-
Notifications
You must be signed in to change notification settings - Fork 0
177 lines (158 loc) · 5.92 KB
/
insar_timeseries.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
# n+1, n+2, n+3 pairs for a given burst + year
name: InSAR_Timeseries
run-name: Phase ${{ inputs.year }} ${{ inputs.burstId }} ${{ inputs.polarization }} ${{ inputs.looks }} ${{ inputs.npairs }}
on:
workflow_dispatch:
inputs:
burstId:
type: string
required: true
description: ESA Burst Identifier (RelativeObit, ID, Subswath)
default: '012_023790_IW1'
polarization:
type: choice
required: true
description: Polarization
default: 'VV'
options: ['VV', 'VH', 'HH']
looks:
type: choice
required: true
description: Range x Azimuth Looks
default: '20x4'
options: ['20x4','10x2','5x1']
year:
type: string
required: true
description: Year
default: '2024'
npairs:
type: choice
required: true
description: Number of Pairs per Reference
default: '3'
options: ['3','2','1']
# Must duplicate inputs for workflow_call (https://github.com/orgs/community/discussions/39357)
workflow_call:
inputs:
burstId:
type: string
required: true
polarization:
type: string
required: true
year:
type: string
required: true
looks:
type: string
required: true
npairs:
type: string
required: true
# Convert inputs to environment variables for all job steps
env:
burstId: ${{ inputs.burstId }}
Year: ${{ inputs.year }}
Polarization: ${{ inputs.polarization }}
Looks: ${{ inputs.looks }}
NPairs: ${{ inputs.npairs }}
jobs:
searchASF:
runs-on: ubuntu-latest
# Map a step output to a job output
outputs:
BURST_IDS: ${{ steps.asf-search.outputs.BURST_IDS }}
MATRIX: ${{ steps.asf-search.outputs.MATRIX_PARAMS_COMBINATIONS }}
defaults:
run:
shell: bash -el {0}
steps:
- name: Checkout Repository
uses: actions/checkout@v4
- name: Install Conda environment with Micromamba
uses: mamba-org/setup-micromamba@v1
with:
cache-environment: true
environment-file: environment.yml
# https://words.yuvi.in/post/python-in-github-actions/
- name: Search ASF for bursts
id: asf-search
shell: bash -el -c "python -u {0}"
run: |
import asf_search as asf
import fsspec
import geopandas as gpd
import json
import os
# Parse Workflow inputs from environment variables
START = int(os.environ['Year'])
END = START+1
POL = os.environ['Polarization']
FULLBURSTID = os.environ['burstId']
RELORB,BURSTID,SUBSWATH = FULLBURSTID.split('_')
print(RELORB,BURSTID,SUBSWATH)
# Get centroid of burst from database
url = 'https://github.com/relativeorbit/s1burstids/raw/main/burst_map_IW_000001_375887_brotli.parquet'
with fsspec.open(url) as file:
gfb = gpd.read_parquet(file,
filters=[('burst_id', '=', int(BURSTID)),
('subswath_name', '=', SUBSWATH)]
)
print(gfb)
# Search for SLCs
results = asf.search(platform=[asf.PLATFORM.SENTINEL1],
processingLevel=asf.PRODUCT_TYPE.SLC,
beamMode=asf.BEAMMODE.IW,
intersectsWith=gfb.iloc[0].geometry.centroid.wkt,
relativeOrbit=int(RELORB),
start=f"{START}-01-01",
end=f"{END}-03-01", #march to ensure we get some overlapping coverage for each year
)
gf = gpd.GeoDataFrame.from_features(results.geojson(), crs=4326)
print('Results:', len(gf))
# For case of frame overlap, ensure SLCs contain full burst
def get_overlap_area(gf, gfREF):
frame_area = gfREF.iloc[0].geometry.area
overlaps = gf.geometry.map(lambda x: x.intersection(gfREF.geometry.iloc[0]).area/frame_area)
return overlaps
gf['overlap'] = get_overlap_area(gf, gfb)
gf = gf.query('overlap >= 0.80').reset_index(drop=True)
# Sort chronological ascending
gf['datetime'] = gpd.pd.to_datetime(gf.startTime)
gf = gf.sort_values(by='datetime', ignore_index=True)
print('Number of Acquisitions: ', len(gf))
burstIDs = gf.sceneName.to_list()
print('\n'.join(burstIDs))
# Create Matrix Job Mapping (JSON Array)
idx_end_of_year = gf.index[gf.datetime.dt.year == START][-1]
pairs = []
for r in range(idx_end_of_year + 1):
for s in range(1, ${{ inputs.npairs }} + 1 ):
try:
ref = burstIDs[r]
sec = burstIDs[r+s]
shortname = f'{ref[17:25]}_{sec[17:25]}'
pairs.append({'reference': ref, 'secondary': sec, 'name':shortname})
except IndexError as e:
print(f'ASF Search did not return a n+{s} pair for {ref}')
matrixJSON = f'{{"include":{json.dumps(pairs)}}}'
print(f'Number of Interferograms: {len(pairs)}')
print(matrixJSON)
with open(os.environ['GITHUB_OUTPUT'], 'a') as f:
print(f'BURST_IDS={burstIDs}', file=f)
print(f'MATRIX_PARAMS_COMBINATIONS={matrixJSON}', file=f)
hyp3-isce2:
needs: searchASF
strategy:
matrix: ${{ fromJson(needs.searchASF.outputs.MATRIX) }}
uses: ./.github/workflows/insar_pair.yml
with:
reference: ${{ matrix.reference }}
secondary: ${{ matrix.secondary }}
burstId: ${{ inputs.burstId }}
year: ${{ matrix.year }}
polarization: ${{ inputs.polarization }}
looks: ${{ inputs.looks }}
jobname: ${{ matrix.name }}
secrets: inherit