if(isTruthy(t==16)) df %>% # bmem 1
filter(sub_id %in% ls2[[1]]) %>%
ggplot(aes(x = session, y = mean_correct, shape = phase,
color = sub_id, alpha = ifelse(sub_id %in% sel, .85, 0.05))) +
theme_scrolly() +
theme_bmem1()
else if(isTruthy(t==17)) df %>%
filter(sub_id %in% ls2[[1]]) %>%
ggplot(aes(x = session, y = mean_correct, shape = phase,
color = sub_id, alpha = ifelse(sub_id %in% sel, .85, 0.05))) +
theme_scrolly() +
theme_bmem2()
else NULL
# temporary output file output
outfile <- tempfile(fileext='.png')
# render image
ggsave(filename = here("www", "outfile.png"), plot = p, bg = "transparent", device = "png",
height = 4.5, width = 6, units = 'in', dpi = 150)
# unlink image
unlink(p)
# refer to image
list(src = "www/outfile.png",
contentType = 'image/svg',
alt = "This is also alternate text")
}, deleteFile = F) # don't keep file
# output
output$scr <- renderScrollytell({
scrollytell()
})
shinyjs::onclick("scrll", runjs("(window.scroll(0,findPos(document.getElementById('scr'))))"))
}
# Run the application
shinyApp(ui = ui, server = server)