-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathdemo.py
184 lines (156 loc) · 6.82 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import dlib
import cv2
import argparse, os, random
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
from torchvision import datasets, transforms
import pandas as pd
import numpy as np
from model import model_static
from PIL import Image
from PIL import ImageDraw
from PIL import ImageFont
from colour import Color
parser = argparse.ArgumentParser()
parser.add_argument('--video', type=str, help='input video path. live cam is used when not specified')
parser.add_argument('--face', type=str, help='face detection file path. dlib face detector is used when not specified')
parser.add_argument('--model_weight', type=str, help='path to model weights file', default='data/model_weights.pkl')
parser.add_argument('--jitter', type=int, help='jitter bbox n times, and average results', default=0)
parser.add_argument('-save_vis', help='saves output as video', action='store_true')
parser.add_argument('-save_text', help='saves output as text', action='store_true')
parser.add_argument('-display_off', help='do not display frames', action='store_true')
args = parser.parse_args()
CNN_FACE_MODEL = 'data/mmod_human_face_detector.dat' # from http://dlib.net/files/mmod_human_face_detector.dat.bz2
def bbox_jitter(bbox_left, bbox_top, bbox_right, bbox_bottom):
cx = (bbox_right+bbox_left)/2.0
cy = (bbox_bottom+bbox_top)/2.0
scale = random.uniform(0.8, 1.2)
bbox_right = (bbox_right-cx)*scale + cx
bbox_left = (bbox_left-cx)*scale + cx
bbox_top = (bbox_top-cy)*scale + cy
bbox_bottom = (bbox_bottom-cy)*scale + cy
return bbox_left, bbox_top, bbox_right, bbox_bottom
def drawrect(drawcontext, xy, outline=None, width=0):
(x1, y1), (x2, y2) = xy
points = (x1, y1), (x2, y1), (x2, y2), (x1, y2), (x1, y1)
drawcontext.line(points, fill=outline, width=width)
def run(video_path, face_path, model_weight, jitter, vis, display_off, save_text):
# set up vis settings
red = Color("red")
colors = list(red.range_to(Color("green"),10))
font = ImageFont.truetype("data/arial.ttf", 40)
# set up video source
if video_path is None:
cap = cv2.VideoCapture(0)
video_path = 'live.avi'
else:
cap = cv2.VideoCapture(video_path)
# set up output file
if save_text:
outtext_name = os.path.basename(video_path).replace('.avi','_output.txt')
f = open(outtext_name, "w")
if vis:
outvis_name = os.path.basename(video_path).replace('.avi','_output.avi')
imwidth = int(cap.get(3)); imheight = int(cap.get(4))
outvid = cv2.VideoWriter(outvis_name,cv2.VideoWriter_fourcc('M','J','P','G'), cap.get(5), (imwidth,imheight))
# set up face detection mode
if face_path is None:
facemode = 'DLIB'
else:
facemode = 'GIVEN'
column_names = ['frame', 'left', 'top', 'right', 'bottom']
df = pd.read_csv(face_path, names=column_names, index_col=0)
df['left'] -= (df['right']-df['left'])*0.2
df['right'] += (df['right']-df['left'])*0.2
df['top'] -= (df['bottom']-df['top'])*0.1
df['bottom'] += (df['bottom']-df['top'])*0.1
df['left'] = df['left'].astype('int')
df['top'] = df['top'].astype('int')
df['right'] = df['right'].astype('int')
df['bottom'] = df['bottom'].astype('int')
if (cap.isOpened()== False):
print("Error opening video stream or file")
exit()
if facemode == 'DLIB':
cnn_face_detector = dlib.cnn_face_detection_model_v1(CNN_FACE_MODEL)
frame_cnt = 0
# set up data transformation
test_transforms = transforms.Compose([transforms.Resize(224), transforms.CenterCrop(224), transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
# load model weights
model = model_static(model_weight)
model_dict = model.state_dict()
snapshot = torch.load(model_weight)
model_dict.update(snapshot)
model.load_state_dict(model_dict)
model.cuda()
model.train(False)
# video reading loop
while(cap.isOpened()):
ret, frame = cap.read()
if ret == True:
height, width, channels = frame.shape
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame_cnt += 1
bbox = []
if facemode == 'DLIB':
dets = cnn_face_detector(frame, 1)
for d in dets:
l = d.rect.left()
r = d.rect.right()
t = d.rect.top()
b = d.rect.bottom()
# expand a bit
l -= (r-l)*0.2
r += (r-l)*0.2
t -= (b-t)*0.2
b += (b-t)*0.2
bbox.append([l,t,r,b])
elif facemode == 'GIVEN':
if frame_cnt in df.index:
bbox.append([df.loc[frame_cnt,'left'],df.loc[frame_cnt,'top'],df.loc[frame_cnt,'right'],df.loc[frame_cnt,'bottom']])
frame = Image.fromarray(frame)
for b in bbox:
face = frame.crop((b))
img = test_transforms(face)
img.unsqueeze_(0)
if jitter > 0:
for i in range(jitter):
bj_left, bj_top, bj_right, bj_bottom = bbox_jitter(b[0], b[1], b[2], b[3])
bj = [bj_left, bj_top, bj_right, bj_bottom]
facej = frame.crop((bj))
img_jittered = test_transforms(facej)
img_jittered.unsqueeze_(0)
img = torch.cat([img, img_jittered])
# forward pass
output = model(img.cuda())
if jitter > 0:
output = torch.mean(output, 0)
score = F.sigmoid(output).item()
coloridx = min(int(round(score*10)),9)
draw = ImageDraw.Draw(frame)
drawrect(draw, [(b[0], b[1]), (b[2], b[3])], outline=colors[coloridx].hex, width=5)
draw.text((b[0],b[3]), str(round(score,2)), fill=(255,255,255,128), font=font)
if save_text:
f.write("%d,%f\n"%(frame_cnt,score))
if not display_off:
frame = np.asarray(frame) # convert PIL image back to opencv format for faster display
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
cv2.imshow('',frame)
if vis:
outvid.write(frame)
key = cv2.waitKey(1) & 0xFF
if key == ord('q'):
break
else:
break
if vis:
outvid.release()
if save_text:
f.close()
cap.release()
print 'DONE!'
if __name__ == "__main__":
run(args.video, args.face, args.model_weight, args.jitter, args.save_vis, args.display_off, args.save_text)