See also
diff --git a/docs/reference/layer_zero_padding_2d.html b/docs/reference/layer_zero_padding_2d.html
index fc603d06b..eaa216ba6 100644
--- a/docs/reference/layer_zero_padding_2d.html
+++ b/docs/reference/layer_zero_padding_2d.html
@@ -10,7 +10,7 @@
keras3
-
1.1.0
+
1.2.0
diff --git a/docs/reference/loss_binary_focal_crossentropy.html b/docs/reference/loss_binary_focal_crossentropy.html
index 1b558f446..691fe47fa 100644
--- a/docs/reference/loss_binary_focal_crossentropy.html
+++ b/docs/reference/loss_binary_focal_crossentropy.html
@@ -64,7 +64,7 @@
keras3
-
1.1.0
+
1.2.0
@@ -222,7 +222,8 @@ Argumentsconfig_floatx(). config_floatx()
is a
"float32"
unless set to different value
-(via config_set_floatx()
).
+(via config_set_floatx()
). If a keras$DTypePolicy
is
+provided, then the compute_dtype
will be utilized.
diff --git a/docs/reference/loss_categorical_crossentropy.html b/docs/reference/loss_categorical_crossentropy.html
index 2398b9bee..0fb5b0482 100644
--- a/docs/reference/loss_categorical_crossentropy.html
+++ b/docs/reference/loss_categorical_crossentropy.html
@@ -18,7 +18,7 @@
keras3
-
1.1.0
+
1.2.0
@@ -134,7 +134,8 @@ Argumentsconfig_floatx(). config_floatx()
is a
"float32"
unless set to different value
-(via config_set_floatx()
).
+(via config_set_floatx()
). If a keras$DTypePolicy
is
+provided, then the compute_dtype
will be utilized.
diff --git a/docs/reference/loss_categorical_focal_crossentropy.html b/docs/reference/loss_categorical_focal_crossentropy.html
index 31ad76181..0f1e38be2 100644
--- a/docs/reference/loss_categorical_focal_crossentropy.html
+++ b/docs/reference/loss_categorical_focal_crossentropy.html
@@ -64,7 +64,7 @@
keras3
-
1.1.0
+
1.2.0
@@ -220,7 +220,8 @@ Argumentsconfig_floatx(). config_floatx()
is a
"float32"
unless set to different value
-(via config_set_floatx()
).
+(via config_set_floatx()
). If a keras$DTypePolicy
is
+provided, then the compute_dtype
will be utilized.
diff --git a/docs/reference/loss_categorical_hinge.html b/docs/reference/loss_categorical_hinge.html
index 2d2daea9d..eda0706f0 100644
--- a/docs/reference/loss_categorical_hinge.html
+++ b/docs/reference/loss_categorical_hinge.html
@@ -14,7 +14,7 @@
keras3
-
1.1.0
+
1.2.0
@@ -109,7 +109,8 @@ Argumentsconfig_floatx(). config_floatx()
is a
"float32"
unless set to different value
-(via config_set_floatx()
).
+(via config_set_floatx()
). If a keras$DTypePolicy
is
+provided, then the compute_dtype
will be utilized.
diff --git a/docs/reference/loss_cosine_similarity.html b/docs/reference/loss_cosine_similarity.html
index 0c05701c9..beee32c05 100644
--- a/docs/reference/loss_cosine_similarity.html
+++ b/docs/reference/loss_cosine_similarity.html
@@ -26,7 +26,7 @@
keras3
-
1.1.0
+
1.2.0
@@ -131,7 +131,8 @@ Argumentsconfig_floatx(). config_floatx()
is a
"float32"
unless set to different value
-(via config_set_floatx()
).
+(via config_set_floatx()
). If a keras$DTypePolicy
is
+provided, then the compute_dtype
will be utilized.
diff --git a/docs/reference/loss_ctc.html b/docs/reference/loss_ctc.html
index 137ded4bf..79ed4b3b0 100644
--- a/docs/reference/loss_ctc.html
+++ b/docs/reference/loss_ctc.html
@@ -8,7 +8,7 @@
keras3
-
1.1.0
+
1.2.0
@@ -103,7 +103,8 @@ Argumentsconfig_floatx(). config_floatx()
is a
"float32"
unless set to different value
-(via config_set_floatx()
).
+(via config_set_floatx()
). If a keras$DTypePolicy
is
+provided, then the compute_dtype
will be utilized.
diff --git a/docs/reference/loss_dice.html b/docs/reference/loss_dice.html
index 3267e7bda..67d7652fa 100644
--- a/docs/reference/loss_dice.html
+++ b/docs/reference/loss_dice.html
@@ -18,7 +18,7 @@
keras3
-
1.1.0
+
1.2.0
@@ -118,7 +118,8 @@ Argumentsconfig_floatx(). config_floatx()
is a
"float32"
unless set to different value
-(via config_set_floatx()
).
+(via config_set_floatx()
). If a keras$DTypePolicy
is
+provided, then the compute_dtype
will be utilized.
diff --git a/docs/reference/loss_hinge.html b/docs/reference/loss_hinge.html
index 2114048a8..a3f330ecf 100644
--- a/docs/reference/loss_hinge.html
+++ b/docs/reference/loss_hinge.html
@@ -16,7 +16,7 @@
keras3
-
1.1.0
+
1.2.0
@@ -112,7 +112,8 @@ Argumentsconfig_floatx(). config_floatx()
is a
"float32"
unless set to different value
-(via config_set_floatx()
).
+(via config_set_floatx()
). If a keras$DTypePolicy
is
+provided, then the compute_dtype
will be utilized.
diff --git a/docs/reference/loss_huber.html b/docs/reference/loss_huber.html
index c3743764c..38f3f96c6 100644
--- a/docs/reference/loss_huber.html
+++ b/docs/reference/loss_huber.html
@@ -28,7 +28,7 @@
keras3
-
1.1.0
+
1.2.0
@@ -134,7 +134,8 @@ Argumentsconfig_floatx(). config_floatx()
is a
"float32"
unless set to different value
-(via config_set_floatx()
).
+(via config_set_floatx()
). If a keras$DTypePolicy
is
+provided, then the compute_dtype
will be utilized.
diff --git a/docs/reference/loss_kl_divergence.html b/docs/reference/loss_kl_divergence.html
index cb8e1b90c..a8f67b176 100644
--- a/docs/reference/loss_kl_divergence.html
+++ b/docs/reference/loss_kl_divergence.html
@@ -18,7 +18,7 @@
keras3
-
1.1.0
+
1.2.0
@@ -113,7 +113,8 @@ Argumentsconfig_floatx(). config_floatx()
is a
"float32"
unless set to different value
-(via config_set_floatx()
).
+(via config_set_floatx()
). If a keras$DTypePolicy
is
+provided, then the compute_dtype
will be utilized.
-
## tf.Tensor([3.5312676 0.2128672], shape=(2), dtype=float32)
+## tf.Tensor([ 2.4290292 -0.6284211], shape=(2), dtype=float32)
diff --git a/docs/reference/loss_log_cosh.html b/docs/reference/loss_log_cosh.html
index cf1b643f4..aff6e119b 100644
--- a/docs/reference/loss_log_cosh.html
+++ b/docs/reference/loss_log_cosh.html
@@ -20,7 +20,7 @@
keras3
-
1.1.0
+
1.2.0
@@ -116,7 +116,8 @@ Argumentsconfig_floatx(). config_floatx()
is a
"float32"
unless set to different value
-(via config_set_floatx()
).
+(via config_set_floatx()
). If a keras$DTypePolicy
is
+provided, then the compute_dtype
will be utilized.
diff --git a/docs/reference/loss_mean_absolute_error.html b/docs/reference/loss_mean_absolute_error.html
index 8e954ef71..5a8da1f85 100644
--- a/docs/reference/loss_mean_absolute_error.html
+++ b/docs/reference/loss_mean_absolute_error.html
@@ -12,7 +12,7 @@
keras3
-
1.1.0
+
1.2.0
@@ -104,7 +104,8 @@ Argumentsconfig_floatx(). config_floatx()
is a
"float32"
unless set to different value
-(via config_set_floatx()
).
+(via config_set_floatx()
). If a keras$DTypePolicy
is
+provided, then the compute_dtype
will be utilized.
diff --git a/docs/reference/loss_mean_absolute_percentage_error.html b/docs/reference/loss_mean_absolute_percentage_error.html
index 6de7d53a1..27045c6c7 100644
--- a/docs/reference/loss_mean_absolute_percentage_error.html
+++ b/docs/reference/loss_mean_absolute_percentage_error.html
@@ -20,7 +20,7 @@
keras3
-
1.1.0
+
1.2.0
@@ -116,7 +116,8 @@ Argumentsconfig_floatx(). config_floatx()
is a
"float32"
unless set to different value
-(via config_set_floatx()
).
+(via config_set_floatx()
). If a keras$DTypePolicy
is
+provided, then the compute_dtype
will be utilized.
diff --git a/docs/reference/loss_mean_squared_error.html b/docs/reference/loss_mean_squared_error.html
index 1d0e65884..ac7a010fa 100644
--- a/docs/reference/loss_mean_squared_error.html
+++ b/docs/reference/loss_mean_squared_error.html
@@ -12,7 +12,7 @@
keras3
-
1.1.0
+
1.2.0
@@ -104,7 +104,8 @@ Argumentsconfig_floatx(). config_floatx()
is a
"float32"
unless set to different value
-(via config_set_floatx()
).
+(via config_set_floatx()
). If a keras$DTypePolicy
is
+provided, then the compute_dtype
will be utilized.
diff --git a/docs/reference/loss_mean_squared_logarithmic_error.html b/docs/reference/loss_mean_squared_logarithmic_error.html
index 8c7013f76..6500ee688 100644
--- a/docs/reference/loss_mean_squared_logarithmic_error.html
+++ b/docs/reference/loss_mean_squared_logarithmic_error.html
@@ -18,7 +18,7 @@
keras3
-
1.1.0
+
1.2.0
@@ -113,7 +113,8 @@ Argumentsconfig_floatx(). config_floatx()
is a
"float32"
unless set to different value
-(via config_set_floatx()
).
+(via config_set_floatx()
). If a keras$DTypePolicy
is
+provided, then the compute_dtype
will be utilized.
diff --git a/docs/reference/loss_poisson.html b/docs/reference/loss_poisson.html
index 6f602df20..6c44e77ab 100644
--- a/docs/reference/loss_poisson.html
+++ b/docs/reference/loss_poisson.html
@@ -12,7 +12,7 @@
keras3
-
1.1.0
+
1.2.0
@@ -104,7 +104,8 @@ Argumentsconfig_floatx(). config_floatx()
is a
"float32"
unless set to different value
-(via config_set_floatx()
).
+(via config_set_floatx()
). If a keras$DTypePolicy
is
+provided, then the compute_dtype
will be utilized.
-
## tf.Tensor([2.5907533 0.66836613], shape=(2), dtype=float32)
+## tf.Tensor([1.6422468 0.81166863], shape=(2), dtype=float32)
diff --git a/docs/reference/loss_sparse_categorical_crossentropy.html b/docs/reference/loss_sparse_categorical_crossentropy.html
index 156c22ee6..92803197e 100644
--- a/docs/reference/loss_sparse_categorical_crossentropy.html
+++ b/docs/reference/loss_sparse_categorical_crossentropy.html
@@ -26,7 +26,7 @@
keras3
-
1.1.0
+
1.2.0
@@ -147,7 +147,8 @@ Argumentsconfig_floatx(). config_floatx()
is a
"float32"
unless set to different value
-(via config_set_floatx()
).
+(via config_set_floatx()
). If a keras$DTypePolicy
is
+provided, then the compute_dtype
will be utilized.
diff --git a/docs/reference/loss_squared_hinge.html b/docs/reference/loss_squared_hinge.html
index 6ff870d51..cf9b062ef 100644
--- a/docs/reference/loss_squared_hinge.html
+++ b/docs/reference/loss_squared_hinge.html
@@ -16,7 +16,7 @@
keras3
-
1.1.0
+
1.2.0
@@ -112,7 +112,8 @@ Argumentsconfig_floatx(). config_floatx()
is a
"float32"
unless set to different value
-(via config_set_floatx()
).
+(via config_set_floatx()
). If a keras$DTypePolicy
is
+provided, then the compute_dtype
will be utilized.
diff --git a/docs/reference/loss_tversky.html b/docs/reference/loss_tversky.html
index 603888306..ea3068d2d 100644
--- a/docs/reference/loss_tversky.html
+++ b/docs/reference/loss_tversky.html
@@ -22,7 +22,7 @@
keras3
-
1.1.0
+
1.2.0
@@ -132,7 +132,8 @@ Argumentsconfig_floatx(). config_floatx()
is a
"float32"
unless set to different value
-(via config_set_floatx()
).
+(via config_set_floatx()
). If a keras$DTypePolicy
is
+provided, then the compute_dtype
will be utilized.
diff --git a/docs/reference/mark_active.html b/docs/reference/mark_active.html
index 0d2a6b923..18fccec1e 100644
--- a/docs/reference/mark_active.html
+++ b/docs/reference/mark_active.html
@@ -10,7 +10,7 @@
keras3
-
1.1.0
+
1.2.0
diff --git a/docs/reference/metric_auc.html b/docs/reference/metric_auc.html
index a4708db79..b28dea972 100644
--- a/docs/reference/metric_auc.html
+++ b/docs/reference/metric_auc.html
@@ -68,7 +68,7 @@
keras3
- 1.1.0
+ 1.2.0
diff --git a/docs/reference/metric_binary_accuracy.html b/docs/reference/metric_binary_accuracy.html
index e719fab44..86b22fbe9 100644
--- a/docs/reference/metric_binary_accuracy.html
+++ b/docs/reference/metric_binary_accuracy.html
@@ -18,7 +18,7 @@
keras3
- 1.1.0
+ 1.2.0
diff --git a/docs/reference/metric_binary_crossentropy.html b/docs/reference/metric_binary_crossentropy.html
index 1659cc8b9..fb886dcf8 100644
--- a/docs/reference/metric_binary_crossentropy.html
+++ b/docs/reference/metric_binary_crossentropy.html
@@ -10,7 +10,7 @@
keras3
- 1.1.0
+ 1.2.0
diff --git a/docs/reference/metric_binary_focal_crossentropy.html b/docs/reference/metric_binary_focal_crossentropy.html
index 80b5cc592..4a8d78e13 100644
--- a/docs/reference/metric_binary_focal_crossentropy.html
+++ b/docs/reference/metric_binary_focal_crossentropy.html
@@ -30,7 +30,7 @@
keras3
- 1.1.0
+ 1.2.0
diff --git a/docs/reference/metric_binary_iou.html b/docs/reference/metric_binary_iou.html
index 905ee3fd8..1e3ee0023 100644
--- a/docs/reference/metric_binary_iou.html
+++ b/docs/reference/metric_binary_iou.html
@@ -38,7 +38,7 @@
keras3
- 1.1.0
+ 1.2.0
@@ -156,14 +156,22 @@ Note
Examples
Standalone usage:
m <- metric_binary_iou(target_class_ids=c(0L, 1L), threshold = 0.3)
-m$update_state(c(0, 1, 0, 1), c(0.1, 0.2, 0.4, 0.7))
-m$result()
+m$update_state(c(0, 1, 0, 1), c(0.1, 0.2, 0.4, 0.7))
+
## tf.Tensor(
+## [[1. 1.]
+## [1. 1.]], shape=(2, 2), dtype=float32)
+
+
## tf.Tensor(0.33333334, shape=(), dtype=float32)
m$reset_state()
m$update_state(c(0, 1, 0, 1), c(0.1, 0.2, 0.4, 0.7),
- sample_weight = c(0.2, 0.3, 0.4, 0.1))
-m$result()
+
sample_weight = c(0.2, 0.3, 0.4, 0.1))
+