-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathactor.py
104 lines (91 loc) · 3.61 KB
/
actor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
from torch.nn import Module
import torch.nn as nn
import torch
#from bitorch.layers import ShapePrintDebug, InputPrintDebug, WeightPrintDebug
#from bitorch.layers.config import config
class SmolActor(Module):
def __init__(self, input_size, output_size):
super(SmolActor, self).__init__()
num_channels = input_size[2]
self.convolution = nn.Sequential(
# ShapePrintDebug(debug_interval=1, name="input"),
nn.Conv2d(num_channels, 32, kernel_size=4, padding=1, stride=2),
nn.ReLU(), # max(0, x)
nn.Conv2d(32, 64, kernel_size=4, padding=1, stride=2),
nn.ReLU(), # max(0, x)
nn.Flatten(),
)
self.lstm1 = nn.LSTM(input_size=19200, hidden_size=128, num_layers=2, dropout=0.2)
self.classifier = nn.Sequential (
nn.ReLU(), # max(0, x)
nn.Linear(128, 32),
nn.ReLU(), # max(0, x)
nn.Linear(32, output_size),
# ShapePrintDebug(debug_interval=1, name="softmax_input"),
nn.Softmax(dim=0),
)
self.hidden = None
def forward(self, x):
# config.debug_activated = True
print("here")
convoluted = self.convolution(x)
print("here1")
convoluted = convoluted.unsqueeze(0)
print(convoluted.shape)
output, hidden = self.lstm1(convoluted)
return self.classifier(hidden[0][-1]) # num actions x 1
def reset_model(self):
self.hidden = None
class BigActor(Module):
def __init__(self, input_size, output_size):
super(BigActor, self).__init__()
num_channels = input_size[2]
self.convolution = nn.Sequential(
# ShapePrintDebug(debug_interval=1, name="input"),
nn.Conv2d(num_channels, 32, kernel_size=4, padding=1, stride=2),
nn.ReLU(), # max(0, x)
nn.Conv2d(32, 64, kernel_size=4, padding=1, stride=2),
nn.ReLU(), # max(0, x)
nn.Conv2d(64, 128, kernel_size=4, padding=1, stride=2),
nn.ReLU(), # max(0, x)
nn.Flatten(),
)
self.lstm1 = nn.LSTM(input_size=8960, hidden_size=512)
self.classifier = nn.Sequential (
nn.ReLU(), # max(0, x)
nn.Linear(512, 128),
nn.ReLU(), # max(0, x)
nn.Linear(128, output_size),
nn.Softmax(),
)
self.hidden = None
def forward(self, x):
convoluted = self.convolution(x)
output, hidden = self.lstm1(convoluted)
return self.classifier(hidden[0]) # num actions x 1
def reset_model(self):
self.hidden = None
# ToDo, not working yet
class LSTMActor(Module):
def __init__(self, input_size, hidden_size, num_layers, num_actions):
super().__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.num_layers = num_layers
self.num_actions = num_actions
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
def forward(self, inputs, hidden):
"""
inputs: (batch_size, seq_len, input_size)
hidden: (num_layers, batch_size, hidden_size)
"""
output, hidden = self.lstm(inputs, hidden)
return output, hidden
def init_hidden(self, batch_size):
return torch.zeros(self.num_layers, batch_size, self.hidden_size)
def select_actions(self, observations: torch.Tensor, hidden: torch.Tensor) -> torch.Tensor:
"""
observations: (batch_size, seq_len, input_size)
"""
output, hidden = self.forward(observations, hidden)
return output, hidden