forked from sxyu/avatar
-
Notifications
You must be signed in to change notification settings - Fork 0
/
face_landmark_tracking.py
632 lines (527 loc) · 24.7 KB
/
face_landmark_tracking.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
import cv2
import sys, datetime
import glob
import dlib
import math
import os
from time import sleep
from shapely.geometry import Polygon
import numpy as np
# Kinect Azure intrinsics
FX = -622.359
CX = 641.666
FY = -620.594
CY = 352.072
FRAME_W, FRAME_H = 1280, 720
GREEN = (0, 255, 0)
BLUE = (255, 0, 0)
RED = (0, 0, 255)
YELLOW = (0, 255, 255)
tracked_face_color = BLUE
new_face_color = RED
tracked_landmarks_color = BLUE
new_landmarks_color = RED
DEBUG = True
STATE_NO_FACE = 0
STATE_INIT = 1
STATE_TRACKED = 2
STATE_LOSE_TRACK_MIN = 3
STATE_LOSE_TRACK_MAX = 5
MIN_FACE_AREA=500
TRACK_BOX_WIDTH = 11
LANDMARK_OPENCV=0
LANDMARK_DLIB = 1
LANDMARK_DETECTOR=LANDMARK_DLIB
# DATASET_PATH = '/mnt_d/Programming/0VR/OpenARK/data/avatar-dataset/car_exr/mount-tripod-loop'
DATASET_PATH = '/mnt_d/Programming/0VR/OpenARK/data/avatar-dataset/car_exr/mount-tripod-eye-open-close'
# DATASET_PATH = '/mnt_d/Programming/0VR/OpenARK/data/avatar-dataset/car_exr/mount-tripod-real-road'
# Approximated face points. This can be replaced by real-world 3D face points
# This is using orthographic projection approximation in image coordinates
model_3D_points = np.array([
(0.0, 0.0, 0.0), # Nose tip
(0.0, -40.0, -30.0), # Mouth center
(-35, 55, -40.0), # Left eye center
(35, 55, -40.0), # Right eye center
(-25, -35, -60.0), # Left Mouth corner
(25, -35, -60.0) # Right mouth corner
])
# Set fixed image resize resolution in opencv convension
# resize_size = (640, 360)
resize_size = (960, 480)
FX_SHR = FX * (resize_size[0] / FRAME_W)
CX_SHR = CX * (resize_size[0] / FRAME_W)
FY_SHR = FY * (resize_size[1] / FRAME_H)
CY_SHR = CY * (resize_size[1] / FRAME_H)
# Approximated camera intrinsic parameters
focal_length = resize_size[0]
center = (resize_size[0]/2, resize_size[1]/2)
camera_matrix = np.array(
[[focal_length, 0, center[0]],
[0, focal_length, center[1]],
[0, 0, 1]], dtype = "double"
)
camera_dist_coeffs = np.zeros((4,1)) # Assuming no lens distortion
#https://github.com/twairball/face_tracking/blob/master/face_tracking.py
# OpenCV Face Landmark Indexes:
# 30: nose tip; 31: right nose corner; 33: middle between nose corners; 35: left nose corner
# 36: right eye outside corner; 39: right eye inside corner; 42: left eye inside corner: 45: left eye outside corner
# 48: right mouth corner; 54: left mouth corner
def bbox_to_point(bbox):
(bX, bY, bW, bH) = bbox
bX, bY, bW, bH = int(bX), int(bY), int(bW), int(bH)
return bX + (bW / 2), bY + (bH / 2), 5, 5
def dlib_full_obj_to_np(obj_detection):
return [(p.x, p.y) for p in obj_detection.parts()]
def draw_boxes(frame, boxes, color=(0,255,0)):
for i in range(len(boxes)):
# Prevent empty list units
if boxes[i]:
(bX, bY, bW, bH) = boxes[i]
bX, bY, bW, bH = int(bX), int(bY), int(bW), int(bH)
cv2.rectangle(frame, (bX, bY), (bX + bW, bY + bH), color, 1)
def draw_points(frame, points,color=(0,0,255)):
# for set_of_landmarks in points:
for (x, y) in points:
cv2.circle(frame, (int(x), int(y)), 2, color, -1)
def resize_image(image, size_limit=500.0):
max_size = max(image.shape[0], image.shape[1])
if max_size > size_limit:
scale = size_limit / max_size
_img = cv2.resize(image, None, fx=scale, fy=scale)
return _img
return image
#a landmark at coordinate (x, y) should have a bounding box of (x - half_width, y - half_width, half_width * 2, half_width * 2)
def make_bbox_for_landmark(landmark, half_width):
bbox_x = int(landmark[0] - half_width)
bbox_y = int(landmark[1] - half_width)
return (bbox_x, bbox_y, half_width * 2 + 1, half_width * 2 + 1)
def make_bbox_from_point_list(point_list):
# test the validity of the update
box_min_x = math.inf
box_min_y = math.inf
box_max_x = 0
box_max_y = 0
for index in range(len(point_list)):
# calculate its area
if point_list[index][0]<box_min_x:
box_min_x=point_list[index][0]
if point_list[index][0]>box_max_x:
box_max_x=point_list[index][0]
if point_list[index][1]<box_min_y:
box_min_y=point_list[index][1]
if point_list[index][1]>box_max_y:
box_max_y=point_list[index][1]
bbox = (int(box_min_x)-5, int(box_min_y)-5, int(box_max_x-box_min_x)+10, int(box_max_y-box_min_y)+10)
return bbox
def make_feature_bbox_from_landmarks(landmarks, feature_index=0):
bboxes=[]
# Define nose box
if feature_index==0 or feature_index==1:
point_list = landmarks[0:4]
bbox= make_bbox_from_point_list(point_list)
bboxes.append(bbox)
# Define right eye box
if feature_index==0 or feature_index==2:
point_list = landmarks[4:10]
bbox= make_bbox_from_point_list(point_list)
bboxes.append(bbox)
# Define right eye box
if feature_index==0 or feature_index==3:
point_list = landmarks[10:16]
bbox= make_bbox_from_point_list(point_list)
bboxes.append(bbox)
# Define right eye box
if feature_index==0 or feature_index==4:
point_list = landmarks[16:20]
bbox= make_bbox_from_point_list(point_list)
bboxes.append(bbox)
return bboxes
def avg_dist_between_points(tracked_points, detected_points):
if len(tracked_points) != len(detected_points):
raise Exception
num_points = len(tracked_points)
total = sum([calc_distance(tracked_points[i], detected_points[i]) for i in range(len(tracked_points))])
return total / num_points
def calc_distance(point_1, point_2):
x1, y1 = point_1 #comes from tracker, so is x, y
x2, y2 = point_2 #comes from detection, so is x, y
return math.sqrt((x2 - x1)**2 + (y2 - y1)**2)
#return the percentage overlap between 2 face detection bounding boxes, tracked and newly detected
def overlapping_percentage(bbox_a, bbox_b):
a_x, a_y, a_w, a_h = bbox_a #x, y is upper left corner
b_x, b_y, b_w, b_h = bbox_b
polygon_a = Polygon([(a_x, a_y + a_h), (a_x + a_w, a_y + a_h), (a_x + a_w, a_y), (a_x, a_y)]) #lower left, lower right, upper right, upper left
polygon_b = Polygon([(b_x, b_y + b_h), (b_x + b_w, b_y + b_h), (b_x + b_w, b_y), (b_x, b_y)]) #lower left, lower right, upper right, upper left
intersection = polygon_a.intersection(polygon_b)
min_area = min(polygon_a.area, polygon_b.area)
return float(intersection.area) / min_area
# take a bounding predicted by opencv and convert it
# to the dlib (top, right, bottom, left)
def bb_to_rect(bb):
top=bb[1]
left=bb[0]
right=bb[0]+bb[2]
bottom=bb[1]+bb[3]
return dlib.rectangle(left, top, right, bottom)
# take a bounding predicted by dlib and convert it
# to the format (x, y, w, h) as we would normally do
# with OpenCV
def rect_to_bb(rect):
x = rect.left()
y = rect.top()
w = rect.right() - x
h = rect.bottom() - y
# return a tuple of (x, y, w, h)
return (x, y, w, h)
class FaceDetectorDNN():
def __init__(self, modelFile="res10_300x300_ssd_iter_140000_fp16.caffemodel", configFile="deploy.prototxt"):
self.net = cv2.dnn.readNetFromCaffe(configFile, modelFile)
self.conf_threshold = .8
def detect(self, frame):
frameWidth = frame.shape[1]
frameHeight = frame.shape[0]
blob = cv2.dnn.blobFromImage(frame, 1.0, (300, 300), [104, 117, 123])
self.net.setInput(blob)
detections = self.net.forward()
faces = []
for i in range(detections.shape[2]):
confidence = detections[0, 0, i, 2]
if confidence > self.conf_threshold:
x1 = int(detections[0, 0, i, 3] * frameWidth)
y1 = int(detections[0, 0, i, 4] * frameHeight)
x2 = int(detections[0, 0, i, 5] * frameWidth)
y2 = int(detections[0, 0, i, 6] * frameHeight)
face = (x1, y1, x2 - x1, y2 - y1)
faces.append(face)
return faces
class FacemarkDetectorOpenCV():
def __init__(self):
self.facemark = cv2.face.createFacemarkLBF()
self.facemark.loadModel("lbfmodel.yaml")
#faces should be an np.array of face, where face is (x, y, w, h)
def detect(self, frame, facebox):
#fitted[0] is a boolean representing if landmarks were found or not
#fitted[1] is an array whose first element is a 3D np.array of points
if len(facebox) > 0:
faces = np.asarray([facebox])
fitted = self.facemark.fit(frame, faces)
success = fitted[0]
if success:
# landmarks annotate four track-able areas: nose(4), right eye(6), left eye(6), mouth (4)
keep = [30, 31, 33, 35, 36, 37,38, 39, 40,41, 42, 43, 44, 45,46, 47, 48, 51, 54, 57] #indices of landmarks to keep
self.landmarks = [fitted[1][0][0][i] for i in keep]
return self.landmarks
else:
print("No success detecting")
return []
else:
print("No faces passed into landmark detector")
return []
class FacemarkDetectorDlib():
def __init__(self):
self.predictor = dlib.shape_predictor("./shape_predictor_68_face_landmarks.dat")
def detect(self, frame, bbox):
if bbox:
# reduce bbox high due to dlib training on square face boxes
delta = bbox[3] - bbox[2]
# if delta>0:
# bbox = (bbox[0], bbox[1] + delta//2, bbox[2], bbox[3]-delta//2)
rect = bb_to_rect(bbox)
shape = self.predictor(frame, rect)
points = dlib_full_obj_to_np(shape)
# landmarks annotate four track-able areas: nose(4), right eye(6), left eye(6), mouth (4)
keep = [30, 31, 33, 35, 36, 37, 38,39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 51, 54, 57]
# keep = [54]
filtered_points = [points[i] for i in keep]
return filtered_points
else:
return []
class Tracker():
def __init__(self, frame, bbox):
# Arbitrarily picked KCF tracking
self.tracker = cv2.TrackerKCF_create() # Boosting
self.tracker.init(frame, bbox)
def update(self, frame):
ok, bbox = self.tracker.update(frame)
return ok, bbox
class Pipeline():
def __init__(self):
self.face_detector = FaceDetectorDNN()
if LANDMARK_DETECTOR==LANDMARK_OPENCV:
self.facemark_detector = FacemarkDetectorOpenCV()
else:
self.facemark_detector = FacemarkDetectorDlib()
self.landmark_trackers = []
#return faces and True/False if faces detected
def detect_faces(self, frame):
faces = self.face_detector.detect(frame)
return faces
def detect_landmarks(self, frame, facebox):
if len(facebox)!=4:
#if no faces are found, return
return [], False
landmarks = self.facemark_detector.detect(frame, facebox)
return landmarks
def facial_orientation(bboxes, landmarks, xyz):
image_points = np.array([
(0, 0), # Nose tip
(0, 0), # Mouth center
(0, 0), # Left eye center
(0, 0), # Right eye center
(0, 0), # Left Mouth corner
(0, 0) # Right mouth corner
], dtype="double")
image_points[0] = [bboxes[0][0]+bboxes[0][2]/2, bboxes[0][1]+bboxes[0][3]/2]
image_points[1] = [bboxes[3][0]+bboxes[3][2]/2, bboxes[3][1]+bboxes[3][3]/2]
image_points[2] = [bboxes[1][0]+bboxes[1][2]/2, bboxes[1][1]+bboxes[1][3]/2]
image_points[3] = [bboxes[2][0]+bboxes[2][2]/2, bboxes[2][1]+bboxes[2][3]/2]
image_points[4] = landmarks[16]
image_points[5] = landmarks[18]
# points_3d = np.zeros((6, 3));
# for i in range(points_3d.shape[0]):
# py = min(int(image_points[i,1]), xyz.shape[0]-1)
# px = min(int(image_points[i,0]), xyz.shape[1]-1)
# points_3d[i, :] = xyz[py, px]
(success, rotation_vector, translation_vector) = cv2.solvePnP(model_3D_points, image_points, camera_matrix, camera_dist_coeffs, flags=cv2.SOLVEPNP_ITERATIVE)
# (success, rotation_vector, translation_vector) = cv2.solvePnP(points_3d, image_points, camera_matrix, camera_dist_coeffs, flags=cv2.SOLVEPNP_ITERATIVE)
camera_para = (rotation_vector, translation_vector)
# The following are for debugging purposes of drawing orientation
# (nose_end_point2D, jacobian) = cv2.projectPoints(np.array([(0.0, 0.0, 200.0)]), rotation_vector, translation_vector, camera_matrix, camera_dist_coeffs)
# p1 = ( int(image_points[0][0]), int(image_points[0][1]))
# 0 nose
# 4 R eye
p1 = ( int(landmarks[0][0]), int(landmarks[0][1]))
p1_3d = xyz[min(int(landmarks[0][1]), xyz.shape[0]-1),
min(int(landmarks[0][0]), xyz.shape[1]-1)]
mouth_3d = xyz[min(int(landmarks[17][1]), xyz.shape[0]-1),
min(int(landmarks[17][0]), xyz.shape[1]-1)]
leye_3d = xyz[min(int(landmarks[4][1]), xyz.shape[0]-1),
min(int(landmarks[4][0]), xyz.shape[1]-1)]
meye_3d = xyz[min(int((landmarks[4][1] + landmarks[13][1]) /2), xyz.shape[0]-1),
min(int((landmarks[4][0] + landmarks[13][0]) /2), xyz.shape[1]-1)]
# meye_3d = (leye_3d + reye_3d) / 2
v_up = meye_3d - mouth_3d
v_right = meye_3d - leye_3d
v_fwd = np.cross(v_up, v_right)
norm = np.linalg.norm(v_fwd)
if norm == 0.0:
# Vector is zero
p2 = p1
else:
v_fwd /= norm
p2_3d = p1_3d - v_fwd * 0.15
if p2_3d[2] == 0:
# Invalid point
p2 = p1
else:
p2 = ( int(p2_3d[0] * FX_SHR / p2_3d[2] + CX_SHR),
int(p2_3d[1] * FY_SHR / p2_3d[2] + CY_SHR))
return camera_para, p1, p2
def boxes_overlap(box1, box2):
# If two boxes overlap in image, return the smaller box that should be removed
# otherwise, return 0
(f1X, f1Y,f1W, f1H) = box1
f1X_center = f1X + f1W/2.0
f1Y_center = f1Y + f1H/2.0
(f2X, f2Y,f2W, f2H) = box2
f2X_center = f2X + f2W/2.0
f2Y_center = f2Y + f2H/2.0
is_overlap = False
if f1X_center>=f2X and f1X_center<=f2X + f2W and f1Y_center>=f2Y and f1Y_center<=f2Y + f2H:
# box1 center is within box2
is_overlap = True
if f2X_center>=f1X and f2X_center<=f1X + f1W and f2Y_center>=f1Y and f2Y_center<=f1Y + f1H:
# box1 center is within box2
is_overlap = True
if is_overlap:
if f1W*f1H > f2W*f2H:
return 2
else:
return 1
else:
return 0
def run():
# init video stream
# video_capture = cv2.VideoCapture(0)
# init detection pipeline
pipeline = Pipeline()
# init state variables
landmarks = []
tracked_faces = []
tracked_faces_status = [] # this list register status of individual faces
tracked_faces_orientation = []
tracker_list=[]
default_stop = False
class mock_video_capture:
def __init__(self, path):
self.rgb_frames = sorted(glob.glob(os.path.join(path, 'rgb/*.jpg')))
self.depth_frames = sorted(glob.glob(os.path.join(path, 'depth_exr/*.exr')))
self.cols = None
self.idx = 0
def read(self):
if self.idx >= len(self.rgb_frames):
return False, None
frame = cv2.imread(self.rgb_frames[self.idx])
self.idx += 1
return True, frame
def read_depth(self):
frame = cv2.imread(self.depth_frames[self.idx], cv2.IMREAD_ANYCOLOR | cv2.IMREAD_ANYDEPTH)
return frame
def read_xyz(self):
depth = cv2.imread(self.depth_frames[self.idx-1], cv2.IMREAD_ANYCOLOR | cv2.IMREAD_ANYDEPTH)
if self.cols is None:
self.cols = np.zeros(depth.shape, dtype=np.float32)
self.rows = np.zeros(depth.shape, dtype=np.float32)
for i in range(depth.shape[1]):
self.cols[:, i] = i - CX
for i in range(depth.shape[0]):
self.rows[i, :] = i - CY
self.cols /= FX
self.rows /= FY
xyz_map = np.zeros((*depth.shape, 3), dtype=np.float32)
xyz_map[:,:,0] = self.cols * depth
xyz_map[:,:,1] = self.rows * depth
xyz_map[:,:,2] = depth
return xyz_map
video_capture = mock_video_capture(DATASET_PATH)
output_video = cv2.VideoWriter('out.mp4', 0x21, 15, resize_size, True)
while not default_stop:
return_value, frame = video_capture.read()
if return_value==False:
break
frame_xyz = video_capture.read_xyz()
frame = cv2.resize(frame, resize_size, interpolation = cv2.INTER_AREA)
frame_xyz = cv2.resize(frame_xyz, resize_size, interpolation = cv2.INTER_NEAREST)
if DEBUG:
# if debugging, copy the current frame for augmenting visual results
display_frame = frame
# STAGE 1: Detection
# On new frame, try to detect faces
faces = pipeline.detect_faces(frame)
if len(faces) > 0:
# Remove impossible faces inside faces
for face_index in range(len(faces)):
(fX, fY, fW, fH) = faces[face_index]
if fW*fH<MIN_FACE_AREA:
faces[face_index][2]=0
faces[face_index][3]=0
continue
for overlap_face_index in range(face_index):
# check if face_index and overlap_face_index overlap
if faces[overlap_face_index][3]==0:
continue
which_overlap = boxes_overlap(faces[face_index], faces[overlap_face_index])
if which_overlap==1:
faces[face_index]=[]
break
elif which_overlap==2:
faces[overlap_face_index]=[]
for face_index in range(len(faces)):
if faces[face_index]:
# Exist non-empty face region, marge tracked faces and possible new faces
for tracked_face_index in range(len(tracked_faces)):
which_overlap = boxes_overlap(faces[face_index], tracked_faces[tracked_face_index])
if which_overlap!=0:
# It overlaps, use new face region to replace the old one
tracked_faces[tracked_face_index] = faces[face_index]
# Then remove faces entry from initialization
faces[face_index]=[]
break
# if DEBUG:
# augment detected faces in the frame
# draw_boxes(display_frame, faces, new_face_color)
# draw_boxes(display_frame, tracked_faces, tracked_face_color)
# Stage 2: Initialize New Trackers. When new face detected, initiate tracker(s)
for face_index in range(len(faces)):
# First ignore empty face regions
if not faces[face_index]:
continue
# Second, detect new facial landmarks
landmarks= pipeline.detect_landmarks(frame, faces[face_index])
if len(landmarks)>0:
# valid landmarks detected, this is a face region that can be tracked
# Initiate trackers
# bboxes = [make_bbox_for_landmark(landmark, TRACK_BOX_WIDTH) for landmark in landmarks]
bboxes = make_feature_bbox_from_landmarks(landmarks)
feature_trackers = [Tracker(frame, bbox) for bbox in bboxes]
tracker_list.append(feature_trackers)
tracked_faces.append(faces[face_index])
tracked_faces_status.append(STATE_INIT)
# Calculate face orientation
camera_para, p1, p2 = facial_orientation(bboxes, landmarks, frame_xyz)
tracked_faces_orientation.append(camera_para)
if DEBUG:
# draw detected landmarks
# draw_boxes(display_frame, bboxes, new_landmarks_color)
draw_points(display_frame, landmarks, RED)
cv2.line(display_frame, p1, p2, (255,0,0), 2)
# Stage 3: update old tracker parameters
if tracked_faces:
for face_index in range(len(tracked_faces)):
if tracked_faces_status[face_index] == STATE_INIT:
# This is a new face just added above, start tracking next frame
tracked_faces_status[face_index] = STATE_TRACKED
else:
# There are old tracked face regions, update them
current_track_state = tracked_faces_status[face_index]
feature_updates = [t.update(frame) for t in tracker_list[face_index]]
new_landmarks= pipeline.detect_landmarks(frame, tracked_faces[face_index])
if DEBUG:
draw_points(display_frame, new_landmarks, RED)
total_feature_area = 0
bboxes = []
for update_index in range(len(feature_updates)):
if feature_updates[update_index][0] == False:
# Use the new landmark to replace a failed tracked landmark
# tracked_landmark_list[face_index][update_index] = new_landmarks[update_index]
# add one penalty for mis-tracked state
tracked_faces_status[face_index] = current_track_state + 1
# update the tracker
bbox = make_feature_bbox_from_landmarks(landmarks, update_index+1)
bbox = bbox[0]
# bbox = make_bbox_for_landmark(new_landmarks[update_index], TRACK_BOX_WIDTH)
tracker_list[face_index][update_index]= Tracker(frame, bbox)
# else:
# tracked_landmark_list[face_index][update_index] = landmark_updates[update_index][1]
else:
bbox = feature_updates[update_index][1]
# Check if bbox is outside the face
if overlapping_percentage(bbox, tracked_faces[face_index])<0.99:
# bbox is outside the face region, add one penalty for mis-tracked state
tracked_faces_status[face_index] = current_track_state + 1
total_feature_area = total_feature_area + bbox[2]*bbox[3]
bboxes.append(bbox)
camera_para, p1, p2 = facial_orientation(bboxes, new_landmarks, frame_xyz)
tracked_faces_orientation[face_index] = camera_para
if DEBUG:
# draw_boxes(display_frame, bboxes, tracked_landmarks_color)
cv2.line(display_frame, p1, p2, (255,0,0), 2)
if tracked_faces_status[face_index] == STATE_TRACKED:
# Test yet another lost track condition:
# If tracked region varies away from detected face region, it lost track
face_area = tracked_faces[face_index][2]* tracked_faces[face_index][3]
if total_feature_area/face_area>0.2 or total_feature_area/face_area<0.01:
# Deem lost track
tracked_faces_status[face_index] = tracked_faces_status[face_index] + 1
# Finally, we need to remove those regions that lost track for too many frames
face_index = 0
while face_index<len(tracked_faces):
if tracked_faces_status[face_index] > STATE_LOSE_TRACK_MAX:
tracked_faces_status.pop(face_index)
tracked_faces.pop(face_index)
tracker_list.pop(face_index)
tracked_faces_orientation.pop(face_index)
else:
face_index = face_index + 1
if DEBUG:
# if debugging, display display_frame
cv2.imshow('Video', display_frame)
output_video.write(display_frame)
pressed_key=cv2.waitKey(10) & 0xFF
if pressed_key==27 or pressed_key==ord('q'):
default_stop = True
output_video.release()
if __name__ == '__main__':
run()
#import timeit
#print(timeit.repeat("run()", setup="from __main__ import run", repeat = 5, number=1))