-
-
Notifications
You must be signed in to change notification settings - Fork 178
/
Stats.h
905 lines (754 loc) · 25.7 KB
/
Stats.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
#pragma once
#include "Types.h"
#include <math.h>
#include <vector>
#include <map>
#include <limits>
#include <climits>
#include <algorithm> // for std::sort
#include <string.h> // for memset
#include <stdio.h> // for printf
#include <assert.h>
bool Seed_init (HashInfo *info, size_t seed);
bool Hash_Seed_init (pfHash hash, size_t seed);
double calcScore ( const int * bins, const int bincount, const int ballcount );
void plot ( double n );
double chooseK ( int b, int k );
double chooseUpToK ( int n, int k );
//-----------------------------------------------------------------------------
inline uint32_t f3mix ( uint32_t k )
{
k ^= k >> 16;
k *= 0x85ebca6b;
k ^= k >> 13;
k *= 0xc2b2ae35;
k ^= k >> 16;
return k;
}
static void printHash(const void* key, size_t len)
{
const unsigned char* const p = (const unsigned char*)key;
assert(len < INT_MAX);
for (int i=(int)len-1; i >= 0 ; i--) printf("%02x", p[i]);
printf(" ");
}
//-----------------------------------------------------------------------------
// Sort the hash list, count the total number of collisions and return
// the first N collisions for further processing
template< typename hashtype >
unsigned int FindCollisions ( std::vector<hashtype> & hashes,
HashSet<hashtype> & collisions,
int maxCollisions = 1000,
bool drawDiagram = false)
{
unsigned int collcount = 0;
#if 0
// sort indices instead
std::vector< std::pair<hashtype, size_t>> pairs;
pairs.resize (hashes.size());
for(size_t i = 0; i < hashes.size(); i++)
{
pairs[i] = std::make_pair(hashes[i], i);
}
std::sort(pairs.begin(),pairs.end());
for(size_t hnb = 1; hnb < pairs.size(); hnb++)
{
hashtype h1 = pairs[hnb].first;
hashtype prev = pairs[hnb-1].first;
if(h1 == prev)
{
collcount++;
if((int)collisions.size() < maxCollisions)
{
#ifdef DEBUG
printf ("\n%zu <=> %zu: ", pairs[hnb-1].second, pairs[hnb].second);
printHash(&h1, sizeof(hashtype));
#endif
collisions.insert(h1);
}
}
}
#else
std::sort(hashes.begin(),hashes.end());
for(size_t hnb = 1; hnb < hashes.size(); hnb++)
{
if(hashes[hnb] == hashes[hnb-1])
{
collcount++;
if(collcount < maxCollisions)
{
#ifdef DEBUG
printf ("\n%zu: ", hnb);
printHash(&hashes[hnb], sizeof(hashtype));
#endif
if (drawDiagram)
collisions.insert(hashes[hnb]);
}
}
}
#endif
#ifdef DEBUG
if (collcount)
printf ("\n");
#endif
return collcount;
}
// Note: with 32bit 77163 keys will get a 50% probability of one collision.
// Naive multiplication, no accuracy at all
static double ExpectedNBCollisions_Slow ( const double nbH, const double nbBits )
{
long balls = nbH;
long double bins = nbBits;
long double result = 1.0;
for (long i = 1; i < balls / 2; i++) {
// take a pair from the front and the end to minimize errors
result *= ((bins - i) / bins) * ((bins - (nbH - i)) / bins);
}
return (double)(nbH * result);
}
// TODO This only works for a low number of collisions
static inline double ExpectedCollisions ( const double balls, const double bins )
{
return balls - (bins * (1 - pow((bins - 1)/bins, balls)));
}
// Still too inaccurate: https://preshing.com/20110504/hash-collision-probabilities/
static double EstimateNbCollisions_Taylor(const double nbH, const double nbBits)
{
const long double k = nbH;
const long double b = nbBits;
return (double)(k * (1.0 - expl(-0.5 * k * (k - 1.0) / b)));
}
// demerphq: (double(count) * double(count-1)) / pow(2.0,double(sizeof(hashtype) * 8 + 1));
// the very same as our calc. pow 2 vs exp2. Just the high cutoff is missing here.
static double EstimateNbCollisions_Demerphq(const double nbH, const double nbBits)
{
return (nbH * (nbH - 1)) / pow(2.0, nbBits + 1);
}
// GNU R: qbirthday. rough estimate. FIXME
static double EstimateNbCollisions_R(const double nbH, const double nbBits)
{
return ceil(exp(((log(nbH) + lgamma(3) + log(-log1p(-0.5)))) / 2));
}
// GNU R: pbirthday. FIXME
/*
static double EstimateNbCollisions_Rp(const double c)
{
return (1 - prod((c:(c-0.5+1))/rep(2, 0.5)));
}
*/
// The previous best calculation, highly prone to inaccuracies with low results (1.0 - 10.0)
// TODO: return also the error.
static double EstimateNbCollisions_previmpl(const double nbH, const double nbBits)
{
double exp = exp2(nbBits); // 2 ^ bits
double result = (nbH * (nbH-1)) / (2.0 * exp);
if (result > nbH)
result = nbH;
// improved floating point accuracy
if (result <= exp || nbBits > 32)
return result;
return result - exp;
}
static double EstimateNbCollisions_fwojcik(const double nbH, const int nbBits)
{
// If the probability that there are 1 or more collisions (p(C >=
// 1)) is not much higher than the probability of exactly 1
// collision (p(C == 1)), then the classically-good approximation
// of the probability of any collisions is also a good estimate
// for the expected number of collisions.
//
// If there are 2**n buckets and 2**(n-r) hashes, then the ratio
// of p(C >= 1)/p(C == 1) is about 1/(1-2**(n-2r-1)). This uses
// the new estimator if that ratio is > 1 + 2**-8. That cutoff
// minimizes the error around the values we care about.
if (nbBits - 2.0*log2(nbH) >= 8 - 1) {
return nbH * (nbH - 1) * exp2(-nbBits-1);
}
// The probability that any given hash bucket is empty after nbH
// insertions is:
// pE = ((2**nbBits - 1)/(2**nbBits))**nbH
// so we compute:
// ln(pE) = nbH * ln((2**nbBits - 1)/(2**nbBits))
// = nbH * ln(1 - 1/2**(nbBits))
// = nbH * ln(1 - 2**(-nbBits))
// = nbH * ln(1 + -(2**(-nbBits)))
// This means the probability that any given hash bucket is
// occupied after nbH insertions is:
// pF = 1 - pE
// pF = 1 - exp(ln(pE)
// pF = -(exp(ln(pE) - 1)
// pF = -expm1(ln(pE))
// And the expected number of collisions is:
// C = m - n + n * pE
// C = m - n * (1 - pE)
// C = n * (m/n - 1 + pE)
// C = n * (m/n - (1 - pE))
// C = n * (m/n - pF)
// C = n * (m/n - (-expm1(ln(pE))))
// C = n * (m/n + expm1(ln(pE)))
// Since the format of floats/doubles is k*2**n, multiplying by
// exp2(x) doesn't lose any precision, and this formulation keeps
// m/n and pF at the same general orders of magnitude, so it tends
// to have very good precision. At low hash occupancy, pF is too
// close to m/n for this formula to work well.
double logpE = (double)nbH * log1p(-exp2(-nbBits));
double result = exp2(nbBits) * (exp2(-nbBits) * (double)nbH + expm1(logpE));
return result;
}
static double EstimateNbCollisions(const unsigned long nbH, const int nbBits)
{
return EstimateNbCollisions_fwojcik((const double)nbH, (const double)nbBits);
}
#define COLLISION_ESTIMATORS 3
static double EstimateNbCollisionsCand(const unsigned long nbH, const int nbBits, const int estimator )
{
switch(estimator) {
case 0: return EstimateNbCollisions_fwojcik((const double)nbH, (const double)nbBits);
case 1: return EstimateNbCollisions_previmpl((const double)nbH, (const double)nbBits);
case 2: return EstimateNbCollisions_Demerphq((const double)nbH, (const double)nbBits);
//case 3: return EstimateNbCollisions_Taylor((const double)nbH, (const double)nbBits);
//case 4: return ExpectedCollisions((const double)nbH, (const double)nbBits);
//case 5: return ExpectedNBCollisions_Slow((const double)nbH, (const double)nbBits);
default: { printf("Invalid estimator requested\n"); exit(1); }
}
return NAN;
}
template< typename hashtype >
bool CountLowbitsCollisions ( std::vector<hashtype> & revhashes, int nbLBits)
{
const int origBits = sizeof(hashtype) * 8;
int shiftBy = origBits - nbLBits;
if (shiftBy <= 0) return true;
size_t const nbH = revhashes.size();
double expected = EstimateNbCollisions(nbH, nbLBits);
printf("Testing collisions (low %2i-bit) - Expected %12.1f, ", nbLBits, expected);
int collcount = 0;
for (size_t hnb = 1; hnb < nbH; hnb++)
{
#ifdef DEBUG
hashtype const h1x = revhashes[hnb-1];
hashtype const h2x = revhashes[hnb];
#endif
hashtype const h1 = revhashes[hnb-1] >> shiftBy;
hashtype const h2 = revhashes[hnb] >> shiftBy;
if(h1 == h2)
collcount++;
}
double ratio = double(collcount) / expected;
printf("actual %6i (%.2fx)", collcount, expected > 0.0 ? ratio : (double)collcount);
if (ratio > 0.98 && collcount != (int)expected)
printf(" (%i)", collcount - (int)expected);
// low estimation values are too inaccurate
if (expected >= 0.1 && expected <= 10.0)
{
if (ratio > 4.0)
{
printf(" !!!!!\n");
return false;
}
else if (ratio > 2.0)
printf(" !");
}
// allow expected 0.3 and actual 1
else if (ratio > 2.0 && collcount > 1)
{
printf(" !!!!!\n");
return false;
}
printf("\n");
return true;
}
template< typename hashtype >
bool CountHighbitsCollisions ( std::vector<hashtype> & hashes, int nbHBits)
{
int origBits = sizeof(hashtype) * 8;
int shiftBy = origBits - nbHBits;
if (shiftBy <= 0) return true;
size_t const nbH = hashes.size();
double expected = EstimateNbCollisions(nbH, nbHBits);
printf("Testing collisions (high %2i-bit) - Expected %12.1f, ", nbHBits, expected);
int collcount = 0;
for (size_t hnb = 1; hnb < nbH; hnb++)
{
#ifdef DEBUG
hashtype const h1x = hashes[hnb-1];
hashtype const h2x = hashes[hnb];
#endif
hashtype const h1 = hashes[hnb-1] >> shiftBy;
hashtype const h2 = hashes[hnb] >> shiftBy;
if(h1 == h2)
collcount++;
}
double ratio = double(collcount) / expected;
printf("actual %6i (%.2fx)", collcount, expected > 0.0 ? ratio : (double)collcount);
if (ratio > 0.98 && collcount != (int)expected)
printf(" (%i)", collcount - (int)expected);
// low estimation values are too inaccurate
if (expected >= 0.1 && expected <= 10.0)
{
if (ratio > 4.0)
{
printf(" !!!!!\n");
return false;
}
else if (ratio > 2.0)
printf(" !");
}
// allow expected 0.3 and actual 1
else if (ratio > 2.0 && collcount > 1)
{
printf(" !!!!!\n");
return false;
}
printf("\n");
return true;
}
static int FindMinBits_TargetCollisionShare(int nbHashes, double share)
{
int nb;
for (nb=2; nb<64; nb++) {
double const maxColls = (double)(1ULL << nb) * share;
double const nbColls = EstimateNbCollisions(nbHashes, nb);
if (nbColls < maxColls) return nb;
}
assert(0);
return nb;
}
static int FindMaxBits_TargetCollisionNb(int nbHashes, int minCollisions)
{
int nb;
for (nb=63; nb>2; nb--) {
double const nbColls = EstimateNbCollisions(nbHashes, nb);
if (nbColls > minCollisions) return nb;
}
//assert(0);
return nb;
}
template< typename hashtype >
int CountNbCollisions ( std::vector<hashtype> & hashes, int nbHBits)
{
const int origBits = sizeof(hashtype) * 8;
const int shiftBy = origBits - nbHBits;
assert(shiftBy > 0);
size_t const nbH = hashes.size();
int collcount = 0;
for (size_t hnb = 1; hnb < nbH; hnb++)
{
hashtype const h1 = hashes[hnb-1] >> shiftBy;
hashtype const h2 = hashes[hnb] >> shiftBy;
if(h1 == h2)
{
collcount++;
}
}
return collcount;
}
template< typename hashtype >
bool TestLowbitsCollisions ( std::vector<hashtype> & revhashes)
{
int origBits = sizeof(hashtype) * 8;
size_t const nbH = revhashes.size();
int const minBits = FindMinBits_TargetCollisionShare(nbH, 0.01);
int const maxBits = FindMaxBits_TargetCollisionNb(nbH, 20);
if (maxBits <= 0 || maxBits >= origBits || minBits > maxBits) return true;
printf("Testing collisions (low %2i-%2i bits) - ", minBits, maxBits);
double maxCollDev = 0.0;
int maxCollDevBits = 0;
int maxCollDevNb = 0;
double maxCollDevExp = 1.0;
for (int b = minBits; b <= maxBits; b++) {
int const nbColls = CountNbCollisions(revhashes, b);
double const expected = EstimateNbCollisions(nbH, b);
assert(expected > 0.0);
double const dev = (double)nbColls / expected;
if (dev > maxCollDev) {
maxCollDev = dev;
maxCollDevBits = b;
maxCollDevNb = nbColls;
maxCollDevExp = expected;
}
}
printf("Worst is %2i bits: %2i/%2i (%.2fx)",
maxCollDevBits, maxCollDevNb, (int)maxCollDevExp, maxCollDev);
if (maxCollDev > 2.0) {
printf(" !!!!!\n");
return false;
}
printf("\n");
return true;
}
template< typename hashtype >
bool TestHighbitsCollisions ( std::vector<hashtype> & hashes)
{
int origBits = sizeof(hashtype) * 8;
size_t const nbH = hashes.size();
int const minBits = FindMinBits_TargetCollisionShare(nbH, 0.01);
int const maxBits = FindMaxBits_TargetCollisionNb(nbH, 20);
if (maxBits <= 0 || maxBits >= origBits || minBits > maxBits) return true;
printf("Testing collisions (high %2i-%2i bits) - ", minBits, maxBits);
double maxCollDev = 0.0;
int maxCollDevBits = 0;
int maxCollDevNb = 0;
double maxCollDevExp = 1.0;
for (int b = minBits; b <= maxBits; b++) {
int const nbColls = CountNbCollisions(hashes, b);
double const expected = EstimateNbCollisions(nbH, b);
assert(expected > 0.0);
double const dev = (double)nbColls / expected;
if (dev > maxCollDev) {
maxCollDev = dev;
maxCollDevBits = b;
maxCollDevNb = nbColls;
maxCollDevExp = expected;
}
}
printf("Worst is %2i bits: %2i/%2i (%.2fx)",
maxCollDevBits, maxCollDevNb, (int)maxCollDevExp, maxCollDev);
if (maxCollDev > 2.0) {
printf(" !!!!!\n");
return false;
}
printf("\n");
return true;
}
//-----------------------------------------------------------------------------
template < typename hashtype >
int PrintCollisions ( HashSet<hashtype> & collisions )
{
printf("\nCollisions:\n");
for (typename HashSet<hashtype>::iterator it = collisions.begin();
it != collisions.end(); ++it)
{
const hashtype &hash = *it;
printhex(&hash, sizeof(hashtype));
printf("\n");
}
return 0;
}
//----------------------------------------------------------------------------
// Measure the distribution "score" for each possible N-bit span, with
// N going from 8 to 20 inclusive.
template< typename hashtype >
bool TestDistribution ( std::vector<hashtype> & hashes, bool drawDiagram )
{
const int hashbits = sizeof(hashtype) * 8;
int maxwidth = 20;
int minwidth = 8;
// We need at least 5 keys per bin to reliably test distribution biases
// down to 1%, so don't bother to test sparser distributions than that
while(double(hashes.size()) / double(1 << maxwidth) < 5.0)
if (--maxwidth < minwidth) return true;
printf("Testing distribution - ");
if(drawDiagram) printf("\n");
std::vector<int> bins;
bins.resize(1 << maxwidth);
double worst = 0;
int worstStart = -1;
int worstWidth = -1;
for(int start = 0; start < hashbits; start++)
{
int width = maxwidth;
int bincount = (1 << width);
memset(&bins[0],0,sizeof(int)*bincount);
for(size_t j = 0; j < hashes.size(); j++)
{
hashtype & hash = hashes[j];
uint32_t index = window(&hash,sizeof(hash),start,width);
bins[index]++;
}
// Test the distribution, then fold the bins in half,
// repeat until we're down to 256 bins
if(drawDiagram) printf("[");
while(bincount >= 256)
{
double n = calcScore(&bins[0],bincount,(int)hashes.size());
if(drawDiagram) plot(n);
if(n > worst)
{
worst = n;
worstStart = start;
worstWidth = width;
}
width--;
bincount /= 2;
if(width < minwidth) break;
for(int i = 0; i < bincount; i++)
{
bins[i] += bins[i+bincount];
}
}
if(drawDiagram) printf("]\n");
}
double pct = worst * 100.0;
if (worstStart == -1)
printf("Worst bias is - %.3f%%",
pct);
else
printf("Worst bias is the %2d-bit window at bit %2d - %.3f%%",
worstWidth, worstStart, pct);
if(pct >= 1.0) {
printf(" !!!!!\n");
return false;
}
else {
printf("\n");
return true;
}
}
//----------------------------------------------------------------------------
static int FindNbBitsForCollisionTarget(int targetNbCollisions, int nbHashes)
{
int nb;
double const target = (double)targetNbCollisions;
for (nb=2; nb<64; nb++) {
double nbColls = EstimateNbCollisions(nbHashes, nb);
if (nbColls < target) break;
}
if ((EstimateNbCollisions(nbHashes, nb)) > targetNbCollisions/5)
return nb;
return nb-1;
}
// 0xf00f1001 => 0x8008f00f
template <typename hashtype>
hashtype bitreverse(hashtype n, size_t b = sizeof(hashtype) * 8)
{
assert(b <= std::numeric_limits<hashtype>::digits);
hashtype rv = 0;
for (size_t i = 0; i < b; i += 8) {
rv <<= 8;
rv |= bitrev(n & 0xff); // ensure overloaded |= op for Blob not underflowing
n >>= 8;
}
return rv;
}
template < typename hashtype >
bool TestHashList ( std::vector<hashtype> & hashes, bool drawDiagram,
bool testCollision = true, bool testDist = true,
/* next two for WindowedKeyTest: */
bool testHighBits = true, bool testLowBits = true,
bool verbose = true, bool nofail = false)
{
bool result = true;
if (testCollision)
{
size_t const count = hashes.size();
double const expected = EstimateNbCollisions(count, sizeof(hashtype) * 8);
if (verbose)
printf("Testing collisions (%3i-bit) - Expected %6.1f, ",
(int)sizeof(hashtype)*8, expected);
const int i_expected = (int)expected;
int collcount = 0;
HashSet<hashtype> collisions;
collcount = FindCollisions(hashes, collisions, 1000, drawDiagram);
double ratio = double(collcount) / expected;
if (verbose) {
printf("actual %6i (%.2fx)", (int)collcount, expected > 0.0 ? ratio : (double)collcount);
if (ratio > 0.98 && collcount != i_expected)
printf(" (%i)", collcount - i_expected);
}
if (sizeof(hashtype) <= sizeof(uint32_t))
{
// fail with >= 2x expected collisions
// TODO - collision failure cutoff needs to be expressed as a standard deviation instead
// of a scale factor, otherwise we fail erroneously if there are a small expected number
// of collisions
// low estimation values are too inaccurate
if (expected >= 0.1 && expected <= 10.0)
{
ratio = ceil(ratio);
if (ceil(ratio) > 4.0 && !nofail)
{
printf(" !!!!!!\n");
return false;
}
else if (ceil(ratio) > 2.0)
printf(" !");
}
// allow expected 0.3 and actual 1
else if (ceil(ratio) > 2.0 && collcount > 1 && !nofail)
{
printf(" !!!!!\n");
return false;
}
// don't allow expected 0.0+epsilon and actual 1
else if (expected < 0.001 && collcount == 1 && !nofail)
{
printf(" !!!!\n");
return false;
}
}
else
{
// For all hashes larger than 32 bits, _any_ collisions are a failure.
if (collcount > 0 && expected < 1.0 && !nofail)
{
printf(" !!!!!");
result = false;
if(drawDiagram)
{
PrintCollisions(collisions);
//printf("Mapping collisions\n");
//CollisionMap<uint128_t,ByteVec> cmap;
//CollisionCallback<uint128_t> c2(hash,collisions,cmap);
////TwoBytesKeygen(20,c2);
//printf("Dumping collisions\n");
//DumpCollisionMap(cmap);
}
}
}
if (verbose) {
printf("\n");
}
fflush(NULL);
if (testHighBits) {
result &= CountHighbitsCollisions(hashes, 224);
result &= CountHighbitsCollisions(hashes, 160);
result &= CountHighbitsCollisions(hashes, 128);
result &= CountHighbitsCollisions(hashes, 64);
result &= CountHighbitsCollisions(hashes, 32);
/*
int const optimalNbBits = FindNbBitsForCollisionTarget(100, count);
result &= CountHighbitsCollisions(hashes, optimalNbBits);
*/
result &= TestHighbitsCollisions(hashes);
/*
* cyan: The 12- and -8-bit tests are too small : tables are necessarily saturated.
* It would be better to count the nb of collisions per Cell, and
* compared the distribution of values against a random source.
* But that would be a different test.
*
* rurban: No, these tests are for non-prime hash tables, using only
* the lower 5-10 bits
*
* fwojcik: Count{High,Low}bitsCollisions() do not currently seem
* to reflect rurban's comment, as they count the sum of
* collisions across _all_ buckets. So if there are many more
* hashes than 2**nbBits, and the hash is even _slightly_ not
* broken, then every n-bit truncated hash value will appear at
* least once, in which case the "actual" value reported would
* always be (hashes.size() - 2**nbBits). Checking the results in
* doc/ confirms this. cyan's comment is correct.
*/
//result &= CountHighbitsCollisions(hashes, 12);
//result &= CountHighbitsCollisions(hashes, 8);
}
if (testLowBits) {
// reverse: bitwise flip the hashes. lowest bits first
std::vector<hashtype> revhashes = hashes;
for (size_t i = 0; i < revhashes.size(); i++) {
revhashes[i] = bitreverse(hashes[i]);
}
std::sort(revhashes.begin(), revhashes.end());
result &= CountLowbitsCollisions(revhashes, 224);
result &= CountLowbitsCollisions(revhashes, 160);
result &= CountLowbitsCollisions(revhashes, 128);
result &= CountLowbitsCollisions(revhashes, 64);
result &= CountLowbitsCollisions(revhashes, 32);
/*
int const optimalNbBits = FindNbBitsForCollisionTarget(100, count);
result &= CountLowbitsCollisions(hashes, optimalNbBits);
*/
result &= TestLowbitsCollisions(revhashes);
//result &= CountLowbitsCollisions(revhashes, 12);
//result &= CountLowbitsCollisions(revhashes, 8);
//std::vector<hashtype>().swap(revhashes);
//revhashes.clear();
}
}
//----------
if(testDist)
{
result &= TestDistribution(hashes,drawDiagram);
}
return result;
}
//-----------------------------------------------------------------------------
template < class keytype, typename hashtype >
bool TestKeyList ( hashfunc<hashtype> hash, std::vector<keytype> & keys,
bool drawDiagram, bool testColl, bool testDist )
{
int keycount = (int)keys.size();
std::vector<hashtype> hashes;
hashes.resize(keycount);
printf("Hashing");
for(int i = 0; i < keycount; i++)
{
if(i % (keycount / 10) == 0) printf(".");
keytype & k = keys[i];
hash(&k,sizeof(k),0,&hashes[i]);
}
printf("\n");
bool result = TestHashList(hashes,drawDiagram,testColl,testDist);
printf("\n");
return result;
}
//-----------------------------------------------------------------------------
// Bytepair test - generate 16-bit indices from all possible non-overlapping
// 8-bit sections of the hash value, check distribution on all of them.
// This is a very good test for catching weak intercorrelations between bits -
// much harder to pass than the normal distribution test. However, it doesn't
// really model the normal usage of hash functions in hash table lookup, so
// I'm not sure it's that useful (and hash functions that fail this test but
// pass the normal distribution test still work well in practice)
template < typename hashtype >
double TestDistributionBytepairs ( std::vector<hashtype> & hashes, bool drawDiagram )
{
const int nbytes = sizeof(hashtype);
const int hashbits = nbytes * 8;
const int nbins = 65536;
std::vector<int> bins(nbins,0);
double worst = 0;
for(int a = 0; a < hashbits; a++)
{
if(drawDiagram) if((a % 8 == 0) && (a > 0)) printf("\n");
if(drawDiagram) printf("[");
for(int b = 0; b < hashbits; b++)
{
if(drawDiagram) if((b % 8 == 0) && (b > 0)) printf(" ");
bins.clear();
bins.resize(nbins,0);
for(size_t i = 0; i < hashes.size(); i++)
{
hashtype & hash = hashes[i];
uint32_t pa = window(&hash,sizeof(hash),a,8);
uint32_t pb = window(&hash,sizeof(hash),b,8);
bins[pa | (pb << 8)]++;
}
double s = calcScore(bins,bins.size(),hashes.size());
if(drawDiagram) plot(s);
if(s > worst)
{
worst = s;
}
}
if(drawDiagram) printf("]\n");
}
return worst;
}
//-----------------------------------------------------------------------------
// Simplified test - only check 64k distributions, and only on byte boundaries
template < typename hashtype >
void TestDistributionFast ( std::vector<hashtype> & hashes, double & dworst, double & davg )
{
const int hashbits = sizeof(hashtype) * 8;
const int nbins = 65536;
std::vector<int> bins(nbins,0);
dworst = -1.0e90;
davg = 0;
for(int start = 0; start < hashbits; start += 8)
{
bins.clear();
bins.resize(nbins,0);
for(size_t j = 0; j < hashes.size(); j++)
{
hashtype & hash = hashes[j];
uint32_t index = window(&hash,sizeof(hash),start,16);
bins[index]++;
}
double n = calcScore(&bins.front(),(int)bins.size(),(int)hashes.size());
davg += n;
if(n > dworst) dworst = n;
}
davg /= double(hashbits/8);
}
//-----------------------------------------------------------------------------