-
Notifications
You must be signed in to change notification settings - Fork 113
/
Copy pathtrain.py
90 lines (74 loc) · 4.28 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import time
from options.train_options import TrainOptions
from models import create_model
from util.visualizer import Visualizer
import torch
import torchvision
import torchvision.transforms as transforms
from util import util
if __name__ == '__main__':
opt = TrainOptions().parse()
opt.dataroot = './dataset/ilsvrc2012/%s/' % opt.phase
dataset = torchvision.datasets.ImageFolder(opt.dataroot,
transform=transforms.Compose([
transforms.RandomChoice([transforms.Resize(opt.loadSize, interpolation=1),
transforms.Resize(opt.loadSize, interpolation=2),
transforms.Resize(opt.loadSize, interpolation=3),
transforms.Resize((opt.loadSize, opt.loadSize), interpolation=1),
transforms.Resize((opt.loadSize, opt.loadSize), interpolation=2),
transforms.Resize((opt.loadSize, opt.loadSize), interpolation=3)]),
transforms.RandomChoice([transforms.RandomResizedCrop(opt.fineSize, interpolation=1),
transforms.RandomResizedCrop(opt.fineSize, interpolation=2),
transforms.RandomResizedCrop(opt.fineSize, interpolation=3)]),
transforms.RandomHorizontalFlip(),
transforms.ToTensor()]))
dataset_loader = torch.utils.data.DataLoader(dataset, batch_size=opt.batch_size, shuffle=True, num_workers=int(opt.num_threads))
dataset_size = len(dataset)
print('#training images = %d' % dataset_size)
model = create_model(opt)
model.setup(opt)
model.print_networks(True)
visualizer = Visualizer(opt)
total_steps = 0
for epoch in range(opt.epoch_count, opt.niter + opt.niter_decay):
epoch_start_time = time.time()
iter_data_time = time.time()
epoch_iter = 0
# for i, data in enumerate(dataset):
for i, data_raw in enumerate(dataset_loader):
data_raw[0] = data_raw[0].cuda()
data = util.get_colorization_data(data_raw, opt, p=opt.sample_p)
if(data is None):
continue
iter_start_time = time.time()
if total_steps % opt.print_freq == 0:
# time to load data
t_data = iter_start_time - iter_data_time
visualizer.reset()
total_steps += opt.batch_size
epoch_iter += opt.batch_size
model.set_input(data)
model.optimize_parameters()
if total_steps % opt.display_freq == 0:
save_result = total_steps % opt.update_html_freq == 0
visualizer.display_current_results(model.get_current_visuals(), epoch, save_result)
if total_steps % opt.print_freq == 0:
losses = model.get_current_losses()
# time to do forward&backward
t = time.time() - iter_start_time
visualizer.print_current_losses(epoch, epoch_iter, losses, t, t_data)
if opt.display_id > 0:
visualizer.plot_current_losses(epoch, float(epoch_iter) / dataset_size, opt, losses)
if total_steps % opt.save_latest_freq == 0:
print('saving the latest model (epoch %d, total_steps %d)' %
(epoch, total_steps))
model.save_networks('latest')
iter_data_time = time.time()
if epoch % opt.save_epoch_freq == 0:
print('saving the model at the end of epoch %d, iters %d' %
(epoch, total_steps))
model.save_networks('latest')
model.save_networks(epoch)
print('End of epoch %d / %d \t Time Taken: %d sec' %
(epoch, opt.niter + opt.niter_decay, time.time() - epoch_start_time))
model.update_learning_rate()