-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdraw_sum_of_wave.py
64 lines (49 loc) · 1.71 KB
/
draw_sum_of_wave.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import numpy as np
from matplotlib import pyplot as plt
def draw_sum_of_wave(a0, coeffi, w):
t = np.linspace(0.0, 1.0, 1000) # 1ms 단위. ~1초
n = range(1,len(coeffi)+1) # 1,2,3,...len(coeffi)
y_a0 = a0 * np.ones(len(t))
cos_val = [ab[0] * np.cos(i*w*t) for ab,i in zip(coeffi,n)] #an*cos(nwt)
sin_val = [ab[1] * np.sin(i*w*t) for ab,i in zip(coeffi,n)] #bn*sin(nwt)
yn = [(a0 + c + s) for c,s in zip(cos_val,sin_val)]
y_sum = yn[0]
for y in yn[1:]: y_sum += y
plt.subplot(5,1,1)
plt.plot(t, y_sum)
plt.title(r"$y(t)=a_0 + \sum _{n=0}^{\infty}{a_n \cos n\omega t + b_n \sin n\omega t}$")
plt.subplot(5,1, 2)
plt.plot(t, y_a0)
plt.title("$y(t)=a_0$")
plt.subplot(5, 2, 5)
plt.plot(t, cos_val[0])
plt.plot(t,np.zeros(len(t)))
plt.title(r"$y(t)=a_1 \cos \omega t$")
plt.subplot(5, 2, 6)
plt.plot(t, sin_val[0])
plt.plot(t, np.zeros(len(t)))
plt.title(r"$y(t)=b_1 \sin \omega t$")
plt.subplot(5, 2, 7)
plt.plot(t, cos_val[1])
plt.plot(t, np.zeros(len(t)))
plt.title(r"$y(t)=a_2 \cos \omega t$")
plt.subplot(5, 2, 8)
plt.plot(t, sin_val[1])
plt.plot(t, np.zeros(len(t)))
plt.title(r"$y(t)=b_2 \sin \omega t$")
plt.subplot(5, 2, 9)
plt.plot(t, cos_val[2])
plt.plot(t, np.zeros(len(t)))
plt.title(r"$y(t)=a_3 \cos \omega t$")
plt.subplot(5, 2, 10)
plt.plot(t, sin_val[2])
plt.plot(t, np.zeros(len(t)))
plt.title(r"$y(t)=b_3 \sin \omega t$")
plt.tight_layout()
plt.show()
a0 = 0.4
coeffi = (
(0.3,0.5), (0.2,0.5), (0.2,0.3), (0.7,0.6),(1.2,0.3), (0.3,0.6),(0.2,0.3), (2.3,0.6),(1.5,1.5),(0.2,0.5),(2.3,0.6),(1.5,1.5),(0.2,0.5)
)
w = 2*np.pi*4
draw_sum_of_wave(a0, coeffi, w )