-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathencode_crossval.m
executable file
·116 lines (106 loc) · 4.31 KB
/
encode_crossval.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
function [R2,mCorr,Ypred,h]=encode_crossval(Y,Z,partition,method,varargin);
% function [R2,corr,Ypred,h]=encode_crossval(Y,Z,partition,method,varargin)
% crossvalidation of an encoding model across the partitions
%
% INPUT:
% Y: NxP matrix Data
% Z: NxQ matrix for random effects
% partions: Nx1 vector of partitions
% method: Method for pattern estimation
% 'linregress': Normal, unregularised linear regression
% 'pcm_EM': Bayesian (Ridge) regression, using EM to estimate constrained G matrix (see pcm_EM)
% 'pcm_EM_free': Bayesian (Ridge) regression, completely unstrained variances and covariances
% 'pcm_NR': Bayesian (Ridge) regression, uses NR to estimate constraiend G matrix (see pcm_NR)
% 'pcm_NR_diagfree: Bayesian (Ridge) regression, diagnonal matrix, but unqiue elements
% 'ridge_fixed' Bayesian (Ridge) regression with a fixed regularisation parameter (inv(G)*sigma2)
% 'GCV' Generalized cross-validation (golub et al., 1979)
% VARARGIN:
% 'X', X : design matrix for fixed effects removal (also passed to
% function for ReML estimation)
% 'Gc',Gc : Variance components for pcm_NR
% 'Ac',Ac : Variance components for pcm_EM
%
% OUTPUT:
% R2 : the portion of correctly predicted variance of the betas
% corr : correlation between predicted and observed values
% Ypred : 1*n vector with predicted classes
% h : Hyper-parameters (meaning depends on the pcm version used)
%
% (c) 2016 Joern Diedrichsen
[N,P] = size(Y); %
meanS = 0;
X = [];
Gc = [];
Gd = [];
G = [];
sigma2 = [];
Ac = [];
numIter = [];
h = [];
evalCrit = 'RSS';
vararginoptions(varargin,{'X','meanS','numIter','Gc','Ac','Gd','G','sigma2','evalCrit'});
% REmove X matrix from Y and Z
% -------------------------------------------------
if (~isempty(X))
Y=Y-X*pinv(X)*Y; % remove X matrix
Z=Z-X*pinv(X)*Z; % remove X matrix
end;
% Remove the mean from the Y-data (across voxels)
% -------------------------------------------------
if meanS==1
a = pinv(Z)*sum(Y,2)/P;
Y = bsxfun(@minus,Y,Z*a);
end;
% Loop over partitions
% -------------------------------------------------
part=unique(partition); % Get unique partitions
for i=1:length(part)
trainI = partition~=part(i);
testI = partition==part(i);
Ytrain = Y(trainI,:);
Ztrain = Z(trainI,:);
Ztest = Z(testI,:);
if (~isempty(X))
Xtrain = X(trainI,:);
Xtrain = Xtrain(:,find(sum(Xtrain.^2,1)~=0));
else
Xtrain = [];
end;
% Determine the predicted patterns. For linear regression this is easy,
% For Bayesian (ridge) regression, we determine the regularisation
% parameter using PCM.
% -------------------------------------------------
switch(method)
case 'linregress'
u = pinv(Ztrain)*Ytrain;
case 'pcm_EM'
[G,H,u]=pcm_EM(Ytrain,Ztrain,'Ac',Ac,'X',Xtrain);
h(i,:)=H(:,end)';
h(i,1:end-1)=h(i,1:end-1).^2; % Square them for comparision purposes
case 'pcm_EM_free'
[G,H,u]=mvpattern_covcomp_free(Ytrain,Ztrain);
h(i,:)=H(:,end)';
case 'pcm_NR'
[G,h(i,:),u]=pcm_NR(Ytrain,Ztrain,'Gc',Gc,'X',Xtrain);
case 'pcm_NR_diagfree'
[G,h(i,:),u]=pcm_NR_diagfree(Ytrain,Ztrain,'X',Xtrain);
case 'pcm_NR_diag'
[G,h(i,:),u]=pcm_NR_diag(Ytrain,Ztrain,'Gc',Gc,'Gd',Gd,'X',Xtrain);
case 'ridgeFixed'
% u1 = G*Ztrain'*((Ztrain*G*Ztrain'+eye(size(Ztrain,1))*sigma2)\Ytrain);
u = (Ztrain'*Ztrain+pinv(G)*sigma2)\(Ztrain'*Ytrain);
case 'GCV'
[u,h(i,1)] = encode_gcv(Ytrain,Ztrain);
end;
% Generate prediction
% -------------------------------------------------
Ypred(testI,:)=Ztest*u;
end;
% Evaluate prediction by calculatin R2
% -------------------------------------------------
SST=sum(sum(Y.*Y));
res=Y-Ypred;
SSR=sum(sum(res.*res));
R2=1-SSR/SST;
mCorr = sum(sum(Y.*Ypred))/...
sqrt(sum(sum(Y.*Y))*sum(sum(Ypred.*Ypred)));