-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathevaluate_svm_classifier.py
87 lines (67 loc) · 2.88 KB
/
evaluate_svm_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
from keras import backend as K
from keras.applications.mobilenetv2 import preprocess_input
from keras.models import load_model
from keras.preprocessing.image import ImageDataGenerator
import pickle
from sklearn.preprocessing import MinMaxScaler
import numpy as np
def load_model_from_file(model_path):
keras_backend = K.backend()
assert keras_backend == "tensorflow", \
"Only tensorflow-backed Keras models are supported, tried to load Keras model " \
"with backend %s." % (keras_backend)
return load_model(model_path)
def get_feature_vector(data, model, learning_phase=0):
""" Returns the second-to-last layer output from a pretrained model
Params
------
data: ndarray. Data to input into the model, must match its shape.
model: keras.engine.training.Model. Pretrained model
learning_phase: int. If the model has a different behavior in
training/testing phase, a suitable `learning_phase` must be
set: 0=TEST (default), 1=TRAIN.
Return
------
ndarray. The feature array for all the images.
"""
get_layer_output = K.function(
[model.layers[0].input, K.learning_phase()],
[model.layers[-2].output])
return get_layer_output([data, learning_phase])[0]
if __name__ == '__main__':
IMAGE_SHAPE = (224, 224, 3)
BATCH_SIZE=100
total_valid_images = 13616
steps = (total_valid_images//BATCH_SIZE)+1
IMAGE_DIR = {
'test': './organized/test'
}
datagen_attrs = dict(
batch_size=BATCH_SIZE, # How many images will be used in each step
target_size=IMAGE_SHAPE[:2], # Resize to fit models' input
class_mode='categorical' # Return labels as 1D integer label array
)
max_array = np.fromfile('max.ndarray')
min_array = np.fromfile('min.ndarray')
# Feature Normalization
min_max_scaler = MinMaxScaler()
min_max_scaler.fit([min_array, max_array])
datagen = lambda: ImageDataGenerator(preprocessing_function=preprocess_input)
test_it = datagen().flow_from_directory(IMAGE_DIR['test'], **datagen_attrs)
mnv2_classify_emotions = load_model_from_file('weights-improvement-128x128-226-0.73.hdf5')
with open('sgd-epoch-5-(valscore-0.606).pkl','rb') as fid:
clf = pickle.load(fid)
ground_truth_list = []
best_predictions = []
with open('predictions.txt','w') as f
for i in range(steps):
X, Y = next(test_it)
features = get_feature_vector(X, mnv2_classify_emotions)
features = min_max_scaler.transform(features)
predictions = clf.predict(features)
for j, y in enumerate(Y):
ground_truth = np.argmax(y)
ground_truth_list.append(ground_truth)
best_predictions.append(predictions[j])
f.write("%d %d %d\n" % (i*BATCH_SIZE + j, ground_truth, predictions[j]))
print('Step', i)