You can do latex inline like this:
Euler's formula is remarkable: $e^{i\pi} + 1 = 0$.
Euler's formula is remarkable:
You can use $$
to make an equation block like this:
$$ \frac{\partial \rho}{\partial t} + \nabla \cdot \vec{j} = 0 \,. \label{eq:continuity} $$
The latex equation environment can be used directly. Stokes' theorem is pretty cool:
\begin{equation}
\int_{\partial\Omega} \omega = \int_{\Omega} \mathrm{d}\omega \,.
\label{eq:stokes}
\end{equation}
\begin{equation} \int_{\partial\Omega} \omega = \int_{\Omega} \mathrm{d}\omega ,. \label{eq:stokes} \end{equation}
You can also refer to labeled equations, such as [@eq:stokes], with the syntax:
... such as [@eq:stokes],
The align
environment can also be used.
Maxwell's equations, [@eq:maxwell], are also tough to beat:
\begin{align}
\nabla \cdot \vec{E} &= \rho \nonumber \\
\nabla \cdot \vec{B} &= 0 \nonumber \\
\nabla \times \vec{E} &= - \frac{\partial \vec{B}}{\partial t} \label{eq:maxwell} \\
\nabla \times \vec{B} &= \vec{j} + \frac{\partial \vec{E}}{\partial t} \nonumber \,.
\end{align}
\begin{align} \nabla \cdot \vec{E} &= \rho \nonumber \ \nabla \cdot \vec{B} &= 0 \nonumber \ \nabla \times \vec{E} &= - \frac{\partial \vec{B}}{\partial t} \label{eq:maxwell} \ \nabla \times \vec{B} &= \vec{j} + \frac{\partial \vec{E}}{\partial t} \nonumber ,. \end{align}
When doing md
$if(mathjax)$
<!--- MathJax stuff -->
<script type="text/javascript" src='https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML'></script>
<script type="text/x-mathjax-config">
MathJax.Hub.Config({ TeX: { equationNumbers: {autoNumber: "all"} } });
</script>
$endif$