-
Notifications
You must be signed in to change notification settings - Fork 3
/
newFbsMovie.py
472 lines (429 loc) · 23.3 KB
/
newFbsMovie.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
# python $SIMS_MAF_DIR/examples/pythonScripts/opsimMovie.py enigma_1189_sqlite.db --sqlConstraint 'night=130' --outDir Output
#
# --ips = number of images to stitch together per second of view (default is 10).
# --fps = frames per second for the output video .. default just matches ips. If specified as higher than ips,
# the additional frames will be copied to meet the fps requirement. If fps is lower than ips,
# images will be removed from the sequence to maintain fps.
# As a rule of thumb, fps>30 is undetectable to the human eye.
# --movieLength = can specify the length of the output video (in seconds), then automatically
# calculate corresponding ips and fps based on the number of movie slices.
# --skipComp = skip computing the metrics and generating plots, just use files from disk.
#
import os, argparse
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
from matplotlib import ticker
import colorcet as cc
import healpy as hp
from astropy.time import Time
import datetime
import pytz
import rubin_sim.maf as maf
from rubin_sim.utils import Site
from rubin_sim.utils import approx_altAz2RaDec
import warnings
import fnmatch
filter_rgb_map = {
'u': (74/256, 125/256, 179/256),
'g': (104/256, 173/256, 87/256),
'r': (238/256, 134/256, 50/256),
'i': (232/256, 135/256, 189/256),
'z': (209/256, 53/256, 43/256),
'y': (142/256, 82/256, 159/256)}
def makeColorMap():
filterColorMap = ListedColormap(list(filter_rgb_map.values()))
return filterColorMap
class FilterIndxColorStacker(maf.BaseStacker):
"""Translate filters ('u', 'g', 'r' ..) into value 0-6.
"""
colsAdded = ["filterIndx"]
def __init__(self, filterCol="filter"):
self.filter_indx_map = {'u': 0, 'g': 1, 'r': 2, 'i': 3, 'z': 4, 'y': 5}
self.filterCol = filterCol
# self.units used for plot labels
self.units = ['#']
# Values required for framework operation: this specifies the data columns required from the database.
self.colsReq = [self.filterCol]
def _run(self, simData, cols_present=False):
# Translate filter names into numbers.
if cols_present:
# Column already present in data; assume it is correct and does not need recalculating.
return simData
filtersUsed = np.unique(simData[self.filterCol])
for f in filtersUsed:
if f not in self.filter_indx_map:
raise IndexError("Filter %s not in filter_indx_map" % (f))
match = np.where(simData[self.filterCol] == f)[0]
simData["filterIndx"][match] = self.filter_indx_map[f]
return simData
class FilterColorsMetric(maf.BaseMetric):
"""
Generate a map of [filter number], [alpha] that simply shows the *most recent* visit filter (in filter number)
and then an alpha map that scales the transparency according to how long ago the visit occurred.
"""
def __init__(
self, tNow, nightNow,
filterIndxCol='filterIndx',
timeCol='observationStartMJD',
nightCol='night',
tStep=40.0 / 60.0 / 60.0 / 24.0,
alpha_night=0.7,
alpha_prev=0.3,
metricName="FilterColors",
**kwargs
):
"""
tNow = the current time
"""
self.filterIndxCol = filterIndxCol
self.timeCol = timeCol
self.nightCol = nightCol
self.tNow = tNow
self.nightNow = nightNow
self.tStep = tStep
self.alpha_night = alpha_night
self.alpha_prev = alpha_prev
super().__init__(
col=[self.filterIndxCol, self.timeCol, self.nightCol], metricName=metricName, **kwargs
)
self.metricDtype = "object"
self.comment = "Metric specifically to generate color/alpha for the FBS healpix movie"
def run(self, dataSlice, slicePoint=None):
visits = dataSlice[np.where(dataSlice[self.timeCol] < self.tNow)]
if len(visits) == 0:
return self.badval
deltaNightMin = (self.nightNow - visits[self.nightCol]).min()
# Figure out if there are any visits we should consider as "now" (or now-ish)
deltaT = self.tNow - dataSlice[self.timeCol]
visitNow = np.where(deltaT <= self.tStep)[0]
if len(visitNow) > 0:
# We have exact matches to this timestep, so use their colors directly and set alpha to >1.
colorVal = dataSlice[visitNow[0]][self.filterIndxCol]
alpha = 1.0
else:
# This part of the sky has only older exposures.
# Are they this night or previous night?
if deltaNightMin == 0:
alpha = self.alpha_night
else:
alpha = self.alpha_prev
# And then decide what color to use - the most recent visit
nearest = np.where(visits[self.timeCol] == visits[self.timeCol].max())[0]
colorVal = visits[nearest][self.filterIndxCol]
return (colorVal, alpha)
def reduceColor(self, metricValues):
return metricValues[0]
def reduceAlpha(self, metricValues):
return metricValues[1]
def getData(opsDb, sqlconstraint):
# Define columns we want from opsim database (for metrics, slicers and stacker info).
colnames = ['observationStartMJD', 'filter', 'fieldRA', 'fieldDec', 'rotSkyPos', 'observationStartLST',
'moonRA', 'moonDec', 'moonPhase', 'sunRA', 'sunDec', 'night']
# Get data from database.
simdata = opsDb.fetchMetricData(colnames, sqlconstraint)
if len(simdata) == 0:
raise Exception('No simdata found matching constraint %s' %(sqlconstraint))
# Add stacker columns.
filterIndxStacker = FilterIndxColorStacker()
simdata = filterIndxStacker.run(simdata)
return simdata
def setupMetrics(opsimName, metadata, constraint, plotlabel='', tNow=0, nightNow=0,
tStep=40./24./60./60., years=0,
onlyFilterColors=False, verbose=False):
# Set up metrics and plotDicts (they will be bundled with the appropriate opsim slicers below).
nvisitsMax = 90 * (years + 1)
colorMax = int(nvisitsMax / 4)
bundledict = {}
figsize = (8, 6)
s = maf.HealpixSlicer(nside=64)
if not onlyFilterColors:
m = maf.CountMetric('observationStartMJD', metricName='Nvisits')
plotDict = ({'colorMin': 0, 'colorMax': nvisitsMax, 'bgcolor': None,
'fontsize': 'large', 'cmap': 'cet_blues',
'xlabel': 'Number of visits', 'title': 'Cumulative visits (all bands)',
'figsize': figsize})
bundledict['nvisits'] = maf.MetricBundle(m, s, constraint, runName=opsimName,
plotDict=plotDict, metadata=metadata)
"""
for f in (['u', 'g', 'r', 'i', 'z', 'y']):
m = maf.CountSubsetMetric('filter', subset=f, metricName='Nvisits_' + f)
plotDict = {'colorMin': 0, 'colorMax': colorMax, 'cbarFormat': '%d',
'xlabel': 'Number of Visits', 'title': '%s band' % (f),
'label': plotlabel, 'figsize': figsize}
bundledict[f'nvisits {f}'] = maf.MetricBundle(m, s, constraint,
plotDict=plotDict, metadata=metadata,
runName=opsimName)
"""
m = FilterColorsMetric(tNow=tNow, nightNow=nightNow, tStep=tStep)
plotDict = {'title': '%s' %(opsimName), 'bgcolor': None,
'figsize': figsize, 'fontsize': 'large'}
bundledict['colors'] = maf.MetricBundle(m, s, constraint, runName=opsimName,
plotDict=plotDict, metadata=metadata)
if verbose:
print('Set up metrics %f s' %(dt))
return bundledict
def setupMovieSlicer(simdata, bins, verbose=False):
movieslicer = maf.MovieSlicer(sliceColName='observationStartMJD', bins=bins, cumulative=True)
movieslicer.setupSlicer(simdata)
if verbose:
print('Set up movie slicers in %f s' %(dt))
return movieslicer
def runSlices(opsimName, metadata, simdata, bins, args, opsDb, verbose=False):
# Set up the movie slicer.
movieslicer = setupMovieSlicer(simdata, bins)
# Set up formatting for output suffix.
sliceformat = '%s0%dd' %('%', int(np.log10(len(movieslicer)))+1)
lsst_site = Site('LSST')
tz = pytz.timezone('Chile/Continental')
filterColorMap = makeColorMap()
# Run through the movie slicer slicePoints and generate plots at each point.
for i, ms in enumerate(movieslicer):
slicenumber = sliceformat %(i)
if verbose:
print(slicenumber)
# Set up metrics.
if args.movieStepsize != 0:
tstep = args.movieStepsize
else:
tstep = ms['slicePoint']['binRight'] - bins[i]
if tstep > 1:
tstep = 40./24./60./60.
# Identify the subset of simdata in the movieslicer 'data slice'
subsetSdata = simdata[ms['idxs']]
visitNow = len(subsetSdata) - 1
# Add simple view of time to plot label.
# Assume the 'night' column is accurate to get time from start of survey in years/nights
years = int(subsetSdata[visitNow]['night'] / 365)
night = int(subsetSdata[visitNow]['night'] - years * 365)
# And then calculate current local time for the hour
time = Time(subsetSdata[visitNow]['observationStartMJD'], format='mjd', scale='utc')
td = time.to_datetime(tz)
hour = td.hour
minutes = td.minute
plotlabel = f'Year {years:02d} Night {night:03d} Hour {hour:02d}:{minutes:02d}'
# Set up metrics.
constraint = ''
bundledict = setupMetrics(opsimName, metadata, constraint, plotlabel=plotlabel,
tNow=subsetSdata[visitNow]['observationStartMJD'],
nightNow=subsetSdata[visitNow]['night'],
tStep=tstep, years=years, verbose=verbose)
# clear out the stacker list because we ran them ourselves
for mb in bundledict:
bundledict[mb].stackerList = []
# Set up metricBundleGroup to handle metrics calculation + plotting
bg = maf.MetricBundleGroup(bundledict, opsDb, outDir=args.outDir,
resultsDb=None, saveEarly=False)
bg.runCurrent(constraint = constraint, simData=subsetSdata)
# Plot data each metric, for this slice of the movie, adding slicenumber as a suffix for output plots.
# Plotting here, rather than automatically via sliceMetric method because we're going to rotate the sky,
# and add extra legend info and figure text (for FilterColors metric).
#ph = plots.PlotHandler(outDir=args.outDir, figformat='png', dpi=72, thumbnail=False, savefig=False)
#lsst_site = Site('LSST')
ecliptic_ra = np.arange(0, 360, 1)
ecliptic_dec = np.sin(np.radians(ecliptic_ra)) * 23.5
zenith_ra = subsetSdata[visitNow]['observationStartLST']
zenith_dec = lsst_site.latitude
horizon_az = np.arange(0, 360, 1)
horizon_alt = np.ones(len(horizon_az)) * 0 #20
horizon_ra, horizon_dec = approx_altAz2RaDec(horizon_alt, horizon_az, lsst_site.latitude,
lsst_site.longitude,
subsetSdata[visitNow]['observationStartMJD'])
moon_ra = subsetSdata[visitNow]['moonRA']
moon_dec = subsetSdata[visitNow]['moonDec']
moonPhase = subsetSdata[visitNow]['moonPhase'] / 100.
moon_alpha = np.max([moonPhase, 0.15])
sun_ra = np.degrees(subsetSdata[visitNow]['sunRA'])
sun_dec = np.degrees(subsetSdata[visitNow]['sunDec'])
visit_ra = subsetSdata[visitNow]['fieldRA']
visit_dec = subsetSdata[visitNow]['fieldDec']
rot = (subsetSdata[visitNow]['observationStartLST'], 0, 0)
# Create the plot for each metric and save it (after some additional manipulation).
for mb in bundledict.values():
if 'visits' in mb.metric.name:
fig = plt.figure(figsize=mb.plotDict['figsize'])
rot = (subsetSdata[visitNow]['observationStartLST'], 0, 0)
hp.mollview(bundledict['nvisits'].metricValues,
min=mb.plotDict['colorMin'], max=mb.plotDict['colorMax'],
badcolor='white', fig=fig.number,
cmap=mb.plotDict['cmap'], cbar=False,
flip='astro', rot=rot, title=mb.plotDict['title'])
hp.graticule(dpar=30, dmer=30, alpha=0.5)
ll = hp.projscatter(visit_ra, visit_dec,
c='white',
marker='o', alpha=0.5, edgecolor='b', lonlat=True, s=70)
ll = hp.projplot(horizon_ra, horizon_dec, color='k', alpha=0.8,
lonlat=True, label='Horizon')
ll = hp.projplot(ecliptic_ra, ecliptic_dec, color='b', alpha=0.5,
lonlat=True, label='Ecliptic')
ll = hp.projscatter(zenith_ra, zenith_dec, color='k', marker='x',
lonlat=True, label='Zenith')
ll = hp.projscatter(sun_ra, sun_dec, color='white', edgecolor='k', marker='o', s=50,
lonlat=True, label='Sun')
ll = hp.projscatter(moon_ra, moon_dec, color='k', alpha=moon_alpha, s=50, lonlat=True,
marker='o',
label="\nMoon (Dark=Full)\n (Light=New)")
# Add the time stamp info (plotlabel) with a fancybox.
#plt.figtext(0.69, 0.95, '%s' % (plotlabel), fontsize='large',
# bbox=dict(boxstyle='Round, pad=0.7', fc='w', ec='k', alpha=0.5))
# Make a color bar.
ax = plt.gca()
im = ax.get_images()[0]
with warnings.catch_warnings():
warnings.simplefilter("ignore")
cb = plt.colorbar(
im,
ax=ax,
shrink=0.5,
aspect=25,
pad=0.05,
location="bottom",
extendrect=True,
)
cb.set_label(mb.plotDict['xlabel'], fontsize='large')
tick_locator = ticker.MaxNLocator(nbins=10)
cb.locator = tick_locator
cb.update_ticks()
elif 'Color' in mb.metric.name and '_' not in mb.metric.name:
fig = plt.figure(figsize=mb.plotDict['figsize'])
hp.mollview(bundledict['FilterColors_Color'].metricValues,
fig=fig.number, min=0, max=5,
alpha=bundledict['FilterColors_Alpha'].metricValues.filled(0),
cmap=filterColorMap, cbar=False, flip='astro', rot=rot,
title=mb.plotDict['title'])
hp.graticule(dpar=30, dmer=30, alpha=0.5)
ll = hp.projscatter(visit_ra, visit_dec,
c=[filter_rgb_map[subsetSdata[visitNow]['filter']]],
marker='o', alpha=1, edgecolor='b', lonlat=True, s=70)
ll = hp.projplot(horizon_ra, horizon_dec, color='k', alpha=0.8,
lonlat=True, label='Horizon')
ll = hp.projplot(ecliptic_ra, ecliptic_dec, color='b', alpha=0.5,
lonlat=True, label='Ecliptic')
ll = hp.projscatter(sun_ra, sun_dec, color='white', edgecolor='k', marker='o', s=50,
lonlat=True, label='Sun')
ll = hp.projscatter(zenith_ra, zenith_dec, color='k', marker='x',
lonlat=True, label='Zenith')
ll = hp.projscatter(moon_ra, moon_dec, color='k', alpha=moon_alpha, s=50,
lonlat=True,
marker='o',
label="\nMoon (Dark=Full)\n (Light=New)")
plt.legend(loc=(0.2, -0.24), ncol=3, frameon=False,
numpoints=1, fontsize='large', title_fontsize='large')
plt.figtext(0.12, 0.13,
'Simulated survey pointings on the sky. One visit is ~40 seconds real-time.',
fontsize='large')
for i, f in enumerate(['u', 'g', 'r']):
plt.figtext(0.94, 0.3 - i * 0.04, f, fontsize='x-large', fontweight='3',
horizontalalignment='center',
color=filter_rgb_map[f])
for i, f in enumerate(['i', 'z', 'y']):
plt.figtext(0.94 + 0.03, 0.3 - i * 0.04, f, fontsize='x-large', fontweight='3',
horizontalalignment='center',
color=filter_rgb_map[f])
# Add the time stamp info (plotlabel) with a fancybox.
plt.figtext(0.68, 0.88, '%s' % (plotlabel), fontsize='large',
bbox=dict(boxstyle='Round, pad=0.3', fc='w', ec='k', alpha=0.5))
else:
continue
# Save figure.
plt.savefig(os.path.join(args.outDir, mb.metric.name + '_' + slicenumber + '_SkyMap.png'),
format='png', dpi=72*2)
plt.close('all')
if verbose:
print('Ran and plotted slice %s of movieslicer in %f s' %(slicenumber, dt))
def stitchMovie(bundledict, args):
# Create a movie slicer to access the movie generation routine.
movieslicer = maf.MovieSlicer()
for b in bundledict.values():
# Identify filenames.
outfileroot = b.metric.name
plotfiles = fnmatch.filter(os.listdir(args.outDir), outfileroot + '*_SkyMap.png')
slicenum = plotfiles[0].replace(outfileroot, '').replace('_SkyMap.png', '').replace('_', '')
sliceformat = '%s0%dd' %('%', len(slicenum))
n_images = len(plotfiles)
if n_images == 0:
raise Exception('No images found in %s with name like %s' %(args.outDir, outfileroot))
# Set up ffmpeg parameters.
# If a movieLength was specified... set args.ips/fps.
if args.movieLength != 0.0:
#calculate images/second rate
args.ips = int(n_images/args.movieLength)
print("for a movie length of " + str(args.movieLength) + " IPS set to: ", args.ips)
if args.fps == 0:
warnings.warn('(FPS of 0) Setting fps equal to ips, up to a value of 30fps.')
if args.ips <= 30:
args.fps = args.ips
else:
args.fps = 30
# Create the movie.
movieslicer.makeMovie(outfileroot, sliceformat, plotType='SkyMap', figformat='png',
outDir=args.outDir, ips=args.ips, fps=args.fps)
if __name__ == '__main__':
# Parse command line arguments for database connection info.
parser = argparse.ArgumentParser()
parser.add_argument("opsimDb", type=str, help="Opsim sqlite db file")
parser.add_argument("--dbDir", type=str, default='.',
help="Directory containing opsim sqlite db file")
parser.add_argument("--sqlConstraint", type=str, default=None,
help="SQL constraint, such as filter='r' or night=1500. Default None.")
parser.add_argument("--movieStepsize", type=float, default=0, help="Step size (in days) for movie slicer. "
"Default sets 1 visit = 1 step.")
parser.add_argument("--outDir", type=str, default='Output', help="Output directory.")
parser.add_argument("--addPreviousObs", action='store_true', default=False,
help="Add all previous observations into movie (as background).")
parser.add_argument("--skipComp", action = 'store_true', default=False,
help="Just make movie from existing metric plot files.")
parser.add_argument("--ips", type=float, default = 30,
help="The number of images per second in the movie. "
"Will skip accordingly if fps is lower. Default 30.")
parser.add_argument("--fps", type=float, default = 30,
help="The frames per second of the movie. Default 30.")
parser.add_argument("--movieLength", type=float, default=0.0,
help="Enter the desired length of the movie in seconds. "
"If you do so, there is no need to enter images per second, it will be calculated.")
args = parser.parse_args()
#cleaning up movie parameters
if args.fps > 30:
warnings.warn('FPS above 30 reduces performance and is undetectable to the human eye. Try lowering the fps.')
# Check if output directory exists; create if appropriate.
if not os.path.isdir(args.outDir):
if args.skipComp:
raise Exception('Skipping metric generation, expect to find plots in %s directory but it does not exist.'
%(args.outDir))
else:
os.mkdir(args.outDir)
# Check if user passed directory + filename as opsimDb.
if len(os.path.dirname(args.opsimDb)) > 0:
raise Exception('OpsimDB should be just the filename of the sqlite file (not %s). Use --dbDir.' %(args.opsimDb))
opsimName = args.opsimDb.replace('_sqlite.db', '')
opsimName = opsimName.replace('.db', '')
metadata = args.sqlConstraint.replace('=','').replace('filter','').replace("'",'').replace('"','').replace('/','.')
if not args.skipComp:
verbose=False
# Get db connection info, and connect to database.
dbfile = os.path.join(args.dbDir, args.opsimDb)
oo = maf.OpsimDatabase(dbfile)
sqlconstraint = args.sqlConstraint
# Fetch the data from opsim.
simdata = getData(oo, sqlconstraint)
# Set up the time bins for the movie slicer.
start_date = simdata['observationStartMJD'][0]
if args.movieStepsize == 0:
bins = simdata['observationStartMJD']
else:
end_date = simdata['observationStartMJD'].max()
bins = np.arange(start_date, end_date+args.movieStepSize/2.0, args.movieStepSize, float)
if args.addPreviousObs:
# Go back and grab all the data, including all previous observations.
if "night =" in sqlconstraint:
sqlconstraint = sqlconstraint.replace("night =", "night <=")
elif "night=" in sqlconstraint:
sqlconstraint = sqlconstraint.replace("night=", "night<=")
simdata = getData(oo, sqlconstraint)
# Update the first bin to be prior to the earliest opsim time.
bins[0] = simdata['observationStartMJD'][0]
# Run the movie slicer (and at each step, setup opsim slicer and calculate metrics).
runSlices(opsimName, metadata, simdata, bins, args, oo, verbose=verbose)
# Need to set up the metrics to get their names, but don't need to have realistic arguments.
bundledict = setupMetrics(opsimName, metadata, args.sqlConstraint)
stitchMovie(bundledict, args)