-
Notifications
You must be signed in to change notification settings - Fork 12
/
evaluate.py
executable file
·415 lines (380 loc) · 19.6 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
#!/usr/bin/env python3
import os
import cv2
import json
import torch
import shutil
import subprocess
import numpy as np
from time import time
from lib.models import hg
from lib.datasets import bop
import lib.utils.utils as utils
from lib.labeling import kp_config
from lib.object_slam import ObjectSLAM
from lib.utils.eval_meter import EvalMeter
from lib.utils.training_utils import DataParallelWrapper
from thirdparty.bop_toolkit.bop_toolkit_lib.inout import load_ply
from lib.utils.mesh_database import load_mesh_db, load_mesh_db_DEBUG
YCBV_CLASSES = {
1: '002_master_chef_can',
2: '003_cracker_box',
3: '004_sugar_box',
4: '005_tomato_soup_can',
5: '006_mustard_bottle',
6: '007_tuna_fish_can',
7: '008_pudding_box',
8: '009_gelatin_box',
9: '010_potted_meat_can',
10: '011_banana',
11: '019_pitcher_base',
12: '021_bleach_cleanser',
13: '024_bowl',
14: '025_mug',
15: '035_power_drill',
16: '036_wood_block',
17: '037_scissors',
18: '040_large_marker',
19: '051_large_clamp',
20: '052_extra_large_clamp',
21: '061_foam_brick',
}
TLESS_CLASSES = {}
for i in range(30):
TLESS_CLASSES[i+1] = str(i+1)
class Evaluator:
def __init__(self, dataset, data_root, chkpt_path,
nviews=1, no_network_cov=False, detection_type='saved',
debug_gt_kp=False, gt_cam_pose=False, no_prior_det=False,
show_viz=False, viz_cov=False, no_viz=False,
do_viz_extra=False, debug_saved_only=False, give_all_prior=False):
self.model_path = os.path.dirname(chkpt_path)
kp_var_thresh = 0.2
bbox_thresh = 0.9
bbox_inflate = 0.0
opt_init_with_outliers = False
if dataset == "ycbv":
models = "models_bop-compat_eval"
split = "test"
self.do_add = True
manual_kp_std = 0.01 # Close avg network STD for this dataset
elif dataset == "tless":
models = "models_eval"
split = "test_primesense"
self.do_add = False
kp_var_thresh = 0.5
bbox_thresh = 1.0
manual_kp_std = 0.1 # Manually tuned
opt_init_with_outliers = True
else:
assert False
self.dataset = bop.BopDataset(data_root, split, bop_dset=dataset, ignore_symmetry=True)
self.mesh_db = load_mesh_db(os.path.join(data_root, models))
self.debug_saved_only = debug_saved_only
if not self.debug_saved_only:
self.object_slam = ObjectSLAM(chkpt_path, self.mesh_db, no_network_cov=no_network_cov,
no_prior_det=no_prior_det, debug_gt_kp=debug_gt_kp, sfm_mode=nviews>0,
single_view_mode=nviews==1, viz_cov=viz_cov, do_viz_extra=do_viz_extra,
kp_var_thresh=kp_var_thresh, bbox_thresh=bbox_thresh,
bbox_inflate=bbox_inflate, manual_kp_std=manual_kp_std,
opt_init_with_outliers=opt_init_with_outliers, give_all_prior=give_all_prior)
self.nviews = nviews
if self.nviews == 1:
print("NOTE: Running in single-view mode (nviews=1)")
elif self.nviews < 0:
print("NOTE: Running in SLAM mode (nviews=-1)")
else:
print(f"NOTE: Running in SfM mode (nviews={nviews})")
self.detection_type = detection_type
self.debug_gt_kp = debug_gt_kp
self.gt_cam_pose = gt_cam_pose
self.no_viz = no_viz
self.show_viz = not no_viz and show_viz
if self.show_viz:
cv2.namedWindow("ObjectSLAM")
self.saved_detections = None
if detection_type == 'saved':
# Load saved detections (PoseCNN for YCBV) and map by scene_id, view_id, obj_id
if dataset == "ycbv":
self.saved_detections = utils.load_posecnn_results(self.dataset.bop_root)
elif dataset == "tless":
self.saved_detections = utils.load_pix2pose_results(self.dataset.bop_root)
else:
assert False
self.saved_detections_map = {}
for i in range(len(self.saved_detections["view_ids"])):
scene_id = self.saved_detections["scene_ids"][i]
view_id = self.saved_detections["view_ids"][i]
obj_id = self.saved_detections["obj_ids"][i]
if scene_id not in self.saved_detections_map.keys():
self.saved_detections_map[scene_id] = {}
if view_id not in self.saved_detections_map[scene_id].keys():
self.saved_detections_map[scene_id][view_id] = {}
assert obj_id not in self.saved_detections_map[scene_id][view_id].keys(), \
"Found duplicate object in saved detections"
if self.dataset.targets is None \
or obj_id in self.dataset.targets.get(scene_id,{}).get(view_id,[]):
self.saved_detections_map[scene_id][view_id][obj_id] = i
def run(self):
t0 = time()
try:
self.__run()
except:
print()
import traceback
# Print stack trace
traceback.print_exc()
print(f"Eval took {time()-t0:.3f} sec")
def __run(self):
if self.saved_detections is not None:
# Eval PoseCNN or other saved detections to validate eval code
self.saved_det_meter = EvalMeter(self.mesh_db)
num_cam_poses_found = 0
num = 0
if not self.debug_saved_only:
self.meter = EvalMeter(self.mesh_db)
csv_lines = []
method = f"pkpnet-epoch={self.object_slam.model_epoch}" \
+ f"-nviews={self.nviews}-det={self.detection_type}"
if self.debug_gt_kp:
method += "-GT-KP"
if self.gt_cam_pose:
method += "-GT-CAM-POSE"
if self.object_slam.give_all_prior:
method += "-ALL-PRIOR"
if self.object_slam.no_network_cov:
method += "-NO-COV"
if self.object_slam.no_prior_det:
method += "-NO-PRIOR-DET"
method += f"_{self.dataset.bop_dset}-{self.dataset.split}"
outdir = os.path.join(self.model_path, method)
if not os.path.exists(outdir):
os.makedirs(outdir)
print(f"Writing eval results to {outdir}")
viz_path = os.path.join(outdir, "viz_images")
if not os.path.exists(viz_path):
os.makedirs(viz_path)
print(f"Writing eval vizualizations to {viz_path}")
scene_ids = self.dataset.scene_ids()
#for i, scene_id in enumerate(scene_ids[5:6]): # YCBV scene 53 with bowl
for i, scene_id in enumerate(scene_ids):
#break # DEBUG if you have bop csv already written and just want to skip to that
view_ids = self.dataset.view_ids(scene_id)
if not self.debug_saved_only and self.nviews < 0:
self.object_slam.reset()
# Store the results for whole scene then eval all at once at the end so that
# we get the most optimized result for nviews < 0 (i.e. SLAM mode)
scene_results = []
for j, view_id in enumerate(view_ids):
print_ln = f"Running scene [{i+1}/{len(scene_ids)}] view [{j+1}/{len(view_ids)}]"
gt_obj_ids = self.dataset.obj_ids(scene_id, view_id)
if self.debug_saved_only:
print(print_ln + ' '*(80-len(print_ln)), end='\r', flush=True)
else:
print("==============================================================")
print(print_ln)
views_to_proc = [view_id]
if self.nviews > 1:
# Sample nviews-1 other views (excluding view_id)
views_to_proc += np.random.choice(view_ids[:j] + view_ids[j+1:],
size=self.nviews-1, replace=False).tolist()
results = self.__run_slam(scene_id, views_to_proc)
if len(results) == 0:
continue
if not self.no_viz:
# Make vizualization (concating viz from all views if doing multiview)
viz_tot = None
view_ids_viz = self.object_slam.view_ids if self.nviews > 0 \
else [self.object_slam.view_ids[-1]]
for view_id_ba in view_ids_viz:
if viz_tot is None:
viz_tot = results[view_id_ba]["viz"]
else:
# Concatenated VERTICALLY
viz_tot = np.concatenate((viz_tot, results[view_id_ba]["viz"]),
axis=0)
if self.show_viz:
cv2.imshow("ObjectSLAM", viz_tot)
cv2.waitKey(1)
fn = os.path.join(viz_path, f"scene_{scene_id}_{j:06d}.png")
cv2.imwrite(fn, viz_tot)
print("Wrote viz to", fn)
# Extra visualizations for figures
if self.object_slam.do_viz_extra:
viz_extra_dir = os.path.join(viz_path, f"scene_{scene_id}_{j:06d}")
if not os.path.exists(viz_extra_dir):
os.makedirs(viz_extra_dir)
for k, v in results[view_ids_viz[0]]["viz_extra"].items():
if v.size > 0:
cv2.imwrite(os.path.join(viz_extra_dir, f"{k}.png"), v)
print("Wrote viz to", os.path.join(viz_extra_dir, f"{k}.png"))
# Wait til final opt to get pose for SLAM mode
pred_poses = results[view_id]["poses"] if self.nviews > 0 else None
scene_results.append( (view_id, pred_poses, gt_obj_ids) )
# Update the saved_detection eval meter (other is saved for later
# in case of SLAM mode).
# Just grab results for view_id, which is the reference view here.
if self.do_add and self.saved_detections is not None:
for gt_obj_id in gt_obj_ids:
if gt_obj_id in self.saved_detections_map[scene_id][view_id].keys():
sdet_idx = self.saved_detections_map[scene_id][view_id][gt_obj_id]
self.saved_det_meter.update([gt_obj_id],
self.saved_detections["poses"][sdet_idx][None,...],
self.dataset.get_obj_pose(
scene_id, view_id, gt_obj_id)[None,...])
else:
self.saved_det_meter.update_no_det([gt_obj_id])
if not self.debug_saved_only:
# Eval the results for the whole scene at once here
print("Updating eval data...")
# If in SLAM mode collect the results now
if self.nviews < 0:
final_results = self.object_slam.collect_results(no_viz=True, final=True)
for view_id, pred_poses, gt_obj_ids in scene_results:
num += 1
if self.nviews < 0:
if view_id not in final_results.keys():
if self.do_add:
for obj_id in gt_obj_ids:
self.meter.update_no_det([obj_id])
continue
else:
num_cam_poses_found += 1
pred_poses = final_results[view_id]["poses"]
for obj_id in gt_obj_ids:
if obj_id in pred_poses.keys() and pred_poses[obj_id]["T_OtoC"] is not None:
result = pred_poses[obj_id]
gt_pose = self.dataset.get_obj_pose(scene_id, view_id, obj_id)
if self.do_add:
self.meter.update([obj_id], result["T_OtoC"][None,...],
gt_pose[None,...])
R, t = result["T_OtoC"][:3,:3], result["T_OtoC"][:3,3]
def arr2str(x):
return " ".join(str(elt) for elt in x.reshape(-1).tolist())
line = f"{scene_id},{view_id},{obj_id},{result['score']},"
line += f"{arr2str(R)},{arr2str(t)},-1"
if self.dataset.is_target(scene_id, view_id, obj_id):
csv_lines.append(line + "\n")
else:
print(f"NOTE: Could not obtain object pose for object {obj_id}")
self.meter.update_no_det([obj_id])
if self.do_add:
if self.dataset.bop_dset == 'ycbv':
gt_obj_map = YCBV_CLASSES
elif self.dataset.bop_dset == 'tless':
gt_obj_map = TLESS_CLASSES
else:
assert False
if self.saved_detections is not None:
print("\nSaved PoseCNN result:")
self.saved_det_meter.pprint_objs(gt_obj_map)
#self.saved_det_meter.pprint()
if not self.debug_saved_only:
if self.do_add:
print(f"\n{method} result:")
self.meter.pprint_objs(gt_obj_map)
summ_path = os.path.join(outdir, "summary.txt")
with open(summ_path, 'w') as f:
print(f"Writing this result to {summ_path}")
if self.do_add:
f.write(self.meter.pprint_objs_str(gt_obj_map))
# Write these items whether doing ADD* or not.
if num > 0:
ss = [f"NOTE: {100*num_cam_poses_found/num:.1f}% of camera poses found!",
self.object_slam.get_tracking_strtime(),
self.object_slam.get_global_opt_strtime(),
f"Average keypoint stdev: {self.object_slam.avg_std_meter.average()}"]
for s in ss:
print(s)
f.write("\n" + s + "\n")
if not self.debug_saved_only:
csv_path = os.path.join(outdir, method + ".csv")
with open(csv_path, "w") as f:
f.writelines(csv_lines)
print(f"\n\nCSV (BOP format) results written to {csv_path}\n")
if self.dataset.bop_dset == "tless":
print("Running BOP eval script...")
myenv = os.environ.copy()
myenv['PYTHONPATH'] = os.path.realpath('thirdparty/bop_toolkit/')
# Avoid realpath here in case it's symlinked. Found that that can fail.
myenv['BOP_PATH'] = os.path.join(os.getcwd(), 'data/bop_datasets/')
assert os.path.exists(myenv['PYTHONPATH'])
subprocess.call(['python', 'scripts/eval_siso.py',
'--renderer_type', 'python',
'--result_filename', os.path.realpath(csv_path),
'--results_path', '',
'--eval_path', os.path.realpath(outdir),
'--targets_filename', self.dataset.targets_filename],
env=myenv, cwd='thirdparty/bop_toolkit/')
def __run_slam(self, scene_id, views_to_proc):
"""
views_to_proc: list of int views to process
"""
# Delete SLAM data and treat these views as their own problem unless processing
# the whole sequence, in which case we keep the prev data and assume there's
# just one view here.
if self.nviews > 0:
self.object_slam.reset()
else:
assert len(views_to_proc) == 1
for k, view_id_k in enumerate(views_to_proc):
# Get object info for the detections
obj_ids = []
obj_ids_gt = self.dataset.obj_ids(scene_id, view_id_k)
if 'gt' in self.detection_type:
obj_ids = obj_ids_gt
else:
# Only take the detections that are of objects in this scene.
# If they are not in the scene, then we can't eval them anyways.
obj_keys = self.saved_detections_map.get(scene_id,{}).get(view_id_k,{}).keys()
for obj_id in obj_keys:
if obj_id in obj_ids_gt:
obj_ids.append(obj_id)
assert len(obj_ids) == len(set(obj_ids)), "Duplicates in detections?"
if len(obj_ids) == 0:
print(f"\nWARNING no detections for scene {scene_id} view {view_id_k}")
print("Detection IDs:", list(obj_keys))
print("GT IDs:", obj_ids_gt)
continue
sample = self.dataset.get_raw(scene_id, view_id_k, obj_ids)
if 'gt' in self.detection_type:
bboxes = sample["bboxes"].numpy()
else:
det_idx = self.saved_detections_map[scene_id][view_id_k][obj_ids[0]]
bboxes = [self.saved_detections["bboxes"][self.saved_detections_map[ \
scene_id][view_id_k][obj_id]] for obj_id in obj_ids]
# IF debugging with GT cam pose, grab it here.
cam_pose = None
if self.gt_cam_pose:
# Make the poses relative to first view
cam_pose = self.dataset.get_cam_pose(scene_id, view_id_k) \
@ utils.invert_SE3(self.dataset.get_cam_pose( \
scene_id, -1 if self.nviews<0 else views_to_proc[0]))
# Build the keypoint network batch input based on detected bboxes
# TODO roi_align would be so much easier.
img_np = (255 * sample["img"].numpy().transpose((1,2,0))).astype(np.uint8)
K_np = sample["K"].numpy()
self.object_slam.process_view(view_id_k, img_np, K_np,
np.array(obj_ids,dtype=np.int), np.array(bboxes), sample["model_kps"].numpy(),
sample["kp_model_masks"].numpy(), sample["kp_masks"].numpy(),
uv_gt = sample["kp_uvs"].numpy() if self.debug_gt_kp else None,
cam_pose = cam_pose)
return self.object_slam.collect_results(last_only=self.nviews<0, no_viz=self.no_viz)
if __name__ == '__main__':
from lib.args import get_args
args = get_args('eval')
if args.debug_gt_kp:
args.detection_type = "gt"
print("======= Eval Args ================")
for attr in dir(args):
if not attr.startswith('_'):
print(f"{attr}: {getattr(args, attr)}")
print("=============================")
np.random.seed(666)
Evaluator(args.dataset, args.data_root, args.checkpoint_path, nviews=args.nviews,
no_network_cov=args.no_network_cov, detection_type=args.detection_type,
debug_gt_kp=args.debug_gt_kp, gt_cam_pose=args.gt_cam_pose,
no_prior_det=args.no_prior_det, show_viz=args.show_viz, viz_cov=args.viz_cov,
no_viz=args.no_viz, debug_saved_only=args.debug_saved_only,
do_viz_extra=args.do_viz_extra, give_all_prior=args.give_all_prior).run()
os.system('notify-send SUO-SLAM "Eval completed"')