-
Notifications
You must be signed in to change notification settings - Fork 99
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
decoding issue #8
Comments
Hmm, that's strange. Can you run a postmortem debugger and check if |
Thanks for replying. Could you explain more detail how to use it? |
Somehow, a function So, I propose to run a debugger like (assuming that you have
You can use You'll be able to go up/down the stack and print/inspect the variables. |
Hello,
I have an issue when I tried to decode the model for TLE.
export THEANO_FLAGS=mode=FAST_RUN,device=gpu3,floatX=float32; $LVSR/exp/wsj/decode_tle.sh wsj_reward6 test 200
Here is the log:
test_eval92_nolm_200
test_nolm_200
Using gpu device 3: Tesla K20m (CNMeM is enabled with initial size: 90.0% of memory, cuDNN Version is too old. Update to v5, was 3007.)
2016-06-07 14:49:00,862: pykwalify.core: INFO: validation.valid
2016-06-07 14:49:00,867: pykwalify.core: INFO: validation.valid
2016-06-07 14:49:00,872: pykwalify.core: INFO: validation.valid
2016-06-07 14:49:00,877: pykwalify.core: INFO: validation.valid
2016-06-07 14:49:00,884: main: INFO: Config:
{'cmd_args': {'config_changes': <picklable_itertools.extras.equizip object at 0x7fb144a68050>,
'config_path': '/speech05-ssd/sykim/attention-lvcsr/exp/wsj/configs/wsj_reward6.yaml',
'decode_only': None,
'decoded_save': None,
'func': 'search',
'load_path': 'wsj_reward6/annealing1_best_ll.zip',
'nll_only': False,
'params': None,
'part': 'test',
'report': 'wsj_reward6/reports/test_nolm_200',
'seed': 1,
'validate_config': True},
'data': {'add_bos': 1,
'add_eos': True,
'batch_size': 20,
'dataset_class': <class 'lvsr.datasets.h5py.H5PYAudioDataset'>,
'dataset_filename': 'wsj.h5',
'default_sources': ['recordings', 'labels'],
'name_mapping': {'test': 'test_eval92', 'train': 'train_si284', 'valid': 'test_dev93'},
'normalization': '',
'sources_map': {'labels': 'characters', 'recordings': 'fbank_dd', 'uttids': 'uttids'}},
'initialization': {'/recognizer': {'biases_init': Constant(_constant=0.0),
'rec_weights_init': IsotropicGaussian(_mean=0,_std=0.1),
'weights_init': Uniform(_mean=0.0,_width=0.1)},
'/recognizer/generator/readout/post_merge/mlp': {'biases_init': Constant(_constant=-1.0)}},
'monitoring': {'search': {'beam_size': 200, 'char_discount': 0.0, 'round_to_inf': 4.5, 'stop_on': 'patience'},
'search_every_batches': 0,
'search_every_epochs': 1,
'validate_every_batches': 0,
'validate_every_epochs': 1},
'net': {'attention_type': 'content_and_conv',
'bottom': {'activation': <blocks.bricks.simple.Rectifier object at 0x7fb118424510: name=rectifier>,
'bottom_class': <class 'lvsr.bricks.recognizer.SpeechBottom'>,
'dims': []},
'conv_n': 100,
'criterion': {'min_reward': -5, 'name': 'mse_gain'},
'dec_transition': <class 'blocks.bricks.recurrent.GatedRecurrent'>,
'dim_dec': 250,
'dims_bidir': [250, 250, 250, 250],
'enc_transition': <class 'blocks.bricks.recurrent.GatedRecurrent'>,
'lm': {'normalize_am_weights': False},
'max_decoded_length_scale': 3.0,
'post_merge_activation': <blocks.bricks.simple.Rectifier object at 0x7fb1184336d0: name=rectifier>,
'post_merge_dims': [250],
'prior': {'after': 100,
'before': 100,
'initial_begin': 0,
'initial_end': 80,
'max_speed': 4.4,
'min_speed': 2.4,
'type': 'window_around_median'},
'subsample': [1, 1, 2, 2],
'use_states_for_readout': True},
'parent': '$LVSR/exp/wsj/configs/wsj_reward4.yaml',
'regularization': {'dropout': False, 'max_norm': 1.0},
'stages': {'annealing1': {'net': {'lm': None},
'training': {'epsilon': 1e-10, 'num_epochs': 3, 'restart_from': '_best_ll'}},
'annealing2': None,
'main': {'net': {'lm': None}, 'training': {'num_epochs': 15, 'restart_from': '_best_ll'}},
'pretraining': {'net': {'criterion': {'min_reward': -1},
'lm': None,
'prior': {'initial_begin': 0,
'initial_end': 40,
'max_speed': 2.2,
'min_speed': 1.2,
'type': 'expanding'}},
'training': {'num_epochs': 4}}},
'training': {'decay_rate': 0.95,
'epsilon': 1e-08,
'exploration': 'greedy',
'gradient_threshold': 100.0,
'momentum': 0.0,
'rules': ['momentum', 'adadelta'],
'scale': 0.1},
'vocabulary': 'data/local/nist_lm/wsj_trigram_no_bos/words.txt'}
2016-06-07 14:49:00,996: lvsr.main: INFO: Recognizer initialization started
2016-06-07 14:49:54,017: lvsr.main: INFO: Recognizer is initialized
/speech05-ssd/sykim/attention-lvcsr/lvsr/bricks/recognizer.py:493: UserWarning: theano.function was asked to create a function computing outputs given certain inputs, but the provided input variable at index 1 is not part of the computational graph needed to compute the outputs: groundtruth.
To make this warning into an error, you can pass the parameter on_unused_input='raise' to theano.function. To disable it completely, use on_unused_input='ignore'.
on_unused_input='warn')
Traceback (most recent call last):
File "/speech05-ssd/sykim/attention-lvcsr/bin/run.py", line 154, in
getattr(lvsr.main, args.pop('func'))(config, **args)
File "/speech05-ssd/sykim/attention-lvcsr/lvsr/main.py", line 781, in search
prediction=raw_groundtruth)[:2]
File "/speech05-ssd/sykim/attention-lvcsr/lvsr/bricks/recognizer.py", line 493, in analyze
on_unused_input='warn')
File "/usr/local/lib/python2.7/dist-packages/theano/compile/function.py", line 322, in function
output_keys=output_keys)
File "/usr/local/lib/python2.7/dist-packages/theano/compile/pfunc.py", line 480, in pfunc
output_keys=output_keys)
File "/usr/local/lib/python2.7/dist-packages/theano/compile/function_module.py", line 1827, in orig_function
output_keys=output_keys).create(
File "/usr/local/lib/python2.7/dist-packages/theano/compile/function_module.py", line 1479, in init
accept_inplace)
File "/usr/local/lib/python2.7/dist-packages/theano/compile/function_module.py", line 177, in std_fgraph
update_mapping=update_mapping)
File "/usr/local/lib/python2.7/dist-packages/theano/gof/fg.py", line 182, in init
self.import_r(output, reason="init")
File "/usr/local/lib/python2.7/dist-packages/theano/gof/fg.py", line 374, in import_r
self.import(variable.owner, reason=reason)
File "/usr/local/lib/python2.7/dist-packages/theano/gof/fg.py", line 416, in import
variable=r)
theano.gof.fg.MissingInputError: An input of the graph, used to compute DimShuffle{0,x}(labels), was not provided and not given a value.Use the Theano flag exception_verbosity='high',for more information on this error.
Backtrace when the variable is created:
File "/speech05-ssd/sykim/attention-lvcsr/bin/run.py", line 154, in
getattr(lvsr.main, args.pop('func'))(config, *_args)
File "/speech05-ssd/sykim/attention-lvcsr/lvsr/main.py", line 716, in search
recognizer = create_model(config, data, load_path)
File "/speech05-ssd/sykim/attention-lvcsr/lvsr/main.py", line 221, in create_model
*_net_config)
File "/speech05-ssd/sykim/attention-lvcsr/lvsr/bricks/recognizer.py", line 360, in init
self.single_labels = tensor.lvector('labels')
attention-lvcsr/lvsr/main.py", line 716, in search
recognizer = create_model(config, data, load_path)
File "/speech05-ssd/sykim/attention-lvcsr/lvsr/main.py", line 221, in create_model
**net_config)
File "/speech05-ssd/sykim/attention-lvcsr/lvsr/bricks/recognizer.py", line 360, in init
self.single_labels = tensor.lvector('labels')
The text was updated successfully, but these errors were encountered: