forked from FelipeMartins96/rl-agents-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_ddpg_ma.py
246 lines (219 loc) · 8.54 KB
/
train_ddpg_ma.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import argparse
import copy
import dataclasses
import datetime
import os
import time
import gym
import numpy as np
import rsoccer_gym
import torch.multiprocessing as mp
import torch.nn.functional as F
import torch.optim as optim
import wandb
from agents.ddpg import (DDPGHP, DDPGActor, DDPGCritic, TargetActor,
TargetCritic, data_func)
from agents.utils import ReplayBuffer, save_checkpoint, unpack_batch, ExperienceFirstLast
if __name__ == "__main__":
mp.set_start_method('spawn')
os.environ['OMP_NUM_THREADS'] = "1"
parser = argparse.ArgumentParser()
parser.add_argument("--cuda", default=False,
action="store_true", help="Enable cuda")
parser.add_argument("-n", "--name", required=True,
help="Name of the run")
parser.add_argument("-e", "--env", required=True,
help="Name of the gym environment")
args = parser.parse_args()
device = "cuda" if args.cuda else "cpu"
# Input Experiment Hyperparameters
hp = DDPGHP(
EXP_NAME=args.name,
DEVICE=device,
ENV_NAME=args.env,
N_ROLLOUT_PROCESSES=3,
LEARNING_RATE=0.0001,
EXP_GRAD_RATIO=10,
BATCH_SIZE=256,
GAMMA=0.95,
REWARD_STEPS=3,
NOISE_SIGMA_INITIAL=0.8,
NOISE_THETA=0.15,
NOISE_SIGMA_DECAY=0.99,
NOISE_SIGMA_MIN=0.15,
NOISE_SIGMA_GRAD_STEPS=3000,
REPLAY_SIZE=1000000,
REPLAY_INITIAL=100000,
SAVE_FREQUENCY=100000,
GIF_FREQUENCY=10000,
TOTAL_GRAD_STEPS=2000000,
MULTI_AGENT=True
)
wandb.init(project='RoboCIn-RL', name=hp.EXP_NAME, config=hp.to_dict())
current_time = datetime.datetime.now().strftime('%b-%d_%H-%M-%S')
tb_path = os.path.join('runs', current_time + '_'
+ hp.ENV_NAME + '_' + hp.EXP_NAME)
pi = DDPGActor(hp.N_OBS, hp.N_ACTS).to(device)
Q = DDPGCritic(hp.N_OBS, hp.N_ACTS).to(device)
# Playing
pi.share_memory()
exp_queue = mp.Queue(maxsize=hp.EXP_GRAD_RATIO)
finish_event = mp.Event()
sigma_m = mp.Value('f', hp.NOISE_SIGMA_INITIAL)
gif_req_m = mp.Value('i', -1)
data_proc_list = []
for _ in range(hp.N_ROLLOUT_PROCESSES):
data_proc = mp.Process(
target=data_func,
args=(
pi,
device,
exp_queue,
finish_event,
sigma_m,
gif_req_m,
hp
)
)
data_proc.start()
data_proc_list.append(data_proc)
# Training
tgt_pi = TargetActor(pi)
tgt_Q = TargetCritic(Q)
pi_opt = optim.Adam(pi.parameters(), lr=hp.LEARNING_RATE)
Q_opt = optim.Adam(Q.parameters(), lr=hp.LEARNING_RATE)
buffer = ReplayBuffer(buffer_size=hp.REPLAY_SIZE,
observation_space=hp.observation_space,
action_space=hp.action_space,
device=hp.DEVICE
)
n_grads = 0
n_samples = 0
n_episodes = 0
best_reward = None
last_gif = None
try:
while n_grads < hp.TOTAL_GRAD_STEPS:
metrics = {}
ep_infos = list()
st_time = time.perf_counter()
# Collect EXP_GRAD_RATIO sample for each grad step
new_samples = 0
while new_samples < hp.EXP_GRAD_RATIO:
exp = exp_queue.get()
if exp is None:
raise Exception # got None value in queue
safe_exp = copy.deepcopy(exp)
del(exp)
# Dict is returned with end of episode info
if isinstance(safe_exp, dict):
logs = {"ep_info/"+key: value for key,
value in safe_exp.items() if 'truncated' not in key}
ep_infos.append(logs)
n_episodes += 1
else:
for exp in safe_exp:
if exp.last_state is not None:
last_state = exp.last_state
else:
last_state = exp.state
buffer.add(
obs=exp.state,
next_obs=last_state,
action=exp.action,
reward=exp.reward,
done=False if exp.last_state is not None else True
)
new_samples += 1
n_samples += new_samples
sample_time = time.perf_counter()
# Only start training after buffer is larger than initial value
if buffer.size() < hp.REPLAY_INITIAL:
continue
# Sample a batch and load it as a tensor on device
batch = buffer.sample(hp.BATCH_SIZE)
S_v = batch.observations
A_v = batch.actions
r_v = batch.rewards
dones = batch.dones
S_next_v = batch.next_observations
# train critic
Q_opt.zero_grad()
Q_v = Q(S_v, A_v) # expected Q for S,A
A_next_v = tgt_pi(S_next_v) # Get an Bootstrap Action for S_next
Q_next_v = tgt_Q(S_next_v, A_next_v) # Bootstrap Q_next
Q_next_v[dones == 1.] = 0.0 # No bootstrap if transition is terminal
# Calculate a reference Q value using the bootstrap Q
Q_ref_v = r_v + Q_next_v * (hp.GAMMA**hp.REWARD_STEPS)
Q_loss_v = F.mse_loss(Q_v, Q_ref_v.detach())
Q_loss_v.backward()
Q_opt.step()
metrics["train/loss_Q"] = Q_loss_v.cpu().detach().numpy()
# train actor - Maximize Q value received over every S
pi_opt.zero_grad()
A_cur_v = pi(S_v)
pi_loss_v = -Q(S_v, A_cur_v)
pi_loss_v = pi_loss_v.mean()
pi_loss_v.backward()
pi_opt.step()
metrics["train/loss_pi"] = pi_loss_v.cpu().detach().numpy()
# Sync target networks
tgt_pi.sync(alpha=1 - 1e-3)
tgt_Q.sync(alpha=1 - 1e-3)
n_grads += 1
grad_time = time.perf_counter()
metrics['speed/samples'] = new_samples/(sample_time - st_time)
metrics['speed/grad'] = 1/(grad_time - sample_time)
metrics['speed/total'] = 1/(grad_time - st_time)
metrics['counters/samples'] = n_samples
metrics['counters/grads'] = n_grads
metrics['counters/episodes'] = n_episodes
metrics["counters/buffer_len"] = buffer.size()
if ep_infos:
for key in ep_infos[0].keys():
if isinstance(ep_infos[0][key], dict):
for i in range(hp.N_AGENTS):
for inner_key in ep_infos[0][key].keys():
metrics[f"ep_info/agent_{i}/{inner_key}"] = np.mean(
[info[key][inner_key] for info in ep_infos])
else:
metrics[key] = np.mean([info[key] for info in ep_infos])
# Log metrics
wandb.log(metrics)
if hp.NOISE_SIGMA_DECAY and sigma_m.value > hp.NOISE_SIGMA_MIN \
and n_grads % hp.NOISE_SIGMA_GRAD_STEPS == 0:
# This syntax is needed to be process-safe
# The noise sigma value is accessed by the playing processes
with sigma_m.get_lock():
sigma_m.value *= hp.NOISE_SIGMA_DECAY
if hp.SAVE_FREQUENCY and n_grads % hp.SAVE_FREQUENCY == 0:
save_checkpoint(
hp=hp,
metrics={
'noise_sigma': sigma_m.value,
'n_samples': n_samples,
'n_episodes': n_episodes,
'n_grads': n_grads,
},
pi=pi,
Q=Q,
pi_opt=pi_opt,
Q_opt=Q_opt
)
if hp.GIF_FREQUENCY and n_grads % hp.GIF_FREQUENCY == 0:
gif_req_m.value = n_grads
except KeyboardInterrupt:
print("...Finishing...")
finish_event.set()
finally:
if exp_queue:
while exp_queue.qsize() > 0:
exp_queue.get()
print('queue is empty')
print("Waiting for threads to finish...")
for p in data_proc_list:
p.terminate()
p.join()
del(exp_queue)
del(pi)
finish_event.set()