-
Notifications
You must be signed in to change notification settings - Fork 115
/
Copy pathutils.py
executable file
·163 lines (128 loc) · 5.3 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import math
import numpy as np
import logging
import cv2
import os
import shutil
import torch
import torch.nn as nn
import torch.nn.functional as F
class Logger(object):
def __init__(self, log_file_name, logger_name, log_level=logging.DEBUG):
### create a logger
self.__logger = logging.getLogger(logger_name)
### set the log level
self.__logger.setLevel(log_level)
### create a handler to write log file
file_handler = logging.FileHandler(log_file_name)
### create a handler to print on console
console_handler = logging.StreamHandler()
### define the output format of handlers
formatter = logging.Formatter('[%(asctime)s] - [%(filename)s file line:%(lineno)d] - %(levelname)s: %(message)s')
file_handler.setFormatter(formatter)
console_handler.setFormatter(formatter)
### add handler to logger
self.__logger.addHandler(file_handler)
self.__logger.addHandler(console_handler)
def get_log(self):
return self.__logger
def mkExpDir(args):
if (os.path.exists(args.save_dir)):
if (not args.reset):
raise SystemExit('Error: save_dir "' + args.save_dir + '" already exists! Please set --reset True to delete the folder.')
else:
shutil.rmtree(args.save_dir)
os.makedirs(args.save_dir)
# os.makedirs(os.path.join(args.save_dir, 'img'))
if ((not args.eval) and (not args.test)):
os.makedirs(os.path.join(args.save_dir, 'model'))
if ((args.eval and args.eval_save_results) or args.test):
os.makedirs(os.path.join(args.save_dir, 'save_results'))
args_file = open(os.path.join(args.save_dir, 'args.txt'), 'w')
for k, v in vars(args).items():
args_file.write(k.rjust(30,' ') + '\t' + str(v) + '\n')
_logger = Logger(log_file_name=os.path.join(args.save_dir, args.log_file_name),
logger_name=args.logger_name).get_log()
return _logger
class MeanShift(nn.Conv2d):
def __init__(self, rgb_range, rgb_mean, rgb_std, sign=-1):
super(MeanShift, self).__init__(3, 3, kernel_size=1)
std = torch.Tensor(rgb_std)
self.weight.data = torch.eye(3).view(3, 3, 1, 1)
self.weight.data.div_(std.view(3, 1, 1, 1))
self.bias.data = sign * rgb_range * torch.Tensor(rgb_mean)
self.bias.data.div_(std)
# self.requires_grad = False
self.weight.requires_grad = False
self.bias.requires_grad = False
def calc_psnr(img1, img2):
### args:
# img1: [h, w, c], range [0, 255]
# img2: [h, w, c], range [0, 255]
diff = (img1 - img2) / 255.0
diff[:,:,0] = diff[:,:,0] * 65.738 / 256.0
diff[:,:,1] = diff[:,:,1] * 129.057 / 256.0
diff[:,:,2] = diff[:,:,2] * 25.064 / 256.0
diff = np.sum(diff, axis=2)
mse = np.mean(np.power(diff, 2))
return -10 * math.log10(mse)
def calc_ssim(img1, img2):
def ssim(img1, img2):
C1 = (0.01 * 255)**2
C2 = (0.03 * 255)**2
img1 = img1.astype(np.float64)
img2 = img2.astype(np.float64)
kernel = cv2.getGaussianKernel(11, 1.5)
window = np.outer(kernel, kernel.transpose())
mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] # valid
mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
mu1_sq = mu1**2
mu2_sq = mu2**2
mu1_mu2 = mu1 * mu2
sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq
sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq
sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) *
(sigma1_sq + sigma2_sq + C2))
return ssim_map.mean()
### args:
# img1: [h, w, c], range [0, 255]
# img2: [h, w, c], range [0, 255]
# the same outputs as MATLAB's
border = 0
img1_y = np.dot(img1, [65.738,129.057,25.064])/256.0+16.0
img2_y = np.dot(img2, [65.738,129.057,25.064])/256.0+16.0
if not img1.shape == img2.shape:
raise ValueError('Input images must have the same dimensions.')
h, w = img1.shape[:2]
img1_y = img1_y[border:h-border, border:w-border]
img2_y = img2_y[border:h-border, border:w-border]
if img1_y.ndim == 2:
return ssim(img1_y, img2_y)
elif img1.ndim == 3:
if img1.shape[2] == 3:
ssims = []
for i in range(3):
ssims.append(ssim(img1, img2))
return np.array(ssims).mean()
elif img1.shape[2] == 1:
return ssim(np.squeeze(img1), np.squeeze(img2))
else:
raise ValueError('Wrong input image dimensions.')
def calc_psnr_and_ssim(sr, hr):
### args:
# sr: pytorch tensor, range [-1, 1]
# hr: pytorch tensor, range [-1, 1]
### prepare data
sr = (sr+1.) * 127.5
hr = (hr+1.) * 127.5
if (sr.size() != hr.size()):
h_min = min(sr.size(2), hr.size(2))
w_min = min(sr.size(3), hr.size(3))
sr = sr[:, :, :h_min, :w_min]
hr = hr[:, :, :h_min, :w_min]
img1 = np.transpose(sr.squeeze().round().cpu().numpy(), (1,2,0))
img2 = np.transpose(hr.squeeze().round().cpu().numpy(), (1,2,0))
psnr = calc_psnr(img1, img2)
ssim = calc_ssim(img1, img2)
return psnr, ssim