forked from williamfiset/Algorithms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBinarySearch.java
86 lines (66 loc) · 2.84 KB
/
BinarySearch.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
/**
* If ever you need to do a binary search on discrete values you should use Java's binary search:
* java.util.Arrays.binarySearch(int[] ar, int key) However, in the event that you need to do a
* binary search on the real numbers you can resort to this implementation.
*
* <p>Time Complexity: O(log(high-low))
*
* @author William Fiset, [email protected]
*/
package com.williamfiset.algorithms.search;
import java.util.function.DoubleFunction;
public class BinarySearch {
// Comparing double values directly is bad practice.
// Using a small epsilon value is the preferred approach
private static final double EPS = 0.00000001;
public static double binarySearch(
double lo, double hi, double target, DoubleFunction<Double> function) {
if (hi <= lo) throw new IllegalArgumentException("hi should be greater than lo");
double mid;
do {
// Find the middle point
mid = (hi + lo) / 2.0;
// Compute the value of our function for the middle point
// Note that f can be any function not just the square root function
double value = function.apply(mid);
if (value > target) {
hi = mid;
} else {
lo = mid;
}
} while ((hi - lo) > EPS);
return mid;
}
public static void main(String[] args) {
// EXAMPLE #1
// Suppose we want to know what the square root of 875 is and
// we have no knowledge of the wonderful Math.sqrt() function.
// One approach is to use a binary search because we know that
// the square root of 875 is bounded in the region: [0, 875].
//
// We can define our function to be f(x) = x*x and our target
// value to be 875. As we binary search on f(x) approaching
// successively closer values of 875 we get better and better
// values of x (the square root of 875)
double lo = 0.0;
double hi = 875.0;
double target = 875.0;
DoubleFunction<Double> function = (x) -> (x * x);
double sqrtVal = binarySearch(lo, hi, target, function);
System.out.printf("sqrt(%.2f) = %.5f, x^2 = %.5f\n", target, sqrtVal, (sqrtVal * sqrtVal));
// EXAMPLE #2
// Suppose we want to find the radius of a sphere with volume 100m^3 using
// a binary search. We know that for a sphere the volume is given by
// V = (4/3)*pi*r^3, so all we have to do is binary search on the radius.
//
// Note: this is a silly example because you could just solve for r, but it
// shows how binary search can be a powerful technique.
double radiusLowerBound = 0;
double radiusUpperBound = 1000;
double volume = 100.0;
DoubleFunction<Double> sphereVolumeFunction = (r) -> ((4.0 / 3.0) * Math.PI * r * r * r);
double sphereRadius =
binarySearch(radiusLowerBound, radiusUpperBound, volume, sphereVolumeFunction);
System.out.printf("Sphere radius = %.5fm\n", sphereRadius);
}
}