-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_the_grid.py
413 lines (336 loc) · 13.6 KB
/
run_the_grid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
import bz2
import lzma
import gzip
import json
import pathlib
import argparse
import logging
import functools
from datetime import datetime
from urllib.parse import urlparse
import shutil
import multiprocessing
import socket
import executor
import requests
import gspread
logger = logging.getLogger("run_the_grid")
def download_file(url, local_filename):
with requests.get(url, stream=True) as r:
r.raw.read = functools.partial(r.raw.read, decode_content=True)
r.raise_for_status()
with open(local_filename, "wb") as f:
shutil.copyfileobj(r.raw, f)
def open_compressed(filename):
if filename.suffix == ".bz2":
return bz2.open(filename, "rt")
if filename.suffix == ".gz":
return gzip.open(filename, "rt")
if filename.suffix == ".xz":
return lzma.open(filename, "rt")
return None
def get_worksheet(api_key_path, spreadshet_id, worksheet_name="Params combined"):
try:
gc = gspread.service_account(filename=api_key_path)
sh = gc.open_by_key(spreadshet_id)
logger.info(f"Successfully opened spreadshet {sh.title}")
except gspread.exceptions.APIError:
logger.error(
f"Cannot connect to google spreadsheet, check the validity of your service account api key {api_key_path} or spreadshet id {spreadshet_id}"
)
return
except gspread.exceptions.SpreadsheetNotFound:
logger.error(f"Cannot find google spreadsheet, check your spreadshet id {spreadshet_id}")
return
try:
return sh.worksheet(worksheet_name)
except gspread.exceptions.WorksheetNotFound:
logger.error(f"Cannot open worksheet {worksheet_name} in {spreadsheet.title}, please fix the spreadsheet")
return
def pick_the_task(worksheet, hostname):
tasks = worksheet.get_all_records()
for row_no, t in enumerate(tasks):
if t["Status"] == "":
logger.info(f"We've found a new task at row {row_no + 2}, it is {t['Description']}")
try:
algo, epochs, subwords, wordngram, neg_sampling = t["Params"].strip().split(";")
subwords_min, subwords_max = subwords.split("-")
except ValueError:
logger.error(f"Cannot parse record {t['Params']}, skipping it")
continue
worksheet.update_cell(row_no + 2, 3, "Processing")
worksheet.update_cell(row_no + 2, 4, str(datetime.now()))
worksheet.update_cell(row_no + 2, 5, hostname)
return {
"task": t,
"params": {
"algo": algo,
"epochs": epochs,
"subwords_min": subwords_min,
"subwords_max": subwords_max,
"wordngram": wordngram,
"neg_sampling": neg_sampling,
},
"suffix": f"algo-{algo}.epochs-{epochs}.subwords-{subwords_min}..{subwords_max}.wordngram-{wordngram}.neg_sampling-{neg_sampling}",
"row_no": row_no + 2,
}
return
def tick_the_task(worksheet, task):
worksheet.update_cell(task["row_no"], 3, "Computed")
worksheet.update_cell(task["row_no"], 4, str(datetime.now()))
def train(args):
logger.info("Running pre-flight checks")
if not args.config.exists():
logger.error(f"Config file {args.config} doesn't exist, please run ./run_the_grid.py setup first")
return
try:
with open(args.config, "r") as fp:
config = json.load(fp)
except json.decoder.JSONDecodeError:
logger.error(
f"Config file {args.config} is corrupt, please run ./run_the_grid.py setup again and do not tamper with file"
)
return
corpus_path = pathlib.Path(config["corpus"])
if not corpus_path.exists():
logger.error(f"Corpus file {corpus_path} doesn't exist, please re-run ./run_the_grid.py setup")
return
vectors_path = pathlib.Path(config["vectors"])
if not vectors_path.exists():
logger.error(f"Vectors directory {vectors_path} doesn't exist, please re-run ./run_the_grid.py setup")
return
api_key_path = pathlib.Path(config["api_key"])
if not api_key_path.exists():
logger.error(f"Api key file {api_key_path} doesn't exist, please re-run ./run_the_grid.py setup")
return
fasttext_path = pathlib.Path(config["fasttext"])
if not fasttext_path.exists() or not executor.is_executable(fasttext_path):
logger.error(
f"Fastext binary {fasttext_path} doesn't exist or it is not executable, please re-run ./run_the_grid.py setup"
)
return
worksheet = get_worksheet(api_key_path, config.get("spreadshet_id"))
if worksheet is None:
return
while True:
task = pick_the_task(worksheet, config.get("hostname", socket.gethostname()))
if task is None:
logger.warning(f"Woohoo, no more tasks left in the queue")
return
vectors_fname = vectors_path / (corpus_path.name + "." + task["suffix"])
executor.execute(
fasttext_path,
task["params"]["algo"],
"-epoch",
task["params"]["epochs"],
"-neg",
task["params"]["neg_sampling"],
"-wordNgrams",
task["params"]["wordngram"],
"-minn",
task["params"]["subwords_min"],
"-maxn",
task["params"]["subwords_max"],
"-input",
corpus_path,
"-output",
vectors_fname,
"-dim",
"300",
"-thread",
str(config["threads"]),
)
vectors_plaintext = vectors_fname.parent / (vectors_fname.name + '.vec')
if vectors_plaintext.exists():
vectors_plaintext.unlink()
vectors_bin = vectors_fname.parent / (vectors_fname.name + '.bin')
with open(config["logfile"], "a") as fp_out:
fp_out.write(
json.dumps({
"vectors": str(vectors_bin),
"corpus": str(corpus_path),
"params": task["params"],
"dt": str(datetime.now()),
}, sort_keys=True) + "\n"
)
tick_the_task(worksheet, task)
def setup(args):
# Checking dependencies
binary_dependencies = ["git", "make"]
for dep in binary_dependencies:
if shutil.which(dep) is None:
logger.error(f"Cannot find required binary dependencies {dep}, exiting. Please install it and return back")
return
# Checking api keys
if not args.api_key_location.exists():
logger.error(f"Api key file {args.api_key_location} doesn't exist")
return
# Creating folders
try:
# logger.info(f"Creating lib folder {args.fasttext_location}")
# args.fasttext_location.mkdir(exist_ok=True)
logger.info(f"Creating corpus folder {args.corpus_location}")
args.corpus_location.mkdir(exist_ok=True)
logger.info(f"Creating vectors folder {args.vectors_location}")
args.vectors_location.mkdir(exist_ok=True)
except (PermissionError, FileNotFoundError) as e:
logger.error(f"Cannot create one of the required folders: {e}")
return
# Downloading and unpacking corpus
corpus_frags = urlparse(args.corpus_url)
corpus_path = args.corpus_location / pathlib.Path(corpus_frags.path).name
# TODO: verify the case when it's already exists
decompressed_corpus_path = corpus_path
if not corpus_path.exists() or args.overwrite_corpus:
logger.info(f"Downloading vectors from {args.corpus_url} to {corpus_path}")
download_file(args.corpus_url, corpus_path)
logger.info(f"Corpus successfully downloaded to {corpus_path}")
corpus_fh = open_compressed(corpus_path)
if corpus_fh is not None:
decompressed_corpus_path = corpus_path.with_suffix("")
if not decompressed_corpus_path.exists() or args.overwrite_corpus:
logger.info(f"Decompressing {corpus_path.suffix} corpus")
with open(decompressed_corpus_path, "w") as fp_out:
shutil.copyfileobj(corpus_fh, fp_out)
corpus_fh.close()
logger.info(f"Finished decompressing {corpus_path.suffix} corpus")
else:
logger.info(f"Corpus file {corpus_path} already exists, skipping")
fasttext_path = args.fasttext_location / "fasttext"
# building fasttext
if not fasttext_path.exists() or args.overwrite_fasttext:
if args.fasttext_location.exists():
shutil.rmtree(args.fasttext_location)
logger.info("Cloning fasttext repo")
if not executor.execute(
"git", "clone", "https://github.com/facebookresearch/fastText.git", args.fasttext_location, check=False
):
logger.error("Failed to clone fasttext repo")
return
logger.info("Building fasttext")
if not executor.execute("make", directory=args.fasttext_location, check=False):
logger.error("Failed to build fasttext binaries")
return
logger.info(f"Fasttext binaries successfully cloned and built at {fasttext_path}")
else:
logger.info(f"Fasttext binary {fasttext_path} already exists, skipping")
if not args.config.exists() or args.overwrite_config:
with open(args.config, "w") as fp_out:
json.dump(
{
"corpus": str(decompressed_corpus_path),
"fasttext": str(fasttext_path),
"api_key": str(args.api_key_location),
"spreadshet_id": args.spreadshet_id,
"threads": args.threads,
"vectors": str(args.vectors_location),
"logfile": str(args.logfile),
"hostname": args.hostname,
},
fp_out,
sort_keys=True,
indent=4,
)
logger.info(f"Config stored to {args.config}")
else:
logger.warning(f"Config {args.config} already exists, not overwriting")
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="""That is the node worker to compute fasttext """
"""vectors using different params, store obtained vectors on gdrive and update google spreadsheet"""
)
parser.add_argument("--config", type=pathlib.Path, help="Path to config file", default="config.json")
parser.add_argument(
"-d",
"--debug",
help="Print lots of debugging statements",
action="store_const",
dest="loglevel",
const=logging.DEBUG,
default=logging.WARNING,
)
parser.add_argument(
"-v",
"--verbose",
help="Be verbose",
action="store_const",
dest="loglevel",
const=logging.INFO,
)
subparsers = parser.add_subparsers(help="Available commands")
# Setup subparser
setup_parser = subparsers.add_parser(
"setup", help="Download and build dependencies, download corpus file, create config from template"
)
setup_parser.add_argument(
"--overwrite_config",
help="Overwrite config if it is already exists",
action="store_true",
default=False,
)
setup_parser.add_argument(
"--overwrite_corpus",
help="Overwrite corpus if it is already exists",
action="store_true",
default=False,
)
setup_parser.add_argument(
"--overwrite_fasttext",
help="Download and rebuild fasttext, if it is already exists",
action="store_true",
default=False,
)
setup_parser.add_argument(
"--corpus_location",
type=pathlib.Path,
help="Download corpus to specific folder",
default=pathlib.Path("corpus"),
)
setup_parser.add_argument(
"--corpus_url",
type=str,
help="Download corpus to specific folder",
default="https://lang-uk.nbu.rocks/static/ubertext.fiction_news_wikipedia.filter_rus+short.tokens.txt.bz2",
)
setup_parser.add_argument(
"--fasttext_location",
type=pathlib.Path,
help="Download and build fasttext to specific folder",
default=pathlib.Path("lib"),
)
setup_parser.add_argument(
"--vectors_location",
type=pathlib.Path,
help="Store vectors to given folder after the training",
default=pathlib.Path("vectors"),
)
setup_parser.add_argument(
"--api_key_location",
type=pathlib.Path,
help="Location of json file with service account credentials for google drive and spreadsheet",
default=pathlib.Path("api_keys/fasttext_gridtraining.json"),
)
setup_parser.add_argument(
"--spreadshet_id",
type=str,
help="Google Spreadsheet id (the one from the url) with the spreadsheet of tasks and results",
default="150DjEZKCuJEcsCJWahWmhPkfHzn9pA-N3UIYYx7XM04",
)
setup_parser.add_argument(
"--threads", type=int, help="Number of threads to use", default=multiprocessing.cpu_count() - 2
)
setup_parser.add_argument(
"--logfile", type=pathlib.Path, help="JSONLines file to write training details",
default=pathlib.Path("log.jsonl")
)
setup_parser.add_argument(
"--hostname", type=str, help="Identifier of the worker, defaulted to the hostname",
default=socket.gethostname()
)
setup_parser.set_defaults(func=setup)
# Train subparser
train_parser = subparsers.add_parser("train", help="Run the trainings")
train_parser.set_defaults(func=train)
args = parser.parse_args()
logging.basicConfig(level=args.loglevel)
args.func(args)