-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbuild_delta_data.R
69 lines (58 loc) · 2.83 KB
/
build_delta_data.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
# Process Delta variant sequencing data @ NHS England regional scale for covidm
library(data.table)
library(lubridate)
library(ggplot2)
library(qs)
# Load files - these are sensitive data and are not provided within the Git repo
folder_path = '~/Documents/uk_covid_data_sensitive/phe/2021-12-03/'
var = fread('~/Documents/uk_covid_data_sensitive/phe/2021-12-02/Modellers_rapid_travel_20211201.csv')
pos = fread(paste0(folder_path, 'Anonymised Combined Line List 20211203.csv'))
sgtf = fread('~/Documents/uk_covid_data_sensitive/phe/2021-12-03/SGTF_linelist_20211203.csv')
# Clean dates and variable names
pos[, specimen_date := dmy(specimen_date)]
pos[, Onsetdate := dmy(Onsetdate)]
pos[, lab_report_date := dmy(lab_report_date)]
var[, specimen_date_sk := ymd(specimen_date_sk)]
sgtf[, specimen_date := ymd(specimen_date)]
names(var) = paste0("v_", names(var))
names(sgtf) = paste0("s_", names(sgtf))
# Merge to master data
total = merge(pos, var, by.x = "finalid", by.y = "v_finalid", all = TRUE)
total = merge(total, sgtf, by.x = "finalid", by.y = "s_FINALID", all = TRUE)
# Get a subset of data from October 2020 onwards and plot to check
w = total[v_specimen_date_sk >= "2020-10-01" & specimen_date >= "2020-10-01"]
ggplot(w) +
geom_bar(aes(x = v_specimen_date_sk, fill = v_variant,
group = interaction(v_specimen_date_sk, v_variant)),
position = position_fill(), width = 1) +
facet_wrap(~NHSER_name)
# Save final subset of (sensitive) data
datetime <- str_replace_all(Sys.time(), "[- :BST]", "")
if (0){
fwrite(w, paste0(folder_path, "merged-", datetime, '.csv'))
}
# Categorise Delta as a combination of VOC-21APR-02 and AY.4.2 sublineage VUI-21OCT-01,
# see https://www.gov.uk/government/news/covid-19-variants-identified-in-the-uk
w$delta = rep(FALSE, dim(w)[1])
w$delta[w$v_variant %in% c("VOC-21APR-02", "VUI-21OCT-01")] = TRUE
# Process data for covidm fitting
delta = w[pillar == "Pillar 2" &
v_overall_travel == 'Unknown' &
NHSER_name != "",
.(delta = sum(delta == TRUE),
other = sum(delta == FALSE)),
keyby = .(date = v_specimen_date_sk, nhs_name = NHSER_name)]
delta = rbind(delta,
delta[!nhs_name %in% c("Northern Ireland", "Scotland", "Wales"),
.(delta = sum(delta, na.rm = T),
other = sum(other, na.rm = T),
nhs_name = "England"),
by = date], fill = TRUE)
# Plot delta data to check
ggplot(delta) +
geom_line(aes(x = date, y = delta / (delta + other)), size = 0.25) +
facet_wrap(~nhs_name) +
labs(x = NULL, y = "Relative frequency of\nDelta B.1.617.2 VOC") +
scale_x_date(date_breaks = "2 months", date_labels = "%b")
# Save aggregated delta data for model fitting in Git repo
qsave(delta, paste0("./fitting_data/delta-", datetime, '.qs'))