forked from NVIDIA/nvbench
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaxes.cu
180 lines (160 loc) · 6.86 KB
/
axes.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
/*
* Copyright 2021 NVIDIA Corporation
*
* Licensed under the Apache License, Version 2.0 with the LLVM exception
* (the "License"); you may not use this file except in compliance with
* the License.
*
* You may obtain a copy of the License at
*
* http://llvm.org/foundation/relicensing/LICENSE.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <nvbench/nvbench.cuh>
// Grab some testing kernels from NVBench:
#include <nvbench/test_kernels.cuh>
// Thrust vectors simplify memory management:
#include <thrust/device_vector.h>
//==============================================================================
// Simple benchmark with no parameter axes:
void simple(nvbench::state &state)
{
state.exec([](nvbench::launch &launch) {
// Sleep for 1 millisecond:
nvbench::sleep_kernel<<<1, 1, 0, launch.get_stream()>>>(1e-3);
});
}
NVBENCH_BENCH(simple);
//==============================================================================
// Single parameter sweep:
void single_float64_axis(nvbench::state &state)
{
const auto duration = state.get_float64("Duration");
state.exec([duration](nvbench::launch &launch) {
nvbench::sleep_kernel<<<1, 1, 0, launch.get_stream()>>>(duration);
});
}
NVBENCH_BENCH(single_float64_axis)
// 0 -> 1 ms in 100 us increments.
.add_float64_axis("Duration", nvbench::range(0., 1e-3, 1e-4));
//==============================================================================
// Multiple parameters:
// Varies block_size and num_blocks while invoking a naive copy of 256 MiB worth
// of int32_t.
void copy_sweep_grid_shape(nvbench::state &state)
{
// Get current parameters:
const int block_size = static_cast<int>(state.get_int64("BlockSize"));
const int num_blocks = static_cast<int>(state.get_int64("NumBlocks"));
// Number of int32s in 256 MiB:
const std::size_t num_values = 256 * 1024 * 1024 / sizeof(nvbench::int32_t);
// Report throughput stats:
state.add_element_count(num_values);
state.add_global_memory_reads<nvbench::int32_t>(num_values);
state.add_global_memory_writes<nvbench::int32_t>(num_values);
// Allocate device memory:
thrust::device_vector<nvbench::int32_t> in(num_values, 0);
thrust::device_vector<nvbench::int32_t> out(num_values, 0);
state.exec(
[block_size,
num_blocks,
num_values,
in_ptr = thrust::raw_pointer_cast(in.data()),
out_ptr = thrust::raw_pointer_cast(out.data())](nvbench::launch &launch) {
nvbench::copy_kernel<<<num_blocks, block_size, 0, launch.get_stream()>>>(
in_ptr,
out_ptr,
num_values);
});
}
NVBENCH_BENCH(copy_sweep_grid_shape)
// Every second power of two from 64->1024:
.add_int64_power_of_two_axis("BlockSize", nvbench::range(6, 10, 2))
.add_int64_power_of_two_axis("NumBlocks", nvbench::range(6, 10, 2));
//==============================================================================
// Type parameter sweep:
// Copy 256 MiB of data, represented with various value_types.
template <typename ValueType>
void copy_type_sweep(nvbench::state &state, nvbench::type_list<ValueType>)
{
// Number of ValueTypes in 256 MiB:
const std::size_t num_values = 256 * 1024 * 1024 / sizeof(ValueType);
// Report throughput stats:
state.add_element_count(num_values);
state.add_global_memory_reads<ValueType>(num_values);
state.add_global_memory_writes<ValueType>(num_values);
// Allocate device memory:
thrust::device_vector<ValueType> in(num_values, 0);
thrust::device_vector<ValueType> out(num_values, 0);
state.exec(
[num_values,
in_ptr = thrust::raw_pointer_cast(in.data()),
out_ptr = thrust::raw_pointer_cast(out.data())](nvbench::launch &launch) {
nvbench::copy_kernel<<<256, 256, 0, launch.get_stream()>>>(in_ptr,
out_ptr,
num_values);
});
}
// Define a type_list to use for the type axis:
using cts_types = nvbench::type_list<nvbench::uint8_t,
nvbench::uint16_t,
nvbench::uint32_t,
nvbench::uint64_t,
nvbench::float32_t,
nvbench::float64_t>;
NVBENCH_BENCH_TYPES(copy_type_sweep, NVBENCH_TYPE_AXES(cts_types));
//==============================================================================
// Type parameter sweep:
// Convert 64 MiB of InputTypes to OutputTypes, represented with various
// value_types.
template <typename InputType, typename OutputType>
void copy_type_conversion_sweep(nvbench::state &state,
nvbench::type_list<InputType, OutputType>)
{
// Optional: Skip narrowing conversions.
if (sizeof(InputType) > sizeof(OutputType))
{
state.skip("Narrowing conversion: sizeof(InputType) > sizeof(OutputType).");
return;
}
// Number of InputTypes in 64 MiB:
const std::size_t num_values = 64 * 1024 * 1024 / sizeof(InputType);
// Report throughput stats: Passing an optional string adds a column to the
// output with the number of items/bytes.
state.add_element_count(num_values, "Items");
state.add_global_memory_reads<InputType>(num_values, "InSize");
state.add_global_memory_writes<OutputType>(num_values, "OutSize");
// Allocate device memory:
thrust::device_vector<InputType> in(num_values, 0);
thrust::device_vector<OutputType> out(num_values, 0);
state.exec(
[num_values,
in_ptr = thrust::raw_pointer_cast(in.data()),
out_ptr = thrust::raw_pointer_cast(out.data())](nvbench::launch &launch) {
nvbench::copy_kernel<<<256, 256, 0, launch.get_stream()>>>(in_ptr,
out_ptr,
num_values);
});
}
// Optional: Skip when InputType == OutputType. This approach avoids
// instantiating the benchmark at all.
template <typename T>
void copy_type_conversion_sweep(nvbench::state &state, nvbench::type_list<T, T>)
{
state.skip("Not a conversion: InputType == OutputType.");
}
// The same type_list is used for both inputs/outputs.
using ctcs_types = nvbench::type_list<nvbench::int8_t,
nvbench::int16_t,
nvbench::int32_t,
nvbench::float32_t,
nvbench::int64_t,
nvbench::float64_t>;
NVBENCH_BENCH_TYPES(copy_type_conversion_sweep,
NVBENCH_TYPE_AXES(ctcs_types, ctcs_types))
.set_type_axes_names({"In", "Out"});