-
Notifications
You must be signed in to change notification settings - Fork 1
/
agile-reproducibility-reviews.Rmd
1054 lines (850 loc) · 41.2 KB
/
agile-reproducibility-reviews.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
---
title: "Reproducibility Review AGILE 2024"
author: "Daniel Nüst, Carlos Granell"
date: "`r format(Sys.time(), '%d %B, %Y')`"
output:
html_document:
toc: yes
self_contained: true
params:
private_info: yes
---
## Introduction
This document includes scripts and text analysis to support the reproducibility review at the [AGILE conference 2024](https://agile-gi.eu/conference-2024), which is organised by the Urban Big Data Centre at University of Glasgow, UK.
Find out more online [about reproducible publications at AGILE](https://doi.org/10.17605/OSF.IO/PHMCE) and the [review process](https://osf.io/eg4qx/), and visit the Reproducible AGILE website: [https://reproducible-agile.github.io/](https://reproducible-agile.github.io/).
The code of this document is published on GitHub in the repository [reproducible-agile/reviews-2024](https://github.com/reproducible-agile/reviews-2024), where you can inspect the R code in the file `agile-reproducibility-reviews.Rmd` and find instructions for reproducing the workflow.
The [report parameter](https://bookdown.org/yihui/rmarkdown/parameterized-reports.html) `private_info` can be set to `yes` to show information which cannot be shared publicly, such as author names, titles, or excerpts of not accepted submissions, and to upload review files to private shares, which requires authentication.
```{r load_libraries, message=FALSE, warning=FALSE, include=FALSE}
library("pdftools")
library("stringr")
library("tidyverse")
library("tidytext")
library("wordcloud")
library("RColorBrewer")
library("here")
library("quanteda")
library("googledrive")
library("googlesheets4")
library("kableExtra")
library("httr")
library("xml2")
library("rvest")
library("tidyr")
library("ggplot2")
library("httr")
library("glue")
library("tabulizer")
```
```{r seed, echo=FALSE}
set.seed(27) # 27th AGILE!
```
```{r easychair_login, echo=params$private_info}
if(is.na(Sys.getenv("easychair_username", unset = NA)) || is.na(Sys.getenv("easychair_password", unset = NA))) {
stop("Provide login details for EasyChair (e.g., in a file `.Renviron` - make sure to adjust read persmissions so that no user but you/root may access the file!) in environment variables",
"`easychair_username` and `easychair_password`")
}
# with help from https://github.com/kaytwo/easierchair/blob/master/scrape_easychair.py
# https://stackoverflow.com/questions/23202522/r-httr-post-request-for-signing-in
login_response <- NULL
if(is.null(login_response)) {
login_response <- httr::POST(url = "https://easychair.org/account/verify",
body = list(name = Sys.getenv("easychair_username"),
password = Sys.getenv("easychair_password")),
encode = "form")
}
```
## Submitted papers
```{r local_paths, echo=FALSE}
submissions_path <- here::here("submissions")
dir.create(submissions_path, recursive = TRUE, showWarnings = FALSE)
review_files_path <- here::here("review-material")
dir.create(review_files_path, recursive = TRUE, showWarnings = FALSE)
cr_path <- here::here("camera-ready-full-papers")
```
```{r conference_id, echo=FALSE}
# get this from the URL when logged into EasyChair, e.g., https://easychair.org/conferences/submissions?a=32069676
conference_id <- "32069676"
```
### Submission metadata
Retrieve all information about submissions from the EasyChair submissions system.
The full submission information is not included in the public rendering of this report.
Make sure that the shown columns in the submission table include the columns required in the code below.
```{r submissions, echo=FALSE}
submission_page <- httr::GET(url = paste0("https://easychair.org/conferences/submissions?a=", conference_id))
submission_html <- xml2::read_html(submission_page)
submission_table_full <- html_node(submission_html, "#ec\\:table1")
# remove first header row and set names manually later, because the vertical table headers are miages anyway
xml_remove(xml_child(html_node(submission_table_full, "thead")))
submission_table <- rvest::html_table(x = submission_table_full,
fill = TRUE)
names(submission_table) <- c("id", "authors", "title",
"information", "paper", "assigment", "update"
, "NN", "NN"
,"type"
,"time"
,"decision"
)
#warning("manually adding submission type, table does not have it this year")
#submission_table$type <- c(rep("Full-paper submission", times = 26), rep("Short-paper submission", times = nrow(submission_table) - 26))
submission_table$id <- str_pad(submission_table$id, width = 3, side = "left", pad = "0")
submission_table <- submission_table %>%
mutate_if(is.character, list(~na_if(.,"")))
links <- html_nodes(submission_table_full, "a[href]") %>% html_attr("href")
submission_table$information <- paste("https://easychair.org",
links[str_detect(links, pattern = "submission_view")], sep = "")
submission_table$submission_id <- str_match(submission_table$information, pattern = "submission=([[:digit:]]+)")[,2]
submission_table$paper <- paste("https://easychair.org",
sapply(submission_table$submission_id, function(x) { links[str_detect(links, pattern = paste0(".*download.*", x))] }),
sep = "")
for (i in 1:nrow(submission_table)) {
if(!is.na(str_match(submission_table[i,]$paper, "character\\(0\\)"))) {
submission_table[i,]$paper <- NA
}
}
#warnings("removing submissions 1 and 2, they are tests this year")
#submission_table <- submission_table[3:nrow(submission_table),]
submission_table %>%
group_by(type) %>%
tally() %>%
kable() %>%
kable_styling("striped")
```
```{r submissions_full_metadata, echo=FALSE}
if(params$private_info) {
submission_table %>%
arrange(id) %>%
kable() %>%
kable_styling("striped") %>%
scroll_box(height = "480px")
}
```
### Load texts
The paper PDFs are downloaded from EasyChair directly using the links provided in the submission overview table.
```{r download_easychair, echo=FALSE}
for (i in 1:nrow(submission_table)) {
if(is.na(submission_table[i,]$paper)) {
cat("No paper URL for ", i, "\n")
next
}
current <- submission_table[i,]
filename <- file.path(submissions_path, paste0(current$id, ".pdf"))
if(!file.exists(filename)) {
httr::GET(url = current$paper,
httr::write_disk(path = filename,
overwrite = TRUE))
}
}
submission_files <- dir(path = submissions_path, pattern = ".pdf$", full.names = TRUE)
submission_table <- left_join(submission_table,
tibble("id" = str_match(submission_files,
pattern = "([:digit:]*)\\.pdf")[,2],
"file" = submission_files),
by = "id")
submission_table
```
The text is extracted from PDFs and it is processed to create a [tidy](https://www.jstatsoft.org/article/view/v059i10) data structure without [stop words](https://en.wikipedia.org/wiki/Stop_words).
The stop words include specific words, which might be included in the page header, abbreviations, and terms particular to scientific articles, such as `figure`.
```{r tidy_data, echo=FALSE}
texts <- list()
for (i in 1:nrow(submission_table)) {
current <- submission_table[i,]
cat("Reading ", current$file, "\n")
the_text <- NA
if(!is.na(current$file)) {
tryCatch({
the_text <- tabulizer::extract_text(current$file)
the_text <- str_c(the_text, collapse = TRUE)
},
error = function(e) { warning("Text from ", current$id, " could not be loaded: ", toString(e))}
)
} else {
warning("No text available for paper ", current$id, " ", current$title)
}
names(the_text) <- current$id
texts <- c(texts, the_text)
}
pages <- lapply(submission_table$file, function(f) {
pages <- NA
if(!is.na(f)) {
tryCatch({
pages <- pdftools::pdf_info(f)$pages
},
error = function(e) { warning("Could not read pages from ", current$id, " because: ", toString(e))}
)
}
return(pages)
})
tidy_texts <- tibble(id = submission_table$id,
path = submission_table$file,
type = submission_table$type,
submission_table$type,
text = unlist(texts),
pages = pages)
# create a table of all words
all_words <- tidy_texts %>%
select(id,
type,
text) %>%
unnest_tokens(word, text)
# remove stop words and remove numbers
my_stop_words <- tibble(
word = c(
"et",
"al",
"fig",
"e.g",
"i.e",
"http",
"https",
"doi.org",
"ing",
"pp",
"figure",
"based",
"conference",
"university",
"table"
),
lexicon = "agile"
)
all_stop_words <- stop_words %>%
bind_rows(my_stop_words)
suppressWarnings({
no_numbers <- all_words %>%
filter(is.na(as.numeric(word)))
})
no_stop_words <- no_numbers %>%
anti_join(all_stop_words, by = "word")
total_words = nrow(all_words)
after_cleanup = nrow(no_stop_words)
```
About `r round(after_cleanup/total_words * 100, digits = 0)` % of the words are considered stop words.
The following table shows how many words and non-stop words each document has, sorted by number of non-stop words.
The `id` is built from the file name plus a prefix:
for full papers, it is the left-padded submission number and the prefix `fp_`;
<!--for short papers and posters, it is the submission number included in the file name and the prefixes `sp_` and `po_` respectively.-->
```{r stop_words, echo=FALSE, message=FALSE, warning=FALSE}
nsw_per_doc <- no_stop_words %>%
group_by(id) %>%
summarise(words = n()) %>%
rename(`non-stop words` = words)
words_per_doc <- all_words %>%
group_by(id, type) %>%
summarise(words = n())
type_counts_totals <- submission_table %>%
group_by(type) %>%
tally()
type_counts_totals$type <- c(#"Full-paper submission"
#, "Poster submission"
#, "Short-paper submission"
"Full paper"
, "Poster"
, "Short paper"
)
type_counts_totals <- paste(
paste(type_counts_totals$type, type_counts_totals$n, sep = ":"),
collapse = "|")
words_joined <- as.data.frame(inner_join(words_per_doc, nsw_per_doc))
summary_row <- tibble(id = "Total",
type = type_counts_totals,
words = sum(words_per_doc$words),
`non-stop words` = sum(nsw_per_doc$`non-stop words`))
if(!params$private_info) {
words_joined$id <- NULL
summary_row$id <- NULL
}
bind_rows(words_joined, summary_row) %>%
kable() %>%
kable_styling("striped", full_width = FALSE) %>%
row_spec(nrow(words_joined) + 1, bold = TRUE) %>%
scroll_box(height = "240px")
```
### Which papers include a "Data and Software Availability" section?
According the the [AGILE Reproducible Paper Guidelines](https://osf.io/c8gtq/), all authors must add a _Data and Software Availability_ section to their paper.
This detection naturally relies on the loaded texts _with_ stop words.
```{r dasa_section, echo=FALSE}
dasa_pattern <- regex("(Data and Software Availability|Software and Data Availability)", ignore_case = TRUE)
tidy_texts <- tidy_texts %>%
mutate(has_dasa = str_detect(tidy_texts$text, pattern = dasa_pattern))
dasa_count <- tidy_texts %>% filter(has_dasa) %>% nrow()
excerpt_length <- 800
dasa_texts <- tidy_texts %>%
filter(has_dasa) %>%
mutate(dasa_start = str_locate(.data$text, pattern = dasa_pattern)[,1]) %>%
mutate(dasa_text = str_sub(.data$text, start = dasa_start, end = dasa_start + excerpt_length)) %>%
select(id, type, dasa_text)
```
`r dasa_count` papers have the section in question, that is `r round(dasa_count/nrow(submission_table) * 100)` % of all submissions.
Here are the statistics per submission type:
```{r dasa_statistics, echo=FALSE}
dasa_stats <- tidy_texts %>%
filter(has_dasa) %>%
group_by(type, .drop = FALSE) %>%
summarise(n = n())
dasa_stats <- left_join(tidy_texts %>%
group_by(type, .drop = FALSE) %>%
summarise(submissions = n()),
dasa_stats,
by = "type")
dasa_stats <- dasa_stats %>%
mutate(`%` = round(n/submissions*100, digits = 1))
dasa_stats %>%
arrange(desc(n)) %>%
rename(`with DASA` = n) %>%
kable() %>%
kable_styling("striped")
```
`r if(!params$private_info) {"<!--"}`
The following table shows the first `r excerpt_length` characters of these sections.
`r if(!params$private_info) {"-->"}`
```{r dasa_section_table_md, echo=FALSE, eval=params$private_info}
if(params$private_info) {
dasa_texts %>%
arrange(id) %>%
kable() %>%
kable_styling("striped") %>%
scroll_box(height = "320px")
}
```
### Wordstem analysis
```{r wordstem_data, include=FALSE}
wordstems <- no_stop_words %>%
mutate(wordstem = quanteda::char_wordstem(
stringr::str_trim(no_stop_words$word)))
countPapersUsingWordstem <- function(the_word) {
sapply(the_word, function(w) {
wordstems %>%
filter(wordstem == w) %>%
group_by(id) %>%
count %>%
nrow
})
}
top_wordstems <- wordstems %>%
group_by(wordstem) %>%
tally %>%
arrange(desc(n)) %>%
head(20) %>%
mutate(`# papers` = countPapersUsingWordstem(wordstem)) %>%
mutate(`% papers` = round(countPapersUsingWordstem(wordstem)/nrow(submission_table) * 100)) %>%
add_column(place = c(1:nrow(.)), .before = 0)
minimum_occurence <- 100
cloud_wordstems <- wordstems %>%
group_by(wordstem) %>%
tally %>%
filter(n >= minimum_occurence) %>%
arrange(desc(n))
```
For the following table and figure, the word stems were extracted based on a stemming algorithm from package [`quanteda`](https://cran.r-project.org/package=quanteda).
The word cloud is based on `r length(unique(cloud_wordstems$wordstem))` unique words occuring each at least `r minimum_occurence` times, all in all occuring `r sum(cloud_wordstems$n)` times which comprises `r round(sum(cloud_wordstems$n)/ nrow(no_stop_words) * 100)` % of non-stop words.
```{r top_wordstems, echo=FALSE}
top_wordstems %>%
kable() %>%
kable_styling("striped") %>%
scroll_box(height = "320px")
```
```{r wordstemcloud, dpi=150, echo=FALSE, fig.cap="Wordstem cloud of AGILE 2023 full paper submissions"}
wordcloud(cloud_wordstems$wordstem, cloud_wordstems$n,
max.words = 220, # manually tested and set
random.order = FALSE,
fixed.asp = FALSE,
rot.per = 0,
color = brewer.pal(8,"Dark2"))
```
## Reproducible research-related keywords of all submissions
The following tables lists how often terms related to reproducible research appear in each document.
The detection matches full words using regex option `\b`.
- reproduc (`reproduc.*`, reproducibility, reproducible, reproduce, reproduction)
- replic (`replicat.*`, i.e. replication, replicate)
- repeatab (`repeatab.*`, i.e. repeatability, repeatable)
- software
- (pseudo) code/script(s) [column name _code_]
- algorithm (`algorithm.*`, i.e. algorithms, algorithmic)
- process (`process.*`, i.e. processing, processes, preprocessing)
- data (`data.*`, i.e. dataset(s), database(s))
- result(s) (`results?`)
- repository(ies) (`repositor(y|ies)`)
- collaboration platforms (`git(hub|lab)`)
The following table highlights papers with the Data and Software Availability Section with italic font and grey background.
The entries are sorted by descending sum of all keywords per paper.
```{r keywords_per_paper, echo=FALSE, warning=FALSE}
tidy_texts_lower <- str_to_lower(tidy_texts$text)
word_counts <- tibble(
id = tidy_texts$id,
type = tidy_texts$type,
DASA = tidy_texts$has_dasa,
`reproduc..` = str_count(tidy_texts_lower, "\\breproduc.*\\b"),
`replic..` = str_count(tidy_texts_lower, "\\breplicat.*\\b"),
`repeatab..` = str_count(tidy_texts_lower, "\\brepeatab.*\\b"),
`code` = str_count(tidy_texts_lower,
"(\\bcode\\b|\\bscript.*\\b|\\bpseudo\ code\\b)"),
software = str_count(tidy_texts_lower, "\\bsoftware\\b"),
`algorithm(s)` = str_count(tidy_texts_lower, "\\balgorithm.*\\b"),
`(pre)process..` = str_count(tidy_texts_lower,
"(\\bprocess.*\\b|\\bpreprocess.*\\b|\\bpre-process.*\\b)"),
`data.*` = str_count(tidy_texts_lower, "\\bdata.*\\b"),
`result(s)` = str_count(tidy_texts_lower, "\\bresults?\\b"),
`repository/ies` = str_count(tidy_texts_lower, "\\brepositor(y|ies)\\b"),
`github/lab` = str_count(tidy_texts_lower, "\\bgit(hub|lab)\\b")
)
# https://stackoverflow.com/a/32827260/261210
sumColsInARow <- function(df, list_of_cols, new_col) {
df %>%
mutate_(.dots = ~Reduce(`+`, .[list_of_cols])) %>%
setNames(c(names(df), new_col))
}
word_counts_sums <- sumColsInARow(
word_counts,
names(word_counts)[!(names(word_counts) %in% c("id", "type"))], "all") %>%
arrange(desc(all))
DASA_counts <- word_counts_sums %>%
group_by(DASA) %>%
tally()
word_counts_sums_total <- word_counts_sums %>%
summarise_if(is.numeric, funs(sum)) %>%
add_column(id = "Total",
type = "",
DASA = paste0("T:", DASA_counts[2,2], "|F:", DASA_counts[1,2]),
.before = 0)
word_counts_sums <- rbind(word_counts_sums, word_counts_sums_total)
if(!params$private_info) {
word_counts_sums$id <- NULL
}
word_counts_sums %>%
kable() %>%
kable_styling("striped", font_size = 12, bootstrap_options = "condensed") %>%
row_spec(0, font_size = "x-small", bold = T) %>%
row_spec(word_counts_sums %>% rownames_to_column() %>%
filter(DASA == TRUE, .preserve = TRUE) %>%
select(rowname) %>% unlist() %>% as.numeric(),
italic = TRUE, background = "#eeeeee") %>%
row_spec(nrow(word_counts_sums), bold = T) %>%
scroll_box(height = "480px")
```
------
## Accepted full papers
### Full paper decisions
There is "accept" and "conditionally accept" (after second review)!
```{r scrape_accepted, echo=FALSE, eval=params$private_info}
submission_table %>%
filter(type == "Full paper") %>%
group_by(decision) %>%
summarise(count = n()) %>%
kable() %>%
kable_styling("striped")
```
```{r compile review data, echo=FALSE, eval=params$private_info}
#page <- httr::GET(url = "https://easychair.org/conferences/status?a=26091618")
#review_status_page <- xml2::read_html(page)
#review_table <- rvest::html_table(html_nodes(review_status_page, ".paperTable")[[1]], header = TRUE)
#names(review_table)[4] <- "average"
#names(review_table)[1] <- "id"
#review_table$id <- str_pad(review_table$id, width = 3, side = "left", pad = "0")
#
## IMPORTANT: "Show paper authors" must be _un_ticked for the following code to work
#review_table <- review_table %>%
# tidyr::separate(col = title, into = c("authors","title"), sep = "\\.+?", extra = "merge")
#
## the tr element of the review table has the internal paper ID in format "r4789577"
#review_table$internal_id <- sapply(X = html_nodes(review_status_page, css = ".paperTable tr[id]"), FUN = function(row) {
# substr(html_attr(row, "id"), 2, 999)
#})
review_data <- left_join(submission_table, dasa_texts %>% select(-type),
by = "id")
accepted_papers <- review_data %>%
dplyr::filter(decision == "ACCEPT" | decision == "accept?") %>%
filter(type == "Full paper") %>%
arrange(id) %>%
kable() %>%
kable_styling("striped") %>%
scroll_box(height = "480px")
if(params$private_info) {
accepted_papers
}
```
`r if(!params$private_info) {"<!--"}`
### Which accepted papers do still not hava a DASA section
```{r accepted_no_dasa, eval=params$private_info}
review_data %>%
filter(type == "Full paper") %>%
dplyr::filter(decision == "ACCEPT", is.na(`dasa_text`)) %>%
select(id, title, authors)
```
### Which papers have a link to the reproducibility review
_Does not work reliably yet._
**_Furthermore, this is not critical anymore because Copernicus now adds a reference to the reproducibility reports._**
These are the papers where the reproducibility review resulted in at least partially successful reproduction.
```{r report_links, eval=params$private_info}
# hope that at least on of the phrases is not stretched across multiple spaces
report_pattern <- regex("(AGILE[:space:]reproducibility[:space:]review|reproducibility[:space:]report)", ignore_case = TRUE)
tidy_texts <- tidy_texts %>%
mutate(has_report = str_detect(tidy_texts$text, pattern = report_pattern))
report_count <- tidy_texts %>% filter(has_report) %>% nrow()
excerpt_length <- 300
report_texts <- tidy_texts %>%
filter(has_report) %>%
mutate(report_start = str_locate(.data$text, pattern = report_pattern)[,1]) %>%
mutate(report_text = str_sub(.data$text, start = report_start, end = report_start + excerpt_length)) %>%
select(id, type, report_text)
report_texts %>%
arrange(id) %>%
kable() %>%
kable_styling("striped") %>%
scroll_box(height = "320px")
```
## Reproducibility reviews
### About
The assignment of reviews is done via a privately shared spreadsheet, to handle potential non-public comments.
The main outcome of the reviews is a _report_, which is published in individual OSF projects as components of the [OSF project for the reproducibility reviews 2023](https://osf.io/2k56f/).
The report should be based on a template from this repository in [`report-template`](report-template).
### Prepare data for reviewers
#### Overview and files
Reproducibility reviewers (might not) have access to the submission and reviews through EasyChair.
The following snippets help to create a shared Google Spreadsheet to manage the status of reproductions.
The spreadsheet is privately shared at <https://docs.google.com/spreadsheets/d/16DuExJqtp_fI3FLlOWOVRZQXyOYU1W3FCm9dgLlfRqk/>.
```{r upload_settings}
review_data_csv_file <- file.path(review_files_path, paste0("review_data_", lubridate::year(lubridate::now()), ".csv"))
```
1. Write paper metadata (ID, decision, title) to a CSV file `r review_data_csv_file`
1. **Manually** [import the paper metadata into the spreadsheet](https://www.tillerhq.com/how-to-import-csv-into-a-google-spreadsheet/) (Select cell `A1` then "File" > "Import" > "Import File" > "My Drive" then search for `review_data` and find `review_data.csv` then select the file > "Replace data at selected cell" and click "Import data")
```{r accepted_fp_files_download_easychair, echo=FALSE, eval=params$private_info}
review_files <- review_data %>%
filter(type == "Full paper") %>%
dplyr::filter(decision == "ACCEPT") %>%
select(id, submission_id, decision, title, file, paper)
# first, re-download all accepted full paper PDFs to make sure we have latest copies
for (i in 1:nrow(review_files)) {
current <- review_files[i,]
filename <- file.path(review_files_path, paste0(current$id, ".pdf"))
httr::GET(url = current$paper,
httr::write_disk(path = filename,
overwrite = TRUE))
}
```
```{r update_camera_ready_file_paths, echo=FALSE, eval=params$private_info}
# Use this chunk if camera ready files are not managed via EasyChair
review_files <- review_data %>%
filter(type == "Full paper") %>%
dplyr::filter(decision == "ACCEPT") %>%
dplyr::mutate(file = stringr::str_replace(.$file, pattern = "submissions", replacement = "camera-ready-full-papers")) %>%
select(id, submission_id, decision, authors, title, file, paper)
# copy camera ready files to upload directory
for (i in 1:nrow(review_files)) {
current <- review_files[i,]
file.copy(from = file.path(cr_path, paste0(current$id, ".pdf")),
to = file.path(review_files_path, paste0(current$id, ".pdf")))
}
```
```{r review_data_csv, echo=FALSE, eval=params$private_info}
readr::write_csv(review_files %>%
select(ID = id, Decision = decision, Title = title),
file = review_data_csv_file,
append = FALSE)
```
#### Reviewer comments
```{r reviewer_comments, echo=FALSE, eval=params$private_info}
# get review contents for each paper
# Example page: https://easychair.org/conferences/submission_reviews?a=26091618;submission=5333543
retrieve_review <- function(id, submission_id) {
url <- parse_url("https://easychair.org/conferences/submission_reviews")
url$query <- list(submission = submission_id, a = conference_id)
response <- httr::GET(url = build_url(url))
content <- content(response)
page_title <- as.character(
xml_contents(
html_node(
content(response), "title")))
if(grepl("Log in", page_title))
stop("You must (re)login to EasyChair")
# check if id matches
title_id <- str_pad(str_extract(page_title,
"[[:digit:]]"),
width = 3, side = "left", pad = "0")
cat(id, " -- ", title_id, "\n")
if(is.na(id) || is.na(title_id)) {
warning(paste("Ids are both NA for submission", submission_id), "\n")
return(NA)
}
if(id != title_id)
warning(paste("Ids mismatch, id: ", id, " id in reponse: ", title_id), "\n")
review_doc <- xml_new_root(xml_dtd(name = "html", external_id = "-//W3C//DTD XHTML 1.0 Transitional//EN", system_id = "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"))
review_head <- xml2::xml_add_child(review_doc, "head")
review_style <- xml2::xml_add_child(review_head, "style")
xml_text(review_style) <- "
table, th, td {
border: 1px solid black;
padding: 5px;
}
table {
margin-bottom: 20px;
}"
review_body <- xml2::xml_add_child(review_doc, "body")
xml2::xml_add_child(review_body,
xml2::xml_find_first(content,
xpath = "//h3[contains(., 'Submission')]/following-sibling::div"))
# remove missing reviewer name(s)
xml2::xml_replace(xml2::xml_find_all(review_body,
xpath = "//td[starts-with(., 'Missing')]/following-sibling::td"),
xml2::xml_comment("anonymised"))
review_content <- xml2::xml_find_all(content,
xpath = "//h3[starts-with(., 'Reviews')]/following-sibling::div")
if(length(review_content) > 0) {
for (i in c(1:length(review_content))) {
# remove PC member name
xml2::xml_replace(xml2::xml_find_all(review_content,
xpath = "//td[starts-with(., 'PC')]/following-sibling::td"),
xml2::xml_comment("anonymised"))
xml2::xml_add_child(review_body, review_content[[i]])
}
} else {
xml2::xml_add_child(review_body, xml2::read_xml("<strong>No reviews available yet.</strong>"))
}
reviews_html_path <- file.path(review_files_path, paste0(id, "_reviews.html"))
xml2::write_html(review_doc, reviews_html_path)
reviews_html_path
}
#retrieve_review(review_files[17,]$id, review_files[17,]$submission_id)
for(i in c(1:nrow(review_files))) {
retrieve_review(review_files[i,]$id, review_files[i,]$submission_id)
}
```
#### Author contacts
```{r author_contacts, echo=FALSE, eval=params$private_info}
# Example page: https://easychair.org/conferences/submission_view?a=26091618;submission=5333543
retrieve_authors <- function(id, submission_id, authors, title) {
url <- parse_url("https://easychair.org/conferences/submission_view")
url$query <- list(submission = submission_id, a = conference_id)
response <- httr::GET(url = build_url(url))
content <- content(response)
page_title <- as.character(
xml_contents(
html_node(
content(response), "title")))
if(grepl("Log in", page_title))
stop("You must (re)login to EasyChair")
# check if id matches
title_id <- str_pad(str_extract(page_title,
"[[:digit:]]"),
width = 3, side = "left", pad = "0")
cat(id, " -- ", title_id, "\n")
if(is.na(id) || is.na(title_id)) {
warning(paste("Ids are both NA for submission", submission_id), "\n")
return(NA)
}
if(id != title_id)
warning(paste("Ids mismatch, id: ", id, " id in reponse: ", title_id), "\n")
authors_doc <- xml_new_root("html")
authors_head <- xml2::xml_add_child(authors_doc, "head")
authors_style <- xml2::xml_add_child(authors_head, "style")
xml_text(authors_style) <- "
table, th, td {
border: 1px solid black;
padding: 5px;
}
table {
margin-bottom: 20px;
}
.pagetitle {
font-size: 20px;
padding: 0px 0px 20px 0px;
}
.contact {
font-size: 20px;
padding: 10px;
border: 3px solid red;
}"
authors_body <- xml2::xml_add_child(authors_doc, "body")
xml2::xml_add_child(authors_body,
xml2::xml_find_first(content,
xpath = "//div[@class='pagetitle']"))
xml2::xml_add_child(authors_body,
xml2::xml_find_first(content,
xpath = "//table[@id='ec:table2']"))
# make clickable email links and extract author names
authors_table <- xml2::xml_find_all(authors_body, xpath = "//tr[@class='green']")
names <- c()
emails <- c()
for (a in authors_table) {
cells <- xml2::xml_children(a)
names <- c(names, paste(xml2::xml_text(cells[[1]]),
xml2::xml_text(cells[[2]]))
)
emails <- c(emails, xml2::xml_text(cells[[3]]))
}
contact <- xml2::xml_add_child(authors_body, "div")
xml2::xml_set_attr(contact, "class", "contact")
names_xml <- xml2::xml_add_child(contact, "div")
#xml2::xml_text(names_xml) <- glue::glue_collapse(x = names, sep = ",", last = " and ")
xml2::xml_text(names_xml) <- authors
link_xml <- xml2::xml_add_child(xml2::xml_add_child(contact, "div"), "a")
xml2::xml_set_attr(link_xml, "href", paste0(
"mailto:",
glue::glue_collapse(x = emails, sep = ";"),
"?subject=AGILE conference reproducibility review for submission ",
id,
"&body=Dear ", authors, ",",
"%0D%0A%0D%0AYour submission '", title, "'"
))
xml2::xml_text(link_xml) <- "Send email to authors (CC reproducibility chair)"
authors_html_path <- file.path(review_files_path, paste0(id, "_authors.html"))
xml2::write_html(authors_doc, authors_html_path, encoding = "ISO-8859-1")
authors_html_path
}
#test_id <- 17
#retrieve_authors(review_files[test_id,]$id, review_files[test_id,]$submission_id, review_files[test_id,]$authors, review_files[test_id,]$title)
for(i in c(1:nrow(review_files))) {
retrieve_authors(review_files[i,]$id, review_files[i,]$submission_id, review_files[i,]$authors, review_files[i,]$title)
}
```
#### Upload submissions, reviews, and author contacts, to share
```{r review_files_upload_to_share, echo=FALSE, eval=params$private_info}
if (params$private_info) {
# put accepted full papers to private share
library("googledrive")
googledrive::drive_auth(use_oob = TRUE)
submissions_and_reviews <- "https://drive.google.com/drive/folders/1ghOSXTD6RzgRPd21-sK482pWrsHU1Ors"
# upload review data file for manual import (see above)
googledrive::drive_put(media = review_data_csv_file,
name = basename(review_data_csv_file),
path = submissions_and_reviews)
# upload submission files
sapply(list.files(review_files_path, pattern = "pdf", full.names = TRUE), function(the_file) {
googledrive::drive_put(media = the_file,
name = basename(the_file),
path = submissions_and_reviews)
})
# upload reviewe and contact information
sapply(list.files(review_files_path, pattern = "reviews", full.names = TRUE), function(the_file) {
googledrive::drive_put(media = the_file,
name = basename(the_file),
path = submissions_and_reviews)
})
sapply(list.files(review_files_path, pattern = "authors", full.names = TRUE), function(the_file) {
googledrive::drive_put(media = the_file,
name = basename(the_file),
path = submissions_and_reviews)
})
}
```
### Prepare CSV with titles and DOIs for publisher
```{r csv_for_publisher}
if(params$private_info) {
googlesheets4::range_read(
ss = "https://docs.google.com/spreadsheets/d/16DuExJqtp_fI3FLlOWOVRZQXyOYU1W3FCm9dgLlfRqk",
range = "review_data!A:F"
) %>%
select(`ID`, `Title`, `Report DOI`) %>%
filter(!is.na(`Report DOI`)) %>%
write.csv(paste("AGILE-Reproducibility-Review", lubridate::year(lubridate::now()), "_report-DOIs.csv"), row.names = FALSE)
}
```
`r if(!params$private_info) {"-->"}`
### Reproducibility reviewer instructions
1. Familiarise yourself with the [AGILE Reproducibility Review Process](https://docs.google.com/document/d/1JHCQV7GP3YkKwp0Nii3dt3p3Y45hU56Xz2cr-xJVz34/edit#heading=h.oheeg2s92zdm); the following steps are just tl;dr version
2. Take a look at the [review report template](https://github.com/reproducible-agile/reviews-2024/blob/master/report-template/reproreview-template.Rmd) - even if you're not using it, it gives you guidance
3. Go to the [Discoure forum discussion for reproducibility reviewers](https://discourse.agile-online.org/c/repro-review-2023/9) and find your assignments
4. Conduct your reproducibility review and write the report
- Don't forget to take a look at the scientific reviews for comments on reproducibility; do _not_ worry about the science or read the full paper, unless it really interests you
- Check the authors and their affiliations of the submission - is there a relation (e.g., former colleague, current supervisor) that may be seen as inappropriate for you as a reproducibility reviewer? Is there a conflict of interest? If so, please contact the reproducibility chair, and ask in the Discourse forum if another reproducibility reviewer would be available to switch assignments
- If code is available on GitHub/Lab, please fork the project into the [Reproducible AGILE organisation](https://github.com/reproducible-agile/) respectively the [GitLab subgroup "reviews"](https://gitlab.com/reproducible-agile/reviews) and immediately "archive" the project so that it becomes read-only ([instructions GitHub](https://docs.github.com/en/github/creating-cloning-and-archiving-repositories/about-archiving-repositories), [instructions for GitLab](https://docs.gitlab.com/ee/user/project/settings/#archiving-a-project)); ask Daniel to get the permissions for the organisations
- If need be, limit the review scope, e.g. reproduce only a specific figure; the reproducibility review should not take you longer (not counting computation time) than a scientific review, and even computation times should not expand longer than a working day
5. Send the report to the original authors of the paper and add the reproducibility chair in CC, see template below;
7. Add a new component to the [OSF project for 2024 reproducibility reviews](https://osf.io/qvr4s/)
- Use the European storage location, "Frankfurt"
- Name the component `Reproducibility review of: <FULL PAPER TITLE HERE>`
- Add link to the OSF project in the master spreadsheet
- Keep the project **private** until the publication of the paper (we don't want to announce anything that is not our place to announce)
- Wait for final paper citation from publisher and add it to the report
7. In the OSF project for the reproducibility report
- Add all _contributors_ to the review to the project
- In the project _configuration_:
- disable the "Wiki", unless you add content to it
- set the category of repository to "Other"
- Add the to be expected DOI to your report and to the coordination spreadsheet: append the project ID of the OSF project in capitals to `10.17605/OSF.IO/` to guess the future DOI
8. _After_ papers are published:
- Upload the report and supplemental material created by you, if suitable also the original material (add `LICENSE.md` and licensing information in the OSF project description in that case)
- Upload a PDF of your report and any useful supplemental files
- Publish the component
- Mint a DOI (double check if it is correct)
### Author contact templates
#### Reminder DASA by reproducibility chair
```
Dear <AUTHORS>,
I'm contacting you as the corresponding author of the paper "<TITLE>" submitted to AGILE 2024.
In my screening of accepted papers I saw that your submission does not include a Data and Software Availability ("DASA") section. Please note that a DASA section with precisely that name is mandatory. Furthermore a successful reproduction of your workflow would be an advertisement for your paper.
Please provide the DASA section by the end of the week so we can start the reproducibility review.
Regards,
Carlos & Frnak
AGILE Reproducibility Committee Cochair 2024
```
#### Reminder DASA
```
Dear <AUTHORS>,
I'm contacting you as the corresponding author of the paper "<TITLE>" submitted to AGILE 2024.
I'm the reproducibility reviewer your paper has been assigned to.
The scientific reviewers have noted that your paper does not include a Data and Software Availability ("DASA") section.
Please note that a DASA section is mandatory and successful reproduction of your workflow would be an advertisement for your paper.
Please provide the DASA section by <DEADLINE> so we can start the reproducibility review.
Regards,
<NAME>
AGILE Reproducibility Committee 2024
```
#### Reminder DASA + synthetic data for proprietary data
```
Dear <AUTHORS>,
I'm contacting you as the corresponding author of the paper "<TITLE>" submitted to AGILE 2024.
I'm the reproducibility reviewer your paper has been assigned to.
The scientific reviewers <SELECT: have, have not> note that your paper does not include a dedicated Data and Software Availability ("DASA") section. This section should provide a concise statement if and where data and software is available, or why it is not public. Please note that a DASA section is mandatory, even if data or code is not available.
Refer to the AGILE Reproducible Paper Guidelines (https://osf.io/cb7z8/) for detailed information and possible DASA section statements. Please don't hesitate to get in touch with me if you have any questions!
In your manuscript you state that both code and data cannot be shared due to licensing issues. Is it possible for you to provide a synthetic dataset or subset and the code in order for us to reproduce your methodology?
Kind regards,
<NAME>
AGILE Reproducibility Committee 2024
```
#### Share report draft
```
Dear AUTHORS,
Congratulations to the acceptance of your submission "TITLE" as a full paper at the AGILE conference 2024.
As part of the Reproducible AGILE initative (https://reproducible-agile.github.io/) I attempted to reproduce the results from your paper. Attached to this email you find my report on your results. I welcome your feedback before I publish the report. You can already now add the following sentence to the Data and Software Availability section:
"The workflow underlying this paper was <SELECT: partially reproduced, successfully reproduced> by an independent reviewer during the AGILE reproducibility review and a reproducibility report was published at https://doi.org/10.17605/osf.io/<ADD LOWERCASE 5 LETTER OSF REPO ID HERE BUT NO TRAILING SLASH>."
The reproducibility report will be published soon after the papers is published by Copernicus, so we can insert the proper citation of your work into the report.
[OPTIONAL:] Alongside the report I would like to publish an archive of the used data and script files, and the output files generated by myself. Note these would be published under a CC-BY license on OSF, though the original source and license are noted in the report.