forked from mxcube/HardwareObjects
-
Notifications
You must be signed in to change notification settings - Fork 0
/
CentringMath.py
211 lines (184 loc) · 8.37 KB
/
CentringMath.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
from HardwareRepository import HardwareRepository
from HardwareRepository.BaseHardwareObjects import Procedure
import math
import numpy
class CentringMath(Procedure):
"""
CentringMath procedure
"""
def init(self):
"""
Ggonio axes definitions are static
motorHO is expected to have getPosition() that returns coordinate in mm
"""
self.motorConstraints=[]
self.gonioAxes = []
for axis in self['gonioAxes']:
self.gonioAxes.append({'type':axis.type,'direction':eval(axis.direction),\
'motor_name':axis.motorname,'motor_HO':
HardwareRepository.HardwareRepository().getHardwareObject(axis.motorHO) })
"""
This version is lacking video microscope object. Therefore we model only
static camera axes directions, but no camera axes scaling or center - which
are dynamic. Therefore, camera coordinates are relative, in mm.
"""
self.cameraAxes = []
for axis in self['cameraAxes']:
self.cameraAxes.append({'axis_name':axis.axisname,'direction':eval(axis.direction)})
self.mI=numpy.diag([1.,1.,1.]) #identity matrix
self.calibrate()
def centringToScreen(self,centring_dict,factorized = False):
if not factorized : self.factorize()
"""
One _must_ self.factorize() before!!!
Input positions are indexed by motor name as in original MiniDiff.
For symmetry, output camera coordinates are indexed by camera axis name, like {'X':<float>,'Y':<float>},
but not just x,y as in original MiniDiff.
"""
tau_cntrd = self.centred_positions_to_vector(centring_dict)
if self.tau is not None and tau_cntrd is not None:
dum = self.tau - tau_cntrd
return self.vector_to_camera_coordinates(numpy.dot(self.F.T,dum))
def listOfCentringsToScreen(self,list_of_centring_dicts):
self.factorize()
lst= []
for centring in list_of_centring_dicts:
lst.append(self.centringToScreen(centring,factorized = True))
return lst
def factorize(self):
# this should be automatic, on the gonio both rot and trans datum update
self.F=self.factor_matrix()
self.tau=self.translation_datum()
def initCentringProcedure(self):
#call before starting rotate-click sequence
self.centringDataTensor=[]
self.centringDataMatrix=[]
self.motorConstraints=[]
def appendCentringDataPoint(self,camera_coordinates):
#call after each click and send click points - but relative in mm
self.centringDataTensor.append(self.factor_matrix())
self.centringDataMatrix.append(self.camera_coordinates_to_vector(camera_coordinates))
def centeredPosition(self, return_by_name=False):
#call after appending the last click. Returns a {motorHO:position} dictionary.
M=numpy.zeros(shape=(self.translationAxesCount,self.translationAxesCount))
V=numpy.zeros(shape=(self.translationAxesCount))
for l in range(0,self.translationAxesCount):
for i in range (0,len(self.centringDataMatrix)):
for k in range(0,len(self.cameraAxes)):
V[l] += self.centringDataTensor[i][l][k]*self.centringDataMatrix[i][k]
for m in range(0,self.translationAxesCount):
for i in range (0,len(self.centringDataMatrix)):
for k in range(0,len(self.cameraAxes)):
M[l][m] += self.centringDataTensor[i][l][k]*self.centringDataTensor[i][m][k]
tau_cntrd = numpy.dot(numpy.linalg.pinv(M,rcond=1e-6),V)
#print tau_cntrd
tau_cntrd = self.apply_constraints(M,tau_cntrd)
#print tau_cntrd
return self.vector_to_centred_positions( - tau_cntrd + self.translation_datum(), return_by_name)
def apply_constraints(self,M,tau):
V=numpy.zeros(shape=(self.translationAxesCount))
for c in self.motorConstraints:
for i in range(0,self.translationAxesCount):
V[i] = M[i][c['index']]
M[i][c['index']] = 0.0
M[c['index']][i] = 0.0
tau = tau - (c['position'] - tau[c['index']]) * numpy.dot(numpy.linalg.pinv(M,rcond=1e-6),V)
tau[c['index']] = c['position']
return tau
def factor_matrix(self):
# This should be connected to goniostat rotation datum update, with F globalized
F=numpy.zeros(shape=(self.translationAxesCount,len(self.cameraAxes)))
R=self.mI
j=0
for axis in self.gonioAxes: # skip base gonio axis
if axis['type'] =="rotation":
Ra=self.rotation_matrix(axis['direction'],axis['motor_HO'].getPosition())
R=numpy.dot(Ra,R)
elif axis['type'] == "translation":
f=numpy.dot(R,axis['direction'])
k=0
for camera_axis in self.cameraAxes:
F[j][k]=numpy.dot(f,camera_axis['direction'])
k += 1
j += 1
return F
def calibrate(self):
count = 0
for axis in self.gonioAxes: # make first gonio rotation matrix for base axis
if axis['type'] == 'rotation':
d=axis['direction']
axis['mT']=numpy.outer(d,d)
axis['mC']=numpy.array([[ 0.0 ,-d[2], d[1]],
[ d[2], 0.0 ,-d[0] ],
[-d[1], d[0], 0.0 ]])
elif axis['type'] == 'translation':
axis['index']= count
count += 1
self.translationAxesCount = count
count = 0
for axis in self.cameraAxes:
axis['index']=count
count += 1
def rotation_matrix(self,dir,angle):
rads = angle * math.pi/180.0
cosa=math.cos(rads)
sina=math.sin(rads)
mT=numpy.outer(dir,dir)
mC=numpy.array([[ 0.0 ,-dir[2], dir[1]],
[ dir[2], 0.0 ,-dir[0] ],
[-dir[1], dir[0], 0.0 ]])
return self.mI * cosa + mT * (1. - cosa) + mC * sina
def translation_datum(self):
vector=[]
for axis in self.gonioAxes:
if axis['type'] == "translation":
vector.append(axis['motor_HO'].getPosition())
return vector
def centred_positions_to_vector(self,centrings_dictionary):
vector=numpy.zeros(shape=(self.translationAxesCount))
index = 0
for axis in self.gonioAxes:
if axis['type'] == "translation":
vector[index]=float(centrings_dictionary[axis['motor_name']])
index += 1
return vector
def vector_to_centred_positions(self,vector,return_by_name=False):
dic = {}
index = 0
for axis in self.gonioAxes:
if axis['type'] == "translation":
if return_by_name:
dic[axis['motor_name']]=vector[index]
else:
dic[axis['motor_HO']]=vector[index]
index += 1
return dic
def camera_coordinates_to_vector(self,camera_coordinates_dictionary):
vector=[]
for index in range(0,len(self.cameraAxes)):
vector.append(camera_coordinates_dictionary[self.cameraAxes[index]['axis_name']])
return vector
def vector_to_camera_coordinates(self,vector):
dic = {}
index = 0
for axis in self.cameraAxes:
dic[axis['axis_name']]=vector[index]
index += 1
return dic
def appendMotorConstraint(self,motor_HO, position):
index = 0
self.motorConstraints = []
for axis in self.gonioAxes:
if axis['type'] == "translation" and motor_HO is axis['motor_HO']:
index += 1
self.motorConstraints.append({"index":index,"position":motor_HO.getPosition()-position})
return
def camera2alignmentMotor(self,motor_HO,camxy):
# motor_HO must reference an ALIGNMENT motor!
# finds a projection of camera vector {"X":x,"Y":y} onto a motor axis of a motor_HO
for axis in self.gonioAxes:
if axis['type'] == "translation" and motor_HO is axis['motor_HO']:
res = 0.0
for camaxis in self.cameraAxes:
res = res + numpy.dot(axis['direction'],camaxis['direction'])*camxy[camaxis['axis_name']]
return res