forked from obobryshev/spectroscopy-oxygen-microwave
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathiy_TRE05m.py
154 lines (118 loc) · 4.47 KB
/
iy_TRE05m.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Parameters:
Returns:
@author: alex
"""
def run_arts(nelem=1125, model="O2-TRE05", verbosity=2):
import pyarts as py
import datetime
ws = py.workspace.Workspace(verbosity)
ws.execute_controlfile("general/general.arts")
ws.execute_controlfile("general/continua.arts")
ws.execute_controlfile("general/agendas.arts")
ws.execute_controlfile("general/planet_earth.arts")
ws.verbositySetScreen(ws.verbosity, verbosity)
ws.AtmosphereSet1D()
ws.IndexSet(ws.stokes_dim, 1)
ws.StringSet(ws.iy_unit, "PlanckBT")
# monochromatic frequency grid
# VectorNLinSpace( out, nelem, start, stop )
ws.VectorNLinSpace(ws.f_grid, nelem, 5e9, 500e9)
# common_metmm.arts
ws.output_file_formatSetZippedAscii()
ws.NumericSet(ws.ppath_lmax, float(250))
# Agenda for scalar gas absorption calculation
ws.Copy(ws.abs_xsec_agenda, ws.abs_xsec_agenda__noCIA)
# Surface
ws.Copy(
ws.surface_rtprop_agenda,
ws.surface_rtprop_agenda__Specular_NoPol_ReflFix_SurfTFromt_surface,
)
# (standard) emission calculation
ws.Copy(ws.iy_main_agenda, ws.iy_main_agenda__Emission)
# cosmic background radiation
ws.Copy(ws.iy_space_agenda, ws.iy_space_agenda__CosmicBackground)
# standard surface agenda (i.e., make use of surface_rtprop_agenda)
ws.Copy(ws.iy_surface_agenda, ws.iy_surface_agenda__UseSurfaceRtprop)
# sensor-only path
ws.Copy(ws.ppath_agenda, ws.ppath_agenda__FollowSensorLosPath)
# no refraction
ws.Copy(ws.ppath_step_agenda, ws.ppath_step_agenda__GeometricPath)
# Set propmat_clearsky_agenda to use on-the-fly absorption
ws.Copy(ws.propmat_clearsky_agenda, ws.propmat_clearsky_agenda__OnTheFly)
# Spectroscopy
species = [
"H2O, H2O-SelfContCKDMT252, H2O-ForeignContCKDMT252",
"O2-TRE05",
"N2, N2-CIAfunCKDMT252, N2-CIArotCKDMT252",
"O3",
]
# ws.abs_speciesSet( species=species )
ws.abs_speciesSet(
species=species,
)
ws.ReadARTSCAT(
filename="instruments/metmm/abs_lines_metmm.xml.gz",
fmin=0.0,
fmax=float(1e99),
globalquantumnumbers="",
localquantumnumbers="",
normalization_option="None",
mirroring_option="None",
population_option="LTE",
lineshapetype_option="VP",
cutoff_option="None",
cutoff_value=750e9,
linemixinglimit_value=-1.0,
)
ws.abs_linesSetCutoff(option="ByLine", value=750e9)
ws.abs_linesSetNormalization(option="VVH")
ws.abs_lines_per_speciesCreateFromLines()
ws.abs_lines_per_speciesSetCutoffForSpecies(
option="ByLine", value=5e9, species_tag="O3"
)
ws.VectorSetConstant(ws.surface_scalar_reflectivity, 1, 0.05)
# Atmospheric scenario
# A pressure grid rougly matching 0 to 80 km, in steps of 2 km.
ws.VectorNLogSpace(ws.p_grid, 900, 1013e2, 10.0)
ws.AtmRawRead(basename="planets/Earth/Fascod/midlatitude-summer/midlatitude-summer")
ws.AtmFieldsCalc(interp_order=3)
# get some surface properties from corresponding atmospheric fields
ws.Extract(ws.z_surface, ws.z_field, 0)
ws.Extract(ws.t_surface, ws.t_field, 0)
ws.abs_xsec_agenda_checkedCalc()
ws.lbl_checkedCalc()
# Optionally set Jacobian parameters.
ws.jacobianOff()
# No scattering
ws.cloudboxOff()
# No sensor
ws.sensorOff()
# Definition of sensor position and LOS
# ---
ws.VectorSet(ws.rte_pos, 850e3)
ws.VectorSet(ws.rte_los, 180)
ws.VectorSet(ws.rte_pos2, [])
# Checks
ws.propmat_clearsky_agenda_checkedCalc()
ws.atmfields_checkedCalc()
ws.atmgeom_checkedCalc()
ws.cloudbox_checkedCalc()
# Perform RT calculations
ws.iyCalc()
# =====================================================================
# Output #
# =====================================================================
tt_time = datetime.datetime.now().strftime("%Y-%m-%d_%H%M")
# Store results
ws.WriteXML("ascii", ws.f_grid, "Output/fgrid_" + model + "_" + tt_time + ".xml")
ws.WriteXML("ascii", ws.iy, "Output/iy_" + model + "_midlat-s_" + tt_time + ".xml")
print("Success! We reached the finish!")
return tt_time
def main():
for nelem in [1125]:
run_arts(nelem)
if __name__ == "__main__":
main()