-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlinear_crf_util.py
102 lines (93 loc) · 4.23 KB
/
linear_crf_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
from collections import defaultdict, Counter
from typing import List, Dict, Tuple, Any
import numpy as np
################Evaluate crf models#########
class Span:
"""
A class of `Span` where we use it during evaluation.
We construct spans for the convenience of evaluation.
"""
def __init__(self, left: int, right: int, type: str):
"""
A span compose of left, right (inclusive) and its entity label.
:param left:
:param right: inclusive.
:param type:
"""
self.left = left
self.right = right
self.type = type
def __eq__(self, other):
return self.left == other.left and self.right == other.right and self.type == other.type
def __hash__(self):
return hash((self.left, self.right, self.type))
def evaluate_batch_insts(batch_insts,
batch_pred_ids,
batch_gold_ids,
word_seq_lens,
idx2label):
"""
Evaluate a batch of instances and handling the padding positions.
:param batch_insts: a batched of instances.
:param batch_pred_ids: Shape: (batch_size, max_length) prediction ids from the viterbi algorithm.
:param batch_gold_ids: Shape: (batch_size, max_length) gold ids.
:param word_seq_lens: Shape: (batch_size) the length for each instance.
:param idx2label: The idx to label mapping.
:return: numpy array containing (number of true positive, number of all positive, number of true positive + number of false negative)
You can also refer as (number of correctly predicted entities, number of entities predicted, number of entities in the dataset)
"""
batch_p_dict = defaultdict(int)
batch_total_entity_dict = defaultdict(int)
batch_total_predict_dict = defaultdict(int)
word_seq_lens = word_seq_lens.tolist()
for idx in range(len(batch_pred_ids)):
length = word_seq_lens[idx]
output = batch_gold_ids[idx][:length].tolist()
prediction = batch_pred_ids[idx][:length].tolist()
prediction = prediction[::-1]
output = [idx2label[l] for l in output]
prediction =[idx2label[l] for l in prediction]
batch_insts[idx].prediction = prediction
#print(prediction)
#convert to span
output_spans = set()
start = -1
for i in range(len(output)):
if output[i].startswith("b-"):
start = i
if output[i].startswith("e-"):
end = i
output_spans.add(Span(start, end, output[i][2:]))
batch_total_entity_dict[output[i][2:]] += 1
if output[i].startswith("s-"):
output_spans.add(Span(i, i, output[i][2:]))
batch_total_entity_dict[output[i][2:]] += 1
predict_spans = set()
start = -1
for i in range(len(prediction)):
if prediction[i].startswith("b-"):
start = i
if prediction[i].startswith("e-"):
end = i
predict_spans.add(Span(start, end, prediction[i][2:]))
batch_total_predict_dict[prediction[i][2:]] += 1
if prediction[i].startswith("s-"):
predict_spans.add(Span(i, i, prediction[i][2:]))
batch_total_predict_dict[prediction[i][2:]] += 1
correct_spans = predict_spans.intersection(output_spans)
for span in correct_spans:
batch_p_dict[span.type] += 1
return Counter(batch_p_dict), Counter(batch_total_predict_dict), Counter(batch_total_entity_dict)
def get_metric(p_num: int, total_num: int, total_predicted_num: int) -> Tuple[float, float, float]:
"""
Return the metrics of precision, recall and f-score, based on the number
(We make this small piece of function in order to reduce the code effort and less possible to have typo error)
:param p_num:
:param total_num:
:param total_predicted_num:
:return:
"""
precision = p_num * 1.0 / total_predicted_num * 100 if total_predicted_num != 0 else 0
recall = p_num * 1.0 / total_num * 100 if total_num != 0 else 0
fscore = 2.0 * precision * recall / (precision + recall) if precision != 0 or recall != 0 else 0
return precision, recall, fscore